| // Copyright (c) 2017-2021 Linaro LTD |
| // Copyright (c) 2017-2020 JUUL Labs |
| // Copyright (c) 2021-2023 Arm Limited |
| // |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| //! TLV Support |
| //! |
| //! mcuboot images are followed immediately by a list of TLV items that contain integrity |
| //! information about the image. Their generation is made a little complicated because the size of |
| //! the TLV block is in the image header, which is included in the hash. Since some signatures can |
| //! vary in size, we just make them the largest size possible. |
| //! |
| //! Because of this header, we have to make two passes. The first pass will compute the size of |
| //! the TLV, and the second pass will build the data for the TLV. |
| |
| use byteorder::{ |
| LittleEndian, WriteBytesExt, |
| }; |
| use cipher::FromBlockCipher; |
| use crate::caps::Caps; |
| use crate::image::ImageVersion; |
| use log::info; |
| use ring::{digest, rand, agreement, hkdf, hmac}; |
| use ring::rand::SecureRandom; |
| use ring::signature::{ |
| RsaKeyPair, |
| RSA_PSS_SHA256, |
| EcdsaKeyPair, |
| ECDSA_P256_SHA256_ASN1_SIGNING, |
| Ed25519KeyPair, |
| }; |
| use aes::{ |
| Aes128, |
| Aes128Ctr, |
| Aes256, |
| Aes256Ctr, |
| NewBlockCipher |
| }; |
| use cipher::{ |
| generic_array::GenericArray, |
| StreamCipher, |
| }; |
| use mcuboot_sys::c; |
| use typenum::{U16, U32}; |
| |
| #[repr(u16)] |
| #[derive(Copy, Clone, Debug, PartialEq, Eq)] |
| #[allow(dead_code)] // TODO: For now |
| pub enum TlvKinds { |
| KEYHASH = 0x01, |
| SHA256 = 0x10, |
| RSA2048 = 0x20, |
| ECDSASIG = 0x22, |
| RSA3072 = 0x23, |
| ED25519 = 0x24, |
| ENCRSA2048 = 0x30, |
| ENCKW = 0x31, |
| ENCEC256 = 0x32, |
| ENCX25519 = 0x33, |
| DEPENDENCY = 0x40, |
| SECCNT = 0x50, |
| } |
| |
| #[allow(dead_code, non_camel_case_types)] |
| pub enum TlvFlags { |
| PIC = 0x01, |
| NON_BOOTABLE = 0x02, |
| ENCRYPTED_AES128 = 0x04, |
| ENCRYPTED_AES256 = 0x08, |
| RAM_LOAD = 0x20, |
| } |
| |
| /// A generator for manifests. The format of the manifest can be either a |
| /// traditional "TLV" or a SUIT-style manifest. |
| pub trait ManifestGen { |
| /// Retrieve the header magic value for this manifest type. |
| fn get_magic(&self) -> u32; |
| |
| /// Retrieve the flags value for this particular manifest type. |
| fn get_flags(&self) -> u32; |
| |
| /// Retrieve the number of bytes of this manifest that is "protected". |
| /// This field is stored in the outside image header instead of the |
| /// manifest header. |
| fn protect_size(&self) -> u16; |
| |
| /// Add a dependency on another image. |
| fn add_dependency(&mut self, id: u8, version: &ImageVersion); |
| |
| /// Add a sequence of bytes to the payload that the manifest is |
| /// protecting. |
| fn add_bytes(&mut self, bytes: &[u8]); |
| |
| /// Set an internal flag indicating that the next `make_tlv` should |
| /// corrupt the signature. |
| fn corrupt_sig(&mut self); |
| |
| /// Estimate the size of the TLV. This can be called before the payload is added (but after |
| /// other information is added). Some of the signature algorithms can generate variable sized |
| /// data, and therefore, this can slightly overestimate the size. |
| fn estimate_size(&self) -> usize; |
| |
| /// Construct the manifest for this payload. |
| fn make_tlv(self: Box<Self>) -> Vec<u8>; |
| |
| /// Generate a new encryption random key |
| fn generate_enc_key(&mut self); |
| |
| /// Return the current encryption key |
| fn get_enc_key(&self) -> Vec<u8>; |
| |
| /// Set the security counter to the specified value. |
| fn set_security_counter(&mut self, security_cnt: Option<u32>); |
| |
| /// Sets the ignore_ram_load_flag so that can be validated when it is missing, |
| /// it will not load successfully. |
| fn set_ignore_ram_load_flag(&mut self); |
| } |
| |
| #[derive(Debug, Default)] |
| pub struct TlvGen { |
| flags: u32, |
| kinds: Vec<TlvKinds>, |
| payload: Vec<u8>, |
| dependencies: Vec<Dependency>, |
| enc_key: Vec<u8>, |
| /// Should this signature be corrupted. |
| gen_corrupted: bool, |
| security_cnt: Option<u32>, |
| /// Ignore RAM_LOAD flag |
| ignore_ram_load_flag: bool, |
| } |
| |
| #[derive(Debug)] |
| struct Dependency { |
| id: u8, |
| version: ImageVersion, |
| } |
| |
| impl TlvGen { |
| /// Construct a new tlv generator that will only contain a hash of the data. |
| #[allow(dead_code)] |
| pub fn new_hash_only() -> TlvGen { |
| TlvGen { |
| kinds: vec![TlvKinds::SHA256], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_rsa_pss() -> TlvGen { |
| TlvGen { |
| kinds: vec![TlvKinds::SHA256, TlvKinds::RSA2048], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_rsa3072_pss() -> TlvGen { |
| TlvGen { |
| kinds: vec![TlvKinds::SHA256, TlvKinds::RSA3072], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_ecdsa() -> TlvGen { |
| TlvGen { |
| kinds: vec![TlvKinds::SHA256, TlvKinds::ECDSASIG], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_ed25519() -> TlvGen { |
| TlvGen { |
| kinds: vec![TlvKinds::SHA256, TlvKinds::ED25519], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_enc_rsa(aes_key_size: u32) -> TlvGen { |
| let flag = if aes_key_size == 256 { |
| TlvFlags::ENCRYPTED_AES256 as u32 |
| } else { |
| TlvFlags::ENCRYPTED_AES128 as u32 |
| }; |
| TlvGen { |
| flags: flag, |
| kinds: vec![TlvKinds::SHA256, TlvKinds::ENCRSA2048], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_sig_enc_rsa(aes_key_size: u32) -> TlvGen { |
| let flag = if aes_key_size == 256 { |
| TlvFlags::ENCRYPTED_AES256 as u32 |
| } else { |
| TlvFlags::ENCRYPTED_AES128 as u32 |
| }; |
| TlvGen { |
| flags: flag, |
| kinds: vec![TlvKinds::SHA256, TlvKinds::RSA2048, TlvKinds::ENCRSA2048], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_enc_kw(aes_key_size: u32) -> TlvGen { |
| let flag = if aes_key_size == 256 { |
| TlvFlags::ENCRYPTED_AES256 as u32 |
| } else { |
| TlvFlags::ENCRYPTED_AES128 as u32 |
| }; |
| TlvGen { |
| flags: flag, |
| kinds: vec![TlvKinds::SHA256, TlvKinds::ENCKW], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_rsa_kw(aes_key_size: u32) -> TlvGen { |
| let flag = if aes_key_size == 256 { |
| TlvFlags::ENCRYPTED_AES256 as u32 |
| } else { |
| TlvFlags::ENCRYPTED_AES128 as u32 |
| }; |
| TlvGen { |
| flags: flag, |
| kinds: vec![TlvKinds::SHA256, TlvKinds::RSA2048, TlvKinds::ENCKW], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_ecdsa_kw(aes_key_size: u32) -> TlvGen { |
| let flag = if aes_key_size == 256 { |
| TlvFlags::ENCRYPTED_AES256 as u32 |
| } else { |
| TlvFlags::ENCRYPTED_AES128 as u32 |
| }; |
| TlvGen { |
| flags: flag, |
| kinds: vec![TlvKinds::SHA256, TlvKinds::ECDSASIG, TlvKinds::ENCKW], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_ecies_p256(aes_key_size: u32) -> TlvGen { |
| let flag = if aes_key_size == 256 { |
| TlvFlags::ENCRYPTED_AES256 as u32 |
| } else { |
| TlvFlags::ENCRYPTED_AES128 as u32 |
| }; |
| TlvGen { |
| flags: flag, |
| kinds: vec![TlvKinds::SHA256, TlvKinds::ENCEC256], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_ecdsa_ecies_p256(aes_key_size: u32) -> TlvGen { |
| let flag = if aes_key_size == 256 { |
| TlvFlags::ENCRYPTED_AES256 as u32 |
| } else { |
| TlvFlags::ENCRYPTED_AES128 as u32 |
| }; |
| TlvGen { |
| flags: flag, |
| kinds: vec![TlvKinds::SHA256, TlvKinds::ECDSASIG, TlvKinds::ENCEC256], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_ecies_x25519(aes_key_size: u32) -> TlvGen { |
| let flag = if aes_key_size == 256 { |
| TlvFlags::ENCRYPTED_AES256 as u32 |
| } else { |
| TlvFlags::ENCRYPTED_AES128 as u32 |
| }; |
| TlvGen { |
| flags: flag, |
| kinds: vec![TlvKinds::SHA256, TlvKinds::ENCX25519], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_ed25519_ecies_x25519(aes_key_size: u32) -> TlvGen { |
| let flag = if aes_key_size == 256 { |
| TlvFlags::ENCRYPTED_AES256 as u32 |
| } else { |
| TlvFlags::ENCRYPTED_AES128 as u32 |
| }; |
| TlvGen { |
| flags: flag, |
| kinds: vec![TlvKinds::SHA256, TlvKinds::ED25519, TlvKinds::ENCX25519], |
| ..Default::default() |
| } |
| } |
| |
| #[allow(dead_code)] |
| pub fn new_sec_cnt() -> TlvGen { |
| TlvGen { |
| kinds: vec![TlvKinds::SHA256, TlvKinds::SECCNT], |
| ..Default::default() |
| } |
| } |
| |
| } |
| |
| impl ManifestGen for TlvGen { |
| fn get_magic(&self) -> u32 { |
| 0x96f3b83d |
| } |
| |
| /// Retrieve the header flags for this configuration. This can be called at any time. |
| fn get_flags(&self) -> u32 { |
| // For the RamLoad case, add in the flag for this feature. |
| if Caps::RamLoad.present() && !self.ignore_ram_load_flag { |
| self.flags | (TlvFlags::RAM_LOAD as u32) |
| } else { |
| self.flags |
| } |
| } |
| |
| /// Add bytes to the covered hash. |
| fn add_bytes(&mut self, bytes: &[u8]) { |
| self.payload.extend_from_slice(bytes); |
| } |
| |
| fn protect_size(&self) -> u16 { |
| let mut size = 0; |
| if !self.dependencies.is_empty() || (Caps::HwRollbackProtection.present() && self.security_cnt.is_some()) { |
| // include the TLV area header. |
| size += 4; |
| // add space for each dependency. |
| size += (self.dependencies.len() as u16) * (4 + std::mem::size_of::<Dependency>() as u16); |
| if Caps::HwRollbackProtection.present() && self.security_cnt.is_some() { |
| size += 4 + 4; |
| } |
| } |
| size |
| } |
| |
| fn add_dependency(&mut self, id: u8, version: &ImageVersion) { |
| self.dependencies.push(Dependency { |
| id, |
| version: version.clone(), |
| }); |
| } |
| |
| fn corrupt_sig(&mut self) { |
| self.gen_corrupted = true; |
| } |
| |
| fn estimate_size(&self) -> usize { |
| // Begin the estimate with the 4 byte header. |
| let mut estimate = 4; |
| // A very poor estimate. |
| |
| // Estimate the size of the image hash. |
| if self.kinds.contains(&TlvKinds::SHA256) { |
| estimate += 4 + 32; |
| } |
| |
| // Add an estimate in for each of the signature algorithms. |
| if self.kinds.contains(&TlvKinds::RSA2048) { |
| estimate += 4 + 32; // keyhash |
| estimate += 4 + 256; // RSA2048 |
| } |
| if self.kinds.contains(&TlvKinds::RSA3072) { |
| estimate += 4 + 32; // keyhash |
| estimate += 4 + 384; // RSA3072 |
| } |
| if self.kinds.contains(&TlvKinds::ED25519) { |
| estimate += 4 + 32; // keyhash |
| estimate += 4 + 64; // ED25519 signature. |
| } |
| if self.kinds.contains(&TlvKinds::ECDSASIG) { |
| estimate += 4 + 32; // keyhash |
| |
| // ECDSA signatures are encoded as ASN.1 with the x and y values stored as signed |
| // integers. As such, the size can vary by 2 bytes, if the 256-bit value has the high |
| // bit, it takes an extra 0 byte to avoid it being seen as a negative number. |
| estimate += 4 + 72; // ECDSA256 (varies) |
| } |
| |
| // Estimate encryption. |
| let flag = TlvFlags::ENCRYPTED_AES256 as u32; |
| let aes256 = (self.get_flags() & flag) == flag; |
| |
| if self.kinds.contains(&TlvKinds::ENCRSA2048) { |
| estimate += 4 + 256; |
| } |
| if self.kinds.contains(&TlvKinds::ENCKW) { |
| estimate += 4 + if aes256 { 40 } else { 24 }; |
| } |
| if self.kinds.contains(&TlvKinds::ENCEC256) { |
| estimate += 4 + if aes256 { 129 } else { 113 }; |
| } |
| if self.kinds.contains(&TlvKinds::ENCX25519) { |
| estimate += 4 + if aes256 { 96 } else { 80 }; |
| } |
| |
| // Gather the size of the protected TLV area. |
| estimate += self.protect_size() as usize; |
| |
| estimate |
| } |
| |
| /// Compute the TLV given the specified block of data. |
| fn make_tlv(self: Box<Self>) -> Vec<u8> { |
| let size_estimate = self.estimate_size(); |
| |
| let mut protected_tlv: Vec<u8> = vec![]; |
| |
| if self.protect_size() > 0 { |
| protected_tlv.push(0x08); |
| protected_tlv.push(0x69); |
| let size = self.protect_size(); |
| protected_tlv.write_u16::<LittleEndian>(size).unwrap(); |
| for dep in &self.dependencies { |
| protected_tlv.write_u16::<LittleEndian>(TlvKinds::DEPENDENCY as u16).unwrap(); |
| protected_tlv.write_u16::<LittleEndian>(12).unwrap(); |
| |
| // The dependency. |
| protected_tlv.push(dep.id); |
| protected_tlv.push(0); |
| protected_tlv.write_u16::<LittleEndian>(0).unwrap(); |
| protected_tlv.push(dep.version.major); |
| protected_tlv.push(dep.version.minor); |
| protected_tlv.write_u16::<LittleEndian>(dep.version.revision).unwrap(); |
| protected_tlv.write_u32::<LittleEndian>(dep.version.build_num).unwrap(); |
| } |
| |
| // Security counter has to be at the protected TLV area also |
| if Caps::HwRollbackProtection.present() && self.security_cnt.is_some() { |
| protected_tlv.write_u16::<LittleEndian>(TlvKinds::SECCNT as u16).unwrap(); |
| protected_tlv.write_u16::<LittleEndian>(std::mem::size_of::<u32>() as u16).unwrap(); |
| protected_tlv.write_u32::<LittleEndian>(self.security_cnt.unwrap() as u32).unwrap(); |
| } |
| |
| assert_eq!(size, protected_tlv.len() as u16, "protected TLV length incorrect"); |
| } |
| |
| // Ring does the signature itself, which means that it must be |
| // given a full, contiguous payload. Although this does help from |
| // a correct usage perspective, it is fairly stupid from an |
| // efficiency view. If this is shown to be a performance issue |
| // with the tests, the protected data could be appended to the |
| // payload, and then removed after the signature is done. For now, |
| // just make a signed payload. |
| let mut sig_payload = self.payload.clone(); |
| sig_payload.extend_from_slice(&protected_tlv); |
| |
| let mut result: Vec<u8> = vec![]; |
| |
| // add back signed payload |
| result.extend_from_slice(&protected_tlv); |
| |
| // add non-protected payload |
| let npro_pos = result.len(); |
| result.push(0x07); |
| result.push(0x69); |
| // Placeholder for the size. |
| result.write_u16::<LittleEndian>(0).unwrap(); |
| |
| if self.kinds.contains(&TlvKinds::SHA256) { |
| // If a signature is not requested, corrupt the hash we are |
| // generating. But, if there is a signature, output the |
| // correct hash. We want the hash test to pass so that the |
| // signature verification can be validated. |
| let mut corrupt_hash = self.gen_corrupted; |
| for k in &[TlvKinds::RSA2048, TlvKinds::RSA3072, |
| TlvKinds::ED25519, TlvKinds::ECDSASIG] |
| { |
| if self.kinds.contains(k) { |
| corrupt_hash = false; |
| break; |
| } |
| } |
| |
| if corrupt_hash { |
| sig_payload[0] ^= 1; |
| } |
| |
| let hash = digest::digest(&digest::SHA256, &sig_payload); |
| let hash = hash.as_ref(); |
| |
| assert!(hash.len() == 32); |
| result.write_u16::<LittleEndian>(TlvKinds::SHA256 as u16).unwrap(); |
| result.write_u16::<LittleEndian>(32).unwrap(); |
| result.extend_from_slice(hash); |
| |
| // Undo the corruption. |
| if corrupt_hash { |
| sig_payload[0] ^= 1; |
| } |
| |
| } |
| |
| if self.gen_corrupted { |
| // Corrupt what is signed by modifying the input to the |
| // signature code. |
| sig_payload[0] ^= 1; |
| } |
| |
| if self.kinds.contains(&TlvKinds::RSA2048) || |
| self.kinds.contains(&TlvKinds::RSA3072) { |
| |
| let is_rsa2048 = self.kinds.contains(&TlvKinds::RSA2048); |
| |
| // Output the hash of the public key. |
| let hash = if is_rsa2048 { |
| digest::digest(&digest::SHA256, RSA_PUB_KEY) |
| } else { |
| digest::digest(&digest::SHA256, RSA3072_PUB_KEY) |
| }; |
| let hash = hash.as_ref(); |
| |
| assert!(hash.len() == 32); |
| result.write_u16::<LittleEndian>(TlvKinds::KEYHASH as u16).unwrap(); |
| result.write_u16::<LittleEndian>(32).unwrap(); |
| result.extend_from_slice(hash); |
| |
| // For now assume PSS. |
| let key_bytes = if is_rsa2048 { |
| pem::parse(include_bytes!("../../root-rsa-2048.pem").as_ref()).unwrap() |
| } else { |
| pem::parse(include_bytes!("../../root-rsa-3072.pem").as_ref()).unwrap() |
| }; |
| assert_eq!(key_bytes.tag, "RSA PRIVATE KEY"); |
| let key_pair = RsaKeyPair::from_der(&key_bytes.contents).unwrap(); |
| let rng = rand::SystemRandom::new(); |
| let mut signature = vec![0; key_pair.public_modulus_len()]; |
| if is_rsa2048 { |
| assert_eq!(signature.len(), 256); |
| } else { |
| assert_eq!(signature.len(), 384); |
| } |
| key_pair.sign(&RSA_PSS_SHA256, &rng, &sig_payload, &mut signature).unwrap(); |
| |
| if is_rsa2048 { |
| result.write_u16::<LittleEndian>(TlvKinds::RSA2048 as u16).unwrap(); |
| } else { |
| result.write_u16::<LittleEndian>(TlvKinds::RSA3072 as u16).unwrap(); |
| } |
| result.write_u16::<LittleEndian>(signature.len() as u16).unwrap(); |
| result.extend_from_slice(&signature); |
| } |
| |
| if self.kinds.contains(&TlvKinds::ECDSASIG) { |
| let rng = rand::SystemRandom::new(); |
| let keyhash = digest::digest(&digest::SHA256, ECDSA256_PUB_KEY); |
| let key_bytes = pem::parse(include_bytes!("../../root-ec-p256-pkcs8.pem").as_ref()).unwrap(); |
| let sign_algo = &ECDSA_P256_SHA256_ASN1_SIGNING; |
| let key_pair = EcdsaKeyPair::from_pkcs8(sign_algo, &key_bytes.contents).unwrap(); |
| let signature = key_pair.sign(&rng,&sig_payload).unwrap(); |
| |
| // Write public key |
| let keyhash_slice = keyhash.as_ref(); |
| assert!(keyhash_slice.len() == 32); |
| result.write_u16::<LittleEndian>(TlvKinds::KEYHASH as u16).unwrap(); |
| result.write_u16::<LittleEndian>(32).unwrap(); |
| result.extend_from_slice(keyhash_slice); |
| |
| // Write signature |
| result.write_u16::<LittleEndian>(TlvKinds::ECDSASIG as u16).unwrap(); |
| let signature = signature.as_ref().to_vec(); |
| result.write_u16::<LittleEndian>(signature.len() as u16).unwrap(); |
| result.extend_from_slice(&signature); |
| } |
| if self.kinds.contains(&TlvKinds::ED25519) { |
| let keyhash = digest::digest(&digest::SHA256, ED25519_PUB_KEY); |
| let keyhash = keyhash.as_ref(); |
| |
| assert!(keyhash.len() == 32); |
| result.write_u16::<LittleEndian>(TlvKinds::KEYHASH as u16).unwrap(); |
| result.write_u16::<LittleEndian>(32).unwrap(); |
| result.extend_from_slice(keyhash); |
| |
| let hash = digest::digest(&digest::SHA256, &sig_payload); |
| let hash = hash.as_ref(); |
| assert!(hash.len() == 32); |
| |
| let key_bytes = pem::parse(include_bytes!("../../root-ed25519.pem").as_ref()).unwrap(); |
| assert_eq!(key_bytes.tag, "PRIVATE KEY"); |
| |
| let key_pair = Ed25519KeyPair::from_seed_and_public_key( |
| &key_bytes.contents[16..48], &ED25519_PUB_KEY[12..44]).unwrap(); |
| let signature = key_pair.sign(&hash); |
| |
| result.write_u16::<LittleEndian>(TlvKinds::ED25519 as u16).unwrap(); |
| |
| let signature = signature.as_ref().to_vec(); |
| result.write_u16::<LittleEndian>(signature.len() as u16).unwrap(); |
| result.extend_from_slice(signature.as_ref()); |
| } |
| |
| if self.kinds.contains(&TlvKinds::ENCRSA2048) { |
| let key_bytes = pem::parse(include_bytes!("../../enc-rsa2048-pub.pem") |
| .as_ref()).unwrap(); |
| assert_eq!(key_bytes.tag, "PUBLIC KEY"); |
| |
| let cipherkey = self.get_enc_key(); |
| let cipherkey = cipherkey.as_slice(); |
| let encbuf = match c::rsa_oaep_encrypt(&key_bytes.contents, cipherkey) { |
| Ok(v) => v, |
| Err(_) => panic!("Failed to encrypt secret key"), |
| }; |
| |
| assert!(encbuf.len() == 256); |
| result.write_u16::<LittleEndian>(TlvKinds::ENCRSA2048 as u16).unwrap(); |
| result.write_u16::<LittleEndian>(256).unwrap(); |
| result.extend_from_slice(&encbuf); |
| } |
| |
| if self.kinds.contains(&TlvKinds::ENCKW) { |
| let flag = TlvFlags::ENCRYPTED_AES256 as u32; |
| let aes256 = (self.get_flags() & flag) == flag; |
| let key_bytes = if aes256 { |
| base64::decode( |
| include_str!("../../enc-aes256kw.b64").trim()).unwrap() |
| } else { |
| base64::decode( |
| include_str!("../../enc-aes128kw.b64").trim()).unwrap() |
| }; |
| let cipherkey = self.get_enc_key(); |
| let cipherkey = cipherkey.as_slice(); |
| let keylen = if aes256 { 32 } else { 16 }; |
| let encbuf = match c::kw_encrypt(&key_bytes, cipherkey, keylen) { |
| Ok(v) => v, |
| Err(_) => panic!("Failed to encrypt secret key"), |
| }; |
| |
| let size = if aes256 { 40 } else { 24 }; |
| assert!(encbuf.len() == size); |
| result.write_u16::<LittleEndian>(TlvKinds::ENCKW as u16).unwrap(); |
| result.write_u16::<LittleEndian>(size as u16).unwrap(); |
| result.extend_from_slice(&encbuf); |
| } |
| |
| if self.kinds.contains(&TlvKinds::ENCEC256) || self.kinds.contains(&TlvKinds::ENCX25519) { |
| let key_bytes = if self.kinds.contains(&TlvKinds::ENCEC256) { |
| pem::parse(include_bytes!("../../enc-ec256-pub.pem").as_ref()).unwrap() |
| } else { |
| pem::parse(include_bytes!("../../enc-x25519-pub.pem").as_ref()).unwrap() |
| }; |
| assert_eq!(key_bytes.tag, "PUBLIC KEY"); |
| let rng = rand::SystemRandom::new(); |
| let alg = if self.kinds.contains(&TlvKinds::ENCEC256) { |
| &agreement::ECDH_P256 |
| } else { |
| &agreement::X25519 |
| }; |
| let pk = match agreement::EphemeralPrivateKey::generate(alg, &rng) { |
| Ok(v) => v, |
| Err(_) => panic!("Failed to generate ephemeral keypair"), |
| }; |
| |
| let pubk = match pk.compute_public_key() { |
| Ok(pubk) => pubk, |
| Err(_) => panic!("Failed computing ephemeral public key"), |
| }; |
| |
| let peer_pubk = if self.kinds.contains(&TlvKinds::ENCEC256) { |
| agreement::UnparsedPublicKey::new(&agreement::ECDH_P256, &key_bytes.contents[26..]) |
| } else { |
| agreement::UnparsedPublicKey::new(&agreement::X25519, &key_bytes.contents[12..]) |
| }; |
| |
| #[derive(Debug, PartialEq)] |
| struct OkmLen<T: core::fmt::Debug + PartialEq>(T); |
| |
| impl hkdf::KeyType for OkmLen<usize> { |
| fn len(&self) -> usize { |
| self.0 |
| } |
| } |
| |
| let flag = TlvFlags::ENCRYPTED_AES256 as u32; |
| let aes256 = (self.get_flags() & flag) == flag; |
| |
| let derived_key = match agreement::agree_ephemeral( |
| pk, &peer_pubk, ring::error::Unspecified, |shared| { |
| let salt = hkdf::Salt::new(hkdf::HKDF_SHA256, &[]); |
| let prk = salt.extract(&shared); |
| let okm_len = if aes256 { 64 } else { 48 }; |
| let okm = match prk.expand(&[b"MCUBoot_ECIES_v1"], OkmLen(okm_len)) { |
| Ok(okm) => okm, |
| Err(_) => panic!("Failed building HKDF OKM"), |
| }; |
| let mut buf = if aes256 { vec![0u8; 64] } else { vec![0u8; 48] }; |
| match okm.fill(&mut buf) { |
| Ok(_) => Ok(buf), |
| Err(_) => panic!("Failed generating HKDF output"), |
| } |
| }, |
| ) { |
| Ok(v) => v, |
| Err(_) => panic!("Failed building HKDF"), |
| }; |
| |
| let nonce = GenericArray::from_slice(&[0; 16]); |
| let mut cipherkey = self.get_enc_key(); |
| if aes256 { |
| let key: &GenericArray<u8, U32> = GenericArray::from_slice(&derived_key[..32]); |
| let block = Aes256::new(&key); |
| let mut cipher = Aes256Ctr::from_block_cipher(block, &nonce); |
| cipher.apply_keystream(&mut cipherkey); |
| } else { |
| let key: &GenericArray<u8, U16> = GenericArray::from_slice(&derived_key[..16]); |
| let block = Aes128::new(&key); |
| let mut cipher = Aes128Ctr::from_block_cipher(block, &nonce); |
| cipher.apply_keystream(&mut cipherkey); |
| } |
| |
| let size = if aes256 { 32 } else { 16 }; |
| let key = hmac::Key::new(hmac::HMAC_SHA256, &derived_key[size..]); |
| let tag = hmac::sign(&key, &cipherkey); |
| |
| let mut buf = vec![]; |
| buf.append(&mut pubk.as_ref().to_vec()); |
| buf.append(&mut tag.as_ref().to_vec()); |
| buf.append(&mut cipherkey); |
| |
| if self.kinds.contains(&TlvKinds::ENCEC256) { |
| let size = if aes256 { 129 } else { 113 }; |
| assert!(buf.len() == size); |
| result.write_u16::<LittleEndian>(TlvKinds::ENCEC256 as u16).unwrap(); |
| result.write_u16::<LittleEndian>(size as u16).unwrap(); |
| } else { |
| let size = if aes256 { 96 } else { 80 }; |
| assert!(buf.len() == size); |
| result.write_u16::<LittleEndian>(TlvKinds::ENCX25519 as u16).unwrap(); |
| result.write_u16::<LittleEndian>(size as u16).unwrap(); |
| } |
| result.extend_from_slice(&buf); |
| } |
| |
| // Patch the size back into the TLV header. |
| let size = (result.len() - npro_pos) as u16; |
| let mut size_buf = &mut result[npro_pos + 2 .. npro_pos + 4]; |
| size_buf.write_u16::<LittleEndian>(size).unwrap(); |
| |
| // ECDSA is stored as an ASN.1 integer. For a 128-bit value, this maximally results in 33 |
| // bytes of storage for each of the two values. If the high bit is zero, it will take 32 |
| // bytes, if the top 8 bits are zero, it will take 31 bits, and so on. The smaller size |
| // will occur with decreasing likelihood. We'll allow this to get a bit smaller, hopefully |
| // allowing the tests to pass with false failures rare. For this case, we'll handle up to |
| // the top 16 bits of both numbers being all zeros (1 in 2^32). |
| if !Caps::has_ecdsa() { |
| if size_estimate != result.len() { |
| panic!("Incorrect size estimate: {} (actual {})", size_estimate, result.len()); |
| } |
| } else { |
| if size_estimate < result.len() || size_estimate > result.len() + 6 { |
| panic!("Incorrect size estimate: {} (actual {})", size_estimate, result.len()); |
| } |
| } |
| if size_estimate != result.len() { |
| log::warn!("Size off: {} actual {}", size_estimate, result.len()); |
| } |
| |
| result |
| } |
| |
| fn generate_enc_key(&mut self) { |
| let rng = rand::SystemRandom::new(); |
| let flag = TlvFlags::ENCRYPTED_AES256 as u32; |
| let aes256 = (self.get_flags() & flag) == flag; |
| let mut buf = if aes256 { |
| vec![0u8; 32] |
| } else { |
| vec![0u8; 16] |
| }; |
| if rng.fill(&mut buf).is_err() { |
| panic!("Error generating encrypted key"); |
| } |
| info!("New encryption key: {:02x?}", buf); |
| self.enc_key = buf; |
| } |
| |
| fn get_enc_key(&self) -> Vec<u8> { |
| if self.enc_key.len() != 32 && self.enc_key.len() != 16 { |
| panic!("No random key was generated"); |
| } |
| self.enc_key.clone() |
| } |
| |
| fn set_security_counter(&mut self, security_cnt: Option<u32>) { |
| self.security_cnt = security_cnt; |
| } |
| |
| fn set_ignore_ram_load_flag(&mut self) { |
| self.ignore_ram_load_flag = true; |
| } |
| } |
| |
| include!("rsa_pub_key-rs.txt"); |
| include!("rsa3072_pub_key-rs.txt"); |
| include!("ecdsa_pub_key-rs.txt"); |
| include!("ed25519_pub_key-rs.txt"); |