blob: 72d85d8e0fd0d273c8225caf038c23bcbc8842c1 [file] [log] [blame] [view]
Almir Okato39eb63d2022-01-05 18:31:54 -03001# [Building and using MCUboot with Espressif's chips](#building-and-using-mcuboot-with-espressifs-chips)
Almir Okato428e2e72021-08-11 10:52:10 -03002
3The Espressif port is build on top of ESP-IDF HAL, therefore it is required in order to build MCUboot for Espressif SoCs.
4
5Documentation about the MCUboot bootloader design, operation and features can be found in the [design document](design.md).
6
Almir Okato39eb63d2022-01-05 18:31:54 -03007## [SoC support availability](#soc-support-availability)
Almir Okato428e2e72021-08-11 10:52:10 -03008
9The current port is available for use in the following SoCs within the OSes:
Almir Okato428e2e72021-08-11 10:52:10 -030010
Almir Okato39eb63d2022-01-05 18:31:54 -030011| | ESP32 | ESP32-S2 | ESP32-C3 |
12| ----- | ----- | ----- | ----- |
13| Zephyr | Supported | WIP | WIP |
14| NuttX | Supported | Supported | Supported |
15
16## [Installing requirements and dependencies](#installing-requirements-and-dependencies)
Almir Okato428e2e72021-08-11 10:52:10 -030017
181. Install additional packages required for development with MCUboot:
19
20```
Francesco Servidio4ff0c182021-10-20 15:27:16 +020021 cd ~/mcuboot # or to your directory where MCUboot is cloned
Almir Okato428e2e72021-08-11 10:52:10 -030022 pip3 install --user -r scripts/requirements.txt
23```
24
252. Update the submodules needed by the Espressif port. This may take a while.
26
27```
28git submodule update --init --recursive --checkout boot/espressif/hal/esp-idf
29```
30
Francesco Servidio582367c2021-10-20 15:36:45 +0200313. Next, get the Mbed TLS submodule required by MCUboot.
Almir Okato428e2e72021-08-11 10:52:10 -030032```
33git submodule update --init --recursive ext/mbedtls
34```
35
364. Now we need to install IDF dependencies and set environment variables. This step may take some time:
37```
38cd boot/espressif/hal/esp-idf
39./install.sh
40. ./export.sh
41cd ../..
42```
43
Almir Okato39eb63d2022-01-05 18:31:54 -030044## [Building the bootloader itself](#building-the-bootloader-itself)
Almir Okato428e2e72021-08-11 10:52:10 -030045
46The MCUboot Espressif port bootloader is built using the toolchain and tools provided by ESP-IDF. Additional configuration related to MCUboot features and slot partitioning may be made using the `bootloader.conf`.
47
Francesco Servidio2fe449d2021-10-21 12:38:36 +020048---
49***Note***
50
Almir Okato39eb63d2022-01-05 18:31:54 -030051*Replace `<TARGET>` with the target ESP32 family (like `esp32`, `esp32s2` and others).*
Francesco Servidio2fe449d2021-10-21 12:38:36 +020052
53---
Almir Okato428e2e72021-08-11 10:52:10 -030054
551. Compile and generate the ELF:
56
57```
Almir Okato39eb63d2022-01-05 18:31:54 -030058cmake -DCMAKE_TOOLCHAIN_FILE=tools/toolchain-<TARGET>.cmake -DMCUBOOT_TARGET=<TARGET> -B build -GNinja
Almir Okato428e2e72021-08-11 10:52:10 -030059cmake --build build/
60```
61
622. Convert the ELF to the final bootloader image, ready to be flashed:
63
64```
Almir Okato39eb63d2022-01-05 18:31:54 -030065esptool.py --chip <TARGET> elf2image --flash_mode dio --flash_freq 40m --flash_size <FLASH_SIZE> -o build/mcuboot_<TARGET>.bin build/mcuboot_<TARGET>.elf
Almir Okato428e2e72021-08-11 10:52:10 -030066```
67
Almir Okato39eb63d2022-01-05 18:31:54 -0300683. Flash MCUboot in your device:
Almir Okato428e2e72021-08-11 10:52:10 -030069
70```
Almir Okato39eb63d2022-01-05 18:31:54 -030071esptool.py -p <PORT> -b <BAUD> --before default_reset --after hard_reset --chip <TARGET> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <BOOTLOADER_FLASH_OFFSET> build/mcuboot_<TARGET>.bin
Almir Okato428e2e72021-08-11 10:52:10 -030072```
73
74You may adjust the port `<PORT>` (like `/dev/ttyUSB0`) and baud rate `<BAUD>` (like `2000000`) according to the connection with your board.
Almir Okato39eb63d2022-01-05 18:31:54 -030075
76## [Signing and flashing an application](#signing-and-flashing-an-application)
77
781. Images can be regularly signed with the `scripts/imgtool.py` script:
79
80```
81imgtool.py sign --align 4 -v 0 -H 32 --pad-header -S 0x00100000 <BIN_IN> <SIGNED_BIN>
82```
83
84For Zephyr images, `--pad-header` is not needed as they already have the padding for MCUboot header.
85
86---
87:warning: ***ATTENTION***
88
89*This is the basic signing needed for adding MCUboot headers and trailers.
90For signing with a crypto key and guarantee the authenticity of the image being booted, see the section [MCUboot image signature verification](#mcuboot-image-signature-verification) below.*
91
92---
93
942. Flash the signed application:
95
96```
97esptool.py -p <PORT> -b <BAUD> --before default_reset --after hard_reset --chip <TARGET> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <SLOT_OFFSET> <SIGNED_BIN>
98```
99
100# [Security Chain on Espressif port](#security-chain-on-espressif-port)
101
102[MCUboot encrypted images](encrypted_images.md) do not provide full code confidentiality when only external storage is available (see [Threat model](encrypted_images.md#threat-model)) since by MCUboot design the image in Primary Slot, from where the image is executed, is stored plaintext.
103Espressif chips have off-chip flash memory, so to ensure a security chain along with MCUboot image signature verification, the hardware-assisted Secure Boot and Flash Encryption were made available on the MCUboot Espressif port.
104
105## [MCUboot image signature verification](#mcuboot-image-signature-verification)
106
107The image that MCUboot is booting can be signed with 4 types of keys: RSA-2048, RSA-3072, EC256 and ED25519. In order to enable the feature, the **bootloader** must be compiled with the following configurations:
108
109---
110***Note***
111*It is strongly recommended to generate a new signing key using `imgtool` instead of use the existent samples.*
112
113---
114
115#### For EC256 algorithm use
116```
117CONFIG_ESP_SIGN_EC256=y
118
119# Use Tinycrypt lib for EC256 or ED25519 signing
120CONFIG_ESP_USE_TINYCRYPT=y
121
122CONFIG_ESP_SIGN_KEY_FILE=<YOUR_SIGNING_KEY.pem>
123```
124
125#### For ED25519 algorithm use
126```
127CONFIG_ESP_SIGN_ED25519=y
128
129# Use Tinycrypt lib for EC256 or ED25519 signing
130CONFIG_ESP_USE_TINYCRYPT=y
131
132CONFIG_ESP_SIGN_KEY_FILE=<YOUR_SIGNING_KEY.pem>
133```
134
135#### For RSA (2048 or 3072) algorithm use
136```
137CONFIG_ESP_SIGN_RSA=y
138# RSA_LEN is 2048 or 3072
139CONFIG_ESP_SIGN_RSA_LEN=<RSA_LEN>
140
141# Use Mbed TLS lib for RSA image signing
142CONFIG_ESP_USE_MBEDTLS=y
143
144CONFIG_ESP_SIGN_KEY_FILE=<YOUR_SIGNING_KEY.pem>
145```
146
147Notice that the public key will be embedded in the bootloader code, since the hardware key storage is not supported by Espressif port.
148
149### [Signing the image](#signing-the-image)
150
151Now you need to sign the **image binary**, use the `imgtool` with `-k` parameter:
152
153```
154imgtool.py sign -k <YOUR_SIGNING_KEY.pem> --pad --pad-sig --align 4 -v 0 -H 32 --pad-header -S 0x00100000 <BIN_IN> <BIN_OUT>
155```
156If signing a Zephyr image, the `--pad-header` is not needed, as it already have the padding for MCUboot header.
157
158
159## [Secure Boot](#secure-boot)
160
161The Secure Boot implementation is based on [IDF's Secure Boot V2](https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v2.html), is hardware-assisted and RSA based, and has the role for ensuring that only authorized code will be executed on the device. This is done through bootloader signature checking by the ROM bootloader. \
162***Note***: ROM bootloader is the First Stage Bootloader, while the Espressif MCUboot port is the Second Stage Bootloader.
163
164### [Building bootloader with Secure Boot](#building-bootloader-with-secure-boot)
165
166In order to build the bootloader with the feature on, the following configurations must be enabled:
167```
168CONFIG_SECURE_BOOT=1
169CONFIG_SECURE_BOOT_V2_ENABLED=1
170CONFIG_SECURE_SIGNED_ON_BOOT=1
171CONFIG_SECURE_SIGNED_APPS_RSA_SCHEME=1
172CONFIG_SECURE_BOOT_SUPPORTS_RSA=1
173```
174
175---
176:warning: ***ATTENTION***
177
178*On development phase is recommended add the following configuration in order to keep the debugging enabled and also to avoid any unrecoverable/permanent state change:*
179```
180CONFIG_SECURE_BOOT_ALLOW_JTAG=1
181CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE=1
182
183# Options for enabling eFuse emulation in Flash
184CONFIG_EFUSE_VIRTUAL=1
185CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH=1
186```
187
188---
189
190Once the **bootloader image** is built, the resulting binary file is required to be signed with `espsecure.py` tool.
191
192First create a signing key:
193```
194espsecure.py generate_signing_key --version 2 <BOOTLOADER_SIGNING_KEY.pem>
195```
196
197Then sign the bootloader image:
198```
199espsecure.py sign_data --version 2 --keyfile <BOOTLOADER_SIGNING_KEY.pem> -o <BOOTLOADER_BIN_OUT> <BOOTLOADER_BIN_IN>
200```
201
202---
203:warning: ***ATTENTION***
204
205*Once the bootloader is flashed and the device resets, the **first boot will enable Secure Boot** and the bootloader and key **no longer can be modified**. So **ENSURE** that both bootloader and key are correct and you did not forget anything before flashing.*
206
207---
208
209Flash the bootloader as following, with `--after no_reset` flag, so you can reset the device only when assured:
210```
211esptool.py -p <PORT> -b 2000000 --after no_reset --chip <ESP_CHIP> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <BOOTLOADER_FLASH_OFFSET> <SIGNED_BOOTLOADER_BIN>
212```
213
214### [Secure Boot Process](#secure-boot-process)
215
216Secure boot uses a signature block appended to the bootloader image in order to verify the authenticity. The signature block contains the RSA-3072 signature of that image and the RSA-3072 public key.
217
218On its **first boot** the Secure Boot is not enabled on the device eFuses yet, neither the key nor digests. So the first boot will have the following process:
219
2201. On startup, since it is the first boot, the ROM bootloader will not verify the bootloader image (the Secure Boot bit in the eFuse is disabled) yet, so it proceeds to execute it (our MCUboot bootloader port).
2212. Bootloader calculates the SHA-256 hash digest of the public key and writes the result to eFuse.
2223. Bootloader validates the application images and prepare the booting process (MCUboot phase).
2234. Bootloader burns eFuse to enable Secure Boot V2.
2245. Bootloader proceeds to load the Primary image.
225
226After that the Secure Boot feature is permanently enabled and on every next boot the ROM bootloader will verify the MCUboot bootloader image.
227The process of an usual boot:
228
2291. On startup, the ROM bootloader checks the Secure Boot enable bit in the eFuse. If it is enabled, the boot will proceed as following.
2302. ROM bootloader verifies the bootloader's signature block integrity (magic number and CRC). Interrupt boot if it fails.
2313. ROM bootloader verifies the bootloader image, interrupt boot if any step fails.: \
2323.1. Compare the SHA-256 hash digest of the public key embedded in the bootloaders signature block with the digest saved in the eFuses. \
2333.2. Generate the application image digest and match it with the image digest in the signature block. \
2343.3. Use the public key to verify the signature of the bootloader image, using RSA-PSS with the image digest calculated from previous step for comparison.
2354. ROM bootloader executes the bootloader image.
2365. Bootloader does the usual verification (MCUboot phase).
2376. Proceeds to boot the Primary image.
238
239## [Flash Encryption](#flash-encryption)
240
241The Espressif Flash Encryption is hardware-assisted, transparent to the MCUboot process and is an additional security measure beyond MCUboot existent features.
242The Flash Encryption implementation is also based on [IDF](https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html) and is intended for encrypting off-chip flash memory contents, so it is protected against physical reading.
243
244When enabling the Flash Encryption, the user can encrypt the content either using a **device generated key** (remains unknown and unreadable) or a **host generated key** (owner is responsible for keeping the key private and safe). After the flash encryption gets enabled through eFuse burning on the device, all read and write operations are decrypted/encrypted in runtime.
245
246### [Building bootloader with Flash Encryption](#building-bootloader-with-flash-encryption)
247
248In order to build the bootloader with the feature on, the following configurations must be enabled:
249
250For **release mode**:
251```
252CONFIG_SECURE_FLASH_ENC_ENABLED=1
253CONFIG_SECURE_FLASH_ENCRYPTION_MODE_RELEASE=1
254```
255
256For **development mode**:
257```
258CONFIG_SECURE_FLASH_ENC_ENABLED=1
259CONFIG_SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT=1
260```
261:warning: ***ATTENTION***
262
263*On development phase is strongly recommended adding the following configuration in order to keep the debugging enabled and also to avoid any unrecoverable/permanent state change:*
264```
265CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_ENC=1
266CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_DEC=1
267CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE=1
268CONFIG_SECURE_BOOT_ALLOW_JTAG=1
269
270# Options for enabling eFuse emulation in Flash
271CONFIG_EFUSE_VIRTUAL=1
272CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH=1
273```
274
275---
276:warning: ***ATTENTION***
277
278*Unless the recommended flags for **DEVELOPMENT MODE** were enabled, the actions made by Flash Encryption process are **PERMANENT**.* \
279*Once the bootloader is flashed and the device resets, the **first boot will enable Flash Encryption, encrypt the flash content including bootloader and image slots, burn the eFuses that no longer can be modified** and if device generated the key **it will not be recoverable**.* \
280*When on **RELEASE MODE**, **ENSURE** that the application with an update agent is flashed before reset the device.*
281
282---
283
284### [Device generated key](#device-generated-key)
285
286First ensure that the application image is able to perform encrypted read and write operations to the SPI Flash.
287Flash the bootloader and application normally:
288
289```
290esptool.py -p <PORT> -b 2000000 --after no_reset --chip <ESP_CHIP> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <BOOTLOADER_FLASH_OFFSET> <BOOTLOADER_BIN>
291```
292```
293esptool.py -p <PORT> -b 2000000 --after no_reset --chip <ESP_CHIP> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <PRIMARY_SLOT_FLASH_OFFSET> <APPLICATION_BIN>
294```
295
296On the **first boot**, the bootloader will:
2971. Generate Flash Encryption key and write to eFuse.
2982. Encrypt flash in-place including bootloader, image primary/secondary slot and scratch.
2993. Burn eFuse to enable Flash Encryption.
3004. Reset system to ensure Flash Encryption cache resets properly.
301
302### [Host generated key](#host-generated-key)
303
304First ensure that the application image is able to perform encrypted read and write operations to the SPI Flash.
305Before flashing, generate the encryption key using `espsecure.py` tool:
306```
307espsecure.py generate_flash_encryption_key <FLASH_ENCRYPTION_KEY.bin>
308```
309
310Burn the key into the device's eFuse, this action can be done **only once**:
311
312---
313:warning: ***ATTENTION***
314
315*eFuse emulation in Flash configuration options do not have any effect, so if the key burning command is used, it will actually burn the physical eFuse.*
316
317---
318
319- ESP32
320```
321espefuse.py --port PORT burn_key flash_encryption <FLASH_ENCRYPTION_KEY.bin>
322```
323
324- ESP32S2 and ESP32C3
325```
326espefuse.py --port PORT burn_key BLOCK <FLASH_ENCRYPTION_KEY.bin> <KEYPURPOSE>
327```
328
329BLOCK is a free keyblock between BLOCK_KEY0 and BLOCK_KEY5. And KEYPURPOSE is either XTS_AES_128_KEY, XTS_AES_256_KEY_1, XTS_AES_256_KEY_2 (AES XTS 256 is available only in ESP32S2).
330
331Now, similar as the Device generated key, the bootloader and application can be flashed plaintext. The **first boot** will encrypt the flash content using the host key burned in the eFuse instead of generate a new one.
332
333Flashing the bootloader and application:
334
335```
336esptool.py -p <PORT> -b 2000000 --after no_reset --chip <ESP_CHIP> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <BOOTLOADER_FLASH_OFFSET> <BOOTLOADER_BIN>
337```
338```
339esptool.py -p <PORT> -b 2000000 --after no_reset --chip <ESP_CHIP> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <PRIMARY_SLOT_FLASH_OFFSET> <APPLICATION_BIN>
340```
341
342On the **first boot**, the bootloader will:
3431. Encrypt flash in-place including bootloader, image primary/secondary slot and scratch using the written key.
3442. Burn eFuse to enable Flash Encryption.
3453. Reset system to ensure Flash Encryption cache resets properly.
346
347## [Security Chain scheme](#security-chain-scheme)
348
349Using the 3 features, Secure Boot, Image signature verification and Flash Encryption, a Security Chain can be established so only trusted code is executed, and also the code and content residing in the off-chip flash are protected against undesirable reading.
350
351The overall final process when all features are enabled:
3521. ROM bootloader validates the MCUboot bootloader using RSA signature verification.
3532. MCUboot bootloader validates the image using the chosen algorithm EC256/RSA/ED25519. It also validates an upcoming image when updating.
3543. Flash Encryption guarantees that code and data are not exposed.
355
356### [Size Limitation](#size-limitation)
357
358When all 3 features are enable at same time, the bootloader size may exceed the fixed limit for the ROM bootloader checking on the Espressif chips **depending on which algorithm** was chosen for MCUboot image signing. The issue https://github.com/mcu-tools/mcuboot/issues/1262 was created to track this limitation.