blob: 5541f112b209838aacc4aee661d9a6ea3a742fcd [file] [log] [blame]
// Copyright (c) 2017-2021 Linaro LTD
// Copyright (c) 2017-2020 JUUL Labs
// Copyright (c) 2021-2023 Arm Limited
//
// SPDX-License-Identifier: Apache-2.0
//! TLV Support
//!
//! mcuboot images are followed immediately by a list of TLV items that contain integrity
//! information about the image. Their generation is made a little complicated because the size of
//! the TLV block is in the image header, which is included in the hash. Since some signatures can
//! vary in size, we just make them the largest size possible.
//!
//! Because of this header, we have to make two passes. The first pass will compute the size of
//! the TLV, and the second pass will build the data for the TLV.
use byteorder::{
LittleEndian, WriteBytesExt,
};
use cipher::FromBlockCipher;
use crate::caps::Caps;
use crate::image::ImageVersion;
use log::info;
use ring::{digest, rand, agreement, hkdf, hmac};
use ring::rand::SecureRandom;
use ring::signature::{
RsaKeyPair,
RSA_PSS_SHA256,
EcdsaKeyPair,
ECDSA_P256_SHA256_ASN1_SIGNING,
Ed25519KeyPair,
};
use aes::{
Aes128,
Aes128Ctr,
Aes256,
Aes256Ctr,
NewBlockCipher
};
use cipher::{
generic_array::GenericArray,
StreamCipher,
};
use mcuboot_sys::c;
use typenum::{U16, U32};
#[repr(u16)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[allow(dead_code)] // TODO: For now
pub enum TlvKinds {
KEYHASH = 0x01,
SHA256 = 0x10,
RSA2048 = 0x20,
ECDSASIG = 0x22,
RSA3072 = 0x23,
ED25519 = 0x24,
ENCRSA2048 = 0x30,
ENCKW = 0x31,
ENCEC256 = 0x32,
ENCX25519 = 0x33,
DEPENDENCY = 0x40,
SECCNT = 0x50,
}
#[allow(dead_code, non_camel_case_types)]
pub enum TlvFlags {
PIC = 0x01,
NON_BOOTABLE = 0x02,
ENCRYPTED_AES128 = 0x04,
ENCRYPTED_AES256 = 0x08,
RAM_LOAD = 0x20,
}
/// A generator for manifests. The format of the manifest can be either a
/// traditional "TLV" or a SUIT-style manifest.
pub trait ManifestGen {
/// Retrieve the header magic value for this manifest type.
fn get_magic(&self) -> u32;
/// Retrieve the flags value for this particular manifest type.
fn get_flags(&self) -> u32;
/// Retrieve the number of bytes of this manifest that is "protected".
/// This field is stored in the outside image header instead of the
/// manifest header.
fn protect_size(&self) -> u16;
/// Add a dependency on another image.
fn add_dependency(&mut self, id: u8, version: &ImageVersion);
/// Add a sequence of bytes to the payload that the manifest is
/// protecting.
fn add_bytes(&mut self, bytes: &[u8]);
/// Set an internal flag indicating that the next `make_tlv` should
/// corrupt the signature.
fn corrupt_sig(&mut self);
/// Estimate the size of the TLV. This can be called before the payload is added (but after
/// other information is added). Some of the signature algorithms can generate variable sized
/// data, and therefore, this can slightly overestimate the size.
fn estimate_size(&self) -> usize;
/// Construct the manifest for this payload.
fn make_tlv(self: Box<Self>) -> Vec<u8>;
/// Generate a new encryption random key
fn generate_enc_key(&mut self);
/// Return the current encryption key
fn get_enc_key(&self) -> Vec<u8>;
/// Set the security counter to the specified value.
fn set_security_counter(&mut self, security_cnt: Option<u32>);
/// Sets the ignore_ram_load_flag so that can be validated when it is missing,
/// it will not load successfully.
fn set_ignore_ram_load_flag(&mut self);
}
#[derive(Debug, Default)]
pub struct TlvGen {
flags: u32,
kinds: Vec<TlvKinds>,
payload: Vec<u8>,
dependencies: Vec<Dependency>,
enc_key: Vec<u8>,
/// Should this signature be corrupted.
gen_corrupted: bool,
security_cnt: Option<u32>,
/// Ignore RAM_LOAD flag
ignore_ram_load_flag: bool,
}
#[derive(Debug)]
struct Dependency {
id: u8,
version: ImageVersion,
}
impl TlvGen {
/// Construct a new tlv generator that will only contain a hash of the data.
#[allow(dead_code)]
pub fn new_hash_only() -> TlvGen {
TlvGen {
kinds: vec![TlvKinds::SHA256],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_rsa_pss() -> TlvGen {
TlvGen {
kinds: vec![TlvKinds::SHA256, TlvKinds::RSA2048],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_rsa3072_pss() -> TlvGen {
TlvGen {
kinds: vec![TlvKinds::SHA256, TlvKinds::RSA3072],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_ecdsa() -> TlvGen {
TlvGen {
kinds: vec![TlvKinds::SHA256, TlvKinds::ECDSASIG],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_ed25519() -> TlvGen {
TlvGen {
kinds: vec![TlvKinds::SHA256, TlvKinds::ED25519],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_enc_rsa(aes_key_size: u32) -> TlvGen {
let flag = if aes_key_size == 256 {
TlvFlags::ENCRYPTED_AES256 as u32
} else {
TlvFlags::ENCRYPTED_AES128 as u32
};
TlvGen {
flags: flag,
kinds: vec![TlvKinds::SHA256, TlvKinds::ENCRSA2048],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_sig_enc_rsa(aes_key_size: u32) -> TlvGen {
let flag = if aes_key_size == 256 {
TlvFlags::ENCRYPTED_AES256 as u32
} else {
TlvFlags::ENCRYPTED_AES128 as u32
};
TlvGen {
flags: flag,
kinds: vec![TlvKinds::SHA256, TlvKinds::RSA2048, TlvKinds::ENCRSA2048],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_enc_kw(aes_key_size: u32) -> TlvGen {
let flag = if aes_key_size == 256 {
TlvFlags::ENCRYPTED_AES256 as u32
} else {
TlvFlags::ENCRYPTED_AES128 as u32
};
TlvGen {
flags: flag,
kinds: vec![TlvKinds::SHA256, TlvKinds::ENCKW],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_rsa_kw(aes_key_size: u32) -> TlvGen {
let flag = if aes_key_size == 256 {
TlvFlags::ENCRYPTED_AES256 as u32
} else {
TlvFlags::ENCRYPTED_AES128 as u32
};
TlvGen {
flags: flag,
kinds: vec![TlvKinds::SHA256, TlvKinds::RSA2048, TlvKinds::ENCKW],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_ecdsa_kw(aes_key_size: u32) -> TlvGen {
let flag = if aes_key_size == 256 {
TlvFlags::ENCRYPTED_AES256 as u32
} else {
TlvFlags::ENCRYPTED_AES128 as u32
};
TlvGen {
flags: flag,
kinds: vec![TlvKinds::SHA256, TlvKinds::ECDSASIG, TlvKinds::ENCKW],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_ecies_p256(aes_key_size: u32) -> TlvGen {
let flag = if aes_key_size == 256 {
TlvFlags::ENCRYPTED_AES256 as u32
} else {
TlvFlags::ENCRYPTED_AES128 as u32
};
TlvGen {
flags: flag,
kinds: vec![TlvKinds::SHA256, TlvKinds::ENCEC256],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_ecdsa_ecies_p256(aes_key_size: u32) -> TlvGen {
let flag = if aes_key_size == 256 {
TlvFlags::ENCRYPTED_AES256 as u32
} else {
TlvFlags::ENCRYPTED_AES128 as u32
};
TlvGen {
flags: flag,
kinds: vec![TlvKinds::SHA256, TlvKinds::ECDSASIG, TlvKinds::ENCEC256],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_ecies_x25519(aes_key_size: u32) -> TlvGen {
let flag = if aes_key_size == 256 {
TlvFlags::ENCRYPTED_AES256 as u32
} else {
TlvFlags::ENCRYPTED_AES128 as u32
};
TlvGen {
flags: flag,
kinds: vec![TlvKinds::SHA256, TlvKinds::ENCX25519],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_ed25519_ecies_x25519(aes_key_size: u32) -> TlvGen {
let flag = if aes_key_size == 256 {
TlvFlags::ENCRYPTED_AES256 as u32
} else {
TlvFlags::ENCRYPTED_AES128 as u32
};
TlvGen {
flags: flag,
kinds: vec![TlvKinds::SHA256, TlvKinds::ED25519, TlvKinds::ENCX25519],
..Default::default()
}
}
#[allow(dead_code)]
pub fn new_sec_cnt() -> TlvGen {
TlvGen {
kinds: vec![TlvKinds::SHA256, TlvKinds::SECCNT],
..Default::default()
}
}
}
impl ManifestGen for TlvGen {
fn get_magic(&self) -> u32 {
0x96f3b83d
}
/// Retrieve the header flags for this configuration. This can be called at any time.
fn get_flags(&self) -> u32 {
// For the RamLoad case, add in the flag for this feature.
if Caps::RamLoad.present() && !self.ignore_ram_load_flag {
self.flags | (TlvFlags::RAM_LOAD as u32)
} else {
self.flags
}
}
/// Add bytes to the covered hash.
fn add_bytes(&mut self, bytes: &[u8]) {
self.payload.extend_from_slice(bytes);
}
fn protect_size(&self) -> u16 {
let mut size = 0;
if !self.dependencies.is_empty() || (Caps::HwRollbackProtection.present() && self.security_cnt.is_some()) {
// include the TLV area header.
size += 4;
// add space for each dependency.
size += (self.dependencies.len() as u16) * (4 + std::mem::size_of::<Dependency>() as u16);
if Caps::HwRollbackProtection.present() && self.security_cnt.is_some() {
size += 4 + 4;
}
}
size
}
fn add_dependency(&mut self, id: u8, version: &ImageVersion) {
self.dependencies.push(Dependency {
id,
version: version.clone(),
});
}
fn corrupt_sig(&mut self) {
self.gen_corrupted = true;
}
fn estimate_size(&self) -> usize {
// Begin the estimate with the 4 byte header.
let mut estimate = 4;
// A very poor estimate.
// Estimate the size of the image hash.
if self.kinds.contains(&TlvKinds::SHA256) {
estimate += 4 + 32;
}
// Add an estimate in for each of the signature algorithms.
if self.kinds.contains(&TlvKinds::RSA2048) {
estimate += 4 + 32; // keyhash
estimate += 4 + 256; // RSA2048
}
if self.kinds.contains(&TlvKinds::RSA3072) {
estimate += 4 + 32; // keyhash
estimate += 4 + 384; // RSA3072
}
if self.kinds.contains(&TlvKinds::ED25519) {
estimate += 4 + 32; // keyhash
estimate += 4 + 64; // ED25519 signature.
}
if self.kinds.contains(&TlvKinds::ECDSASIG) {
estimate += 4 + 32; // keyhash
// ECDSA signatures are encoded as ASN.1 with the x and y values stored as signed
// integers. As such, the size can vary by 2 bytes, if the 256-bit value has the high
// bit, it takes an extra 0 byte to avoid it being seen as a negative number.
estimate += 4 + 72; // ECDSA256 (varies)
}
// Estimate encryption.
let flag = TlvFlags::ENCRYPTED_AES256 as u32;
let aes256 = (self.get_flags() & flag) == flag;
if self.kinds.contains(&TlvKinds::ENCRSA2048) {
estimate += 4 + 256;
}
if self.kinds.contains(&TlvKinds::ENCKW) {
estimate += 4 + if aes256 { 40 } else { 24 };
}
if self.kinds.contains(&TlvKinds::ENCEC256) {
estimate += 4 + if aes256 { 129 } else { 113 };
}
if self.kinds.contains(&TlvKinds::ENCX25519) {
estimate += 4 + if aes256 { 96 } else { 80 };
}
// Gather the size of the protected TLV area.
estimate += self.protect_size() as usize;
estimate
}
/// Compute the TLV given the specified block of data.
fn make_tlv(self: Box<Self>) -> Vec<u8> {
let size_estimate = self.estimate_size();
let mut protected_tlv: Vec<u8> = vec![];
if self.protect_size() > 0 {
protected_tlv.push(0x08);
protected_tlv.push(0x69);
let size = self.protect_size();
protected_tlv.write_u16::<LittleEndian>(size).unwrap();
for dep in &self.dependencies {
protected_tlv.write_u16::<LittleEndian>(TlvKinds::DEPENDENCY as u16).unwrap();
protected_tlv.write_u16::<LittleEndian>(12).unwrap();
// The dependency.
protected_tlv.push(dep.id);
protected_tlv.push(0);
protected_tlv.write_u16::<LittleEndian>(0).unwrap();
protected_tlv.push(dep.version.major);
protected_tlv.push(dep.version.minor);
protected_tlv.write_u16::<LittleEndian>(dep.version.revision).unwrap();
protected_tlv.write_u32::<LittleEndian>(dep.version.build_num).unwrap();
}
// Security counter has to be at the protected TLV area also
if Caps::HwRollbackProtection.present() && self.security_cnt.is_some() {
protected_tlv.write_u16::<LittleEndian>(TlvKinds::SECCNT as u16).unwrap();
protected_tlv.write_u16::<LittleEndian>(std::mem::size_of::<u32>() as u16).unwrap();
protected_tlv.write_u32::<LittleEndian>(self.security_cnt.unwrap() as u32).unwrap();
}
assert_eq!(size, protected_tlv.len() as u16, "protected TLV length incorrect");
}
// Ring does the signature itself, which means that it must be
// given a full, contiguous payload. Although this does help from
// a correct usage perspective, it is fairly stupid from an
// efficiency view. If this is shown to be a performance issue
// with the tests, the protected data could be appended to the
// payload, and then removed after the signature is done. For now,
// just make a signed payload.
let mut sig_payload = self.payload.clone();
sig_payload.extend_from_slice(&protected_tlv);
let mut result: Vec<u8> = vec![];
// add back signed payload
result.extend_from_slice(&protected_tlv);
// add non-protected payload
let npro_pos = result.len();
result.push(0x07);
result.push(0x69);
// Placeholder for the size.
result.write_u16::<LittleEndian>(0).unwrap();
if self.kinds.contains(&TlvKinds::SHA256) {
// If a signature is not requested, corrupt the hash we are
// generating. But, if there is a signature, output the
// correct hash. We want the hash test to pass so that the
// signature verification can be validated.
let mut corrupt_hash = self.gen_corrupted;
for k in &[TlvKinds::RSA2048, TlvKinds::RSA3072,
TlvKinds::ED25519, TlvKinds::ECDSASIG]
{
if self.kinds.contains(k) {
corrupt_hash = false;
break;
}
}
if corrupt_hash {
sig_payload[0] ^= 1;
}
let hash = digest::digest(&digest::SHA256, &sig_payload);
let hash = hash.as_ref();
assert!(hash.len() == 32);
result.write_u16::<LittleEndian>(TlvKinds::SHA256 as u16).unwrap();
result.write_u16::<LittleEndian>(32).unwrap();
result.extend_from_slice(hash);
// Undo the corruption.
if corrupt_hash {
sig_payload[0] ^= 1;
}
}
if self.gen_corrupted {
// Corrupt what is signed by modifying the input to the
// signature code.
sig_payload[0] ^= 1;
}
if self.kinds.contains(&TlvKinds::RSA2048) ||
self.kinds.contains(&TlvKinds::RSA3072) {
let is_rsa2048 = self.kinds.contains(&TlvKinds::RSA2048);
// Output the hash of the public key.
let hash = if is_rsa2048 {
digest::digest(&digest::SHA256, RSA_PUB_KEY)
} else {
digest::digest(&digest::SHA256, RSA3072_PUB_KEY)
};
let hash = hash.as_ref();
assert!(hash.len() == 32);
result.write_u16::<LittleEndian>(TlvKinds::KEYHASH as u16).unwrap();
result.write_u16::<LittleEndian>(32).unwrap();
result.extend_from_slice(hash);
// For now assume PSS.
let key_bytes = if is_rsa2048 {
pem::parse(include_bytes!("../../root-rsa-2048.pem").as_ref()).unwrap()
} else {
pem::parse(include_bytes!("../../root-rsa-3072.pem").as_ref()).unwrap()
};
assert_eq!(key_bytes.tag, "RSA PRIVATE KEY");
let key_pair = RsaKeyPair::from_der(&key_bytes.contents).unwrap();
let rng = rand::SystemRandom::new();
let mut signature = vec![0; key_pair.public_modulus_len()];
if is_rsa2048 {
assert_eq!(signature.len(), 256);
} else {
assert_eq!(signature.len(), 384);
}
key_pair.sign(&RSA_PSS_SHA256, &rng, &sig_payload, &mut signature).unwrap();
if is_rsa2048 {
result.write_u16::<LittleEndian>(TlvKinds::RSA2048 as u16).unwrap();
} else {
result.write_u16::<LittleEndian>(TlvKinds::RSA3072 as u16).unwrap();
}
result.write_u16::<LittleEndian>(signature.len() as u16).unwrap();
result.extend_from_slice(&signature);
}
if self.kinds.contains(&TlvKinds::ECDSASIG) {
let rng = rand::SystemRandom::new();
let keyhash = digest::digest(&digest::SHA256, ECDSA256_PUB_KEY);
let key_bytes = pem::parse(include_bytes!("../../root-ec-p256-pkcs8.pem").as_ref()).unwrap();
let sign_algo = &ECDSA_P256_SHA256_ASN1_SIGNING;
let key_pair = EcdsaKeyPair::from_pkcs8(sign_algo, &key_bytes.contents).unwrap();
let signature = key_pair.sign(&rng,&sig_payload).unwrap();
// Write public key
let keyhash_slice = keyhash.as_ref();
assert!(keyhash_slice.len() == 32);
result.write_u16::<LittleEndian>(TlvKinds::KEYHASH as u16).unwrap();
result.write_u16::<LittleEndian>(32).unwrap();
result.extend_from_slice(keyhash_slice);
// Write signature
result.write_u16::<LittleEndian>(TlvKinds::ECDSASIG as u16).unwrap();
let signature = signature.as_ref().to_vec();
result.write_u16::<LittleEndian>(signature.len() as u16).unwrap();
result.extend_from_slice(&signature);
}
if self.kinds.contains(&TlvKinds::ED25519) {
let keyhash = digest::digest(&digest::SHA256, ED25519_PUB_KEY);
let keyhash = keyhash.as_ref();
assert!(keyhash.len() == 32);
result.write_u16::<LittleEndian>(TlvKinds::KEYHASH as u16).unwrap();
result.write_u16::<LittleEndian>(32).unwrap();
result.extend_from_slice(keyhash);
let hash = digest::digest(&digest::SHA256, &sig_payload);
let hash = hash.as_ref();
assert!(hash.len() == 32);
let key_bytes = pem::parse(include_bytes!("../../root-ed25519.pem").as_ref()).unwrap();
assert_eq!(key_bytes.tag, "PRIVATE KEY");
let key_pair = Ed25519KeyPair::from_seed_and_public_key(
&key_bytes.contents[16..48], &ED25519_PUB_KEY[12..44]).unwrap();
let signature = key_pair.sign(&hash);
result.write_u16::<LittleEndian>(TlvKinds::ED25519 as u16).unwrap();
let signature = signature.as_ref().to_vec();
result.write_u16::<LittleEndian>(signature.len() as u16).unwrap();
result.extend_from_slice(signature.as_ref());
}
if self.kinds.contains(&TlvKinds::ENCRSA2048) {
let key_bytes = pem::parse(include_bytes!("../../enc-rsa2048-pub.pem")
.as_ref()).unwrap();
assert_eq!(key_bytes.tag, "PUBLIC KEY");
let cipherkey = self.get_enc_key();
let cipherkey = cipherkey.as_slice();
let encbuf = match c::rsa_oaep_encrypt(&key_bytes.contents, cipherkey) {
Ok(v) => v,
Err(_) => panic!("Failed to encrypt secret key"),
};
assert!(encbuf.len() == 256);
result.write_u16::<LittleEndian>(TlvKinds::ENCRSA2048 as u16).unwrap();
result.write_u16::<LittleEndian>(256).unwrap();
result.extend_from_slice(&encbuf);
}
if self.kinds.contains(&TlvKinds::ENCKW) {
let flag = TlvFlags::ENCRYPTED_AES256 as u32;
let aes256 = (self.get_flags() & flag) == flag;
let key_bytes = if aes256 {
base64::decode(
include_str!("../../enc-aes256kw.b64").trim()).unwrap()
} else {
base64::decode(
include_str!("../../enc-aes128kw.b64").trim()).unwrap()
};
let cipherkey = self.get_enc_key();
let cipherkey = cipherkey.as_slice();
let keylen = if aes256 { 32 } else { 16 };
let encbuf = match c::kw_encrypt(&key_bytes, cipherkey, keylen) {
Ok(v) => v,
Err(_) => panic!("Failed to encrypt secret key"),
};
let size = if aes256 { 40 } else { 24 };
assert!(encbuf.len() == size);
result.write_u16::<LittleEndian>(TlvKinds::ENCKW as u16).unwrap();
result.write_u16::<LittleEndian>(size as u16).unwrap();
result.extend_from_slice(&encbuf);
}
if self.kinds.contains(&TlvKinds::ENCEC256) || self.kinds.contains(&TlvKinds::ENCX25519) {
let key_bytes = if self.kinds.contains(&TlvKinds::ENCEC256) {
pem::parse(include_bytes!("../../enc-ec256-pub.pem").as_ref()).unwrap()
} else {
pem::parse(include_bytes!("../../enc-x25519-pub.pem").as_ref()).unwrap()
};
assert_eq!(key_bytes.tag, "PUBLIC KEY");
let rng = rand::SystemRandom::new();
let alg = if self.kinds.contains(&TlvKinds::ENCEC256) {
&agreement::ECDH_P256
} else {
&agreement::X25519
};
let pk = match agreement::EphemeralPrivateKey::generate(alg, &rng) {
Ok(v) => v,
Err(_) => panic!("Failed to generate ephemeral keypair"),
};
let pubk = match pk.compute_public_key() {
Ok(pubk) => pubk,
Err(_) => panic!("Failed computing ephemeral public key"),
};
let peer_pubk = if self.kinds.contains(&TlvKinds::ENCEC256) {
agreement::UnparsedPublicKey::new(&agreement::ECDH_P256, &key_bytes.contents[26..])
} else {
agreement::UnparsedPublicKey::new(&agreement::X25519, &key_bytes.contents[12..])
};
#[derive(Debug, PartialEq)]
struct OkmLen<T: core::fmt::Debug + PartialEq>(T);
impl hkdf::KeyType for OkmLen<usize> {
fn len(&self) -> usize {
self.0
}
}
let flag = TlvFlags::ENCRYPTED_AES256 as u32;
let aes256 = (self.get_flags() & flag) == flag;
let derived_key = match agreement::agree_ephemeral(
pk, &peer_pubk, ring::error::Unspecified, |shared| {
let salt = hkdf::Salt::new(hkdf::HKDF_SHA256, &[]);
let prk = salt.extract(&shared);
let okm_len = if aes256 { 64 } else { 48 };
let okm = match prk.expand(&[b"MCUBoot_ECIES_v1"], OkmLen(okm_len)) {
Ok(okm) => okm,
Err(_) => panic!("Failed building HKDF OKM"),
};
let mut buf = if aes256 { vec![0u8; 64] } else { vec![0u8; 48] };
match okm.fill(&mut buf) {
Ok(_) => Ok(buf),
Err(_) => panic!("Failed generating HKDF output"),
}
},
) {
Ok(v) => v,
Err(_) => panic!("Failed building HKDF"),
};
let nonce = GenericArray::from_slice(&[0; 16]);
let mut cipherkey = self.get_enc_key();
if aes256 {
let key: &GenericArray<u8, U32> = GenericArray::from_slice(&derived_key[..32]);
let block = Aes256::new(&key);
let mut cipher = Aes256Ctr::from_block_cipher(block, &nonce);
cipher.apply_keystream(&mut cipherkey);
} else {
let key: &GenericArray<u8, U16> = GenericArray::from_slice(&derived_key[..16]);
let block = Aes128::new(&key);
let mut cipher = Aes128Ctr::from_block_cipher(block, &nonce);
cipher.apply_keystream(&mut cipherkey);
}
let size = if aes256 { 32 } else { 16 };
let key = hmac::Key::new(hmac::HMAC_SHA256, &derived_key[size..]);
let tag = hmac::sign(&key, &cipherkey);
let mut buf = vec![];
buf.append(&mut pubk.as_ref().to_vec());
buf.append(&mut tag.as_ref().to_vec());
buf.append(&mut cipherkey);
if self.kinds.contains(&TlvKinds::ENCEC256) {
let size = if aes256 { 129 } else { 113 };
assert!(buf.len() == size);
result.write_u16::<LittleEndian>(TlvKinds::ENCEC256 as u16).unwrap();
result.write_u16::<LittleEndian>(size as u16).unwrap();
} else {
let size = if aes256 { 96 } else { 80 };
assert!(buf.len() == size);
result.write_u16::<LittleEndian>(TlvKinds::ENCX25519 as u16).unwrap();
result.write_u16::<LittleEndian>(size as u16).unwrap();
}
result.extend_from_slice(&buf);
}
// Patch the size back into the TLV header.
let size = (result.len() - npro_pos) as u16;
let mut size_buf = &mut result[npro_pos + 2 .. npro_pos + 4];
size_buf.write_u16::<LittleEndian>(size).unwrap();
// ECDSA is stored as an ASN.1 integer. For a 128-bit value, this maximally results in 33
// bytes of storage for each of the two values. If the high bit is zero, it will take 32
// bytes, if the top 8 bits are zero, it will take 31 bits, and so on. The smaller size
// will occur with decreasing likelihood. We'll allow this to get a bit smaller, hopefully
// allowing the tests to pass with false failures rare. For this case, we'll handle up to
// the top 16 bits of both numbers being all zeros (1 in 2^32).
if !Caps::has_ecdsa() {
if size_estimate != result.len() {
panic!("Incorrect size estimate: {} (actual {})", size_estimate, result.len());
}
} else {
if size_estimate < result.len() || size_estimate > result.len() + 6 {
panic!("Incorrect size estimate: {} (actual {})", size_estimate, result.len());
}
}
if size_estimate != result.len() {
log::warn!("Size off: {} actual {}", size_estimate, result.len());
}
result
}
fn generate_enc_key(&mut self) {
let rng = rand::SystemRandom::new();
let flag = TlvFlags::ENCRYPTED_AES256 as u32;
let aes256 = (self.get_flags() & flag) == flag;
let mut buf = if aes256 {
vec![0u8; 32]
} else {
vec![0u8; 16]
};
if rng.fill(&mut buf).is_err() {
panic!("Error generating encrypted key");
}
info!("New encryption key: {:02x?}", buf);
self.enc_key = buf;
}
fn get_enc_key(&self) -> Vec<u8> {
if self.enc_key.len() != 32 && self.enc_key.len() != 16 {
panic!("No random key was generated");
}
self.enc_key.clone()
}
fn set_security_counter(&mut self, security_cnt: Option<u32>) {
self.security_cnt = security_cnt;
}
fn set_ignore_ram_load_flag(&mut self) {
self.ignore_ram_load_flag = true;
}
}
include!("rsa_pub_key-rs.txt");
include!("rsa3072_pub_key-rs.txt");
include!("ecdsa_pub_key-rs.txt");
include!("ed25519_pub_key-rs.txt");