Mark Dykes | e7810b5 | 2020-06-03 15:46:55 -0500 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2020, Arm Limited. All rights reserved. |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | #include <arch_helpers.h> |
| 8 | #include <debug.h> |
| 9 | #include <drivers/arm/private_timer.h> |
| 10 | #include <events.h> |
| 11 | #include "fifo3d.h" |
| 12 | #include <libfdt.h> |
| 13 | |
| 14 | #include <power_management.h> |
| 15 | #include <sdei.h> |
| 16 | #include <tftf_lib.h> |
| 17 | #include <timer.h> |
| 18 | |
| 19 | #include <plat_topology.h> |
| 20 | #include <platform.h> |
| 21 | |
| 22 | extern char _binary___dtb_start[]; |
| 23 | |
| 24 | struct memmod tmod __aligned(65536) __section("smcfuzz"); |
| 25 | |
| 26 | /* |
| 27 | * switch to use either standard C malloc or custom SMC malloc |
| 28 | */ |
| 29 | |
| 30 | #define FIRST_NODE_DEVTREE_OFFSET (8) |
| 31 | |
| 32 | #ifdef SMC_FUZZ_TMALLOC |
| 33 | #define GENMALLOC(x) malloc((x)) |
| 34 | #define GENFREE(x) free((x)) |
| 35 | #else |
| 36 | #define GENMALLOC(x) smcmalloc((x), mmod) |
| 37 | #define GENFREE(x) smcfree((x), mmod) |
| 38 | #endif |
| 39 | |
| 40 | /* |
| 41 | * Device tree parameter struct |
| 42 | */ |
| 43 | |
| 44 | struct fdt_header_sf { |
| 45 | unsigned int magic; |
| 46 | unsigned int totalsize; |
| 47 | unsigned int off_dt_struct; |
| 48 | unsigned int off_dt_strings; |
| 49 | unsigned int off_mem_rsvmap; |
| 50 | unsigned int version; |
| 51 | unsigned int last_comp_version; |
| 52 | unsigned int boot_cpuid_phys; |
| 53 | unsigned int size_dt_strings; |
| 54 | unsigned int size_dt_struct; |
| 55 | }; |
| 56 | |
| 57 | /* |
| 58 | * Structure to read the fields of the device tree |
| 59 | */ |
| 60 | struct propval { |
| 61 | unsigned int len; |
| 62 | unsigned int nameoff; |
| 63 | }; |
| 64 | |
| 65 | /* |
| 66 | * Converting from big endian to little endian to read values |
| 67 | * of device tree |
| 68 | */ |
| 69 | unsigned int lendconv(unsigned int val) |
| 70 | { |
| 71 | unsigned int res; |
| 72 | |
| 73 | res = val << 24; |
| 74 | res |= ((val << 8) & 0xFF0000U); |
| 75 | res |= ((val >> 8) & 0xFF00U); |
| 76 | res |= ((val >> 24) & 0xFFU); |
| 77 | return res; |
| 78 | } |
| 79 | |
| 80 | /* |
| 81 | * Function to read strings from device tree |
| 82 | */ |
| 83 | void pullstringdt(void **dtb, |
| 84 | void *dtb_beg, |
| 85 | unsigned int offset, |
| 86 | char *cset) |
| 87 | { |
| 88 | int fistr; |
| 89 | int cntchr; |
| 90 | char rval; |
| 91 | |
| 92 | if (offset != 0U) { |
| 93 | *dtb = dtb_beg + offset; |
| 94 | } |
| 95 | fistr = 0; |
| 96 | |
| 97 | cntchr = 0; |
| 98 | while (fistr == 0) { |
| 99 | rval = *((char *)*dtb); |
| 100 | *dtb += sizeof(char); |
| 101 | cset[cntchr] = rval; |
| 102 | if (cset[cntchr] == 0) { |
| 103 | fistr = 1; |
| 104 | } |
| 105 | cntchr++; |
| 106 | } |
| 107 | |
| 108 | if ((cntchr % 4) != 0) { |
| 109 | for (unsigned int i = 0U; (int)i < (4 - (cntchr % 4)); i++) { |
| 110 | *dtb += sizeof(char); |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | /* |
| 116 | * Structure for Node information extracted from device tree |
| 117 | */ |
| 118 | struct rand_smc_node { |
| 119 | int *biases; // Biases of the individual nodes |
| 120 | int *biasarray; // Array of biases across all nodes |
| 121 | char **snames; // String that is unique to the SMC call called in test |
| 122 | struct rand_smc_node *treenodes; // Selection of nodes that are farther down in the tree |
| 123 | // that reference further rand_smc_node objects |
| 124 | int *norcall; // Specifies whether a particular node is a leaf node or tree node |
| 125 | int entries; // Number of nodes in object |
| 126 | int biasent; // Number that gives the total number of entries in biasarray |
| 127 | // based on all biases of the nodes |
| 128 | char **nname; // Array of node names |
| 129 | }; |
| 130 | |
| 131 | |
| 132 | /* |
| 133 | * Create bias tree from given device tree description |
| 134 | */ |
| 135 | |
| 136 | struct rand_smc_node *createsmctree(int *casz, |
| 137 | struct memmod *mmod) |
| 138 | { |
| 139 | void *dtb; |
| 140 | void *dtb_pn; |
| 141 | void *dtb_beg; |
| 142 | struct fdt_header fhd; |
| 143 | unsigned int rval; |
| 144 | struct propval pv; |
| 145 | char cset[MAX_NAME_CHARS]; |
| 146 | char nodename[MAX_NAME_CHARS]; |
| 147 | int dtdone; |
| 148 | struct fifo3d f3d; |
| 149 | int leafnode = 0; |
| 150 | unsigned int fnode = 0U; |
| 151 | unsigned int bias_count = 0U; |
| 152 | unsigned int bintnode = 0U; |
| 153 | unsigned int treenodetrack = 0U; |
| 154 | struct fdt_header *fhdptr; |
| 155 | struct rand_smc_node *ndarray = NULL; |
| 156 | int cntndarray; |
| 157 | struct rand_smc_node nrnode; |
| 158 | struct rand_smc_node *tndarray; |
| 159 | |
| 160 | f3d.col = 0; |
| 161 | f3d.curr_col = 0; |
| 162 | |
| 163 | /* |
| 164 | * Read device tree header and check for valid type |
| 165 | */ |
| 166 | |
| 167 | fhdptr = (struct fdt_header *)_binary___dtb_start; |
| 168 | |
| 169 | if (fdt_check_header((void *)fhdptr) != 0) { |
| 170 | printf("ERROR, not device tree compliant\n"); |
| 171 | } |
| 172 | fhd = *fhdptr; |
| 173 | cntndarray = 0; |
| 174 | nrnode.entries = 0; |
| 175 | |
| 176 | /* |
| 177 | * Create pointers to device tree data |
| 178 | */ |
| 179 | dtb = _binary___dtb_start; |
| 180 | dtb_pn = _binary___dtb_start; |
| 181 | |
| 182 | dtb_beg = dtb; |
| 183 | fhd = *((struct fdt_header *)dtb); |
| 184 | dtb += (fdt32_to_cpu(fhd.off_dt_struct) + FIRST_NODE_DEVTREE_OFFSET); |
| 185 | dtdone = 0; |
| 186 | |
| 187 | /* |
| 188 | * Reading device tree file |
| 189 | */ |
| 190 | while (dtdone == 0) { |
| 191 | rval = *((unsigned int *)dtb); |
| 192 | dtb += sizeof(unsigned int); |
| 193 | |
| 194 | /* |
| 195 | * Reading node name from device tree and pushing it into the raw data |
| 196 | * Table of possible values reading from device tree binary file: |
| 197 | * 1 New node found within current tree, possible leaf or tree variant |
| 198 | * 2 Node termination of current hiearchy. |
| 199 | * Could indicate end of tree or preparation for another branch |
| 200 | * 3 Leaf node indication where a bias with a function name should be |
| 201 | * found for the current node |
| 202 | * 9 End of device tree file and we end the read of the bias tree |
| 203 | */ |
| 204 | if (fdt32_to_cpu(rval) == 1) { |
| 205 | pullstringdt(&dtb, dtb_beg, 0U, cset); |
| 206 | push_3dfifo_col(&f3d, cset, mmod); |
| 207 | strlcpy(nodename, cset, MAX_NAME_CHARS); |
| 208 | |
| 209 | /* |
| 210 | * Error checking to make sure that bias is specified |
| 211 | */ |
| 212 | if (fnode == 0U) { |
| 213 | fnode = 1U; |
| 214 | } else { |
| 215 | if (!((fnode == 1U) && (bias_count == 1U))) { |
| 216 | printf("ERROR: Did not find bias or multiple bias "); |
| 217 | printf("designations before %s %u %u\n", |
| 218 | cset, fnode, bias_count); |
| 219 | } |
| 220 | bias_count = 0U; |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | /* |
| 225 | * Reading node parameters of bias and function name |
| 226 | */ |
| 227 | if (fdt32_to_cpu(rval) == 3) { |
| 228 | pv = *((struct propval *)dtb); |
| 229 | dtb += sizeof(struct propval); |
| 230 | pullstringdt(&dtb_pn, dtb_beg, |
| 231 | (fdt32_to_cpu(fhd.off_dt_strings) + |
| 232 | fdt32_to_cpu(pv.nameoff)), cset); |
| 233 | if (strcmp(cset, "bias") == 0) { |
| 234 | rval = *((unsigned int *)dtb); |
| 235 | dtb += sizeof(unsigned int); |
| 236 | push_3dfifo_bias(&f3d, fdt32_to_cpu(rval)); |
| 237 | bias_count++; |
| 238 | if (bintnode == 1U) { |
| 239 | fnode = 0U; |
| 240 | bintnode = 0U; |
| 241 | bias_count = 0U; |
| 242 | } |
| 243 | } |
| 244 | if (strcmp(cset, "functionname") == 0) { |
| 245 | pullstringdt(&dtb, dtb_beg, 0, cset); |
| 246 | push_3dfifo_fname(&f3d, cset); |
| 247 | leafnode = 1; |
| 248 | if (bias_count == 0U) { |
| 249 | bintnode = 1U; |
| 250 | fnode = 1U; |
| 251 | } else { |
| 252 | bias_count = 0U; |
| 253 | fnode = 0U; |
| 254 | } |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Node termination and evaluate whether the bias tree requires addition. |
| 260 | * The non tree nodes are added. |
| 261 | */ |
| 262 | if (fdt32_to_cpu(rval) == 2) { |
| 263 | if ((fnode > 0U) || (bias_count > 0U)) { |
| 264 | printf("ERROR: early node termination... "); |
| 265 | printf("no bias or functionname field for leaf node, near %s %u\n", |
| 266 | nodename, fnode); |
| 267 | } |
| 268 | f3d.col--; |
| 269 | if (leafnode == 1) { |
| 270 | leafnode = 0; |
| 271 | } else { |
| 272 | /* |
| 273 | * Create bias tree in memory from raw data |
| 274 | */ |
| 275 | tndarray = |
| 276 | GENMALLOC((cntndarray + 1) * |
| 277 | sizeof(struct rand_smc_node)); |
| 278 | unsigned int treenodetrackmal = 0; |
| 279 | for (unsigned int j = 0U; (int)j < cntndarray; j++) { |
| 280 | tndarray[j].biases = GENMALLOC(ndarray[j].entries * sizeof(int)); |
| 281 | tndarray[j].snames = GENMALLOC(ndarray[j].entries * sizeof(char *)); |
| 282 | tndarray[j].norcall = GENMALLOC(ndarray[j].entries * sizeof(int)); |
| 283 | tndarray[j].nname = GENMALLOC(ndarray[j].entries * sizeof(char *)); |
| 284 | tndarray[j].treenodes = GENMALLOC(ndarray[j].entries * sizeof(struct rand_smc_node)); |
| 285 | tndarray[j].entries = ndarray[j].entries; |
| 286 | for (unsigned int i = 0U; (int)i < ndarray[j].entries; i++) { |
| 287 | tndarray[j].snames[i] = GENMALLOC(1 * sizeof(char[MAX_NAME_CHARS])); |
| 288 | strlcpy(tndarray[j].snames[i], ndarray[j].snames[i], MAX_NAME_CHARS); |
| 289 | tndarray[j].nname[i] = GENMALLOC(1 * sizeof(char[MAX_NAME_CHARS])); |
| 290 | strlcpy(tndarray[j].nname[i], ndarray[j].nname[i], MAX_NAME_CHARS); |
| 291 | tndarray[j].biases[i] = ndarray[j].biases[i]; |
| 292 | tndarray[j].norcall[i] = ndarray[j].norcall[i]; |
| 293 | if (tndarray[j].norcall[i] == 1) { |
| 294 | tndarray[j].treenodes[i] = tndarray[treenodetrackmal]; |
| 295 | treenodetrackmal++; |
| 296 | } |
| 297 | } |
| 298 | tndarray[j].biasent = ndarray[j].biasent; |
| 299 | tndarray[j].biasarray = GENMALLOC((tndarray[j].biasent) * sizeof(int)); |
| 300 | for (unsigned int i = 0U; (int)i < ndarray[j].biasent; i++) { |
| 301 | tndarray[j].biasarray[i] = ndarray[j].biasarray[i]; |
| 302 | } |
| 303 | } |
| 304 | tndarray[cntndarray].biases = GENMALLOC(f3d.row[f3d.col + 1] * sizeof(int)); |
| 305 | tndarray[cntndarray].snames = GENMALLOC(f3d.row[f3d.col + 1] * sizeof(char *)); |
| 306 | tndarray[cntndarray].norcall = GENMALLOC(f3d.row[f3d.col + 1] * sizeof(int)); |
| 307 | tndarray[cntndarray].nname = GENMALLOC(f3d.row[f3d.col + 1] * sizeof(char *)); |
| 308 | tndarray[cntndarray].treenodes = GENMALLOC(f3d.row[f3d.col + 1] * sizeof(struct rand_smc_node)); |
| 309 | tndarray[cntndarray].entries = f3d.row[f3d.col + 1]; |
| 310 | |
| 311 | /* |
| 312 | * Populate bias tree with former values in tree |
| 313 | */ |
| 314 | int cntbias = 0; |
| 315 | int bias_count = 0; |
| 316 | for (unsigned int j = 0U; (int)j < f3d.row[f3d.col + 1]; j++) { |
| 317 | tndarray[cntndarray].snames[j] = GENMALLOC(1 * sizeof(char[MAX_NAME_CHARS])); |
| 318 | strlcpy(tndarray[cntndarray].snames[j], f3d.fnamefifo[f3d.col + 1][j], MAX_NAME_CHARS); |
| 319 | tndarray[cntndarray].nname[j] = GENMALLOC(1 * sizeof(char[MAX_NAME_CHARS])); |
| 320 | strlcpy(tndarray[cntndarray].nname[j], f3d.nnfifo[f3d.col + 1][j], MAX_NAME_CHARS); |
| 321 | tndarray[cntndarray].biases[j] = f3d.biasfifo[f3d.col + 1][j]; |
| 322 | cntbias += tndarray[cntndarray].biases[j]; |
| 323 | if (strcmp(tndarray[cntndarray].snames[j], "none") != 0) { |
| 324 | strlcpy(tndarray[cntndarray].snames[j], f3d.fnamefifo[f3d.col + 1][j], MAX_NAME_CHARS); |
| 325 | tndarray[cntndarray].norcall[j] = 0; |
| 326 | tndarray[cntndarray].treenodes[j] = nrnode; |
| 327 | } else { |
| 328 | tndarray[cntndarray].norcall[j] = 1; |
| 329 | tndarray[cntndarray].treenodes[j] = tndarray[treenodetrack]; |
| 330 | treenodetrack++; |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | tndarray[cntndarray].biasent = cntbias; |
| 335 | tndarray[cntndarray].biasarray = GENMALLOC((tndarray[cntndarray].biasent) * sizeof(int)); |
| 336 | for (unsigned int j = 0U; j < tndarray[cntndarray].entries; j++) { |
| 337 | for (unsigned int i = 0U; i < tndarray[cntndarray].biases[j]; i++) { |
| 338 | tndarray[cntndarray].biasarray[bias_count] = j; |
| 339 | bias_count++; |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * Free memory of old bias tree |
| 345 | */ |
| 346 | if (cntndarray > 0) { |
| 347 | for (unsigned int j = 0U; (int)j < cntndarray; j++) { |
| 348 | for (unsigned int i = 0U; |
| 349 | (int)i < ndarray[j].entries; |
| 350 | i++) { |
| 351 | GENFREE(ndarray[j].snames[i]); |
| 352 | GENFREE(ndarray[j].nname[i]); |
| 353 | } |
| 354 | GENFREE(ndarray[j].biases); |
| 355 | GENFREE(ndarray[j].norcall); |
| 356 | GENFREE(ndarray[j].biasarray); |
| 357 | GENFREE(ndarray[j].snames); |
| 358 | GENFREE(ndarray[j].nname); |
| 359 | GENFREE(ndarray[j].treenodes); |
| 360 | } |
| 361 | GENFREE(ndarray); |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * Move pointers to new bias tree to current tree |
| 366 | */ |
| 367 | ndarray = tndarray; |
| 368 | cntndarray++; |
| 369 | |
| 370 | /* |
| 371 | * Free raw data |
| 372 | */ |
| 373 | for (unsigned int j = 0U; (int)j < f3d.row[f3d.col + 1]; j++) { |
| 374 | GENFREE(f3d.nnfifo[f3d.col + 1][j]); |
| 375 | GENFREE(f3d.fnamefifo[f3d.col + 1][j]); |
| 376 | } |
| 377 | GENFREE(f3d.nnfifo[f3d.col + 1]); |
| 378 | GENFREE(f3d.fnamefifo[f3d.col + 1]); |
| 379 | GENFREE(f3d.biasfifo[f3d.col + 1]); |
| 380 | f3d.curr_col -= 1; |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * Ending device tree file and freeing raw data |
| 386 | */ |
| 387 | if (fdt32_to_cpu(rval) == 9) { |
| 388 | for (unsigned int i = 0U; (int)i < f3d.col; i++) { |
| 389 | for (unsigned int j = 0U; (int)j < f3d.row[i]; j++) { |
| 390 | GENFREE(f3d.nnfifo[i][j]); |
| 391 | GENFREE(f3d.fnamefifo[i][j]); |
| 392 | } |
| 393 | GENFREE(f3d.nnfifo[i]); |
| 394 | GENFREE(f3d.fnamefifo[i]); |
| 395 | GENFREE(f3d.biasfifo[i]); |
| 396 | } |
| 397 | GENFREE(f3d.nnfifo); |
| 398 | GENFREE(f3d.fnamefifo); |
| 399 | GENFREE(f3d.biasfifo); |
| 400 | GENFREE(f3d.row); |
| 401 | dtdone = 1; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | |
| 406 | *casz = cntndarray; |
| 407 | return ndarray; |
| 408 | } |
| 409 | |
| 410 | /* |
| 411 | * Running SMC call from what function name is selected |
| 412 | */ |
| 413 | void runtestfunction(char *funcstr) |
| 414 | { |
| 415 | if (strcmp(funcstr, "sdei_version") == 0) { |
| 416 | long long ret = sdei_version(); |
| 417 | if (ret != MAKE_SDEI_VERSION(1, 0, 0)) { |
| 418 | tftf_testcase_printf("Unexpected SDEI version: 0x%llx\n", |
| 419 | ret); |
| 420 | } |
| 421 | printf("running %s\n", funcstr); |
| 422 | } |
| 423 | if (strcmp(funcstr, "sdei_pe_unmask") == 0) { |
| 424 | long long ret = sdei_pe_unmask(); |
| 425 | if (ret < 0) { |
| 426 | tftf_testcase_printf("SDEI pe unmask failed: 0x%llx\n", |
| 427 | ret); |
| 428 | } |
| 429 | printf("running %s\n", funcstr); |
| 430 | } |
| 431 | if (strcmp(funcstr, "sdei_pe_mask") == 0) { |
| 432 | int64_t ret = sdei_pe_mask(); |
| 433 | if (ret < 0) { |
| 434 | tftf_testcase_printf("SDEI pe mask failed: 0x%llx\n", ret); |
| 435 | } |
| 436 | printf("running %s\n", funcstr); |
| 437 | } |
| 438 | if (strcmp(funcstr, "sdei_event_status") == 0) { |
| 439 | int64_t ret = sdei_event_status(0); |
| 440 | if (ret < 0) { |
| 441 | tftf_testcase_printf("SDEI event status failed: 0x%llx\n", |
| 442 | ret); |
| 443 | } |
| 444 | printf("running %s\n", funcstr); |
| 445 | } |
| 446 | if (strcmp(funcstr, "sdei_event_signal") == 0) { |
| 447 | int64_t ret = sdei_event_signal(0); |
| 448 | if (ret < 0) { |
| 449 | tftf_testcase_printf("SDEI event signal failed: 0x%llx\n", |
| 450 | ret); |
| 451 | } |
| 452 | printf("running %s\n", funcstr); |
| 453 | } |
| 454 | if (strcmp(funcstr, "sdei_private_reset") == 0) { |
| 455 | int64_t ret = sdei_private_reset(); |
| 456 | if (ret < 0) { |
| 457 | tftf_testcase_printf("SDEI private reset failed: 0x%llx\n", |
| 458 | ret); |
| 459 | } |
| 460 | printf("running %s\n", funcstr); |
| 461 | } |
| 462 | if (strcmp(funcstr, "sdei_shared_reset") == 0) { |
| 463 | int64_t ret = sdei_shared_reset(); |
| 464 | if (ret < 0) { |
| 465 | tftf_testcase_printf("SDEI shared reset failed: 0x%llx\n", |
| 466 | ret); |
| 467 | } |
| 468 | printf("running %s\n", funcstr); |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | * Top of SMC fuzzing module |
| 474 | */ |
| 475 | test_result_t smc_fuzzing_top(void) |
| 476 | { |
| 477 | /* |
| 478 | * Setting up malloc block parameters |
| 479 | */ |
| 480 | tmod.memptr = (void *)tmod.memory; |
| 481 | tmod.memptrend = (void *)tmod.memory; |
| 482 | tmod.maxmemblk = ((TOTALMEMORYSIZE / BLKSPACEDIV) / sizeof(struct memblk)); |
| 483 | tmod.nmemblk = 1; |
| 484 | tmod.memptr->address = 0U; |
| 485 | tmod.memptr->size = TOTALMEMORYSIZE - (TOTALMEMORYSIZE / BLKSPACEDIV); |
| 486 | tmod.memptr->valid = 1; |
| 487 | tmod.mallocdeladd[0] = 0U; |
| 488 | tmod.precblock[0] = (void *)tmod.memory; |
| 489 | tmod.trailblock[0] = NULL; |
| 490 | tmod.cntdeladd = 0U; |
| 491 | tmod.ptrmemblkqueue = 0U; |
| 492 | tmod.mallocdeladd_queue_cnt = 0U; |
| 493 | tmod.checkadd = 1U; |
| 494 | tmod.checknumentries = 0U; |
| 495 | tmod.memerror = 0U; |
| 496 | struct memmod *mmod; |
| 497 | mmod = &tmod; |
| 498 | int cntndarray; |
| 499 | struct rand_smc_node *tlnode; |
| 500 | |
| 501 | /* |
| 502 | * Creating SMC bias tree |
| 503 | */ |
| 504 | struct rand_smc_node *ndarray = createsmctree(&cntndarray, &tmod); |
| 505 | |
| 506 | if (tmod.memerror != 0) { |
| 507 | return TEST_RESULT_FAIL; |
| 508 | } |
| 509 | |
| 510 | /* |
| 511 | * Hard coded seed, will change in the near future for better strategy |
| 512 | */ |
| 513 | srand(89758389); |
| 514 | |
| 515 | /* |
| 516 | * Code to traverse the bias tree and select function based on the biaes within |
| 517 | * |
| 518 | * The algorithm starts with the first node to pull up the biasarray. The |
| 519 | * array is specified as a series of values that reflect the bias of the nodes |
| 520 | * in question. So for instance if there are three nodes with a bias of 2,5,7 |
| 521 | * the biasarray would have the following constituency: |
| 522 | * |
| 523 | * 0,0,1,1,1,1,1,2,2,2,2,2,2,2. |
| 524 | * |
| 525 | * Mapping 0 as node 1, 1 as node 2, and 2 as node 3. |
| 526 | * The biasent variable contains the count of the size of the biasarray which |
| 527 | * provides the input for random selection. This is subsequently applied as an |
| 528 | * index to the biasarray. The selection pulls up the node and then is checked |
| 529 | * for whether it is a leaf or tree node using the norcall variable. |
| 530 | * If it is a leaf then the bias tree traversal ends with an SMC call. |
| 531 | * If it is a tree node then the process begins again with |
| 532 | * another loop to continue the process of selection until an eventual leaf |
| 533 | * node is found. |
| 534 | */ |
| 535 | for (unsigned int i = 0U; i < 100U; i++) { |
| 536 | tlnode = &ndarray[cntndarray - 1]; |
| 537 | int nd = 0; |
| 538 | while (nd == 0) { |
| 539 | int nch = rand()%tlnode->biasent; |
| 540 | int selent = tlnode->biasarray[nch]; |
| 541 | if (tlnode->norcall[selent] == 0) { |
| 542 | runtestfunction(tlnode->snames[selent]); |
| 543 | nd = 1; |
| 544 | } else { |
| 545 | tlnode = &tlnode->treenodes[selent]; |
| 546 | } |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | /* |
| 551 | * End of test SMC selection and freeing of nodes |
| 552 | */ |
| 553 | if (cntndarray > 0) { |
| 554 | for (unsigned int j = 0U; j < cntndarray; j++) { |
| 555 | for (unsigned int i = 0U; i < ndarray[j].entries; i++) { |
| 556 | GENFREE(ndarray[j].snames[i]); |
| 557 | GENFREE(ndarray[j].nname[i]); |
| 558 | } |
| 559 | GENFREE(ndarray[j].biases); |
| 560 | GENFREE(ndarray[j].norcall); |
| 561 | GENFREE(ndarray[j].biasarray); |
| 562 | GENFREE(ndarray[j].snames); |
| 563 | GENFREE(ndarray[j].nname); |
| 564 | GENFREE(ndarray[j].treenodes); |
| 565 | } |
| 566 | GENFREE(ndarray); |
| 567 | } |
| 568 | |
| 569 | return TEST_RESULT_SUCCESS; |
| 570 | } |