blob: fb2265cf3b7ca56a0eab19237a3c9d2db174747a [file] [log] [blame]
Edison Aic6672fd2018-02-28 15:01:47 +08001// SPDX-License-Identifier: Apache-2.0
Jens Wiklander817466c2018-05-22 13:49:31 +02002/*
3 * Elliptic curves over GF(p): curve-specific data and functions
4 *
5 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
Jens Wiklander817466c2018-05-22 13:49:31 +02006 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 * This file is part of mbed TLS (https://tls.mbed.org)
20 */
21
22#if !defined(MBEDTLS_CONFIG_FILE)
23#include "mbedtls/config.h"
24#else
25#include MBEDTLS_CONFIG_FILE
26#endif
27
28#if defined(MBEDTLS_ECP_C)
29
30#include "mbedtls/ecp.h"
Jens Wiklander3d3b0592019-03-20 15:30:29 +010031#include "mbedtls/platform_util.h"
Jerome Forissier11fa71b2020-04-20 17:17:56 +020032#include "mbedtls/error.h"
Jens Wiklander817466c2018-05-22 13:49:31 +020033
34#include <string.h>
35
36#if !defined(MBEDTLS_ECP_ALT)
37
Jens Wiklander3d3b0592019-03-20 15:30:29 +010038/* Parameter validation macros based on platform_util.h */
39#define ECP_VALIDATE_RET( cond ) \
40 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
41#define ECP_VALIDATE( cond ) \
42 MBEDTLS_INTERNAL_VALIDATE( cond )
43
Jens Wiklander817466c2018-05-22 13:49:31 +020044#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
45 !defined(inline) && !defined(__cplusplus)
46#define inline __inline
47#endif
48
49/*
50 * Conversion macros for embedded constants:
51 * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
52 */
53#if defined(MBEDTLS_HAVE_INT32)
54
Jerome Forissier5b25c762020-04-07 11:18:49 +020055#define BYTES_TO_T_UINT_4( a, b, c, d ) \
56 ( (mbedtls_mpi_uint) (a) << 0 ) | \
57 ( (mbedtls_mpi_uint) (b) << 8 ) | \
58 ( (mbedtls_mpi_uint) (c) << 16 ) | \
59 ( (mbedtls_mpi_uint) (d) << 24 )
Jens Wiklander817466c2018-05-22 13:49:31 +020060
61#define BYTES_TO_T_UINT_2( a, b ) \
62 BYTES_TO_T_UINT_4( a, b, 0, 0 )
63
64#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
65 BYTES_TO_T_UINT_4( a, b, c, d ), \
66 BYTES_TO_T_UINT_4( e, f, g, h )
67
68#else /* 64-bits */
69
70#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
Jerome Forissier5b25c762020-04-07 11:18:49 +020071 ( (mbedtls_mpi_uint) (a) << 0 ) | \
72 ( (mbedtls_mpi_uint) (b) << 8 ) | \
73 ( (mbedtls_mpi_uint) (c) << 16 ) | \
74 ( (mbedtls_mpi_uint) (d) << 24 ) | \
75 ( (mbedtls_mpi_uint) (e) << 32 ) | \
76 ( (mbedtls_mpi_uint) (f) << 40 ) | \
77 ( (mbedtls_mpi_uint) (g) << 48 ) | \
78 ( (mbedtls_mpi_uint) (h) << 56 )
Jens Wiklander817466c2018-05-22 13:49:31 +020079
80#define BYTES_TO_T_UINT_4( a, b, c, d ) \
81 BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
82
83#define BYTES_TO_T_UINT_2( a, b ) \
84 BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
85
86#endif /* bits in mbedtls_mpi_uint */
87
88/*
89 * Note: the constants are in little-endian order
90 * to be directly usable in MPIs
91 */
92
93/*
94 * Domain parameters for secp192r1
95 */
96#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
97static const mbedtls_mpi_uint secp192r1_p[] = {
98 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
99 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
100 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
101};
102static const mbedtls_mpi_uint secp192r1_b[] = {
103 BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
104 BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
105 BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
106};
107static const mbedtls_mpi_uint secp192r1_gx[] = {
108 BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
109 BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
110 BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
111};
112static const mbedtls_mpi_uint secp192r1_gy[] = {
113 BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
114 BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
115 BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
116};
117static const mbedtls_mpi_uint secp192r1_n[] = {
118 BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
119 BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
120 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
121};
122#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
123
124/*
125 * Domain parameters for secp224r1
126 */
127#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
128static const mbedtls_mpi_uint secp224r1_p[] = {
129 BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
130 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
131 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
132 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
133};
134static const mbedtls_mpi_uint secp224r1_b[] = {
135 BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
136 BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
137 BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
138 BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
139};
140static const mbedtls_mpi_uint secp224r1_gx[] = {
141 BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
142 BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
143 BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
144 BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
145};
146static const mbedtls_mpi_uint secp224r1_gy[] = {
147 BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
148 BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
149 BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
150 BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
151};
152static const mbedtls_mpi_uint secp224r1_n[] = {
153 BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
154 BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
155 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
156 BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
157};
158#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
159
160/*
161 * Domain parameters for secp256r1
162 */
163#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
164static const mbedtls_mpi_uint secp256r1_p[] = {
165 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
166 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
167 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
168 BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
169};
170static const mbedtls_mpi_uint secp256r1_b[] = {
171 BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
172 BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
173 BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
174 BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
175};
176static const mbedtls_mpi_uint secp256r1_gx[] = {
177 BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
178 BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
179 BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
180 BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
181};
182static const mbedtls_mpi_uint secp256r1_gy[] = {
183 BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
184 BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
185 BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
186 BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
187};
188static const mbedtls_mpi_uint secp256r1_n[] = {
189 BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
190 BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
191 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
192 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
193};
194#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
195
196/*
197 * Domain parameters for secp384r1
198 */
199#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
200static const mbedtls_mpi_uint secp384r1_p[] = {
201 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
202 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
203 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
204 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
205 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
206 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
207};
208static const mbedtls_mpi_uint secp384r1_b[] = {
209 BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
210 BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
211 BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
212 BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
213 BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
214 BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
215};
216static const mbedtls_mpi_uint secp384r1_gx[] = {
217 BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
218 BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
219 BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
220 BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
221 BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
222 BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
223};
224static const mbedtls_mpi_uint secp384r1_gy[] = {
225 BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
226 BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
227 BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
228 BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
229 BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
230 BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
231};
232static const mbedtls_mpi_uint secp384r1_n[] = {
233 BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
234 BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
235 BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
236 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
237 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
238 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
239};
240#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
241
242/*
243 * Domain parameters for secp521r1
244 */
245#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
246static const mbedtls_mpi_uint secp521r1_p[] = {
247 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
248 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
249 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
250 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
251 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
252 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
253 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
254 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
255 BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
256};
257static const mbedtls_mpi_uint secp521r1_b[] = {
258 BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
259 BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
260 BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
261 BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
262 BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
263 BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
264 BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
265 BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
266 BYTES_TO_T_UINT_2( 0x51, 0x00 ),
267};
268static const mbedtls_mpi_uint secp521r1_gx[] = {
269 BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
270 BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
271 BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
272 BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
273 BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
274 BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
275 BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
276 BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
277 BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
278};
279static const mbedtls_mpi_uint secp521r1_gy[] = {
280 BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
281 BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
282 BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
283 BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
284 BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
285 BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
286 BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
287 BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
288 BYTES_TO_T_UINT_2( 0x18, 0x01 ),
289};
290static const mbedtls_mpi_uint secp521r1_n[] = {
291 BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
292 BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
293 BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
294 BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
295 BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
296 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
297 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
298 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
299 BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
300};
301#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
302
303#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
304static const mbedtls_mpi_uint secp192k1_p[] = {
305 BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
306 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
307 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
308};
309static const mbedtls_mpi_uint secp192k1_a[] = {
310 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
311};
312static const mbedtls_mpi_uint secp192k1_b[] = {
313 BYTES_TO_T_UINT_2( 0x03, 0x00 ),
314};
315static const mbedtls_mpi_uint secp192k1_gx[] = {
316 BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
317 BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
318 BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
319};
320static const mbedtls_mpi_uint secp192k1_gy[] = {
321 BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
322 BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
323 BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
324};
325static const mbedtls_mpi_uint secp192k1_n[] = {
326 BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
327 BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
328 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
329};
330#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
331
332#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
333static const mbedtls_mpi_uint secp224k1_p[] = {
334 BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
335 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
336 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
337 BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
338};
339static const mbedtls_mpi_uint secp224k1_a[] = {
340 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
341};
342static const mbedtls_mpi_uint secp224k1_b[] = {
343 BYTES_TO_T_UINT_2( 0x05, 0x00 ),
344};
345static const mbedtls_mpi_uint secp224k1_gx[] = {
346 BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
347 BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
348 BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
349 BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
350};
351static const mbedtls_mpi_uint secp224k1_gy[] = {
352 BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
353 BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
354 BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
355 BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
356};
357static const mbedtls_mpi_uint secp224k1_n[] = {
358 BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
359 BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
360 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
361 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
362};
363#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
364
365#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
366static const mbedtls_mpi_uint secp256k1_p[] = {
367 BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
368 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
369 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
370 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
371};
372static const mbedtls_mpi_uint secp256k1_a[] = {
373 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
374};
375static const mbedtls_mpi_uint secp256k1_b[] = {
376 BYTES_TO_T_UINT_2( 0x07, 0x00 ),
377};
378static const mbedtls_mpi_uint secp256k1_gx[] = {
379 BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
380 BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
381 BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
382 BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
383};
384static const mbedtls_mpi_uint secp256k1_gy[] = {
385 BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
386 BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
387 BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
388 BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
389};
390static const mbedtls_mpi_uint secp256k1_n[] = {
391 BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
392 BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
393 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
394 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
395};
396#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
397
398/*
399 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
400 */
401#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
402static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
403 BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
404 BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
405 BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
406 BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
407};
408static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
409 BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
410 BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
411 BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
412 BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
413};
414static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
415 BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
416 BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
417 BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
418 BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
419};
420static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
421 BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
422 BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
423 BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
424 BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
425};
426static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
427 BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
428 BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
429 BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
430 BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
431};
432static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
433 BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
434 BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
435 BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
436 BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
437};
438#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
439
440/*
441 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
442 */
443#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
444static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
445 BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
446 BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
447 BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
448 BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
449 BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
450 BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
451};
452static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
453 BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
454 BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
455 BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
456 BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
457 BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
458 BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
459};
460static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
461 BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
462 BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
463 BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
464 BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
465 BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
466 BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
467};
468static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
469 BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
470 BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
471 BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
472 BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
473 BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
474 BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
475};
476static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
477 BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
478 BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
479 BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
480 BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
481 BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
482 BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
483};
484static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
485 BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
486 BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
487 BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
488 BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
489 BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
490 BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
491};
492#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
493
494/*
495 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
496 */
497#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
498static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
499 BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
500 BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
501 BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
502 BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
503 BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
504 BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
505 BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
506 BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
507};
508static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
509 BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
510 BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
511 BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
512 BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
513 BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
514 BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
515 BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
516 BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
517};
518static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
519 BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
520 BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
521 BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
522 BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
523 BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
524 BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
525 BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
526 BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
527};
528static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
529 BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
530 BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
531 BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
532 BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
533 BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
534 BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
535 BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
536 BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
537};
538static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
539 BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
540 BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
541 BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
542 BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
543 BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
544 BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
545 BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
546 BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
547};
548static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
549 BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
550 BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
551 BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
552 BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
553 BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
554 BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
555 BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
556 BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
557};
558#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
559
560/*
Jerome Forissier9fc24422021-01-22 16:30:41 +0100561 * Domain parameters for SM2 (GM/T 0003 Part 5)
562 */
563#if defined(MBEDTLS_ECP_DP_SM2_ENABLED)
564static const mbedtls_mpi_uint sm2_p[] = {
565 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
566 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
567 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
568 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
569};
570static const mbedtls_mpi_uint sm2_a[] = {
571 BYTES_TO_T_UINT_8( 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
572 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
573 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
574 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
575};
576static const mbedtls_mpi_uint sm2_b[] = {
577 BYTES_TO_T_UINT_8( 0x93, 0x0E, 0x94, 0x4D, 0x41, 0xBD, 0xBC, 0xDD ),
578 BYTES_TO_T_UINT_8( 0x92, 0x8F, 0xAB, 0x15, 0xF5, 0x89, 0x97, 0xF3 ),
579 BYTES_TO_T_UINT_8( 0xA7, 0x09, 0x65, 0xCF, 0x4B, 0x9E, 0x5A, 0x4D ),
580 BYTES_TO_T_UINT_8( 0x34, 0x5E, 0x9F, 0x9D, 0x9E, 0xFA, 0xE9, 0x28 ),
581};
582static const mbedtls_mpi_uint sm2_gx[] = {
583 BYTES_TO_T_UINT_8( 0xC7, 0x74, 0x4C, 0x33, 0x89, 0x45, 0x5A, 0x71 ),
584 BYTES_TO_T_UINT_8( 0xE1, 0x0B, 0x66, 0xF2, 0xBF, 0x0B, 0xE3, 0x8F ),
585 BYTES_TO_T_UINT_8( 0x94, 0xC9, 0x39, 0x6A, 0x46, 0x04, 0x99, 0x5F ),
586 BYTES_TO_T_UINT_8( 0x19, 0x81, 0x19, 0x1F, 0x2C, 0xAE, 0xC4, 0x32 ),
587};
588static const mbedtls_mpi_uint sm2_gy[] = {
589 BYTES_TO_T_UINT_8( 0xA0, 0xF0, 0x39, 0x21, 0xE5, 0x32, 0xDF, 0x02 ),
590 BYTES_TO_T_UINT_8( 0x40, 0x47, 0x2A, 0xC6, 0x7C, 0x87, 0xA9, 0xD0 ),
591 BYTES_TO_T_UINT_8( 0x53, 0x21, 0x69, 0x6B, 0xE3, 0xCE, 0xBD, 0x59 ),
592 BYTES_TO_T_UINT_8( 0x9C, 0x77, 0xF6, 0xF4, 0xA2, 0x36, 0x37, 0xBC ),
593};
594static const mbedtls_mpi_uint sm2_n[] = {
595 BYTES_TO_T_UINT_8( 0x23, 0x41, 0xD5, 0x39, 0x09, 0xF4, 0xBB, 0x53 ),
596 BYTES_TO_T_UINT_8( 0x2B, 0x05, 0xC6, 0x21, 0x6B, 0xDF, 0x03, 0x72 ),
597 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
598 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
599};
600#endif /* MBEDTLS_ECP_DP_SM2_ENABLED */
601/*
Jens Wiklander817466c2018-05-22 13:49:31 +0200602 * Create an MPI from embedded constants
603 * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
604 */
605static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
606{
607 X->s = 1;
608 X->n = len / sizeof( mbedtls_mpi_uint );
609 X->p = (mbedtls_mpi_uint *) p;
610}
611
612/*
613 * Set an MPI to static value 1
614 */
615static inline void ecp_mpi_set1( mbedtls_mpi *X )
616{
617 static mbedtls_mpi_uint one[] = { 1 };
618 X->s = 1;
619 X->n = 1;
620 X->p = one;
621}
622
623/*
624 * Make group available from embedded constants
625 */
626static int ecp_group_load( mbedtls_ecp_group *grp,
627 const mbedtls_mpi_uint *p, size_t plen,
628 const mbedtls_mpi_uint *a, size_t alen,
629 const mbedtls_mpi_uint *b, size_t blen,
630 const mbedtls_mpi_uint *gx, size_t gxlen,
631 const mbedtls_mpi_uint *gy, size_t gylen,
632 const mbedtls_mpi_uint *n, size_t nlen)
633{
634 ecp_mpi_load( &grp->P, p, plen );
635 if( a != NULL )
636 ecp_mpi_load( &grp->A, a, alen );
637 ecp_mpi_load( &grp->B, b, blen );
638 ecp_mpi_load( &grp->N, n, nlen );
639
640 ecp_mpi_load( &grp->G.X, gx, gxlen );
641 ecp_mpi_load( &grp->G.Y, gy, gylen );
642 ecp_mpi_set1( &grp->G.Z );
643
644 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
645 grp->nbits = mbedtls_mpi_bitlen( &grp->N );
646
647 grp->h = 1;
648
649 return( 0 );
650}
651
652#if defined(MBEDTLS_ECP_NIST_OPTIM)
653/* Forward declarations */
654#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
655static int ecp_mod_p192( mbedtls_mpi * );
656#endif
657#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
658static int ecp_mod_p224( mbedtls_mpi * );
659#endif
660#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
661static int ecp_mod_p256( mbedtls_mpi * );
662#endif
663#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
664static int ecp_mod_p384( mbedtls_mpi * );
665#endif
666#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
667static int ecp_mod_p521( mbedtls_mpi * );
668#endif
669
670#define NIST_MODP( P ) grp->modp = ecp_mod_ ## P;
671#else
672#define NIST_MODP( P )
673#endif /* MBEDTLS_ECP_NIST_OPTIM */
674
675/* Additional forward declarations */
676#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
677static int ecp_mod_p255( mbedtls_mpi * );
678#endif
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100679#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
680static int ecp_mod_p448( mbedtls_mpi * );
681#endif
Jens Wiklander817466c2018-05-22 13:49:31 +0200682#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
683static int ecp_mod_p192k1( mbedtls_mpi * );
684#endif
685#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
686static int ecp_mod_p224k1( mbedtls_mpi * );
687#endif
688#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
689static int ecp_mod_p256k1( mbedtls_mpi * );
690#endif
691
692#define LOAD_GROUP_A( G ) ecp_group_load( grp, \
693 G ## _p, sizeof( G ## _p ), \
694 G ## _a, sizeof( G ## _a ), \
695 G ## _b, sizeof( G ## _b ), \
696 G ## _gx, sizeof( G ## _gx ), \
697 G ## _gy, sizeof( G ## _gy ), \
698 G ## _n, sizeof( G ## _n ) )
699
700#define LOAD_GROUP( G ) ecp_group_load( grp, \
701 G ## _p, sizeof( G ## _p ), \
702 NULL, 0, \
703 G ## _b, sizeof( G ## _b ), \
704 G ## _gx, sizeof( G ## _gx ), \
705 G ## _gy, sizeof( G ## _gy ), \
706 G ## _n, sizeof( G ## _n ) )
707
708#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
709/*
710 * Specialized function for creating the Curve25519 group
711 */
712static int ecp_use_curve25519( mbedtls_ecp_group *grp )
713{
Jerome Forissier11fa71b2020-04-20 17:17:56 +0200714 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +0200715
716 /* Actually ( A + 2 ) / 4 */
717 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
718
719 /* P = 2^255 - 19 */
720 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
721 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
722 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
723 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
724
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100725 /* N = 2^252 + 27742317777372353535851937790883648493 */
726 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->N, 16,
727 "14DEF9DEA2F79CD65812631A5CF5D3ED" ) );
728 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) );
729
730 /* Y intentionally not set, since we use x/z coordinates.
Jens Wiklander817466c2018-05-22 13:49:31 +0200731 * This is used as a marker to identify Montgomery curves! */
732 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
733 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
734 mbedtls_mpi_free( &grp->G.Y );
735
736 /* Actually, the required msb for private keys */
737 grp->nbits = 254;
738
739cleanup:
740 if( ret != 0 )
741 mbedtls_ecp_group_free( grp );
742
743 return( ret );
744}
745#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
746
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100747#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
748/*
749 * Specialized function for creating the Curve448 group
750 */
751static int ecp_use_curve448( mbedtls_ecp_group *grp )
752{
753 mbedtls_mpi Ns;
Jerome Forissier11fa71b2020-04-20 17:17:56 +0200754 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100755
756 mbedtls_mpi_init( &Ns );
757
758 /* Actually ( A + 2 ) / 4 */
759 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "98AA" ) );
760
761 /* P = 2^448 - 2^224 - 1 */
762 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
763 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
764 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
765 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
766 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
767 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
768
769 /* Y intentionally not set, since we use x/z coordinates.
770 * This is used as a marker to identify Montgomery curves! */
771 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 5 ) );
772 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
773 mbedtls_mpi_free( &grp->G.Y );
774
775 /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
776 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 446, 1 ) );
777 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &Ns, 16,
778 "8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D" ) );
779 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &grp->N, &grp->N, &Ns ) );
780
781 /* Actually, the required msb for private keys */
782 grp->nbits = 447;
783
784cleanup:
785 mbedtls_mpi_free( &Ns );
786 if( ret != 0 )
787 mbedtls_ecp_group_free( grp );
788
789 return( ret );
790}
791#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
792
Jens Wiklander817466c2018-05-22 13:49:31 +0200793/*
794 * Set a group using well-known domain parameters
795 */
796int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
797{
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100798 ECP_VALIDATE_RET( grp != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200799 mbedtls_ecp_group_free( grp );
800
801 grp->id = id;
802
803 switch( id )
804 {
805#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
806 case MBEDTLS_ECP_DP_SECP192R1:
807 NIST_MODP( p192 );
808 return( LOAD_GROUP( secp192r1 ) );
809#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
810
811#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
812 case MBEDTLS_ECP_DP_SECP224R1:
813 NIST_MODP( p224 );
814 return( LOAD_GROUP( secp224r1 ) );
815#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
816
817#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
818 case MBEDTLS_ECP_DP_SECP256R1:
819 NIST_MODP( p256 );
820 return( LOAD_GROUP( secp256r1 ) );
821#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
822
823#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
824 case MBEDTLS_ECP_DP_SECP384R1:
825 NIST_MODP( p384 );
826 return( LOAD_GROUP( secp384r1 ) );
827#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
828
829#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
830 case MBEDTLS_ECP_DP_SECP521R1:
831 NIST_MODP( p521 );
832 return( LOAD_GROUP( secp521r1 ) );
833#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
834
835#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
836 case MBEDTLS_ECP_DP_SECP192K1:
837 grp->modp = ecp_mod_p192k1;
838 return( LOAD_GROUP_A( secp192k1 ) );
839#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
840
841#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
842 case MBEDTLS_ECP_DP_SECP224K1:
843 grp->modp = ecp_mod_p224k1;
844 return( LOAD_GROUP_A( secp224k1 ) );
845#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
846
847#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
848 case MBEDTLS_ECP_DP_SECP256K1:
849 grp->modp = ecp_mod_p256k1;
850 return( LOAD_GROUP_A( secp256k1 ) );
851#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
852
853#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
854 case MBEDTLS_ECP_DP_BP256R1:
855 return( LOAD_GROUP_A( brainpoolP256r1 ) );
856#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
857
858#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
859 case MBEDTLS_ECP_DP_BP384R1:
860 return( LOAD_GROUP_A( brainpoolP384r1 ) );
861#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
862
Jerome Forissier9fc24422021-01-22 16:30:41 +0100863#if defined(MBEDTLS_ECP_DP_SM2_ENABLED)
864 case MBEDTLS_ECP_DP_SM2:
865 return( LOAD_GROUP_A( sm2 ) );
866#endif /* MBEDTLS_ECP_DP_SM2_ENABLED */
867
Jens Wiklander817466c2018-05-22 13:49:31 +0200868#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
869 case MBEDTLS_ECP_DP_BP512R1:
870 return( LOAD_GROUP_A( brainpoolP512r1 ) );
871#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
872
873#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
874 case MBEDTLS_ECP_DP_CURVE25519:
875 grp->modp = ecp_mod_p255;
876 return( ecp_use_curve25519( grp ) );
877#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
878
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100879#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
880 case MBEDTLS_ECP_DP_CURVE448:
881 grp->modp = ecp_mod_p448;
882 return( ecp_use_curve448( grp ) );
883#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
884
Jens Wiklander817466c2018-05-22 13:49:31 +0200885 default:
Jerome Forissier11fa71b2020-04-20 17:17:56 +0200886 grp->id = MBEDTLS_ECP_DP_NONE;
Jens Wiklander817466c2018-05-22 13:49:31 +0200887 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
888 }
889}
890
891#if defined(MBEDTLS_ECP_NIST_OPTIM)
892/*
893 * Fast reduction modulo the primes used by the NIST curves.
894 *
895 * These functions are critical for speed, but not needed for correct
896 * operations. So, we make the choice to heavily rely on the internals of our
897 * bignum library, which creates a tight coupling between these functions and
898 * our MPI implementation. However, the coupling between the ECP module and
899 * MPI remains loose, since these functions can be deactivated at will.
900 */
901
902#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
903/*
904 * Compared to the way things are presented in FIPS 186-3 D.2,
905 * we proceed in columns, from right (least significant chunk) to left,
906 * adding chunks to N in place, and keeping a carry for the next chunk.
907 * This avoids moving things around in memory, and uselessly adding zeros,
908 * compared to the more straightforward, line-oriented approach.
909 *
910 * For this prime we need to handle data in chunks of 64 bits.
911 * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
912 * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
913 */
914
915/* Add 64-bit chunks (dst += src) and update carry */
916static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
917{
918 unsigned char i;
919 mbedtls_mpi_uint c = 0;
920 for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
921 {
922 *dst += c; c = ( *dst < c );
923 *dst += *src; c += ( *dst < *src );
924 }
925 *carry += c;
926}
927
928/* Add carry to a 64-bit chunk and update carry */
929static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
930{
931 unsigned char i;
932 for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
933 {
934 *dst += *carry;
935 *carry = ( *dst < *carry );
936 }
937}
938
939#define WIDTH 8 / sizeof( mbedtls_mpi_uint )
Jerome Forissier5b25c762020-04-07 11:18:49 +0200940#define A( i ) N->p + (i) * WIDTH
Jens Wiklander817466c2018-05-22 13:49:31 +0200941#define ADD( i ) add64( p, A( i ), &c )
942#define NEXT p += WIDTH; carry64( p, &c )
943#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
944
945/*
946 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
947 */
948static int ecp_mod_p192( mbedtls_mpi *N )
949{
Jerome Forissier11fa71b2020-04-20 17:17:56 +0200950 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +0200951 mbedtls_mpi_uint c = 0;
952 mbedtls_mpi_uint *p, *end;
953
954 /* Make sure we have enough blocks so that A(5) is legal */
955 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
956
957 p = N->p;
958 end = p + N->n;
959
960 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
961 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
962 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
963
964cleanup:
965 return( ret );
966}
967
968#undef WIDTH
969#undef A
970#undef ADD
971#undef NEXT
972#undef LAST
973#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
974
975#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
976 defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
977 defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
978/*
979 * The reader is advised to first understand ecp_mod_p192() since the same
980 * general structure is used here, but with additional complications:
981 * (1) chunks of 32 bits, and (2) subtractions.
982 */
983
984/*
985 * For these primes, we need to handle data in chunks of 32 bits.
986 * This makes it more complicated if we use 64 bits limbs in MPI,
987 * which prevents us from using a uniform access method as for p192.
988 *
989 * So, we define a mini abstraction layer to access 32 bit chunks,
990 * load them in 'cur' for work, and store them back from 'cur' when done.
991 *
992 * While at it, also define the size of N in terms of 32-bit chunks.
993 */
994#define LOAD32 cur = A( i );
995
996#if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
997
998#define MAX32 N->n
999#define A( j ) N->p[j]
1000#define STORE32 N->p[i] = cur;
1001
1002#else /* 64-bit */
1003
1004#define MAX32 N->n * 2
Jerome Forissier5b25c762020-04-07 11:18:49 +02001005#define A( j ) (j) % 2 ? (uint32_t)( N->p[(j)/2] >> 32 ) : \
1006 (uint32_t)( N->p[(j)/2] )
Jens Wiklander817466c2018-05-22 13:49:31 +02001007#define STORE32 \
1008 if( i % 2 ) { \
1009 N->p[i/2] &= 0x00000000FFFFFFFF; \
1010 N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \
1011 } else { \
1012 N->p[i/2] &= 0xFFFFFFFF00000000; \
1013 N->p[i/2] |= (mbedtls_mpi_uint) cur; \
1014 }
1015
1016#endif /* sizeof( mbedtls_mpi_uint ) */
1017
1018/*
1019 * Helpers for addition and subtraction of chunks, with signed carry.
1020 */
1021static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
1022{
1023 *dst += src;
1024 *carry += ( *dst < src );
1025}
1026
1027static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
1028{
1029 *carry -= ( *dst < src );
1030 *dst -= src;
1031}
1032
1033#define ADD( j ) add32( &cur, A( j ), &c );
1034#define SUB( j ) sub32( &cur, A( j ), &c );
1035
1036/*
1037 * Helpers for the main 'loop'
1038 * (see fix_negative for the motivation of C)
1039 */
Jerome Forissier5b25c762020-04-07 11:18:49 +02001040#define INIT( b ) \
Jerome Forissier11fa71b2020-04-20 17:17:56 +02001041 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; \
Jerome Forissier5b25c762020-04-07 11:18:49 +02001042 signed char c = 0, cc; \
1043 uint32_t cur; \
1044 size_t i = 0, bits = (b); \
1045 mbedtls_mpi C; \
1046 mbedtls_mpi_uint Cp[ (b) / 8 / sizeof( mbedtls_mpi_uint) + 1 ]; \
1047 \
1048 C.s = 1; \
1049 C.n = (b) / 8 / sizeof( mbedtls_mpi_uint) + 1; \
1050 C.p = Cp; \
1051 memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) ); \
1052 \
1053 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, (b) * 2 / 8 / \
1054 sizeof( mbedtls_mpi_uint ) ) ); \
Jens Wiklander817466c2018-05-22 13:49:31 +02001055 LOAD32;
1056
1057#define NEXT \
1058 STORE32; i++; LOAD32; \
1059 cc = c; c = 0; \
1060 if( cc < 0 ) \
1061 sub32( &cur, -cc, &c ); \
1062 else \
1063 add32( &cur, cc, &c ); \
1064
1065#define LAST \
1066 STORE32; i++; \
1067 cur = c > 0 ? c : 0; STORE32; \
1068 cur = 0; while( ++i < MAX32 ) { STORE32; } \
1069 if( c < 0 ) fix_negative( N, c, &C, bits );
1070
1071/*
1072 * If the result is negative, we get it in the form
1073 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
1074 */
1075static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
1076{
Jerome Forissier11fa71b2020-04-20 17:17:56 +02001077 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +02001078
1079 /* C = - c * 2^(bits + 32) */
1080#if !defined(MBEDTLS_HAVE_INT64)
1081 ((void) bits);
1082#else
1083 if( bits == 224 )
1084 C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
1085 else
1086#endif
1087 C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
1088
1089 /* N = - ( C - N ) */
1090 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
1091 N->s = -1;
1092
1093cleanup:
1094
1095 return( ret );
1096}
1097
1098#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
1099/*
1100 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
1101 */
1102static int ecp_mod_p224( mbedtls_mpi *N )
1103{
1104 INIT( 224 );
1105
1106 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
1107 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
1108 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
1109 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
1110 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
1111 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
1112 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
1113
1114cleanup:
1115 return( ret );
1116}
1117#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
1118
1119#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
1120/*
1121 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1122 */
1123static int ecp_mod_p256( mbedtls_mpi *N )
1124{
1125 INIT( 256 );
1126
1127 ADD( 8 ); ADD( 9 );
1128 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
1129
1130 ADD( 9 ); ADD( 10 );
1131 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
1132
1133 ADD( 10 ); ADD( 11 );
1134 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
1135
1136 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1137 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
1138
1139 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1140 SUB( 9 ); SUB( 10 ); NEXT; // A4
1141
1142 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1143 SUB( 10 ); SUB( 11 ); NEXT; // A5
1144
1145 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1146 SUB( 8 ); SUB( 9 ); NEXT; // A6
1147
1148 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1149 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
1150
1151cleanup:
1152 return( ret );
1153}
1154#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1155
1156#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1157/*
1158 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1159 */
1160static int ecp_mod_p384( mbedtls_mpi *N )
1161{
1162 INIT( 384 );
1163
1164 ADD( 12 ); ADD( 21 ); ADD( 20 );
1165 SUB( 23 ); NEXT; // A0
1166
1167 ADD( 13 ); ADD( 22 ); ADD( 23 );
1168 SUB( 12 ); SUB( 20 ); NEXT; // A2
1169
1170 ADD( 14 ); ADD( 23 );
1171 SUB( 13 ); SUB( 21 ); NEXT; // A2
1172
1173 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1174 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
1175
1176 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1177 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
1178
1179 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1180 SUB( 16 ); NEXT; // A5
1181
1182 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1183 SUB( 17 ); NEXT; // A6
1184
1185 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1186 SUB( 18 ); NEXT; // A7
1187
1188 ADD( 20 ); ADD( 17 ); ADD( 16 );
1189 SUB( 19 ); NEXT; // A8
1190
1191 ADD( 21 ); ADD( 18 ); ADD( 17 );
1192 SUB( 20 ); NEXT; // A9
1193
1194 ADD( 22 ); ADD( 19 ); ADD( 18 );
1195 SUB( 21 ); NEXT; // A10
1196
1197 ADD( 23 ); ADD( 20 ); ADD( 19 );
1198 SUB( 22 ); LAST; // A11
1199
1200cleanup:
1201 return( ret );
1202}
1203#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1204
1205#undef A
1206#undef LOAD32
1207#undef STORE32
1208#undef MAX32
1209#undef INIT
1210#undef NEXT
1211#undef LAST
1212
1213#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1214 MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1215 MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1216
1217#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1218/*
1219 * Here we have an actual Mersenne prime, so things are more straightforward.
1220 * However, chunks are aligned on a 'weird' boundary (521 bits).
1221 */
1222
1223/* Size of p521 in terms of mbedtls_mpi_uint */
1224#define P521_WIDTH ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1225
1226/* Bits to keep in the most significant mbedtls_mpi_uint */
1227#define P521_MASK 0x01FF
1228
1229/*
1230 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1231 * Write N as A1 + 2^521 A0, return A0 + A1
1232 */
1233static int ecp_mod_p521( mbedtls_mpi *N )
1234{
Jerome Forissier11fa71b2020-04-20 17:17:56 +02001235 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +02001236 size_t i;
1237 mbedtls_mpi M;
1238 mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1239 /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1240 * we need to hold bits 513 to 1056, which is 34 limbs, that is
1241 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1242
1243 if( N->n < P521_WIDTH )
1244 return( 0 );
1245
1246 /* M = A1 */
1247 M.s = 1;
1248 M.n = N->n - ( P521_WIDTH - 1 );
1249 if( M.n > P521_WIDTH + 1 )
1250 M.n = P521_WIDTH + 1;
1251 M.p = Mp;
1252 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1253 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1254
1255 /* N = A0 */
1256 N->p[P521_WIDTH - 1] &= P521_MASK;
1257 for( i = P521_WIDTH; i < N->n; i++ )
1258 N->p[i] = 0;
1259
1260 /* N = A0 + A1 */
1261 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1262
1263cleanup:
1264 return( ret );
1265}
1266
1267#undef P521_WIDTH
1268#undef P521_MASK
1269#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1270
1271#endif /* MBEDTLS_ECP_NIST_OPTIM */
1272
1273#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1274
1275/* Size of p255 in terms of mbedtls_mpi_uint */
1276#define P255_WIDTH ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1277
1278/*
1279 * Fast quasi-reduction modulo p255 = 2^255 - 19
1280 * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1281 */
1282static int ecp_mod_p255( mbedtls_mpi *N )
1283{
Jerome Forissier11fa71b2020-04-20 17:17:56 +02001284 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +02001285 size_t i;
1286 mbedtls_mpi M;
1287 mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1288
1289 if( N->n < P255_WIDTH )
1290 return( 0 );
1291
1292 /* M = A1 */
1293 M.s = 1;
1294 M.n = N->n - ( P255_WIDTH - 1 );
1295 if( M.n > P255_WIDTH + 1 )
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001296 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
Jens Wiklander817466c2018-05-22 13:49:31 +02001297 M.p = Mp;
1298 memset( Mp, 0, sizeof Mp );
1299 memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1300 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1301 M.n++; /* Make room for multiplication by 19 */
1302
1303 /* N = A0 */
1304 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1305 for( i = P255_WIDTH; i < N->n; i++ )
1306 N->p[i] = 0;
1307
1308 /* N = A0 + 19 * A1 */
1309 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1310 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1311
1312cleanup:
1313 return( ret );
1314}
1315#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1316
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001317#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
1318
1319/* Size of p448 in terms of mbedtls_mpi_uint */
1320#define P448_WIDTH ( 448 / 8 / sizeof( mbedtls_mpi_uint ) )
1321
1322/* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
1323#define DIV_ROUND_UP( X, Y ) ( ( ( X ) + ( Y ) - 1 ) / ( Y ) )
1324#define P224_WIDTH_MIN ( 28 / sizeof( mbedtls_mpi_uint ) )
1325#define P224_WIDTH_MAX DIV_ROUND_UP( 28, sizeof( mbedtls_mpi_uint ) )
1326#define P224_UNUSED_BITS ( ( P224_WIDTH_MAX * sizeof( mbedtls_mpi_uint ) * 8 ) - 224 )
1327
1328/*
1329 * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
1330 * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
1331 * A0 + A1 + B1 + (B0 + B1) * 2^224. This is different to the reference
1332 * implementation of Curve448, which uses its own special 56-bit limbs rather
1333 * than a generic bignum library. We could squeeze some extra speed out on
1334 * 32-bit machines by splitting N up into 32-bit limbs and doing the
1335 * arithmetic using the limbs directly as we do for the NIST primes above,
1336 * but for 64-bit targets it should use half the number of operations if we do
1337 * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
1338 */
1339static int ecp_mod_p448( mbedtls_mpi *N )
1340{
Jerome Forissier11fa71b2020-04-20 17:17:56 +02001341 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001342 size_t i;
1343 mbedtls_mpi M, Q;
1344 mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
1345
1346 if( N->n <= P448_WIDTH )
1347 return( 0 );
1348
1349 /* M = A1 */
1350 M.s = 1;
1351 M.n = N->n - ( P448_WIDTH );
1352 if( M.n > P448_WIDTH )
1353 /* Shouldn't be called with N larger than 2^896! */
1354 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1355 M.p = Mp;
1356 memset( Mp, 0, sizeof( Mp ) );
1357 memcpy( Mp, N->p + P448_WIDTH, M.n * sizeof( mbedtls_mpi_uint ) );
1358
1359 /* N = A0 */
1360 for( i = P448_WIDTH; i < N->n; i++ )
1361 N->p[i] = 0;
1362
1363 /* N += A1 */
1364 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1365
1366 /* Q = B1, N += B1 */
1367 Q = M;
1368 Q.p = Qp;
1369 memcpy( Qp, Mp, sizeof( Qp ) );
1370 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Q, 224 ) );
1371 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &Q ) );
1372
1373 /* M = (B0 + B1) * 2^224, N += M */
1374 if( sizeof( mbedtls_mpi_uint ) > 4 )
1375 Mp[P224_WIDTH_MIN] &= ( (mbedtls_mpi_uint)-1 ) >> ( P224_UNUSED_BITS );
1376 for( i = P224_WIDTH_MAX; i < M.n; ++i )
1377 Mp[i] = 0;
1378 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &Q ) );
1379 M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
1380 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &M, 224 ) );
1381 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1382
1383cleanup:
1384 return( ret );
1385}
1386#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
1387
Jens Wiklander817466c2018-05-22 13:49:31 +02001388#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
1389 defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
1390 defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1391/*
1392 * Fast quasi-reduction modulo P = 2^s - R,
1393 * with R about 33 bits, used by the Koblitz curves.
1394 *
1395 * Write N as A0 + 2^224 A1, return A0 + R * A1.
1396 * Actually do two passes, since R is big.
1397 */
1398#define P_KOBLITZ_MAX ( 256 / 8 / sizeof( mbedtls_mpi_uint ) ) // Max limbs in P
1399#define P_KOBLITZ_R ( 8 / sizeof( mbedtls_mpi_uint ) ) // Limbs in R
1400static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1401 size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1402{
Jerome Forissier11fa71b2020-04-20 17:17:56 +02001403 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +02001404 size_t i;
1405 mbedtls_mpi M, R;
1406 mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1407
1408 if( N->n < p_limbs )
1409 return( 0 );
1410
1411 /* Init R */
1412 R.s = 1;
1413 R.p = Rp;
1414 R.n = P_KOBLITZ_R;
1415
1416 /* Common setup for M */
1417 M.s = 1;
1418 M.p = Mp;
1419
1420 /* M = A1 */
1421 M.n = N->n - ( p_limbs - adjust );
1422 if( M.n > p_limbs + adjust )
1423 M.n = p_limbs + adjust;
1424 memset( Mp, 0, sizeof Mp );
1425 memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1426 if( shift != 0 )
1427 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1428 M.n += R.n; /* Make room for multiplication by R */
1429
1430 /* N = A0 */
1431 if( mask != 0 )
1432 N->p[p_limbs - 1] &= mask;
1433 for( i = p_limbs; i < N->n; i++ )
1434 N->p[i] = 0;
1435
1436 /* N = A0 + R * A1 */
1437 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1438 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1439
1440 /* Second pass */
1441
1442 /* M = A1 */
1443 M.n = N->n - ( p_limbs - adjust );
1444 if( M.n > p_limbs + adjust )
1445 M.n = p_limbs + adjust;
1446 memset( Mp, 0, sizeof Mp );
1447 memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1448 if( shift != 0 )
1449 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1450 M.n += R.n; /* Make room for multiplication by R */
1451
1452 /* N = A0 */
1453 if( mask != 0 )
1454 N->p[p_limbs - 1] &= mask;
1455 for( i = p_limbs; i < N->n; i++ )
1456 N->p[i] = 0;
1457
1458 /* N = A0 + R * A1 */
1459 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1460 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1461
1462cleanup:
1463 return( ret );
1464}
1465#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1466 MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1467 MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1468
1469#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1470/*
1471 * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1472 * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1473 */
1474static int ecp_mod_p192k1( mbedtls_mpi *N )
1475{
1476 static mbedtls_mpi_uint Rp[] = {
1477 BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1478
1479 return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1480}
1481#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1482
1483#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1484/*
1485 * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1486 * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1487 */
1488static int ecp_mod_p224k1( mbedtls_mpi *N )
1489{
1490 static mbedtls_mpi_uint Rp[] = {
1491 BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1492
1493#if defined(MBEDTLS_HAVE_INT64)
1494 return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1495#else
1496 return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1497#endif
1498}
1499
1500#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1501
1502#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1503/*
1504 * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1505 * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1506 */
1507static int ecp_mod_p256k1( mbedtls_mpi *N )
1508{
1509 static mbedtls_mpi_uint Rp[] = {
1510 BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1511 return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1512}
1513#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1514
1515#endif /* !MBEDTLS_ECP_ALT */
1516
1517#endif /* MBEDTLS_ECP_C */