| /* |
| * Copyright (c) 2024-2025, Linaro Limited. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| |
| #include <common/fdt_wrappers.h> |
| #include <libfdt.h> |
| |
| #include <sbsa_platform.h> |
| |
| #include "qemu_private.h" |
| |
| /* default platform version is 0.0 */ |
| static int platform_version_major; |
| static int platform_version_minor; |
| |
| static uint64_t gic_its_addr; |
| static struct qemu_platform_info dynamic_platform_info; |
| |
| void sbsa_set_gic_bases(const uintptr_t gicd_base, const uintptr_t gicr_base); |
| |
| /* |
| * QEMU provides us with minimal information about hardware platform using |
| * minimalistic DeviceTree. This is not a Linux DeviceTree. It is not even |
| * a firmware DeviceTree. |
| * |
| * It is information passed from QEMU to describe the information a hardware |
| * platform would have other mechanisms to discover at runtime, that are |
| * affected by the QEMU command line. |
| * |
| * Ultimately this device tree will be replaced by IPC calls to an emulated SCP. |
| * And when we do that, we won't then have to rewrite Normal world firmware to |
| * cope. |
| */ |
| |
| static void read_cpu_topology_from_dt(void *dtb) |
| { |
| int node; |
| |
| /* |
| * QEMU gives us this DeviceTree node when we config: |
| * -smp 16,sockets=2,clusters=2,cores=2,threads=2 |
| * |
| * topology { |
| * threads = <0x02>; |
| * cores = <0x02>; |
| * clusters = <0x02>; |
| * sockets = <0x02>; |
| * }; |
| */ |
| |
| node = fdt_path_offset(dtb, "/cpus/topology"); |
| if (node > 0) { |
| dynamic_platform_info.cpu_topo.sockets = |
| fdt_read_uint32_default(dtb, node, "sockets", 0); |
| dynamic_platform_info.cpu_topo.clusters = |
| fdt_read_uint32_default(dtb, node, "clusters", 0); |
| dynamic_platform_info.cpu_topo.cores = |
| fdt_read_uint32_default(dtb, node, "cores", 0); |
| dynamic_platform_info.cpu_topo.threads = |
| fdt_read_uint32_default(dtb, node, "threads", 0); |
| } |
| |
| INFO("Cpu topology: sockets: %d, clusters: %d, cores: %d, threads: %d\n", |
| dynamic_platform_info.cpu_topo.sockets, |
| dynamic_platform_info.cpu_topo.clusters, |
| dynamic_platform_info.cpu_topo.cores, |
| dynamic_platform_info.cpu_topo.threads); |
| } |
| |
| static void read_cpuinfo_from_dt(void *dtb) |
| { |
| int node; |
| int prev; |
| int cpu = 0; |
| uintptr_t mpidr; |
| |
| /* |
| * QEMU gives us this DeviceTree node: |
| * numa-node-id entries are only when NUMA config is used |
| * |
| * cpus { |
| * #size-cells = <0x00>; |
| * #address-cells = <0x02>; |
| * |
| * cpu@0 { |
| * numa-node-id = <0x00>; |
| * reg = <0x00 0x00>; |
| * }; |
| * |
| * cpu@1 { |
| * numa-node-id = <0x03>; |
| * reg = <0x00 0x01>; |
| * }; |
| * }; |
| */ |
| node = fdt_path_offset(dtb, "/cpus"); |
| if (node < 0) { |
| ERROR("No information about cpus in DeviceTree.\n"); |
| panic(); |
| } |
| |
| /* |
| * QEMU numbers cpus from 0 and there can be /cpus/cpu-map present so we |
| * cannot use fdt_first_subnode() here |
| */ |
| node = fdt_path_offset(dtb, "/cpus/cpu@0"); |
| |
| while (node > 0) { |
| if (fdt_getprop(dtb, node, "reg", NULL)) { |
| fdt_get_reg_props_by_index(dtb, node, 0, &mpidr, NULL); |
| } else { |
| ERROR("Incomplete information for cpu %d in DeviceTree.\n", cpu); |
| panic(); |
| } |
| |
| dynamic_platform_info.cpu[cpu].mpidr = mpidr; |
| dynamic_platform_info.cpu[cpu].nodeid = |
| fdt_read_uint32_default(dtb, node, "numa-node-id", 0); |
| |
| INFO("CPU %d: node-id: %d, mpidr: %ld\n", cpu, |
| dynamic_platform_info.cpu[cpu].nodeid, mpidr); |
| |
| cpu++; |
| |
| prev = node; |
| node = fdt_next_subnode(dtb, prev); |
| } |
| |
| dynamic_platform_info.num_cpus = cpu; |
| INFO("Found %d cpus\n", dynamic_platform_info.num_cpus); |
| |
| read_cpu_topology_from_dt(dtb); |
| } |
| |
| static void read_meminfo_from_dt(void *dtb) |
| { |
| const fdt32_t *prop; |
| const char *type; |
| int prev, node; |
| int len; |
| uint32_t memnode = 0; |
| uint32_t higher_value, lower_value; |
| uint64_t cur_base, cur_size; |
| |
| /* |
| * QEMU gives us this DeviceTree node: |
| * |
| * memory@100c0000000 { |
| * numa-node-id = <0x01>; |
| * reg = <0x100 0xc0000000 0x00 0x40000000>; |
| * device_type = "memory"; |
| * }; |
| * |
| * memory@10000000000 { |
| * numa-node-id = <0x00>; |
| * reg = <0x100 0x00 0x00 0xc0000000>; |
| * device_type = "memory"; |
| * } |
| */ |
| |
| for (prev = 0;; prev = node) { |
| node = fdt_next_node(dtb, prev, NULL); |
| if (node < 0) { |
| break; |
| } |
| |
| type = fdt_getprop(dtb, node, "device_type", &len); |
| if (type && strncmp(type, "memory", len) == 0) { |
| dynamic_platform_info.memory[memnode].nodeid = |
| fdt_read_uint32_default(dtb, node, "numa-node-id", 0); |
| |
| /* |
| * Get the 'reg' property of this node and |
| * assume two 8 bytes for base and size. |
| */ |
| prop = fdt_getprop(dtb, node, "reg", &len); |
| if (prop != 0 && len == (2 * sizeof(int64_t))) { |
| higher_value = fdt32_to_cpu(*prop); |
| lower_value = fdt32_to_cpu(*(prop + 1)); |
| cur_base = (uint64_t)(lower_value | ((uint64_t)higher_value) << 32); |
| |
| higher_value = fdt32_to_cpu(*(prop + 2)); |
| lower_value = fdt32_to_cpu(*(prop + 3)); |
| cur_size = (uint64_t)(lower_value | ((uint64_t)higher_value) << 32); |
| |
| dynamic_platform_info.memory[memnode].addr_base = cur_base; |
| dynamic_platform_info.memory[memnode].addr_size = cur_size; |
| |
| INFO("RAM %d: node-id: %d, address: 0x%lx - 0x%lx\n", |
| memnode, |
| dynamic_platform_info.memory[memnode].nodeid, |
| dynamic_platform_info.memory[memnode].addr_base, |
| dynamic_platform_info.memory[memnode].addr_base + |
| dynamic_platform_info.memory[memnode].addr_size - 1); |
| } |
| |
| memnode++; |
| } |
| } |
| |
| dynamic_platform_info.num_memnodes = memnode; |
| } |
| |
| static void read_platform_config_from_dt(void *dtb) |
| { |
| int node; |
| const fdt64_t *data; |
| int err; |
| uintptr_t gicd_base; |
| uintptr_t gicr_base; |
| |
| /* |
| * QEMU gives us this DeviceTree node: |
| * |
| * intc { |
| * reg = < 0x00 0x40060000 0x00 0x10000 |
| * 0x00 0x40080000 0x00 0x4000000>; |
| * its { |
| * reg = <0x00 0x44081000 0x00 0x20000>; |
| * }; |
| * }; |
| */ |
| node = fdt_path_offset(dtb, "/intc"); |
| if (node < 0) { |
| return; |
| } |
| |
| data = fdt_getprop(dtb, node, "reg", NULL); |
| if (data == NULL) { |
| return; |
| } |
| |
| err = fdt_get_reg_props_by_index(dtb, node, 0, &gicd_base, NULL); |
| if (err < 0) { |
| ERROR("Failed to read GICD reg property of GIC node\n"); |
| return; |
| } |
| INFO("GICD base = 0x%lx\n", gicd_base); |
| |
| err = fdt_get_reg_props_by_index(dtb, node, 1, &gicr_base, NULL); |
| if (err < 0) { |
| ERROR("Failed to read GICR reg property of GIC node\n"); |
| return; |
| } |
| INFO("GICR base = 0x%lx\n", gicr_base); |
| |
| sbsa_set_gic_bases(gicd_base, gicr_base); |
| |
| node = fdt_path_offset(dtb, "/intc/its"); |
| if (node < 0) { |
| return; |
| } |
| |
| err = fdt_get_reg_props_by_index(dtb, node, 0, &gic_its_addr, NULL); |
| if (err < 0) { |
| ERROR("Failed to read GICI reg property of GIC node\n"); |
| return; |
| } |
| INFO("GICI base = 0x%lx\n", gic_its_addr); |
| } |
| |
| static void read_platform_version(void *dtb) |
| { |
| int node; |
| |
| node = fdt_path_offset(dtb, "/"); |
| if (node >= 0) { |
| platform_version_major = |
| fdt_read_uint32_default(dtb, node, "machine-version-major", 0); |
| platform_version_minor = |
| fdt_read_uint32_default(dtb, node, "machine-version-minor", 0); |
| } |
| } |
| |
| #if !ENABLE_RME |
| static int set_system_memory_base(void *dtb, uintptr_t new_base) |
| { |
| (void)dtb; |
| (void)new_base; |
| |
| return 0; |
| } |
| #else /* !ENABLE_RME */ |
| static int set_system_memory_base(void *dtb, uintptr_t new_base) |
| { |
| uint64_t cur_base, cur_size, new_size, delta; |
| int len, prev, node, ret; |
| const fdt32_t *prop; |
| uint32_t node_id; |
| const char *type; |
| fdt64_t new[2]; |
| |
| /* |
| * QEMU gives us this DeviceTree node: |
| * |
| * memory@100c0000000 { |
| * numa-node-id = <0x01>; |
| * reg = <0x100 0xc0000000 0x00 0x40000000>; |
| * device_type = "memory"; |
| * }; |
| * |
| * memory@10000000000 { |
| * numa-node-id = <0x00>; |
| * reg = <0x100 0x00 0x00 0xc0000000>; |
| * device_type = "memory"; |
| * } |
| */ |
| |
| for (prev = 0;; prev = node) { |
| node = fdt_next_node(dtb, prev, NULL); |
| if (node < 0) { |
| return node; |
| } |
| |
| type = fdt_getprop(dtb, node, "device_type", &len); |
| if (type && strncmp(type, "memory", len) == 0) { |
| |
| /* |
| * We are looking for numa node 0, i.e the start of the |
| * system memory. If a "numa-node-id" doesn't exists we |
| * take the first one. |
| */ |
| node_id = fdt_read_uint32_default(dtb, node, |
| "numa-node-id", 0); |
| |
| if (node_id == 0) { |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Get the 'reg' property of this node and |
| * assume two 8 bytes for base and size. |
| */ |
| prop = fdt_getprop(dtb, node, "reg", &len); |
| if (!prop || len < 0) { |
| return len; |
| } |
| |
| if (len != (2 * sizeof(uint64_t))) { |
| return -FDT_ERR_BADVALUE; |
| } |
| |
| ret = fdt_get_reg_props_by_index(dtb, node, 0, &cur_base, &cur_size); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * @cur_base is the base of the NS RAM given to us by QEMU, we can't |
| * go lower than that. |
| */ |
| if (new_base < cur_base) { |
| return -FDT_ERR_BADVALUE; |
| } |
| |
| if (new_base == cur_base) { |
| return 0; |
| } |
| |
| /* |
| * The new base is higher than the base set by QEMU, i.e we are moving |
| * the base memory up and shrinking the size. |
| */ |
| delta = (size_t)(new_base - cur_base); |
| |
| /* |
| * Make sure the new base is still within the base memory node, i.e |
| * the base memory node is big enough for the RMM. |
| */ |
| if (delta >= cur_size) { |
| ERROR("Not enough space in base memory node for RMM\n"); |
| return -FDT_ERR_BADVALUE; |
| } |
| |
| new_size = cur_size - delta; |
| |
| new[0] = cpu_to_fdt64(new_base); |
| new[1] = cpu_to_fdt64(new_size); |
| |
| ret = fdt_setprop(dtb, node, "reg", new, len); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| return fdt_pack(dtb); |
| } |
| #endif /* !ENABLE_RME */ |
| |
| void sbsa_platform_init(void) |
| { |
| /* Read DeviceTree data before MMU is enabled */ |
| |
| void *dtb = plat_qemu_dt_runtime_address(); |
| int err; |
| |
| err = fdt_open_into(dtb, dtb, PLAT_QEMU_DT_MAX_SIZE); |
| if (err < 0) { |
| ERROR("Invalid Device Tree at %p: error %d\n", dtb, err); |
| return; |
| } |
| |
| err = fdt_check_header(dtb); |
| if (err < 0) { |
| ERROR("Invalid DTB file passed\n"); |
| return; |
| } |
| |
| read_platform_version(dtb); |
| INFO("Platform version: %d.%d\n", platform_version_major, platform_version_minor); |
| |
| if (set_system_memory_base(dtb, NS_DRAM0_BASE)) { |
| ERROR("Failed to set system memory in Device Tree\n"); |
| return; |
| } |
| |
| read_platform_config_from_dt(dtb); |
| read_cpuinfo_from_dt(dtb); |
| read_meminfo_from_dt(dtb); |
| } |
| |
| int sbsa_platform_version_major(void) |
| { |
| return platform_version_major; |
| } |
| |
| int sbsa_platform_version_minor(void) |
| { |
| return platform_version_minor; |
| } |
| |
| uint32_t sbsa_platform_num_cpus(void) |
| { |
| return dynamic_platform_info.num_cpus; |
| } |
| |
| uint32_t sbsa_platform_num_memnodes(void) |
| { |
| return dynamic_platform_info.num_memnodes; |
| } |
| |
| uint64_t sbsa_platform_gic_its_addr(void) |
| { |
| return gic_its_addr; |
| } |
| |
| struct platform_cpu_data sbsa_platform_cpu_node(uint64_t index) |
| { |
| return dynamic_platform_info.cpu[index]; |
| } |
| |
| struct platform_memory_data sbsa_platform_memory_node(uint64_t index) |
| { |
| return dynamic_platform_info.memory[index]; |
| } |
| |
| struct platform_cpu_topology sbsa_platform_cpu_topology(void) |
| { |
| return dynamic_platform_info.cpu_topo; |
| } |