blob: f78984e64d8031a65dacac1a38f38ba74facedd9 [file] [log] [blame]
Edison Aic6672fd2018-02-28 15:01:47 +08001// SPDX-License-Identifier: Apache-2.0
Jens Wiklander817466c2018-05-22 13:49:31 +02002/*
3 * Elliptic curves over GF(p): curve-specific data and functions
4 *
5 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
Jens Wiklander817466c2018-05-22 13:49:31 +02006 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 * This file is part of mbed TLS (https://tls.mbed.org)
20 */
21
22#if !defined(MBEDTLS_CONFIG_FILE)
23#include "mbedtls/config.h"
24#else
25#include MBEDTLS_CONFIG_FILE
26#endif
27
28#if defined(MBEDTLS_ECP_C)
29
30#include "mbedtls/ecp.h"
Jens Wiklander3d3b0592019-03-20 15:30:29 +010031#include "mbedtls/platform_util.h"
Jerome Forissier11fa71b2020-04-20 17:17:56 +020032#include "mbedtls/error.h"
Jens Wiklander817466c2018-05-22 13:49:31 +020033
34#include <string.h>
35
36#if !defined(MBEDTLS_ECP_ALT)
37
Jens Wiklander3d3b0592019-03-20 15:30:29 +010038/* Parameter validation macros based on platform_util.h */
39#define ECP_VALIDATE_RET( cond ) \
40 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
41#define ECP_VALIDATE( cond ) \
42 MBEDTLS_INTERNAL_VALIDATE( cond )
43
Jens Wiklander817466c2018-05-22 13:49:31 +020044#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
45 !defined(inline) && !defined(__cplusplus)
46#define inline __inline
47#endif
48
49/*
50 * Conversion macros for embedded constants:
51 * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
52 */
53#if defined(MBEDTLS_HAVE_INT32)
54
Jerome Forissier5b25c762020-04-07 11:18:49 +020055#define BYTES_TO_T_UINT_4( a, b, c, d ) \
56 ( (mbedtls_mpi_uint) (a) << 0 ) | \
57 ( (mbedtls_mpi_uint) (b) << 8 ) | \
58 ( (mbedtls_mpi_uint) (c) << 16 ) | \
59 ( (mbedtls_mpi_uint) (d) << 24 )
Jens Wiklander817466c2018-05-22 13:49:31 +020060
61#define BYTES_TO_T_UINT_2( a, b ) \
62 BYTES_TO_T_UINT_4( a, b, 0, 0 )
63
64#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
65 BYTES_TO_T_UINT_4( a, b, c, d ), \
66 BYTES_TO_T_UINT_4( e, f, g, h )
67
68#else /* 64-bits */
69
70#define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
Jerome Forissier5b25c762020-04-07 11:18:49 +020071 ( (mbedtls_mpi_uint) (a) << 0 ) | \
72 ( (mbedtls_mpi_uint) (b) << 8 ) | \
73 ( (mbedtls_mpi_uint) (c) << 16 ) | \
74 ( (mbedtls_mpi_uint) (d) << 24 ) | \
75 ( (mbedtls_mpi_uint) (e) << 32 ) | \
76 ( (mbedtls_mpi_uint) (f) << 40 ) | \
77 ( (mbedtls_mpi_uint) (g) << 48 ) | \
78 ( (mbedtls_mpi_uint) (h) << 56 )
Jens Wiklander817466c2018-05-22 13:49:31 +020079
80#define BYTES_TO_T_UINT_4( a, b, c, d ) \
81 BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
82
83#define BYTES_TO_T_UINT_2( a, b ) \
84 BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
85
86#endif /* bits in mbedtls_mpi_uint */
87
88/*
89 * Note: the constants are in little-endian order
90 * to be directly usable in MPIs
91 */
92
93/*
94 * Domain parameters for secp192r1
95 */
96#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
97static const mbedtls_mpi_uint secp192r1_p[] = {
98 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
99 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
100 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
101};
102static const mbedtls_mpi_uint secp192r1_b[] = {
103 BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
104 BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
105 BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
106};
107static const mbedtls_mpi_uint secp192r1_gx[] = {
108 BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
109 BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
110 BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
111};
112static const mbedtls_mpi_uint secp192r1_gy[] = {
113 BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
114 BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
115 BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
116};
117static const mbedtls_mpi_uint secp192r1_n[] = {
118 BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
119 BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
120 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
121};
122#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
123
124/*
125 * Domain parameters for secp224r1
126 */
127#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
128static const mbedtls_mpi_uint secp224r1_p[] = {
129 BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
130 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
131 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
132 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
133};
134static const mbedtls_mpi_uint secp224r1_b[] = {
135 BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
136 BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
137 BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
138 BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
139};
140static const mbedtls_mpi_uint secp224r1_gx[] = {
141 BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
142 BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
143 BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
144 BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
145};
146static const mbedtls_mpi_uint secp224r1_gy[] = {
147 BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
148 BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
149 BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
150 BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
151};
152static const mbedtls_mpi_uint secp224r1_n[] = {
153 BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
154 BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
155 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
156 BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
157};
158#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
159
160/*
161 * Domain parameters for secp256r1
162 */
163#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
164static const mbedtls_mpi_uint secp256r1_p[] = {
165 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
166 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
167 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
168 BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
169};
170static const mbedtls_mpi_uint secp256r1_b[] = {
171 BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
172 BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
173 BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
174 BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
175};
176static const mbedtls_mpi_uint secp256r1_gx[] = {
177 BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
178 BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
179 BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
180 BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
181};
182static const mbedtls_mpi_uint secp256r1_gy[] = {
183 BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
184 BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
185 BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
186 BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
187};
188static const mbedtls_mpi_uint secp256r1_n[] = {
189 BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
190 BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
191 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
192 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
193};
194#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
195
196/*
197 * Domain parameters for secp384r1
198 */
199#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
200static const mbedtls_mpi_uint secp384r1_p[] = {
201 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
202 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
203 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
204 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
205 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
206 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
207};
208static const mbedtls_mpi_uint secp384r1_b[] = {
209 BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
210 BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
211 BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
212 BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
213 BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
214 BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
215};
216static const mbedtls_mpi_uint secp384r1_gx[] = {
217 BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
218 BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
219 BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
220 BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
221 BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
222 BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
223};
224static const mbedtls_mpi_uint secp384r1_gy[] = {
225 BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
226 BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
227 BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
228 BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
229 BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
230 BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
231};
232static const mbedtls_mpi_uint secp384r1_n[] = {
233 BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
234 BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
235 BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
236 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
237 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
238 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
239};
240#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
241
242/*
243 * Domain parameters for secp521r1
244 */
245#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
246static const mbedtls_mpi_uint secp521r1_p[] = {
247 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
248 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
249 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
250 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
251 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
252 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
253 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
254 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
255 BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
256};
257static const mbedtls_mpi_uint secp521r1_b[] = {
258 BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
259 BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
260 BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
261 BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
262 BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
263 BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
264 BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
265 BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
266 BYTES_TO_T_UINT_2( 0x51, 0x00 ),
267};
268static const mbedtls_mpi_uint secp521r1_gx[] = {
269 BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
270 BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
271 BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
272 BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
273 BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
274 BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
275 BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
276 BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
277 BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
278};
279static const mbedtls_mpi_uint secp521r1_gy[] = {
280 BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
281 BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
282 BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
283 BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
284 BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
285 BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
286 BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
287 BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
288 BYTES_TO_T_UINT_2( 0x18, 0x01 ),
289};
290static const mbedtls_mpi_uint secp521r1_n[] = {
291 BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
292 BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
293 BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
294 BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
295 BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
296 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
297 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
298 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
299 BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
300};
301#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
302
303#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
304static const mbedtls_mpi_uint secp192k1_p[] = {
305 BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
306 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
307 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
308};
309static const mbedtls_mpi_uint secp192k1_a[] = {
310 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
311};
312static const mbedtls_mpi_uint secp192k1_b[] = {
313 BYTES_TO_T_UINT_2( 0x03, 0x00 ),
314};
315static const mbedtls_mpi_uint secp192k1_gx[] = {
316 BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
317 BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
318 BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
319};
320static const mbedtls_mpi_uint secp192k1_gy[] = {
321 BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
322 BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
323 BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
324};
325static const mbedtls_mpi_uint secp192k1_n[] = {
326 BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
327 BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
328 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
329};
330#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
331
332#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
333static const mbedtls_mpi_uint secp224k1_p[] = {
334 BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
335 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
336 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
337 BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
338};
339static const mbedtls_mpi_uint secp224k1_a[] = {
340 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
341};
342static const mbedtls_mpi_uint secp224k1_b[] = {
343 BYTES_TO_T_UINT_2( 0x05, 0x00 ),
344};
345static const mbedtls_mpi_uint secp224k1_gx[] = {
346 BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
347 BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
348 BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
349 BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
350};
351static const mbedtls_mpi_uint secp224k1_gy[] = {
352 BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
353 BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
354 BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
355 BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
356};
357static const mbedtls_mpi_uint secp224k1_n[] = {
358 BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
359 BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
360 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
361 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
362};
363#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
364
365#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
366static const mbedtls_mpi_uint secp256k1_p[] = {
367 BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
368 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
369 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
370 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
371};
372static const mbedtls_mpi_uint secp256k1_a[] = {
373 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
374};
375static const mbedtls_mpi_uint secp256k1_b[] = {
376 BYTES_TO_T_UINT_2( 0x07, 0x00 ),
377};
378static const mbedtls_mpi_uint secp256k1_gx[] = {
379 BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
380 BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
381 BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
382 BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
383};
384static const mbedtls_mpi_uint secp256k1_gy[] = {
385 BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
386 BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
387 BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
388 BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
389};
390static const mbedtls_mpi_uint secp256k1_n[] = {
391 BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
392 BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
393 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
394 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
395};
396#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
397
398/*
399 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
400 */
401#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
402static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
403 BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
404 BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
405 BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
406 BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
407};
408static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
409 BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
410 BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
411 BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
412 BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
413};
414static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
415 BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
416 BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
417 BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
418 BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
419};
420static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
421 BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
422 BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
423 BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
424 BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
425};
426static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
427 BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
428 BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
429 BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
430 BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
431};
432static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
433 BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
434 BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
435 BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
436 BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
437};
438#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
439
440/*
441 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
442 */
443#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
444static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
445 BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
446 BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
447 BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
448 BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
449 BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
450 BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
451};
452static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
453 BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
454 BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
455 BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
456 BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
457 BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
458 BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
459};
460static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
461 BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
462 BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
463 BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
464 BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
465 BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
466 BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
467};
468static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
469 BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
470 BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
471 BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
472 BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
473 BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
474 BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
475};
476static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
477 BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
478 BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
479 BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
480 BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
481 BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
482 BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
483};
484static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
485 BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
486 BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
487 BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
488 BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
489 BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
490 BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
491};
492#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
493
494/*
495 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
496 */
497#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
498static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
499 BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
500 BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
501 BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
502 BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
503 BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
504 BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
505 BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
506 BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
507};
508static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
509 BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
510 BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
511 BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
512 BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
513 BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
514 BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
515 BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
516 BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
517};
518static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
519 BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
520 BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
521 BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
522 BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
523 BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
524 BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
525 BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
526 BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
527};
528static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
529 BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
530 BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
531 BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
532 BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
533 BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
534 BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
535 BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
536 BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
537};
538static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
539 BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
540 BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
541 BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
542 BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
543 BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
544 BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
545 BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
546 BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
547};
548static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
549 BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
550 BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
551 BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
552 BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
553 BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
554 BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
555 BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
556 BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
557};
558#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
559
560/*
561 * Create an MPI from embedded constants
562 * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
563 */
564static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
565{
566 X->s = 1;
567 X->n = len / sizeof( mbedtls_mpi_uint );
568 X->p = (mbedtls_mpi_uint *) p;
569}
570
571/*
572 * Set an MPI to static value 1
573 */
574static inline void ecp_mpi_set1( mbedtls_mpi *X )
575{
576 static mbedtls_mpi_uint one[] = { 1 };
577 X->s = 1;
578 X->n = 1;
579 X->p = one;
580}
581
582/*
583 * Make group available from embedded constants
584 */
585static int ecp_group_load( mbedtls_ecp_group *grp,
586 const mbedtls_mpi_uint *p, size_t plen,
587 const mbedtls_mpi_uint *a, size_t alen,
588 const mbedtls_mpi_uint *b, size_t blen,
589 const mbedtls_mpi_uint *gx, size_t gxlen,
590 const mbedtls_mpi_uint *gy, size_t gylen,
591 const mbedtls_mpi_uint *n, size_t nlen)
592{
593 ecp_mpi_load( &grp->P, p, plen );
594 if( a != NULL )
595 ecp_mpi_load( &grp->A, a, alen );
596 ecp_mpi_load( &grp->B, b, blen );
597 ecp_mpi_load( &grp->N, n, nlen );
598
599 ecp_mpi_load( &grp->G.X, gx, gxlen );
600 ecp_mpi_load( &grp->G.Y, gy, gylen );
601 ecp_mpi_set1( &grp->G.Z );
602
603 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
604 grp->nbits = mbedtls_mpi_bitlen( &grp->N );
605
606 grp->h = 1;
607
608 return( 0 );
609}
610
611#if defined(MBEDTLS_ECP_NIST_OPTIM)
612/* Forward declarations */
613#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
614static int ecp_mod_p192( mbedtls_mpi * );
615#endif
616#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
617static int ecp_mod_p224( mbedtls_mpi * );
618#endif
619#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
620static int ecp_mod_p256( mbedtls_mpi * );
621#endif
622#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
623static int ecp_mod_p384( mbedtls_mpi * );
624#endif
625#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
626static int ecp_mod_p521( mbedtls_mpi * );
627#endif
628
629#define NIST_MODP( P ) grp->modp = ecp_mod_ ## P;
630#else
631#define NIST_MODP( P )
632#endif /* MBEDTLS_ECP_NIST_OPTIM */
633
634/* Additional forward declarations */
635#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
636static int ecp_mod_p255( mbedtls_mpi * );
637#endif
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100638#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
639static int ecp_mod_p448( mbedtls_mpi * );
640#endif
Jens Wiklander817466c2018-05-22 13:49:31 +0200641#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
642static int ecp_mod_p192k1( mbedtls_mpi * );
643#endif
644#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
645static int ecp_mod_p224k1( mbedtls_mpi * );
646#endif
647#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
648static int ecp_mod_p256k1( mbedtls_mpi * );
649#endif
650
651#define LOAD_GROUP_A( G ) ecp_group_load( grp, \
652 G ## _p, sizeof( G ## _p ), \
653 G ## _a, sizeof( G ## _a ), \
654 G ## _b, sizeof( G ## _b ), \
655 G ## _gx, sizeof( G ## _gx ), \
656 G ## _gy, sizeof( G ## _gy ), \
657 G ## _n, sizeof( G ## _n ) )
658
659#define LOAD_GROUP( G ) ecp_group_load( grp, \
660 G ## _p, sizeof( G ## _p ), \
661 NULL, 0, \
662 G ## _b, sizeof( G ## _b ), \
663 G ## _gx, sizeof( G ## _gx ), \
664 G ## _gy, sizeof( G ## _gy ), \
665 G ## _n, sizeof( G ## _n ) )
666
667#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
668/*
669 * Specialized function for creating the Curve25519 group
670 */
671static int ecp_use_curve25519( mbedtls_ecp_group *grp )
672{
Jerome Forissier11fa71b2020-04-20 17:17:56 +0200673 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +0200674
675 /* Actually ( A + 2 ) / 4 */
676 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
677
678 /* P = 2^255 - 19 */
679 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
680 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
681 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
682 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
683
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100684 /* N = 2^252 + 27742317777372353535851937790883648493 */
685 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->N, 16,
686 "14DEF9DEA2F79CD65812631A5CF5D3ED" ) );
687 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) );
688
689 /* Y intentionally not set, since we use x/z coordinates.
Jens Wiklander817466c2018-05-22 13:49:31 +0200690 * This is used as a marker to identify Montgomery curves! */
691 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
692 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
693 mbedtls_mpi_free( &grp->G.Y );
694
695 /* Actually, the required msb for private keys */
696 grp->nbits = 254;
697
698cleanup:
699 if( ret != 0 )
700 mbedtls_ecp_group_free( grp );
701
702 return( ret );
703}
704#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
705
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100706#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
707/*
708 * Specialized function for creating the Curve448 group
709 */
710static int ecp_use_curve448( mbedtls_ecp_group *grp )
711{
712 mbedtls_mpi Ns;
Jerome Forissier11fa71b2020-04-20 17:17:56 +0200713 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100714
715 mbedtls_mpi_init( &Ns );
716
717 /* Actually ( A + 2 ) / 4 */
718 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "98AA" ) );
719
720 /* P = 2^448 - 2^224 - 1 */
721 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
722 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
723 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
724 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
725 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
726 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
727
728 /* Y intentionally not set, since we use x/z coordinates.
729 * This is used as a marker to identify Montgomery curves! */
730 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 5 ) );
731 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
732 mbedtls_mpi_free( &grp->G.Y );
733
734 /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
735 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 446, 1 ) );
736 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &Ns, 16,
737 "8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D" ) );
738 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &grp->N, &grp->N, &Ns ) );
739
740 /* Actually, the required msb for private keys */
741 grp->nbits = 447;
742
743cleanup:
744 mbedtls_mpi_free( &Ns );
745 if( ret != 0 )
746 mbedtls_ecp_group_free( grp );
747
748 return( ret );
749}
750#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
751
Jens Wiklander817466c2018-05-22 13:49:31 +0200752/*
753 * Set a group using well-known domain parameters
754 */
755int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
756{
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100757 ECP_VALIDATE_RET( grp != NULL );
Jens Wiklander817466c2018-05-22 13:49:31 +0200758 mbedtls_ecp_group_free( grp );
759
760 grp->id = id;
761
762 switch( id )
763 {
764#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
765 case MBEDTLS_ECP_DP_SECP192R1:
766 NIST_MODP( p192 );
767 return( LOAD_GROUP( secp192r1 ) );
768#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
769
770#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
771 case MBEDTLS_ECP_DP_SECP224R1:
772 NIST_MODP( p224 );
773 return( LOAD_GROUP( secp224r1 ) );
774#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
775
776#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
777 case MBEDTLS_ECP_DP_SECP256R1:
778 NIST_MODP( p256 );
779 return( LOAD_GROUP( secp256r1 ) );
780#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
781
782#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
783 case MBEDTLS_ECP_DP_SECP384R1:
784 NIST_MODP( p384 );
785 return( LOAD_GROUP( secp384r1 ) );
786#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
787
788#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
789 case MBEDTLS_ECP_DP_SECP521R1:
790 NIST_MODP( p521 );
791 return( LOAD_GROUP( secp521r1 ) );
792#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
793
794#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
795 case MBEDTLS_ECP_DP_SECP192K1:
796 grp->modp = ecp_mod_p192k1;
797 return( LOAD_GROUP_A( secp192k1 ) );
798#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
799
800#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
801 case MBEDTLS_ECP_DP_SECP224K1:
802 grp->modp = ecp_mod_p224k1;
803 return( LOAD_GROUP_A( secp224k1 ) );
804#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
805
806#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
807 case MBEDTLS_ECP_DP_SECP256K1:
808 grp->modp = ecp_mod_p256k1;
809 return( LOAD_GROUP_A( secp256k1 ) );
810#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
811
812#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
813 case MBEDTLS_ECP_DP_BP256R1:
814 return( LOAD_GROUP_A( brainpoolP256r1 ) );
815#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
816
817#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
818 case MBEDTLS_ECP_DP_BP384R1:
819 return( LOAD_GROUP_A( brainpoolP384r1 ) );
820#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
821
822#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
823 case MBEDTLS_ECP_DP_BP512R1:
824 return( LOAD_GROUP_A( brainpoolP512r1 ) );
825#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
826
827#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
828 case MBEDTLS_ECP_DP_CURVE25519:
829 grp->modp = ecp_mod_p255;
830 return( ecp_use_curve25519( grp ) );
831#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
832
Jens Wiklander3d3b0592019-03-20 15:30:29 +0100833#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
834 case MBEDTLS_ECP_DP_CURVE448:
835 grp->modp = ecp_mod_p448;
836 return( ecp_use_curve448( grp ) );
837#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
838
Jens Wiklander817466c2018-05-22 13:49:31 +0200839 default:
Jerome Forissier11fa71b2020-04-20 17:17:56 +0200840 grp->id = MBEDTLS_ECP_DP_NONE;
Jens Wiklander817466c2018-05-22 13:49:31 +0200841 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
842 }
843}
844
845#if defined(MBEDTLS_ECP_NIST_OPTIM)
846/*
847 * Fast reduction modulo the primes used by the NIST curves.
848 *
849 * These functions are critical for speed, but not needed for correct
850 * operations. So, we make the choice to heavily rely on the internals of our
851 * bignum library, which creates a tight coupling between these functions and
852 * our MPI implementation. However, the coupling between the ECP module and
853 * MPI remains loose, since these functions can be deactivated at will.
854 */
855
856#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
857/*
858 * Compared to the way things are presented in FIPS 186-3 D.2,
859 * we proceed in columns, from right (least significant chunk) to left,
860 * adding chunks to N in place, and keeping a carry for the next chunk.
861 * This avoids moving things around in memory, and uselessly adding zeros,
862 * compared to the more straightforward, line-oriented approach.
863 *
864 * For this prime we need to handle data in chunks of 64 bits.
865 * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
866 * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
867 */
868
869/* Add 64-bit chunks (dst += src) and update carry */
870static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
871{
872 unsigned char i;
873 mbedtls_mpi_uint c = 0;
874 for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
875 {
876 *dst += c; c = ( *dst < c );
877 *dst += *src; c += ( *dst < *src );
878 }
879 *carry += c;
880}
881
882/* Add carry to a 64-bit chunk and update carry */
883static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
884{
885 unsigned char i;
886 for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
887 {
888 *dst += *carry;
889 *carry = ( *dst < *carry );
890 }
891}
892
893#define WIDTH 8 / sizeof( mbedtls_mpi_uint )
Jerome Forissier5b25c762020-04-07 11:18:49 +0200894#define A( i ) N->p + (i) * WIDTH
Jens Wiklander817466c2018-05-22 13:49:31 +0200895#define ADD( i ) add64( p, A( i ), &c )
896#define NEXT p += WIDTH; carry64( p, &c )
897#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
898
899/*
900 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
901 */
902static int ecp_mod_p192( mbedtls_mpi *N )
903{
Jerome Forissier11fa71b2020-04-20 17:17:56 +0200904 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +0200905 mbedtls_mpi_uint c = 0;
906 mbedtls_mpi_uint *p, *end;
907
908 /* Make sure we have enough blocks so that A(5) is legal */
909 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
910
911 p = N->p;
912 end = p + N->n;
913
914 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
915 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
916 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
917
918cleanup:
919 return( ret );
920}
921
922#undef WIDTH
923#undef A
924#undef ADD
925#undef NEXT
926#undef LAST
927#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
928
929#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
930 defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
931 defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
932/*
933 * The reader is advised to first understand ecp_mod_p192() since the same
934 * general structure is used here, but with additional complications:
935 * (1) chunks of 32 bits, and (2) subtractions.
936 */
937
938/*
939 * For these primes, we need to handle data in chunks of 32 bits.
940 * This makes it more complicated if we use 64 bits limbs in MPI,
941 * which prevents us from using a uniform access method as for p192.
942 *
943 * So, we define a mini abstraction layer to access 32 bit chunks,
944 * load them in 'cur' for work, and store them back from 'cur' when done.
945 *
946 * While at it, also define the size of N in terms of 32-bit chunks.
947 */
948#define LOAD32 cur = A( i );
949
950#if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
951
952#define MAX32 N->n
953#define A( j ) N->p[j]
954#define STORE32 N->p[i] = cur;
955
956#else /* 64-bit */
957
958#define MAX32 N->n * 2
Jerome Forissier5b25c762020-04-07 11:18:49 +0200959#define A( j ) (j) % 2 ? (uint32_t)( N->p[(j)/2] >> 32 ) : \
960 (uint32_t)( N->p[(j)/2] )
Jens Wiklander817466c2018-05-22 13:49:31 +0200961#define STORE32 \
962 if( i % 2 ) { \
963 N->p[i/2] &= 0x00000000FFFFFFFF; \
964 N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \
965 } else { \
966 N->p[i/2] &= 0xFFFFFFFF00000000; \
967 N->p[i/2] |= (mbedtls_mpi_uint) cur; \
968 }
969
970#endif /* sizeof( mbedtls_mpi_uint ) */
971
972/*
973 * Helpers for addition and subtraction of chunks, with signed carry.
974 */
975static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
976{
977 *dst += src;
978 *carry += ( *dst < src );
979}
980
981static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
982{
983 *carry -= ( *dst < src );
984 *dst -= src;
985}
986
987#define ADD( j ) add32( &cur, A( j ), &c );
988#define SUB( j ) sub32( &cur, A( j ), &c );
989
990/*
991 * Helpers for the main 'loop'
992 * (see fix_negative for the motivation of C)
993 */
Jerome Forissier5b25c762020-04-07 11:18:49 +0200994#define INIT( b ) \
Jerome Forissier11fa71b2020-04-20 17:17:56 +0200995 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; \
Jerome Forissier5b25c762020-04-07 11:18:49 +0200996 signed char c = 0, cc; \
997 uint32_t cur; \
998 size_t i = 0, bits = (b); \
999 mbedtls_mpi C; \
1000 mbedtls_mpi_uint Cp[ (b) / 8 / sizeof( mbedtls_mpi_uint) + 1 ]; \
1001 \
1002 C.s = 1; \
1003 C.n = (b) / 8 / sizeof( mbedtls_mpi_uint) + 1; \
1004 C.p = Cp; \
1005 memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) ); \
1006 \
1007 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, (b) * 2 / 8 / \
1008 sizeof( mbedtls_mpi_uint ) ) ); \
Jens Wiklander817466c2018-05-22 13:49:31 +02001009 LOAD32;
1010
1011#define NEXT \
1012 STORE32; i++; LOAD32; \
1013 cc = c; c = 0; \
1014 if( cc < 0 ) \
1015 sub32( &cur, -cc, &c ); \
1016 else \
1017 add32( &cur, cc, &c ); \
1018
1019#define LAST \
1020 STORE32; i++; \
1021 cur = c > 0 ? c : 0; STORE32; \
1022 cur = 0; while( ++i < MAX32 ) { STORE32; } \
1023 if( c < 0 ) fix_negative( N, c, &C, bits );
1024
1025/*
1026 * If the result is negative, we get it in the form
1027 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
1028 */
1029static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
1030{
Jerome Forissier11fa71b2020-04-20 17:17:56 +02001031 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +02001032
1033 /* C = - c * 2^(bits + 32) */
1034#if !defined(MBEDTLS_HAVE_INT64)
1035 ((void) bits);
1036#else
1037 if( bits == 224 )
1038 C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
1039 else
1040#endif
1041 C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
1042
1043 /* N = - ( C - N ) */
1044 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
1045 N->s = -1;
1046
1047cleanup:
1048
1049 return( ret );
1050}
1051
1052#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
1053/*
1054 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
1055 */
1056static int ecp_mod_p224( mbedtls_mpi *N )
1057{
1058 INIT( 224 );
1059
1060 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
1061 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
1062 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
1063 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
1064 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
1065 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
1066 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
1067
1068cleanup:
1069 return( ret );
1070}
1071#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
1072
1073#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
1074/*
1075 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1076 */
1077static int ecp_mod_p256( mbedtls_mpi *N )
1078{
1079 INIT( 256 );
1080
1081 ADD( 8 ); ADD( 9 );
1082 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
1083
1084 ADD( 9 ); ADD( 10 );
1085 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
1086
1087 ADD( 10 ); ADD( 11 );
1088 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
1089
1090 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1091 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
1092
1093 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1094 SUB( 9 ); SUB( 10 ); NEXT; // A4
1095
1096 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1097 SUB( 10 ); SUB( 11 ); NEXT; // A5
1098
1099 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1100 SUB( 8 ); SUB( 9 ); NEXT; // A6
1101
1102 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1103 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
1104
1105cleanup:
1106 return( ret );
1107}
1108#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1109
1110#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1111/*
1112 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1113 */
1114static int ecp_mod_p384( mbedtls_mpi *N )
1115{
1116 INIT( 384 );
1117
1118 ADD( 12 ); ADD( 21 ); ADD( 20 );
1119 SUB( 23 ); NEXT; // A0
1120
1121 ADD( 13 ); ADD( 22 ); ADD( 23 );
1122 SUB( 12 ); SUB( 20 ); NEXT; // A2
1123
1124 ADD( 14 ); ADD( 23 );
1125 SUB( 13 ); SUB( 21 ); NEXT; // A2
1126
1127 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1128 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
1129
1130 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1131 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
1132
1133 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1134 SUB( 16 ); NEXT; // A5
1135
1136 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1137 SUB( 17 ); NEXT; // A6
1138
1139 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1140 SUB( 18 ); NEXT; // A7
1141
1142 ADD( 20 ); ADD( 17 ); ADD( 16 );
1143 SUB( 19 ); NEXT; // A8
1144
1145 ADD( 21 ); ADD( 18 ); ADD( 17 );
1146 SUB( 20 ); NEXT; // A9
1147
1148 ADD( 22 ); ADD( 19 ); ADD( 18 );
1149 SUB( 21 ); NEXT; // A10
1150
1151 ADD( 23 ); ADD( 20 ); ADD( 19 );
1152 SUB( 22 ); LAST; // A11
1153
1154cleanup:
1155 return( ret );
1156}
1157#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1158
1159#undef A
1160#undef LOAD32
1161#undef STORE32
1162#undef MAX32
1163#undef INIT
1164#undef NEXT
1165#undef LAST
1166
1167#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1168 MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1169 MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1170
1171#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1172/*
1173 * Here we have an actual Mersenne prime, so things are more straightforward.
1174 * However, chunks are aligned on a 'weird' boundary (521 bits).
1175 */
1176
1177/* Size of p521 in terms of mbedtls_mpi_uint */
1178#define P521_WIDTH ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1179
1180/* Bits to keep in the most significant mbedtls_mpi_uint */
1181#define P521_MASK 0x01FF
1182
1183/*
1184 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1185 * Write N as A1 + 2^521 A0, return A0 + A1
1186 */
1187static int ecp_mod_p521( mbedtls_mpi *N )
1188{
Jerome Forissier11fa71b2020-04-20 17:17:56 +02001189 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +02001190 size_t i;
1191 mbedtls_mpi M;
1192 mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1193 /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1194 * we need to hold bits 513 to 1056, which is 34 limbs, that is
1195 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1196
1197 if( N->n < P521_WIDTH )
1198 return( 0 );
1199
1200 /* M = A1 */
1201 M.s = 1;
1202 M.n = N->n - ( P521_WIDTH - 1 );
1203 if( M.n > P521_WIDTH + 1 )
1204 M.n = P521_WIDTH + 1;
1205 M.p = Mp;
1206 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1207 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1208
1209 /* N = A0 */
1210 N->p[P521_WIDTH - 1] &= P521_MASK;
1211 for( i = P521_WIDTH; i < N->n; i++ )
1212 N->p[i] = 0;
1213
1214 /* N = A0 + A1 */
1215 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1216
1217cleanup:
1218 return( ret );
1219}
1220
1221#undef P521_WIDTH
1222#undef P521_MASK
1223#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1224
1225#endif /* MBEDTLS_ECP_NIST_OPTIM */
1226
1227#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1228
1229/* Size of p255 in terms of mbedtls_mpi_uint */
1230#define P255_WIDTH ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1231
1232/*
1233 * Fast quasi-reduction modulo p255 = 2^255 - 19
1234 * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1235 */
1236static int ecp_mod_p255( mbedtls_mpi *N )
1237{
Jerome Forissier11fa71b2020-04-20 17:17:56 +02001238 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +02001239 size_t i;
1240 mbedtls_mpi M;
1241 mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1242
1243 if( N->n < P255_WIDTH )
1244 return( 0 );
1245
1246 /* M = A1 */
1247 M.s = 1;
1248 M.n = N->n - ( P255_WIDTH - 1 );
1249 if( M.n > P255_WIDTH + 1 )
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001250 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
Jens Wiklander817466c2018-05-22 13:49:31 +02001251 M.p = Mp;
1252 memset( Mp, 0, sizeof Mp );
1253 memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1254 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1255 M.n++; /* Make room for multiplication by 19 */
1256
1257 /* N = A0 */
1258 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1259 for( i = P255_WIDTH; i < N->n; i++ )
1260 N->p[i] = 0;
1261
1262 /* N = A0 + 19 * A1 */
1263 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1264 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1265
1266cleanup:
1267 return( ret );
1268}
1269#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1270
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001271#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
1272
1273/* Size of p448 in terms of mbedtls_mpi_uint */
1274#define P448_WIDTH ( 448 / 8 / sizeof( mbedtls_mpi_uint ) )
1275
1276/* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
1277#define DIV_ROUND_UP( X, Y ) ( ( ( X ) + ( Y ) - 1 ) / ( Y ) )
1278#define P224_WIDTH_MIN ( 28 / sizeof( mbedtls_mpi_uint ) )
1279#define P224_WIDTH_MAX DIV_ROUND_UP( 28, sizeof( mbedtls_mpi_uint ) )
1280#define P224_UNUSED_BITS ( ( P224_WIDTH_MAX * sizeof( mbedtls_mpi_uint ) * 8 ) - 224 )
1281
1282/*
1283 * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
1284 * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
1285 * A0 + A1 + B1 + (B0 + B1) * 2^224. This is different to the reference
1286 * implementation of Curve448, which uses its own special 56-bit limbs rather
1287 * than a generic bignum library. We could squeeze some extra speed out on
1288 * 32-bit machines by splitting N up into 32-bit limbs and doing the
1289 * arithmetic using the limbs directly as we do for the NIST primes above,
1290 * but for 64-bit targets it should use half the number of operations if we do
1291 * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
1292 */
1293static int ecp_mod_p448( mbedtls_mpi *N )
1294{
Jerome Forissier11fa71b2020-04-20 17:17:56 +02001295 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander3d3b0592019-03-20 15:30:29 +01001296 size_t i;
1297 mbedtls_mpi M, Q;
1298 mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
1299
1300 if( N->n <= P448_WIDTH )
1301 return( 0 );
1302
1303 /* M = A1 */
1304 M.s = 1;
1305 M.n = N->n - ( P448_WIDTH );
1306 if( M.n > P448_WIDTH )
1307 /* Shouldn't be called with N larger than 2^896! */
1308 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1309 M.p = Mp;
1310 memset( Mp, 0, sizeof( Mp ) );
1311 memcpy( Mp, N->p + P448_WIDTH, M.n * sizeof( mbedtls_mpi_uint ) );
1312
1313 /* N = A0 */
1314 for( i = P448_WIDTH; i < N->n; i++ )
1315 N->p[i] = 0;
1316
1317 /* N += A1 */
1318 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1319
1320 /* Q = B1, N += B1 */
1321 Q = M;
1322 Q.p = Qp;
1323 memcpy( Qp, Mp, sizeof( Qp ) );
1324 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Q, 224 ) );
1325 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &Q ) );
1326
1327 /* M = (B0 + B1) * 2^224, N += M */
1328 if( sizeof( mbedtls_mpi_uint ) > 4 )
1329 Mp[P224_WIDTH_MIN] &= ( (mbedtls_mpi_uint)-1 ) >> ( P224_UNUSED_BITS );
1330 for( i = P224_WIDTH_MAX; i < M.n; ++i )
1331 Mp[i] = 0;
1332 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &Q ) );
1333 M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
1334 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &M, 224 ) );
1335 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1336
1337cleanup:
1338 return( ret );
1339}
1340#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
1341
Jens Wiklander817466c2018-05-22 13:49:31 +02001342#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
1343 defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
1344 defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1345/*
1346 * Fast quasi-reduction modulo P = 2^s - R,
1347 * with R about 33 bits, used by the Koblitz curves.
1348 *
1349 * Write N as A0 + 2^224 A1, return A0 + R * A1.
1350 * Actually do two passes, since R is big.
1351 */
1352#define P_KOBLITZ_MAX ( 256 / 8 / sizeof( mbedtls_mpi_uint ) ) // Max limbs in P
1353#define P_KOBLITZ_R ( 8 / sizeof( mbedtls_mpi_uint ) ) // Limbs in R
1354static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1355 size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1356{
Jerome Forissier11fa71b2020-04-20 17:17:56 +02001357 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Jens Wiklander817466c2018-05-22 13:49:31 +02001358 size_t i;
1359 mbedtls_mpi M, R;
1360 mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1361
1362 if( N->n < p_limbs )
1363 return( 0 );
1364
1365 /* Init R */
1366 R.s = 1;
1367 R.p = Rp;
1368 R.n = P_KOBLITZ_R;
1369
1370 /* Common setup for M */
1371 M.s = 1;
1372 M.p = Mp;
1373
1374 /* M = A1 */
1375 M.n = N->n - ( p_limbs - adjust );
1376 if( M.n > p_limbs + adjust )
1377 M.n = p_limbs + adjust;
1378 memset( Mp, 0, sizeof Mp );
1379 memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1380 if( shift != 0 )
1381 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1382 M.n += R.n; /* Make room for multiplication by R */
1383
1384 /* N = A0 */
1385 if( mask != 0 )
1386 N->p[p_limbs - 1] &= mask;
1387 for( i = p_limbs; i < N->n; i++ )
1388 N->p[i] = 0;
1389
1390 /* N = A0 + R * A1 */
1391 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1392 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1393
1394 /* Second pass */
1395
1396 /* M = A1 */
1397 M.n = N->n - ( p_limbs - adjust );
1398 if( M.n > p_limbs + adjust )
1399 M.n = p_limbs + adjust;
1400 memset( Mp, 0, sizeof Mp );
1401 memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1402 if( shift != 0 )
1403 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1404 M.n += R.n; /* Make room for multiplication by R */
1405
1406 /* N = A0 */
1407 if( mask != 0 )
1408 N->p[p_limbs - 1] &= mask;
1409 for( i = p_limbs; i < N->n; i++ )
1410 N->p[i] = 0;
1411
1412 /* N = A0 + R * A1 */
1413 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1414 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1415
1416cleanup:
1417 return( ret );
1418}
1419#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1420 MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1421 MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1422
1423#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1424/*
1425 * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1426 * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1427 */
1428static int ecp_mod_p192k1( mbedtls_mpi *N )
1429{
1430 static mbedtls_mpi_uint Rp[] = {
1431 BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1432
1433 return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1434}
1435#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1436
1437#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1438/*
1439 * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1440 * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1441 */
1442static int ecp_mod_p224k1( mbedtls_mpi *N )
1443{
1444 static mbedtls_mpi_uint Rp[] = {
1445 BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1446
1447#if defined(MBEDTLS_HAVE_INT64)
1448 return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1449#else
1450 return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1451#endif
1452}
1453
1454#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1455
1456#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1457/*
1458 * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1459 * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1460 */
1461static int ecp_mod_p256k1( mbedtls_mpi *N )
1462{
1463 static mbedtls_mpi_uint Rp[] = {
1464 BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1465 return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1466}
1467#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1468
1469#endif /* !MBEDTLS_ECP_ALT */
1470
1471#endif /* MBEDTLS_ECP_C */