Mathieu Poirier | ecadac7 | 2024-10-17 16:39:51 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2024-2025, Linaro Limited. All rights reserved. |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | #include <assert.h> |
| 8 | |
| 9 | #include <common/fdt_wrappers.h> |
| 10 | #include <libfdt.h> |
| 11 | |
| 12 | #include <sbsa_platform.h> |
| 13 | |
Mathieu Poirier | 17af959 | 2024-10-10 15:07:49 -0600 | [diff] [blame] | 14 | #include "qemu_private.h" |
| 15 | |
Mathieu Poirier | ecadac7 | 2024-10-17 16:39:51 -0600 | [diff] [blame] | 16 | /* default platform version is 0.0 */ |
| 17 | static int platform_version_major; |
| 18 | static int platform_version_minor; |
| 19 | |
| 20 | static uint64_t gic_its_addr; |
| 21 | static struct qemu_platform_info dynamic_platform_info; |
| 22 | |
| 23 | void sbsa_set_gic_bases(const uintptr_t gicd_base, const uintptr_t gicr_base); |
| 24 | |
| 25 | /* |
| 26 | * QEMU provides us with minimal information about hardware platform using |
| 27 | * minimalistic DeviceTree. This is not a Linux DeviceTree. It is not even |
| 28 | * a firmware DeviceTree. |
| 29 | * |
| 30 | * It is information passed from QEMU to describe the information a hardware |
| 31 | * platform would have other mechanisms to discover at runtime, that are |
| 32 | * affected by the QEMU command line. |
| 33 | * |
| 34 | * Ultimately this device tree will be replaced by IPC calls to an emulated SCP. |
| 35 | * And when we do that, we won't then have to rewrite Normal world firmware to |
| 36 | * cope. |
| 37 | */ |
| 38 | |
| 39 | static void read_cpu_topology_from_dt(void *dtb) |
| 40 | { |
| 41 | int node; |
| 42 | |
| 43 | /* |
| 44 | * QEMU gives us this DeviceTree node when we config: |
| 45 | * -smp 16,sockets=2,clusters=2,cores=2,threads=2 |
| 46 | * |
| 47 | * topology { |
| 48 | * threads = <0x02>; |
| 49 | * cores = <0x02>; |
| 50 | * clusters = <0x02>; |
| 51 | * sockets = <0x02>; |
| 52 | * }; |
| 53 | */ |
| 54 | |
| 55 | node = fdt_path_offset(dtb, "/cpus/topology"); |
| 56 | if (node > 0) { |
| 57 | dynamic_platform_info.cpu_topo.sockets = |
| 58 | fdt_read_uint32_default(dtb, node, "sockets", 0); |
| 59 | dynamic_platform_info.cpu_topo.clusters = |
| 60 | fdt_read_uint32_default(dtb, node, "clusters", 0); |
| 61 | dynamic_platform_info.cpu_topo.cores = |
| 62 | fdt_read_uint32_default(dtb, node, "cores", 0); |
| 63 | dynamic_platform_info.cpu_topo.threads = |
| 64 | fdt_read_uint32_default(dtb, node, "threads", 0); |
| 65 | } |
| 66 | |
| 67 | INFO("Cpu topology: sockets: %d, clusters: %d, cores: %d, threads: %d\n", |
| 68 | dynamic_platform_info.cpu_topo.sockets, |
| 69 | dynamic_platform_info.cpu_topo.clusters, |
| 70 | dynamic_platform_info.cpu_topo.cores, |
| 71 | dynamic_platform_info.cpu_topo.threads); |
| 72 | } |
| 73 | |
| 74 | static void read_cpuinfo_from_dt(void *dtb) |
| 75 | { |
| 76 | int node; |
| 77 | int prev; |
| 78 | int cpu = 0; |
| 79 | uintptr_t mpidr; |
| 80 | |
| 81 | /* |
| 82 | * QEMU gives us this DeviceTree node: |
| 83 | * numa-node-id entries are only when NUMA config is used |
| 84 | * |
| 85 | * cpus { |
| 86 | * #size-cells = <0x00>; |
| 87 | * #address-cells = <0x02>; |
| 88 | * |
| 89 | * cpu@0 { |
| 90 | * numa-node-id = <0x00>; |
| 91 | * reg = <0x00 0x00>; |
| 92 | * }; |
| 93 | * |
| 94 | * cpu@1 { |
| 95 | * numa-node-id = <0x03>; |
| 96 | * reg = <0x00 0x01>; |
| 97 | * }; |
| 98 | * }; |
| 99 | */ |
| 100 | node = fdt_path_offset(dtb, "/cpus"); |
| 101 | if (node < 0) { |
| 102 | ERROR("No information about cpus in DeviceTree.\n"); |
| 103 | panic(); |
| 104 | } |
| 105 | |
| 106 | /* |
| 107 | * QEMU numbers cpus from 0 and there can be /cpus/cpu-map present so we |
| 108 | * cannot use fdt_first_subnode() here |
| 109 | */ |
| 110 | node = fdt_path_offset(dtb, "/cpus/cpu@0"); |
| 111 | |
| 112 | while (node > 0) { |
| 113 | if (fdt_getprop(dtb, node, "reg", NULL)) { |
| 114 | fdt_get_reg_props_by_index(dtb, node, 0, &mpidr, NULL); |
| 115 | } else { |
| 116 | ERROR("Incomplete information for cpu %d in DeviceTree.\n", cpu); |
| 117 | panic(); |
| 118 | } |
| 119 | |
| 120 | dynamic_platform_info.cpu[cpu].mpidr = mpidr; |
| 121 | dynamic_platform_info.cpu[cpu].nodeid = |
| 122 | fdt_read_uint32_default(dtb, node, "numa-node-id", 0); |
| 123 | |
| 124 | INFO("CPU %d: node-id: %d, mpidr: %ld\n", cpu, |
| 125 | dynamic_platform_info.cpu[cpu].nodeid, mpidr); |
| 126 | |
| 127 | cpu++; |
| 128 | |
| 129 | prev = node; |
| 130 | node = fdt_next_subnode(dtb, prev); |
| 131 | } |
| 132 | |
| 133 | dynamic_platform_info.num_cpus = cpu; |
| 134 | INFO("Found %d cpus\n", dynamic_platform_info.num_cpus); |
| 135 | |
| 136 | read_cpu_topology_from_dt(dtb); |
| 137 | } |
| 138 | |
| 139 | static void read_meminfo_from_dt(void *dtb) |
| 140 | { |
| 141 | const fdt32_t *prop; |
| 142 | const char *type; |
| 143 | int prev, node; |
| 144 | int len; |
| 145 | uint32_t memnode = 0; |
| 146 | uint32_t higher_value, lower_value; |
| 147 | uint64_t cur_base, cur_size; |
| 148 | |
| 149 | /* |
| 150 | * QEMU gives us this DeviceTree node: |
| 151 | * |
| 152 | * memory@100c0000000 { |
| 153 | * numa-node-id = <0x01>; |
| 154 | * reg = <0x100 0xc0000000 0x00 0x40000000>; |
| 155 | * device_type = "memory"; |
| 156 | * }; |
| 157 | * |
| 158 | * memory@10000000000 { |
| 159 | * numa-node-id = <0x00>; |
| 160 | * reg = <0x100 0x00 0x00 0xc0000000>; |
| 161 | * device_type = "memory"; |
| 162 | * } |
| 163 | */ |
| 164 | |
| 165 | for (prev = 0;; prev = node) { |
| 166 | node = fdt_next_node(dtb, prev, NULL); |
| 167 | if (node < 0) { |
| 168 | break; |
| 169 | } |
| 170 | |
| 171 | type = fdt_getprop(dtb, node, "device_type", &len); |
| 172 | if (type && strncmp(type, "memory", len) == 0) { |
| 173 | dynamic_platform_info.memory[memnode].nodeid = |
| 174 | fdt_read_uint32_default(dtb, node, "numa-node-id", 0); |
| 175 | |
| 176 | /* |
| 177 | * Get the 'reg' property of this node and |
| 178 | * assume two 8 bytes for base and size. |
| 179 | */ |
| 180 | prop = fdt_getprop(dtb, node, "reg", &len); |
| 181 | if (prop != 0 && len == (2 * sizeof(int64_t))) { |
| 182 | higher_value = fdt32_to_cpu(*prop); |
| 183 | lower_value = fdt32_to_cpu(*(prop + 1)); |
| 184 | cur_base = (uint64_t)(lower_value | ((uint64_t)higher_value) << 32); |
| 185 | |
| 186 | higher_value = fdt32_to_cpu(*(prop + 2)); |
| 187 | lower_value = fdt32_to_cpu(*(prop + 3)); |
| 188 | cur_size = (uint64_t)(lower_value | ((uint64_t)higher_value) << 32); |
| 189 | |
| 190 | dynamic_platform_info.memory[memnode].addr_base = cur_base; |
| 191 | dynamic_platform_info.memory[memnode].addr_size = cur_size; |
| 192 | |
| 193 | INFO("RAM %d: node-id: %d, address: 0x%lx - 0x%lx\n", |
| 194 | memnode, |
| 195 | dynamic_platform_info.memory[memnode].nodeid, |
| 196 | dynamic_platform_info.memory[memnode].addr_base, |
| 197 | dynamic_platform_info.memory[memnode].addr_base + |
| 198 | dynamic_platform_info.memory[memnode].addr_size - 1); |
| 199 | } |
| 200 | |
| 201 | memnode++; |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | dynamic_platform_info.num_memnodes = memnode; |
| 206 | } |
| 207 | |
| 208 | static void read_platform_config_from_dt(void *dtb) |
| 209 | { |
| 210 | int node; |
| 211 | const fdt64_t *data; |
| 212 | int err; |
| 213 | uintptr_t gicd_base; |
| 214 | uintptr_t gicr_base; |
| 215 | |
| 216 | /* |
| 217 | * QEMU gives us this DeviceTree node: |
| 218 | * |
| 219 | * intc { |
| 220 | * reg = < 0x00 0x40060000 0x00 0x10000 |
| 221 | * 0x00 0x40080000 0x00 0x4000000>; |
| 222 | * its { |
| 223 | * reg = <0x00 0x44081000 0x00 0x20000>; |
| 224 | * }; |
| 225 | * }; |
| 226 | */ |
| 227 | node = fdt_path_offset(dtb, "/intc"); |
| 228 | if (node < 0) { |
| 229 | return; |
| 230 | } |
| 231 | |
| 232 | data = fdt_getprop(dtb, node, "reg", NULL); |
| 233 | if (data == NULL) { |
| 234 | return; |
| 235 | } |
| 236 | |
| 237 | err = fdt_get_reg_props_by_index(dtb, node, 0, &gicd_base, NULL); |
| 238 | if (err < 0) { |
| 239 | ERROR("Failed to read GICD reg property of GIC node\n"); |
| 240 | return; |
| 241 | } |
| 242 | INFO("GICD base = 0x%lx\n", gicd_base); |
| 243 | |
| 244 | err = fdt_get_reg_props_by_index(dtb, node, 1, &gicr_base, NULL); |
| 245 | if (err < 0) { |
| 246 | ERROR("Failed to read GICR reg property of GIC node\n"); |
| 247 | return; |
| 248 | } |
| 249 | INFO("GICR base = 0x%lx\n", gicr_base); |
| 250 | |
| 251 | sbsa_set_gic_bases(gicd_base, gicr_base); |
| 252 | |
| 253 | node = fdt_path_offset(dtb, "/intc/its"); |
| 254 | if (node < 0) { |
| 255 | return; |
| 256 | } |
| 257 | |
| 258 | err = fdt_get_reg_props_by_index(dtb, node, 0, &gic_its_addr, NULL); |
| 259 | if (err < 0) { |
| 260 | ERROR("Failed to read GICI reg property of GIC node\n"); |
| 261 | return; |
| 262 | } |
| 263 | INFO("GICI base = 0x%lx\n", gic_its_addr); |
| 264 | } |
| 265 | |
| 266 | static void read_platform_version(void *dtb) |
| 267 | { |
| 268 | int node; |
| 269 | |
| 270 | node = fdt_path_offset(dtb, "/"); |
| 271 | if (node >= 0) { |
| 272 | platform_version_major = |
| 273 | fdt_read_uint32_default(dtb, node, "machine-version-major", 0); |
| 274 | platform_version_minor = |
| 275 | fdt_read_uint32_default(dtb, node, "machine-version-minor", 0); |
| 276 | } |
| 277 | } |
| 278 | |
Mathieu Poirier | 99bc6cf | 2024-10-10 16:03:47 -0600 | [diff] [blame] | 279 | #if !ENABLE_RME |
| 280 | static int set_system_memory_base(void *dtb, uintptr_t new_base) |
| 281 | { |
| 282 | (void)dtb; |
| 283 | (void)new_base; |
| 284 | |
| 285 | return 0; |
| 286 | } |
| 287 | #else /* !ENABLE_RME */ |
| 288 | static int set_system_memory_base(void *dtb, uintptr_t new_base) |
| 289 | { |
| 290 | uint64_t cur_base, cur_size, new_size, delta; |
| 291 | int len, prev, node, ret; |
| 292 | const fdt32_t *prop; |
| 293 | uint32_t node_id; |
| 294 | const char *type; |
| 295 | fdt64_t new[2]; |
| 296 | |
| 297 | /* |
| 298 | * QEMU gives us this DeviceTree node: |
| 299 | * |
| 300 | * memory@100c0000000 { |
| 301 | * numa-node-id = <0x01>; |
| 302 | * reg = <0x100 0xc0000000 0x00 0x40000000>; |
| 303 | * device_type = "memory"; |
| 304 | * }; |
| 305 | * |
| 306 | * memory@10000000000 { |
| 307 | * numa-node-id = <0x00>; |
| 308 | * reg = <0x100 0x00 0x00 0xc0000000>; |
| 309 | * device_type = "memory"; |
| 310 | * } |
| 311 | */ |
| 312 | |
| 313 | for (prev = 0;; prev = node) { |
| 314 | node = fdt_next_node(dtb, prev, NULL); |
| 315 | if (node < 0) { |
| 316 | return node; |
| 317 | } |
| 318 | |
| 319 | type = fdt_getprop(dtb, node, "device_type", &len); |
| 320 | if (type && strncmp(type, "memory", len) == 0) { |
| 321 | |
| 322 | /* |
| 323 | * We are looking for numa node 0, i.e the start of the |
| 324 | * system memory. If a "numa-node-id" doesn't exists we |
| 325 | * take the first one. |
| 326 | */ |
| 327 | node_id = fdt_read_uint32_default(dtb, node, |
| 328 | "numa-node-id", 0); |
| 329 | |
| 330 | if (node_id == 0) { |
| 331 | break; |
| 332 | } |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | * Get the 'reg' property of this node and |
| 338 | * assume two 8 bytes for base and size. |
| 339 | */ |
| 340 | prop = fdt_getprop(dtb, node, "reg", &len); |
| 341 | if (!prop || len < 0) { |
| 342 | return len; |
| 343 | } |
| 344 | |
| 345 | if (len != (2 * sizeof(uint64_t))) { |
| 346 | return -FDT_ERR_BADVALUE; |
| 347 | } |
| 348 | |
| 349 | ret = fdt_get_reg_props_by_index(dtb, node, 0, &cur_base, &cur_size); |
| 350 | if (ret < 0) |
| 351 | return ret; |
| 352 | |
| 353 | /* |
| 354 | * @cur_base is the base of the NS RAM given to us by QEMU, we can't |
| 355 | * go lower than that. |
| 356 | */ |
| 357 | if (new_base < cur_base) { |
| 358 | return -FDT_ERR_BADVALUE; |
| 359 | } |
| 360 | |
| 361 | if (new_base == cur_base) { |
| 362 | return 0; |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * The new base is higher than the base set by QEMU, i.e we are moving |
| 367 | * the base memory up and shrinking the size. |
| 368 | */ |
| 369 | delta = (size_t)(new_base - cur_base); |
| 370 | |
| 371 | /* |
| 372 | * Make sure the new base is still within the base memory node, i.e |
| 373 | * the base memory node is big enough for the RMM. |
| 374 | */ |
| 375 | if (delta >= cur_size) { |
| 376 | ERROR("Not enough space in base memory node for RMM\n"); |
| 377 | return -FDT_ERR_BADVALUE; |
| 378 | } |
| 379 | |
| 380 | new_size = cur_size - delta; |
| 381 | |
| 382 | new[0] = cpu_to_fdt64(new_base); |
| 383 | new[1] = cpu_to_fdt64(new_size); |
| 384 | |
| 385 | ret = fdt_setprop(dtb, node, "reg", new, len); |
| 386 | if (ret < 0) { |
| 387 | return ret; |
| 388 | } |
| 389 | |
| 390 | return fdt_pack(dtb); |
| 391 | } |
| 392 | #endif /* !ENABLE_RME */ |
| 393 | |
Mathieu Poirier | ecadac7 | 2024-10-17 16:39:51 -0600 | [diff] [blame] | 394 | void sbsa_platform_init(void) |
| 395 | { |
| 396 | /* Read DeviceTree data before MMU is enabled */ |
| 397 | |
Mathieu Poirier | 17af959 | 2024-10-10 15:07:49 -0600 | [diff] [blame] | 398 | void *dtb = plat_qemu_dt_runtime_address(); |
Mathieu Poirier | ecadac7 | 2024-10-17 16:39:51 -0600 | [diff] [blame] | 399 | int err; |
| 400 | |
| 401 | err = fdt_open_into(dtb, dtb, PLAT_QEMU_DT_MAX_SIZE); |
| 402 | if (err < 0) { |
| 403 | ERROR("Invalid Device Tree at %p: error %d\n", dtb, err); |
| 404 | return; |
| 405 | } |
| 406 | |
| 407 | err = fdt_check_header(dtb); |
| 408 | if (err < 0) { |
| 409 | ERROR("Invalid DTB file passed\n"); |
| 410 | return; |
| 411 | } |
| 412 | |
| 413 | read_platform_version(dtb); |
| 414 | INFO("Platform version: %d.%d\n", platform_version_major, platform_version_minor); |
| 415 | |
Mathieu Poirier | 99bc6cf | 2024-10-10 16:03:47 -0600 | [diff] [blame] | 416 | if (set_system_memory_base(dtb, NS_DRAM0_BASE)) { |
| 417 | ERROR("Failed to set system memory in Device Tree\n"); |
| 418 | return; |
| 419 | } |
| 420 | |
Mathieu Poirier | ecadac7 | 2024-10-17 16:39:51 -0600 | [diff] [blame] | 421 | read_platform_config_from_dt(dtb); |
| 422 | read_cpuinfo_from_dt(dtb); |
| 423 | read_meminfo_from_dt(dtb); |
| 424 | } |
| 425 | |
| 426 | int sbsa_platform_version_major(void) |
| 427 | { |
| 428 | return platform_version_major; |
| 429 | } |
| 430 | |
| 431 | int sbsa_platform_version_minor(void) |
| 432 | { |
| 433 | return platform_version_minor; |
| 434 | } |
| 435 | |
| 436 | uint32_t sbsa_platform_num_cpus(void) |
| 437 | { |
| 438 | return dynamic_platform_info.num_cpus; |
| 439 | } |
| 440 | |
| 441 | uint32_t sbsa_platform_num_memnodes(void) |
| 442 | { |
| 443 | return dynamic_platform_info.num_memnodes; |
| 444 | } |
| 445 | |
| 446 | uint64_t sbsa_platform_gic_its_addr(void) |
| 447 | { |
| 448 | return gic_its_addr; |
| 449 | } |
| 450 | |
| 451 | struct platform_cpu_data sbsa_platform_cpu_node(uint64_t index) |
| 452 | { |
| 453 | return dynamic_platform_info.cpu[index]; |
| 454 | } |
| 455 | |
| 456 | struct platform_memory_data sbsa_platform_memory_node(uint64_t index) |
| 457 | { |
| 458 | return dynamic_platform_info.memory[index]; |
| 459 | } |
| 460 | |
| 461 | struct platform_cpu_topology sbsa_platform_cpu_topology(void) |
| 462 | { |
| 463 | return dynamic_platform_info.cpu_topo; |
| 464 | } |