blob: 30ac131879f91f40e7c0277e33c24626f975957a [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/**
* This file provides an interface to the boot loader. Functions defined in
* this file should only be called while the boot loader is running.
*/
#include <assert.h>
#include <stddef.h>
#include <stdbool.h>
#include <inttypes.h>
#include <stdlib.h>
#include <string.h>
#include <hal/hal_flash.h>
#include <os/os_malloc.h>
#include "bootutil/bootutil.h"
#include "bootutil/image.h"
#include "bootutil_priv.h"
#define BOOT_LOG_LEVEL BOOT_LOG_LEVEL_INFO
#include "bootutil/bootutil_log.h"
#ifdef MCUBOOT_MYNEWT
#include "mcuboot_config/mcuboot_config.h"
#endif
static struct boot_loader_state boot_data;
struct boot_status_table {
/**
* For each field, a value of 0 means "any".
*/
uint8_t bst_magic_slot0;
uint8_t bst_magic_scratch;
uint8_t bst_copy_done_slot0;
uint8_t bst_status_source;
};
/**
* This set of tables maps swap state contents to boot status location.
* When searching for a match, these tables must be iterated in order.
*/
static const struct boot_status_table boot_status_tables[] = {
{
/* | slot-0 | scratch |
* ----------+------------+------------|
* magic | Good | Any |
* copy-done | 0x01 | N/A |
* ----------+------------+------------'
* source: none |
* ------------------------------------'
*/
.bst_magic_slot0 = BOOT_MAGIC_GOOD,
.bst_magic_scratch = 0,
.bst_copy_done_slot0 = 0x01,
.bst_status_source = BOOT_STATUS_SOURCE_NONE,
},
{
/* | slot-0 | scratch |
* ----------+------------+------------|
* magic | Good | Any |
* copy-done | 0xff | N/A |
* ----------+------------+------------'
* source: slot 0 |
* ------------------------------------'
*/
.bst_magic_slot0 = BOOT_MAGIC_GOOD,
.bst_magic_scratch = 0,
.bst_copy_done_slot0 = 0xff,
.bst_status_source = BOOT_STATUS_SOURCE_SLOT0,
},
{
/* | slot-0 | scratch |
* ----------+------------+------------|
* magic | Any | Good |
* copy-done | Any | N/A |
* ----------+------------+------------'
* source: scratch |
* ------------------------------------'
*/
.bst_magic_slot0 = 0,
.bst_magic_scratch = BOOT_MAGIC_GOOD,
.bst_copy_done_slot0 = 0,
.bst_status_source = BOOT_STATUS_SOURCE_SCRATCH,
},
{
/* | slot-0 | scratch |
* ----------+------------+------------|
* magic | Unset | Any |
* copy-done | 0xff | N/A |
* ----------+------------+------------|
* source: varies |
* ------------------------------------+------------------------------+
* This represents one of two cases: |
* o No swaps ever (no status to read, so no harm in checking). |
* o Mid-revert; status in slot 0. |
* -------------------------------------------------------------------'
*/
.bst_magic_slot0 = BOOT_MAGIC_UNSET,
.bst_magic_scratch = 0,
.bst_copy_done_slot0 = 0xff,
.bst_status_source = BOOT_STATUS_SOURCE_SLOT0,
},
};
#define BOOT_STATUS_TABLES_COUNT \
(sizeof boot_status_tables / sizeof boot_status_tables[0])
#define BOOT_LOG_SWAP_STATE(area, state) \
BOOT_LOG_INF("%s: magic=%s, copy_done=0x%x, image_ok=0x%x", \
(area), \
((state)->magic == BOOT_MAGIC_GOOD ? "good" : \
(state)->magic == BOOT_MAGIC_UNSET ? "unset" : \
"bad"), \
(state)->copy_done, \
(state)->image_ok)
/**
* Determines where in flash the most recent boot status is stored. The boot
* status is necessary for completing a swap that was interrupted by a boot
* loader reset.
*
* @return A BOOT_STATUS_SOURCE_[...] code indicating where * status should be read from.
*/
static int
boot_status_source(void)
{
const struct boot_status_table *table;
struct boot_swap_state state_scratch;
struct boot_swap_state state_slot0;
int rc;
int i;
uint8_t source;
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_0, &state_slot0);
assert(rc == 0);
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SCRATCH, &state_scratch);
assert(rc == 0);
BOOT_LOG_SWAP_STATE("Image 0", &state_slot0);
BOOT_LOG_SWAP_STATE("Scratch", &state_scratch);
for (i = 0; i < BOOT_STATUS_TABLES_COUNT; i++) {
table = &boot_status_tables[i];
if ((table->bst_magic_slot0 == 0 ||
table->bst_magic_slot0 == state_slot0.magic) &&
(table->bst_magic_scratch == 0 ||
table->bst_magic_scratch == state_scratch.magic) &&
(table->bst_copy_done_slot0 == 0 ||
table->bst_copy_done_slot0 == state_slot0.copy_done)) {
source = table->bst_status_source;
BOOT_LOG_INF("Boot source: %s",
source == BOOT_STATUS_SOURCE_NONE ? "none" :
source == BOOT_STATUS_SOURCE_SCRATCH ? "scratch" :
source == BOOT_STATUS_SOURCE_SLOT0 ? "slot 0" :
"BUG; can't happen");
return source;
}
}
BOOT_LOG_INF("Boot source: none");
return BOOT_STATUS_SOURCE_NONE;
}
/**
* Calculates the type of swap that just completed.
*
* This is used when a swap is interrupted by an external event. After
* finishing the swap operation determines what the initial request was.
*/
static int
boot_previous_swap_type(void)
{
int post_swap_type;
post_swap_type = boot_swap_type();
switch (post_swap_type) {
case BOOT_SWAP_TYPE_NONE : return BOOT_SWAP_TYPE_PERM;
case BOOT_SWAP_TYPE_REVERT : return BOOT_SWAP_TYPE_TEST;
case BOOT_SWAP_TYPE_PANIC : return BOOT_SWAP_TYPE_PANIC;
}
return BOOT_SWAP_TYPE_FAIL;
}
/*
* Compute the total size of the given image. Includes the size of
* the TLVs.
*/
#ifndef MCUBOOT_OVERWRITE_ONLY
static int
boot_read_image_size(int slot, struct image_header *hdr, uint32_t *size)
{
const struct flash_area *fap;
struct image_tlv_info info;
int area_id;
int rc;
area_id = flash_area_id_from_image_slot(slot);
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = flash_area_read(fap, hdr->ih_hdr_size + hdr->ih_img_size,
&info, sizeof(info));
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
if (info.it_magic != IMAGE_TLV_INFO_MAGIC) {
rc = BOOT_EBADIMAGE;
goto done;
}
*size = hdr->ih_hdr_size + hdr->ih_img_size + info.it_tlv_tot;
rc = 0;
done:
flash_area_close(fap);
return rc;
}
#endif /* !MCUBOOT_OVERWRITE_ONLY */
static int
boot_read_image_header(int slot, struct image_header *out_hdr)
{
const struct flash_area *fap;
int area_id;
int rc;
area_id = flash_area_id_from_image_slot(slot);
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = flash_area_read(fap, 0, out_hdr, sizeof *out_hdr);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = 0;
done:
flash_area_close(fap);
return rc;
}
static int
boot_read_image_headers(void)
{
int rc;
int i;
for (i = 0; i < BOOT_NUM_SLOTS; i++) {
rc = boot_read_image_header(i, boot_img_hdr(&boot_data, i));
if (rc != 0) {
/* If at least the first slot's header was read successfully, then
* the boot loader can attempt a boot. Failure to read any headers
* is a fatal error.
*/
if (i > 0) {
return 0;
} else {
return rc;
}
}
}
return 0;
}
static uint8_t
boot_write_sz(void)
{
uint8_t elem_sz;
uint8_t align;
/* Figure out what size to write update status update as. The size depends
* on what the minimum write size is for scratch area, active image slot.
* We need to use the bigger of those 2 values.
*/
elem_sz = hal_flash_align(boot_img_fa_device_id(&boot_data, 0));
align = hal_flash_align(boot_scratch_fa_device_id(&boot_data));
if (align > elem_sz) {
elem_sz = align;
}
return elem_sz;
}
static int
boot_slots_compatible(void)
{
size_t num_sectors_0 = boot_img_num_sectors(&boot_data, 0);
size_t num_sectors_1 = boot_img_num_sectors(&boot_data, 1);
size_t size_0, size_1;
size_t i;
/* Ensure both image slots have identical sector layouts. */
if (num_sectors_0 != num_sectors_1) {
return 0;
}
for (i = 0; i < num_sectors_0; i++) {
size_0 = boot_img_sector_size(&boot_data, 0, i);
size_1 = boot_img_sector_size(&boot_data, 1, i);
if (size_0 != size_1) {
return 0;
}
}
return 1;
}
/**
* Determines the sector layout of both image slots and the scratch area.
* This information is necessary for calculating the number of bytes to erase
* and copy during an image swap. The information collected during this
* function is used to populate the boot_data global.
*/
static int
boot_read_sectors(void)
{
int rc;
rc = boot_initialize_area(&boot_data, FLASH_AREA_IMAGE_0);
if (rc != 0) {
return BOOT_EFLASH;
}
rc = boot_initialize_area(&boot_data, FLASH_AREA_IMAGE_1);
if (rc != 0) {
return BOOT_EFLASH;
}
BOOT_WRITE_SZ(&boot_data) = boot_write_sz();
return 0;
}
static uint32_t
boot_status_internal_off(int idx, int state, int elem_sz)
{
int idx_sz;
idx_sz = elem_sz * BOOT_STATUS_STATE_COUNT;
return idx * idx_sz + state * elem_sz;
}
/**
* Reads the status of a partially-completed swap, if any. This is necessary
* to recover in case the boot lodaer was reset in the middle of a swap
* operation.
*/
static int
boot_read_status_bytes(const struct flash_area *fap, struct boot_status *bs)
{
uint32_t off;
uint8_t status;
int max_entries;
int found;
int rc;
int i;
off = boot_status_off(fap);
max_entries = boot_status_entries(fap);
found = 0;
for (i = 0; i < max_entries; i++) {
rc = flash_area_read(fap, off + i * BOOT_WRITE_SZ(&boot_data),
&status, 1);
if (rc != 0) {
return BOOT_EFLASH;
}
if (status == 0xff) {
if (found) {
break;
}
} else if (!found) {
found = 1;
}
}
if (found) {
i--;
bs->idx = i / BOOT_STATUS_STATE_COUNT;
bs->state = i % BOOT_STATUS_STATE_COUNT;
}
return 0;
}
/**
* Reads the boot status from the flash. The boot status contains
* the current state of an interrupted image copy operation. If the boot
* status is not present, or it indicates that previous copy finished,
* there is no operation in progress.
*/
static int
boot_read_status(struct boot_status *bs)
{
const struct flash_area *fap;
int status_loc;
int area_id;
int rc;
memset(bs, 0, sizeof *bs);
status_loc = boot_status_source();
switch (status_loc) {
case BOOT_STATUS_SOURCE_NONE:
return 0;
case BOOT_STATUS_SOURCE_SCRATCH:
area_id = FLASH_AREA_IMAGE_SCRATCH;
break;
case BOOT_STATUS_SOURCE_SLOT0:
area_id = FLASH_AREA_IMAGE_0;
break;
default:
assert(0);
return BOOT_EBADARGS;
}
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
return BOOT_EFLASH;
}
rc = boot_read_status_bytes(fap, bs);
flash_area_close(fap);
return rc;
}
/**
* Writes the supplied boot status to the flash file system. The boot status
* contains the current state of an in-progress image copy operation.
*
* @param bs The boot status to write.
*
* @return 0 on success; nonzero on failure.
*/
int
boot_write_status(struct boot_status *bs)
{
const struct flash_area *fap;
uint32_t off;
int area_id;
int rc;
uint8_t buf[BOOT_MAX_ALIGN];
uint8_t align;
/* NOTE: The first sector copied (that is the last sector on slot) contains
* the trailer. Since in the last step SLOT 0 is erased, the first
* two status writes go to the scratch which will be copied to SLOT 0!
*/
if (bs->use_scratch) {
/* Write to scratch. */
area_id = FLASH_AREA_IMAGE_SCRATCH;
} else {
/* Write to slot 0. */
area_id = FLASH_AREA_IMAGE_0;
}
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
off = boot_status_off(fap) +
boot_status_internal_off(bs->idx, bs->state,
BOOT_WRITE_SZ(&boot_data));
align = hal_flash_align(fap->fa_device_id);
memset(buf, 0xFF, BOOT_MAX_ALIGN);
buf[0] = bs->state;
rc = flash_area_write(fap, off, buf, align);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = 0;
done:
flash_area_close(fap);
return rc;
}
/*
* Validate image hash/signature in a slot.
*/
static int
boot_image_check(struct image_header *hdr, const struct flash_area *fap)
{
static uint8_t tmpbuf[BOOT_TMPBUF_SZ];
if (bootutil_img_validate(hdr, fap, tmpbuf, BOOT_TMPBUF_SZ,
NULL, 0, NULL)) {
return BOOT_EBADIMAGE;
}
return 0;
}
static int
split_image_check(struct image_header *app_hdr,
const struct flash_area *app_fap,
struct image_header *loader_hdr,
const struct flash_area *loader_fap)
{
static void *tmpbuf;
uint8_t loader_hash[32];
if (!tmpbuf) {
tmpbuf = malloc(BOOT_TMPBUF_SZ);
if (!tmpbuf) {
return BOOT_ENOMEM;
}
}
if (bootutil_img_validate(loader_hdr, loader_fap, tmpbuf, BOOT_TMPBUF_SZ,
NULL, 0, loader_hash)) {
return BOOT_EBADIMAGE;
}
if (bootutil_img_validate(app_hdr, app_fap, tmpbuf, BOOT_TMPBUF_SZ,
loader_hash, 32, NULL)) {
return BOOT_EBADIMAGE;
}
return 0;
}
static int
boot_validate_slot(int slot)
{
const struct flash_area *fap;
struct image_header *hdr;
int rc;
hdr = boot_img_hdr(&boot_data, slot);
if (hdr->ih_magic == 0xffffffff || hdr->ih_flags & IMAGE_F_NON_BOOTABLE) {
/* No bootable image in slot; continue booting from slot 0. */
return -1;
}
rc = flash_area_open(flash_area_id_from_image_slot(slot), &fap);
if (rc != 0) {
return BOOT_EFLASH;
}
if ((hdr->ih_magic != IMAGE_MAGIC || boot_image_check(hdr, fap) != 0)) {
if (slot != 0) {
flash_area_erase(fap, 0, fap->fa_size);
/* Image in slot 1 is invalid. Erase the image and
* continue booting from slot 0.
*/
}
BOOT_LOG_ERR("Image in slot %d is not valid!", slot);
return -1;
}
flash_area_close(fap);
/* Image in slot 1 is valid. */
return 0;
}
/**
* Determines which swap operation to perform, if any. If it is determined
* that a swap operation is required, the image in the second slot is checked
* for validity. If the image in the second slot is invalid, it is erased, and
* a swap type of "none" is indicated.
*
* @return The type of swap to perform (BOOT_SWAP_TYPE...)
*/
static int
boot_validated_swap_type(void)
{
int swap_type;
swap_type = boot_swap_type();
switch (swap_type) {
case BOOT_SWAP_TYPE_TEST:
case BOOT_SWAP_TYPE_PERM:
case BOOT_SWAP_TYPE_REVERT:
/* Boot loader wants to switch to slot 1. Ensure image is valid. */
if (boot_validate_slot(1) != 0) {
swap_type = BOOT_SWAP_TYPE_FAIL;
}
}
return swap_type;
}
/**
* Calculates the number of sectors the scratch area can contain. A "last"
* source sector is specified because images are copied backwards in flash
* (final index to index number 0).
*
* @param last_sector_idx The index of the last source sector
* (inclusive).
* @param out_first_sector_idx The index of the first source sector
* (inclusive) gets written here.
*
* @return The number of bytes comprised by the
* [first-sector, last-sector] range.
*/
#ifndef MCUBOOT_OVERWRITE_ONLY
static uint32_t
boot_copy_sz(int last_sector_idx, int *out_first_sector_idx)
{
size_t scratch_sz;
uint32_t new_sz;
uint32_t sz;
int i;
sz = 0;
scratch_sz = boot_scratch_area_size(&boot_data);
for (i = last_sector_idx; i >= 0; i--) {
new_sz = sz + boot_img_sector_size(&boot_data, 0, i);
if (new_sz > scratch_sz) {
break;
}
sz = new_sz;
}
/* i currently refers to a sector that doesn't fit or it is -1 because all
* sectors have been processed. In both cases, exclude sector i.
*/
*out_first_sector_idx = i + 1;
return sz;
}
#endif /* !MCUBOOT_OVERWRITE_ONLY */
/**
* Erases a region of flash.
*
* @param flash_area_idx The ID of the flash area containing the region
* to erase.
* @param off The offset within the flash area to start the
* erase.
* @param sz The number of bytes to erase.
*
* @return 0 on success; nonzero on failure.
*/
static int
boot_erase_sector(int flash_area_id, uint32_t off, uint32_t sz)
{
const struct flash_area *fap;
int rc;
rc = flash_area_open(flash_area_id, &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = flash_area_erase(fap, off, sz);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = 0;
done:
flash_area_close(fap);
return rc;
}
/**
* Copies the contents of one flash region to another. You must erase the
* destination region prior to calling this function.
*
* @param flash_area_id_src The ID of the source flash area.
* @param flash_area_id_dst The ID of the destination flash area.
* @param off_src The offset within the source flash area to
* copy from.
* @param off_dst The offset within the destination flash area to
* copy to.
* @param sz The number of bytes to copy.
*
* @return 0 on success; nonzero on failure.
*/
static int
boot_copy_sector(int flash_area_id_src, int flash_area_id_dst,
uint32_t off_src, uint32_t off_dst, uint32_t sz)
{
const struct flash_area *fap_src;
const struct flash_area *fap_dst;
uint32_t bytes_copied;
int chunk_sz;
int rc;
static uint8_t buf[1024];
fap_src = NULL;
fap_dst = NULL;
rc = flash_area_open(flash_area_id_src, &fap_src);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = flash_area_open(flash_area_id_dst, &fap_dst);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
bytes_copied = 0;
while (bytes_copied < sz) {
if (sz - bytes_copied > sizeof buf) {
chunk_sz = sizeof buf;
} else {
chunk_sz = sz - bytes_copied;
}
rc = flash_area_read(fap_src, off_src + bytes_copied, buf, chunk_sz);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = flash_area_write(fap_dst, off_dst + bytes_copied, buf, chunk_sz);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
bytes_copied += chunk_sz;
}
rc = 0;
done:
if (fap_src) {
flash_area_close(fap_src);
}
if (fap_dst) {
flash_area_close(fap_dst);
}
return rc;
}
#ifndef MCUBOOT_OVERWRITE_ONLY
static inline int
boot_status_init_by_id(int flash_area_id, const struct boot_status *bs)
{
const struct flash_area *fap;
struct boot_swap_state swap_state;
int rc;
rc = flash_area_open(flash_area_id, &fap);
assert(rc == 0);
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_1, &swap_state);
assert(rc == 0);
if (swap_state.image_ok == BOOT_FLAG_SET) {
rc = boot_write_image_ok(fap);
assert(rc == 0);
}
rc = boot_write_swap_size(fap, bs->swap_size);
assert(rc == 0);
rc = boot_write_magic(fap);
assert(rc == 0);
flash_area_close(fap);
return 0;
}
#endif
#ifndef MCUBOOT_OVERWRITE_ONLY
static int
boot_erase_last_sector_by_id(int flash_area_id)
{
uint8_t slot;
uint32_t last_sector;
int rc;
switch (flash_area_id) {
case FLASH_AREA_IMAGE_0:
slot = 0;
break;
case FLASH_AREA_IMAGE_1:
slot = 1;
break;
default:
return BOOT_EFLASH;
}
last_sector = boot_img_num_sectors(&boot_data, slot) - 1;
rc = boot_erase_sector(flash_area_id,
boot_img_sector_off(&boot_data, slot, last_sector),
boot_img_sector_size(&boot_data, slot, last_sector));
assert(rc == 0);
return rc;
}
#endif /* !MCUBOOT_OVERWRITE_ONLY */
/**
* Swaps the contents of two flash regions within the two image slots.
*
* @param idx The index of the first sector in the range of
* sectors being swapped.
* @param sz The number of bytes to swap.
* @param bs The current boot status. This struct gets
* updated according to the outcome.
*
* @return 0 on success; nonzero on failure.
*/
#ifndef MCUBOOT_OVERWRITE_ONLY
static void
boot_swap_sectors(int idx, uint32_t sz, struct boot_status *bs)
{
const struct flash_area *fap;
uint32_t copy_sz;
uint32_t trailer_sz;
uint32_t img_off;
uint32_t scratch_trailer_off;
struct boot_swap_state swap_state;
size_t last_sector;
int rc;
/* Calculate offset from start of image area. */
img_off = boot_img_sector_off(&boot_data, 0, idx);
copy_sz = sz;
trailer_sz = boot_slots_trailer_sz(BOOT_WRITE_SZ(&boot_data));
/* sz in this function is always is always sized on a multiple of the
* sector size. The check against the start offset of the last sector
* is to determine if we're swapping the last sector. The last sector
* needs special handling because it's where the trailer lives. If we're
* copying it, we need to use scratch to write the trailer temporarily.
*
* NOTE: `use_scratch` is a temporary flag (never written to flash) which
* controls if special handling is needed (swapping last sector).
*/
last_sector = boot_img_num_sectors(&boot_data, 0) - 1;
if (img_off + sz > boot_img_sector_off(&boot_data, 0, last_sector)) {
copy_sz -= trailer_sz;
}
bs->use_scratch = (bs->idx == 0 && copy_sz != sz);
if (bs->state == 0) {
rc = boot_erase_sector(FLASH_AREA_IMAGE_SCRATCH, 0, sz);
assert(rc == 0);
rc = boot_copy_sector(FLASH_AREA_IMAGE_1, FLASH_AREA_IMAGE_SCRATCH,
img_off, 0, copy_sz);
assert(rc == 0);
if (bs->idx == 0) {
if (bs->use_scratch) {
boot_status_init_by_id(FLASH_AREA_IMAGE_SCRATCH, bs);
} else {
/* Prepare the status area... here it is known that the
* last sector is not being used by the image data so it's
* safe to erase.
*/
rc = boot_erase_last_sector_by_id(FLASH_AREA_IMAGE_0);
assert(rc == 0);
boot_status_init_by_id(FLASH_AREA_IMAGE_0, bs);
}
}
bs->state = 1;
rc = boot_write_status(bs);
assert(rc == 0);
}
if (bs->state == 1) {
rc = boot_erase_sector(FLASH_AREA_IMAGE_1, img_off, sz);
assert(rc == 0);
rc = boot_copy_sector(FLASH_AREA_IMAGE_0, FLASH_AREA_IMAGE_1,
img_off, img_off, copy_sz);
assert(rc == 0);
if (bs->idx == 0 && !bs->use_scratch) {
/* If not all sectors of the slot are being swapped,
* guarantee here that only slot0 will have the state.
*/
rc = boot_erase_last_sector_by_id(FLASH_AREA_IMAGE_1);
assert(rc == 0);
}
bs->state = 2;
rc = boot_write_status(bs);
assert(rc == 0);
}
if (bs->state == 2) {
rc = boot_erase_sector(FLASH_AREA_IMAGE_0, img_off, sz);
assert(rc == 0);
/* NOTE: also copy trailer from scratch (has status info) */
rc = boot_copy_sector(FLASH_AREA_IMAGE_SCRATCH, FLASH_AREA_IMAGE_0,
0, img_off, copy_sz);
assert(rc == 0);
if (bs->use_scratch) {
rc = flash_area_open(FLASH_AREA_IMAGE_SCRATCH, &fap);
assert(rc == 0);
scratch_trailer_off = boot_status_off(fap);
flash_area_close(fap);
rc = flash_area_open(FLASH_AREA_IMAGE_0, &fap);
assert(rc == 0);
/* copy current status that is being maintained in scratch */
rc = boot_copy_sector(FLASH_AREA_IMAGE_SCRATCH, FLASH_AREA_IMAGE_0,
scratch_trailer_off,
img_off + copy_sz,
BOOT_STATUS_STATE_COUNT * BOOT_WRITE_SZ(&boot_data));
assert(rc == 0);
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SCRATCH,
&swap_state);
assert(rc == 0);
if (swap_state.image_ok == BOOT_FLAG_SET) {
rc = boot_write_image_ok(fap);
assert(rc == 0);
}
rc = boot_write_swap_size(fap, bs->swap_size);
assert(rc == 0);
rc = boot_write_magic(fap);
assert(rc == 0);
flash_area_close(fap);
}
bs->idx++;
bs->state = 0;
bs->use_scratch = 0;
rc = boot_write_status(bs);
assert(rc == 0);
}
}
#endif /* !MCUBOOT_OVERWRITE_ONLY */
/**
* Swaps the two images in flash. If a prior copy operation was interrupted
* by a system reset, this function completes that operation.
*
* @param bs The current boot status. This function reads
* this struct to determine if it is resuming
* an interrupted swap operation. This
* function writes the updated status to this
* function on return.
*
* @return 0 on success; nonzero on failure.
*/
#ifdef MCUBOOT_OVERWRITE_ONLY
static int
boot_copy_image(struct boot_status *bs)
{
size_t sect_count;
size_t sect;
int rc;
size_t size = 0;
size_t this_size;
BOOT_LOG_INF("Image upgrade slot1 -> slot0");
BOOT_LOG_INF("Erasing slot0");
sect_count = boot_img_num_sectors(&boot_data, 0);
for (sect = 0; sect < sect_count; sect++) {
this_size = boot_img_sector_size(&boot_data, 0, sect);
rc = boot_erase_sector(FLASH_AREA_IMAGE_0,
size,
this_size);
assert(rc == 0);
size += this_size;
}
BOOT_LOG_INF("Copying slot 1 to slot 0: 0x%lx bytes", size);
rc = boot_copy_sector(FLASH_AREA_IMAGE_1, FLASH_AREA_IMAGE_0,
0, 0, size);
/* Erase slot 1 so that we don't do the upgrade on every boot.
* TODO: Perhaps verify slot 0's signature again? */
rc = boot_erase_sector(FLASH_AREA_IMAGE_1,
0, boot_img_sector_size(&boot_data, 1, 0));
assert(rc == 0);
return 0;
}
#else
static int
boot_copy_image(struct boot_status *bs)
{
uint32_t sz;
int first_sector_idx;
int last_sector_idx;
int swap_idx;
struct image_header *hdr;
uint32_t size;
uint32_t copy_size;
int rc;
/* FIXME: just do this if asked by user? */
size = copy_size = 0;
if (bs->idx == 0 && bs->state == 0) {
/*
* No swap ever happened, so need to find the largest image which
* will be used to determine the amount of sectors to swap.
*/
hdr = boot_img_hdr(&boot_data, 0);
if (hdr->ih_magic == IMAGE_MAGIC) {
rc = boot_read_image_size(0, hdr, &copy_size);
assert(rc == 0);
}
hdr = boot_img_hdr(&boot_data, 1);
if (hdr->ih_magic == IMAGE_MAGIC) {
rc = boot_read_image_size(1, hdr, &size);
assert(rc == 0);
}
if (size > copy_size) {
copy_size = size;
}
bs->swap_size = copy_size;
} else {
/*
* If a swap was under way, the swap_size should already be present
* in the trailer...
*/
rc = boot_read_swap_size(&bs->swap_size);
assert(rc == 0);
copy_size = bs->swap_size;
}
size = 0;
last_sector_idx = 0;
while (1) {
size += boot_img_sector_size(&boot_data, 0, last_sector_idx);
if (size >= copy_size) {
break;
}
last_sector_idx++;
}
swap_idx = 0;
while (last_sector_idx >= 0) {
sz = boot_copy_sz(last_sector_idx, &first_sector_idx);
if (swap_idx >= bs->idx) {
boot_swap_sectors(first_sector_idx, sz, bs);
}
last_sector_idx = first_sector_idx - 1;
swap_idx++;
}
return 0;
}
#endif
/**
* Marks the image in slot 0 as fully copied.
*/
#ifndef MCUBOOT_OVERWRITE_ONLY
static int
boot_set_copy_done(void)
{
const struct flash_area *fap;
int rc;
rc = flash_area_open(FLASH_AREA_IMAGE_0, &fap);
if (rc != 0) {
return BOOT_EFLASH;
}
rc = boot_write_copy_done(fap);
flash_area_close(fap);
return rc;
}
#endif /* !MCUBOOT_OVERWRITE_ONLY */
/**
* Marks a reverted image in slot 0 as confirmed. This is necessary to ensure
* the status bytes from the image revert operation don't get processed on a
* subsequent boot.
*
* NOTE: image_ok is tested before writing because if there's a valid permanent
* image installed on slot0 and the new image to be upgrade to has a bad sig,
* image_ok would be overwritten.
*/
#ifndef MCUBOOT_OVERWRITE_ONLY
static int
boot_set_image_ok(void)
{
const struct flash_area *fap;
struct boot_swap_state state;
int rc;
rc = flash_area_open(FLASH_AREA_IMAGE_0, &fap);
if (rc != 0) {
return BOOT_EFLASH;
}
rc = boot_read_swap_state(fap, &state);
if (rc != 0) {
rc = BOOT_EFLASH;
goto out;
}
if (state.image_ok == BOOT_FLAG_UNSET) {
rc = boot_write_image_ok(fap);
}
out:
flash_area_close(fap);
return rc;
}
#endif /* !MCUBOOT_OVERWRITE_ONLY */
/**
* Performs an image swap if one is required.
*
* @param out_swap_type On success, the type of swap performed gets
* written here.
*
* @return 0 on success; nonzero on failure.
*/
static int
boot_swap_if_needed(int *out_swap_type)
{
struct boot_status bs;
int swap_type;
int rc;
/* Determine if we rebooted in the middle of an image swap
* operation.
*/
rc = boot_read_status(&bs);
assert(rc == 0);
if (rc != 0) {
return rc;
}
/* If a partial swap was detected, complete it. */
if (bs.idx != 0 || bs.state != 0) {
rc = boot_copy_image(&bs);
assert(rc == 0);
/* NOTE: here we have finished a swap resume. The initial request
* was either a TEST or PERM swap, which now after the completed
* swap will be determined to be respectively REVERT (was TEST)
* or NONE (was PERM).
*/
/* Extrapolate the type of the partial swap. We need this
* information to know how to mark the swap complete in flash.
*/
swap_type = boot_previous_swap_type();
} else {
swap_type = boot_validated_swap_type();
switch (swap_type) {
case BOOT_SWAP_TYPE_TEST:
case BOOT_SWAP_TYPE_PERM:
case BOOT_SWAP_TYPE_REVERT:
rc = boot_copy_image(&bs);
assert(rc == 0);
break;
}
}
*out_swap_type = swap_type;
return 0;
}
/**
* Prepares the booting process. This function moves images around in flash as
* appropriate, and tells you what address to boot from.
*
* @param rsp On success, indicates how booting should occur.
*
* @return 0 on success; nonzero on failure.
*/
int
boot_go(struct boot_rsp *rsp)
{
int swap_type;
size_t slot;
int rc;
int fa_id;
bool reload_headers = false;
/* The array of slot sectors are defined here (as opposed to file scope) so
* that they don't get allocated for non-boot-loader apps. This is
* necessary because the gcc option "-fdata-sections" doesn't seem to have
* any effect in older gcc versions (e.g., 4.8.4).
*/
static boot_sector_t slot0_sectors[BOOT_MAX_IMG_SECTORS];
static boot_sector_t slot1_sectors[BOOT_MAX_IMG_SECTORS];
boot_data.imgs[0].sectors = slot0_sectors;
boot_data.imgs[1].sectors = slot1_sectors;
/* Open boot_data image areas for the duration of this call. */
for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
fa_id = flash_area_id_from_image_slot(slot);
rc = flash_area_open(fa_id, &BOOT_IMG_AREA(&boot_data, slot));
assert(rc == 0);
}
rc = flash_area_open(FLASH_AREA_IMAGE_SCRATCH,
&BOOT_SCRATCH_AREA(&boot_data));
assert(rc == 0);
/* Determine the sector layout of the image slots and scratch area. */
rc = boot_read_sectors();
if (rc != 0) {
goto out;
}
/* Attempt to read an image header from each slot. */
rc = boot_read_image_headers();
if (rc != 0) {
goto out;
}
/* If the image slots aren't compatible, no swap is possible. Just boot
* into slot 0.
*/
if (boot_slots_compatible()) {
rc = boot_swap_if_needed(&swap_type);
assert(rc == 0);
if (rc != 0) {
goto out;
}
/*
* The following states need image_ok be explicitly set after the
* swap was finished to avoid a new revert.
*/
if (swap_type == BOOT_SWAP_TYPE_REVERT || swap_type == BOOT_SWAP_TYPE_FAIL) {
#ifndef MCUBOOT_OVERWRITE_ONLY
rc = boot_set_image_ok();
if (rc != 0) {
swap_type = BOOT_SWAP_TYPE_PANIC;
}
#endif /* !MCUBOOT_OVERWRITE_ONLY */
}
} else {
swap_type = BOOT_SWAP_TYPE_NONE;
}
switch (swap_type) {
case BOOT_SWAP_TYPE_NONE:
slot = 0;
break;
case BOOT_SWAP_TYPE_TEST: /* fallthrough */
case BOOT_SWAP_TYPE_PERM: /* fallthrough */
case BOOT_SWAP_TYPE_REVERT:
slot = 1;
reload_headers = true;
#ifndef MCUBOOT_OVERWRITE_ONLY
rc = boot_set_copy_done();
if (rc != 0) {
swap_type = BOOT_SWAP_TYPE_PANIC;
}
#endif /* !MCUBOOT_OVERWRITE_ONLY */
break;
case BOOT_SWAP_TYPE_FAIL:
/* The image in slot 1 was invalid and is now erased. Ensure we don't
* try to boot into it again on the next reboot. Do this by pretending
* we just reverted back to slot 0.
*/
slot = 0;
reload_headers = true;
break;
default:
swap_type = BOOT_SWAP_TYPE_PANIC;
}
if (swap_type == BOOT_SWAP_TYPE_PANIC) {
BOOT_LOG_ERR("panic!");
assert(0);
/* Loop forever... */
while (1) {}
}
#ifdef MCUBOOT_VALIDATE_SLOT0
if (reload_headers) {
rc = boot_read_image_headers();
if (rc != 0) {
goto out;
}
/* Since headers were reloaded, it can be assumed we just performed a
* swap or overwrite. Now the header info that should be used to
* provide the data for the bootstrap, which previously was at Slot 1,
* was updated to Slot 0.
*/
slot = 0;
}
rc = boot_validate_slot(0);
assert(rc == 0);
if (rc != 0) {
rc = BOOT_EBADIMAGE;
goto out;
}
#else
(void)reload_headers;
#endif
/* Always boot from the primary slot. */
rsp->br_flash_dev_id = boot_img_fa_device_id(&boot_data, 0);
rsp->br_image_off = boot_img_slot_off(&boot_data, 0);
rsp->br_hdr = boot_img_hdr(&boot_data, slot);
out:
flash_area_close(BOOT_SCRATCH_AREA(&boot_data));
for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
flash_area_close(BOOT_IMG_AREA(&boot_data, BOOT_NUM_SLOTS - 1 - slot));
}
return rc;
}
int
split_go(int loader_slot, int split_slot, void **entry)
{
boot_sector_t *sectors;
uintptr_t entry_val;
int loader_flash_id;
int split_flash_id;
int rc;
sectors = malloc(BOOT_MAX_IMG_SECTORS * 2 * sizeof *sectors);
if (sectors == NULL) {
return SPLIT_GO_ERR;
}
boot_data.imgs[loader_slot].sectors = sectors + 0;
boot_data.imgs[split_slot].sectors = sectors + BOOT_MAX_IMG_SECTORS;
loader_flash_id = flash_area_id_from_image_slot(loader_slot);
rc = flash_area_open(loader_flash_id,
&BOOT_IMG_AREA(&boot_data, split_slot));
assert(rc == 0);
split_flash_id = flash_area_id_from_image_slot(split_slot);
rc = flash_area_open(split_flash_id,
&BOOT_IMG_AREA(&boot_data, split_slot));
assert(rc == 0);
/* Determine the sector layout of the image slots and scratch area. */
rc = boot_read_sectors();
if (rc != 0) {
rc = SPLIT_GO_ERR;
goto done;
}
rc = boot_read_image_headers();
if (rc != 0) {
goto done;
}
/* Don't check the bootable image flag because we could really call a
* bootable or non-bootable image. Just validate that the image check
* passes which is distinct from the normal check.
*/
rc = split_image_check(boot_img_hdr(&boot_data, split_slot),
BOOT_IMG_AREA(&boot_data, split_slot),
boot_img_hdr(&boot_data, loader_slot),
BOOT_IMG_AREA(&boot_data, loader_slot));
if (rc != 0) {
rc = SPLIT_GO_NON_MATCHING;
goto done;
}
entry_val = boot_img_slot_off(&boot_data, split_slot) +
boot_img_hdr(&boot_data, split_slot)->ih_hdr_size;
*entry = (void *) entry_val;
rc = SPLIT_GO_OK;
done:
flash_area_close(BOOT_IMG_AREA(&boot_data, split_slot));
flash_area_close(BOOT_IMG_AREA(&boot_data, loader_slot));
free(sectors);
return rc;
}