blob: 54e4f31b0631f5c2d87e479b6300b5598ae20cca [file] [log] [blame]
// Copyright (c) 2019-2021 Linaro LTD
// Copyright (c) 2019-2020 JUUL Labs
// Copyright (c) 2019-2023 Arm Limited
//
// SPDX-License-Identifier: Apache-2.0
use byteorder::{
LittleEndian, WriteBytesExt,
};
use log::{
Level::Info,
error,
info,
log_enabled,
warn,
};
use rand::{
Rng, RngCore, SeedableRng,
rngs::SmallRng,
};
use std::{
collections::{BTreeMap, HashSet},
io::{Cursor, Write},
mem,
slice,
};
use aes::{
Aes128,
Aes128Ctr,
Aes256,
Aes256Ctr,
NewBlockCipher,
};
use cipher::{
FromBlockCipher,
generic_array::GenericArray,
StreamCipher,
};
use simflash::{Flash, SimFlash, SimMultiFlash};
use mcuboot_sys::{c, AreaDesc, FlashId, RamBlock};
use crate::{
ALL_DEVICES,
DeviceName,
};
use crate::caps::Caps;
use crate::depends::{
BoringDep,
Depender,
DepTest,
DepType,
NO_DEPS,
PairDep,
UpgradeInfo,
};
use crate::tlv::{ManifestGen, TlvGen, TlvFlags};
use crate::utils::align_up;
use typenum::{U32, U16};
/// For testing, use a non-zero offset for the ram-load, to make sure the offset is getting used
/// properly, but the value is not really that important.
const RAM_LOAD_ADDR: u32 = 1024;
/// A builder for Images. This describes a single run of the simulator,
/// capturing the configuration of a particular set of devices, including
/// the flash simulator(s) and the information about the slots.
#[derive(Clone)]
pub struct ImagesBuilder {
flash: SimMultiFlash,
areadesc: AreaDesc,
slots: Vec<[SlotInfo; 2]>,
ram: RamData,
}
/// Images represents the state of a simulation for a given set of images.
/// The flash holds the state of the simulated flash, whereas primaries
/// and upgrades hold the expected contents of these images.
pub struct Images {
flash: SimMultiFlash,
areadesc: AreaDesc,
images: Vec<OneImage>,
total_count: Option<i32>,
ram: RamData,
}
/// When doing multi-image, there is an instance of this information for
/// each of the images. Single image there will be one of these.
struct OneImage {
slots: [SlotInfo; 2],
primaries: ImageData,
upgrades: ImageData,
}
/// The Rust-side representation of an image. For unencrypted images, this
/// is just the unencrypted payload. For encrypted images, we store both
/// the encrypted and the plaintext.
struct ImageData {
size: usize,
plain: Vec<u8>,
cipher: Option<Vec<u8>>,
}
/// For the RamLoad test cases, we need a contiguous area of RAM to load these images into. For
/// multi-image builds, these may not correspond with the offsets. This has to be computed early,
/// before images are built, because each image contains the offset where the image is to be loaded
/// in the header, which is contained within the signature.
#[derive(Clone, Debug)]
struct RamData {
places: BTreeMap<SlotKey, SlotPlace>,
total: u32,
}
/// Every slot is indexed by this key.
#[derive(Clone, Debug, Eq, Ord, PartialEq, PartialOrd)]
struct SlotKey {
dev_id: u8,
base_off: usize,
}
#[derive(Clone, Debug)]
struct SlotPlace {
offset: u32,
size: u32,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum ImageManipulation {
None,
BadSignature,
WrongOffset,
IgnoreRamLoadFlag,
/// True to use same address,
/// false to overlap by 1 byte
OverlapImages(bool),
CorruptHigherVersionImage,
}
impl ImagesBuilder {
/// Construct a new image builder for the given device. Returns
/// Some(builder) if is possible to test this configuration, or None if
/// not possible (for example, if there aren't enough image slots).
pub fn new(device: DeviceName, align: usize, erased_val: u8) -> Result<Self, String> {
let (flash, areadesc, unsupported_caps) = Self::make_device(device, align, erased_val);
for cap in unsupported_caps {
if cap.present() {
return Err(format!("unsupported {:?}", cap));
}
}
let num_images = Caps::get_num_images();
let mut slots = Vec::with_capacity(num_images);
for image in 0..num_images {
// This mapping must match that defined in
// `boot/zephyr/include/sysflash/sysflash.h`.
let id0 = match image {
0 => FlashId::Image0,
1 => FlashId::Image2,
_ => panic!("More than 2 images not supported"),
};
let (primary_base, primary_len, primary_dev_id) = match areadesc.find(id0) {
Some(info) => info,
None => return Err("insufficient partitions".to_string()),
};
let id1 = match image {
0 => FlashId::Image1,
1 => FlashId::Image3,
_ => panic!("More than 2 images not supported"),
};
let (secondary_base, secondary_len, secondary_dev_id) = match areadesc.find(id1) {
Some(info) => info,
None => return Err("insufficient partitions".to_string()),
};
let offset_from_end = c::boot_magic_sz() + c::boot_max_align() * 4;
// Construct a primary image.
let primary = SlotInfo {
base_off: primary_base as usize,
trailer_off: primary_base + primary_len - offset_from_end,
len: primary_len as usize,
dev_id: primary_dev_id,
index: 0,
};
// And an upgrade image.
let secondary = SlotInfo {
base_off: secondary_base as usize,
trailer_off: secondary_base + secondary_len - offset_from_end,
len: secondary_len as usize,
dev_id: secondary_dev_id,
index: 1,
};
slots.push([primary, secondary]);
}
let ram = RamData::new(&slots);
Ok(ImagesBuilder {
flash,
areadesc,
slots,
ram,
})
}
pub fn each_device<F>(f: F)
where F: Fn(Self)
{
for &dev in ALL_DEVICES {
for &align in test_alignments() {
for &erased_val in &[0, 0xff] {
match Self::new(dev, align, erased_val) {
Ok(run) => f(run),
Err(msg) => warn!("Skipping {}: {}", dev, msg),
}
}
}
}
}
/// Construct an `Images` that doesn't expect an upgrade to happen.
pub fn make_no_upgrade_image(self, deps: &DepTest, img_manipulation: ImageManipulation) -> Images {
let num_images = self.num_images();
let mut flash = self.flash;
let ram = self.ram.clone(); // TODO: Avoid this clone.
let mut higher_version_corrupted = false;
let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
let dep: Box<dyn Depender> = if num_images > 1 {
Box::new(PairDep::new(num_images, image_num, deps))
} else {
Box::new(BoringDep::new(image_num, deps))
};
let (primaries,upgrades) = if img_manipulation == ImageManipulation::CorruptHigherVersionImage && !higher_version_corrupted {
higher_version_corrupted = true;
let prim = install_image(&mut flash, &slots[0],
maximal(42784), &ram, &*dep, ImageManipulation::None, Some(0));
let upgr = match deps.depends[image_num] {
DepType::NoUpgrade => install_no_image(),
_ => install_image(&mut flash, &slots[1],
maximal(46928), &ram, &*dep, ImageManipulation::BadSignature, Some(0))
};
(prim, upgr)
} else {
let prim = install_image(&mut flash, &slots[0],
maximal(42784), &ram, &*dep, img_manipulation, Some(0));
let upgr = match deps.depends[image_num] {
DepType::NoUpgrade => install_no_image(),
_ => install_image(&mut flash, &slots[1],
maximal(46928), &ram, &*dep, img_manipulation, Some(0))
};
(prim, upgr)
};
OneImage {
slots,
primaries,
upgrades,
}}).collect();
install_ptable(&mut flash, &self.areadesc);
Images {
flash,
areadesc: self.areadesc,
images,
total_count: None,
ram: self.ram,
}
}
pub fn make_image(self, deps: &DepTest, permanent: bool) -> Images {
let mut images = self.make_no_upgrade_image(deps, ImageManipulation::None);
for image in &images.images {
mark_upgrade(&mut images.flash, &image.slots[1]);
}
// The count is meaningless if no flash operations are performed.
if !Caps::modifies_flash() {
return images;
}
// upgrades without fails, counts number of flash operations
let total_count = match images.run_basic_upgrade(permanent) {
Some(v) => v,
None =>
if deps.upgrades.iter().any(|u| *u == UpgradeInfo::Held) {
0
} else {
panic!("Unable to perform basic upgrade");
}
};
images.total_count = Some(total_count);
images
}
pub fn make_bad_secondary_slot_image(self) -> Images {
let mut bad_flash = self.flash;
let ram = self.ram.clone(); // TODO: Avoid this clone.
let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
let dep = BoringDep::new(image_num, &NO_DEPS);
let primaries = install_image(&mut bad_flash, &slots[0],
maximal(32784), &ram, &dep, ImageManipulation::None, Some(0));
let upgrades = install_image(&mut bad_flash, &slots[1],
maximal(41928), &ram, &dep, ImageManipulation::BadSignature, Some(0));
OneImage {
slots,
primaries,
upgrades,
}}).collect();
Images {
flash: bad_flash,
areadesc: self.areadesc,
images,
total_count: None,
ram: self.ram,
}
}
pub fn make_oversized_secondary_slot_image(self) -> Images {
let mut bad_flash = self.flash;
let ram = self.ram.clone(); // TODO: Avoid this clone.
let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
let dep = BoringDep::new(image_num, &NO_DEPS);
let primaries = install_image(&mut bad_flash, &slots[0],
maximal(32784), &ram, &dep, ImageManipulation::None, Some(0));
let upgrades = install_image(&mut bad_flash, &slots[1],
ImageSize::Oversized, &ram, &dep, ImageManipulation::None, Some(0));
OneImage {
slots,
primaries,
upgrades,
}}).collect();
Images {
flash: bad_flash,
areadesc: self.areadesc,
images,
total_count: None,
ram: self.ram,
}
}
pub fn make_erased_secondary_image(self) -> Images {
let mut flash = self.flash;
let ram = self.ram.clone(); // TODO: Avoid this clone.
let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
let dep = BoringDep::new(image_num, &NO_DEPS);
let primaries = install_image(&mut flash, &slots[0],
maximal(32784), &ram, &dep,ImageManipulation::None, Some(0));
let upgrades = install_no_image();
OneImage {
slots,
primaries,
upgrades,
}}).collect();
Images {
flash,
areadesc: self.areadesc,
images,
total_count: None,
ram: self.ram,
}
}
pub fn make_bootstrap_image(self) -> Images {
let mut flash = self.flash;
let ram = self.ram.clone(); // TODO: Avoid this clone.
let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
let dep = BoringDep::new(image_num, &NO_DEPS);
let primaries = install_no_image();
let upgrades = install_image(&mut flash, &slots[1],
maximal(32784), &ram, &dep, ImageManipulation::None, Some(0));
OneImage {
slots,
primaries,
upgrades,
}}).collect();
Images {
flash,
areadesc: self.areadesc,
images,
total_count: None,
ram: self.ram,
}
}
pub fn make_oversized_bootstrap_image(self) -> Images {
let mut flash = self.flash;
let ram = self.ram.clone(); // TODO: Avoid this clone.
let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
let dep = BoringDep::new(image_num, &NO_DEPS);
let primaries = install_no_image();
let upgrades = install_image(&mut flash, &slots[1],
ImageSize::Oversized, &ram, &dep, ImageManipulation::None, Some(0));
OneImage {
slots,
primaries,
upgrades,
}}).collect();
Images {
flash,
areadesc: self.areadesc,
images,
total_count: None,
ram: self.ram,
}
}
/// If security_cnt is None then do not add a security counter TLV, otherwise add the specified value.
pub fn make_image_with_security_counter(self, security_cnt: Option<u32>) -> Images {
let mut flash = self.flash;
let ram = self.ram.clone(); // TODO: Avoid this clone.
let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
let dep = BoringDep::new(image_num, &NO_DEPS);
let primaries = install_image(&mut flash, &slots[0],
maximal(32784), &ram, &dep, ImageManipulation::None, security_cnt);
let upgrades = install_image(&mut flash, &slots[1],
maximal(41928), &ram, &dep, ImageManipulation::None, security_cnt.map(|v| v + 1));
OneImage {
slots,
primaries,
upgrades,
}}).collect();
Images {
flash,
areadesc: self.areadesc,
images,
total_count: None,
ram: self.ram,
}
}
/// Build the Flash and area descriptor for a given device.
pub fn make_device(device: DeviceName, align: usize, erased_val: u8) -> (SimMultiFlash, AreaDesc, &'static [Caps]) {
match device {
DeviceName::Stm32f4 => {
// STM style flash. Large sectors, with a large scratch area.
// The flash layout as described is not present in any real STM32F4 device, but it
// serves to exercise support for sectors of varying sizes inside a single slot,
// as long as they are compatible in both slots and all fit in the scratch.
let dev = SimFlash::new(vec![16 * 1024, 16 * 1024, 16 * 1024, 16 * 1024, 64 * 1024,
32 * 1024, 32 * 1024, 64 * 1024,
32 * 1024, 32 * 1024, 64 * 1024,
128 * 1024],
align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[Caps::SwapUsingMove])
}
DeviceName::K64f => {
// NXP style flash. Small sectors, one small sector for scratch.
let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[])
}
DeviceName::K64fBig => {
// Simulating an STM style flash on top of an NXP style flash. Underlying flash device
// uses small sectors, but we tell the bootloader they are large.
let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_simple_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_simple_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_simple_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[Caps::SwapUsingMove])
}
DeviceName::Nrf52840 => {
// Simulating the flash on the nrf52840 with partitions set up so that the scratch size
// does not divide into the image size.
let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_image(0x008000, 0x034000, FlashId::Image0, dev_id);
areadesc.add_image(0x03c000, 0x034000, FlashId::Image1, dev_id);
areadesc.add_image(0x070000, 0x00d000, FlashId::ImageScratch, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[])
}
DeviceName::Nrf52840UnequalSlots => {
let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_image(0x008000, 0x03c000, FlashId::Image0, dev_id);
areadesc.add_image(0x044000, 0x03b000, FlashId::Image1, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[Caps::SwapUsingScratch, Caps::OverwriteUpgrade])
}
DeviceName::Nrf52840SpiFlash => {
// Simulate nrf52840 with external SPI flash. The external SPI flash
// has a larger sector size so for now store scratch on that flash.
let dev0 = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev1 = SimFlash::new(vec![8192; 64], align as usize, erased_val);
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(0, &dev0);
areadesc.add_flash_sectors(1, &dev1);
areadesc.add_image(0x008000, 0x068000, FlashId::Image0, 0);
areadesc.add_image(0x000000, 0x068000, FlashId::Image1, 1);
areadesc.add_image(0x068000, 0x018000, FlashId::ImageScratch, 1);
let mut flash = SimMultiFlash::new();
flash.insert(0, dev0);
flash.insert(1, dev1);
(flash, areadesc, &[Caps::SwapUsingMove])
}
DeviceName::K64fMulti => {
// NXP style flash, but larger, to support multiple images.
let dev = SimFlash::new(vec![4096; 256], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch, dev_id);
areadesc.add_image(0x080000, 0x020000, FlashId::Image2, dev_id);
areadesc.add_image(0x0a0000, 0x020000, FlashId::Image3, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[])
}
}
}
pub fn num_images(&self) -> usize {
self.slots.len()
}
}
impl Images {
/// A simple upgrade without forced failures.
///
/// Returns the number of flash operations which can later be used to
/// inject failures at chosen steps. Returns None if it was unable to
/// count the operations in a basic upgrade.
pub fn run_basic_upgrade(&self, permanent: bool) -> Option<i32> {
let (flash, total_count) = self.try_upgrade(None, permanent);
info!("Total flash operation count={}", total_count);
if !self.verify_images(&flash, 0, 1) {
warn!("Image mismatch after first boot");
None
} else {
Some(total_count)
}
}
pub fn run_bootstrap(&self) -> bool {
let mut flash = self.flash.clone();
let mut fails = 0;
if Caps::Bootstrap.present() {
info!("Try bootstraping image in the primary");
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Failed first boot");
fails += 1;
}
if !self.verify_images(&flash, 0, 1) {
warn!("Image in the first slot was not bootstrapped");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
}
if fails > 0 {
error!("Expected trailer on secondary slot to be erased");
}
fails > 0
}
pub fn run_oversized_bootstrap(&self) -> bool {
let mut flash = self.flash.clone();
let mut fails = 0;
if Caps::Bootstrap.present() {
info!("Try bootstraping image in the primary");
let boot_result = c::boot_go(&mut flash, &self.areadesc, None, None, false).interrupted();
if boot_result {
warn!("Failed first boot");
fails += 1;
}
if self.verify_images(&flash, 0, 1) {
warn!("Image in the first slot was not bootstrapped");
fails += 1;
}
if self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
}
if fails > 0 {
error!("Expected trailer on secondary slot to be erased");
}
fails > 0
}
/// Test a simple upgrade, with dependencies given, and verify that the
/// image does as is described in the test.
pub fn run_check_deps(&self, deps: &DepTest) -> bool {
if !Caps::modifies_flash() {
return false;
}
let (flash, _) = self.try_upgrade(None, true);
self.verify_dep_images(&flash, deps)
}
fn is_swap_upgrade(&self) -> bool {
Caps::SwapUsingScratch.present() || Caps::SwapUsingMove.present()
}
pub fn run_basic_revert(&self) -> bool {
if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
return false;
}
let mut fails = 0;
// FIXME: this test would also pass if no swap is ever performed???
if self.is_swap_upgrade() {
for count in 2 .. 5 {
info!("Try revert: {}", count);
let flash = self.try_revert(count);
if !self.verify_images(&flash, 0, 0) {
error!("Revert failure on count {}", count);
fails += 1;
}
}
}
fails > 0
}
pub fn run_perm_with_fails(&self) -> bool {
if !Caps::modifies_flash() {
return false;
}
let mut fails = 0;
let total_flash_ops = self.total_count.unwrap();
// Let's try an image halfway through.
for i in 1 .. total_flash_ops {
info!("Try interruption at {}", i);
let (flash, count) = self.try_upgrade(Some(i), true);
info!("Second boot, count={}", count);
if !self.verify_images(&flash, 0, 1) {
warn!("FAIL at step {} of {}", i, total_flash_ops);
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot");
fails += 1;
}
if self.is_swap_upgrade() && !self.verify_images(&flash, 1, 0) {
warn!("Secondary slot FAIL at step {} of {}",
i, total_flash_ops);
fails += 1;
}
}
if fails > 0 {
error!("{} out of {} failed {:.2}%", fails, total_flash_ops,
fails as f32 * 100.0 / total_flash_ops as f32);
}
fails > 0
}
pub fn run_perm_with_random_fails(&self, total_fails: usize) -> bool {
if !Caps::modifies_flash() {
return false;
}
let mut fails = 0;
let total_flash_ops = self.total_count.unwrap();
let (flash, total_counts) = self.try_random_fails(total_flash_ops, total_fails);
info!("Random interruptions at reset points={:?}", total_counts);
let primary_slot_ok = self.verify_images(&flash, 0, 1);
let secondary_slot_ok = if self.is_swap_upgrade() {
// TODO: This result is ignored.
self.verify_images(&flash, 1, 0)
} else {
true
};
if !primary_slot_ok || !secondary_slot_ok {
error!("Image mismatch after random interrupts: primary slot={} \
secondary slot={}",
if primary_slot_ok { "ok" } else { "fail" },
if secondary_slot_ok { "ok" } else { "fail" });
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
error!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
error!("Mismatched trailer for the secondary slot");
fails += 1;
}
if fails > 0 {
error!("Error testing perm upgrade with {} fails", total_fails);
}
fails > 0
}
pub fn run_revert_with_fails(&self) -> bool {
if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
return false;
}
let mut fails = 0;
if self.is_swap_upgrade() {
for i in 1 .. self.total_count.unwrap() {
info!("Try interruption at {}", i);
if self.try_revert_with_fail_at(i) {
error!("Revert failed at interruption {}", i);
fails += 1;
}
}
}
fails > 0
}
pub fn run_norevert(&self) -> bool {
if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
return false;
}
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try norevert");
// First do a normal upgrade...
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Failed first boot");
fails += 1;
}
//FIXME: copy_done is written by boot_go, is it ok if no copy
// was ever done?
if !self.verify_images(&flash, 0, 1) {
warn!("Primary slot image verification FAIL");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot");
fails += 1;
}
// Marks image in the primary slot as permanent,
// no revert should happen...
self.mark_permanent_upgrades(&mut flash, 0);
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Failed second boot");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_images(&flash, 0, 1) {
warn!("Failed image verification");
fails += 1;
}
if fails > 0 {
error!("Error running upgrade without revert");
}
fails > 0
}
// Test taht too big upgrade image will be rejected
pub fn run_oversizefail_upgrade(&self) -> bool {
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try upgrade image with to big size");
// Only perform this test if an upgrade is expected to happen.
if !Caps::modifies_flash() {
info!("Skipping upgrade image with bad signature");
return false;
}
self.mark_upgrades(&mut flash, 0);
self.mark_permanent_upgrades(&mut flash, 0);
self.mark_upgrades(&mut flash, 1);
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
warn!("1. Mismatched trailer for the primary slot");
fails += 1;
}
// Run the bootloader...
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Failed first boot");
fails += 1;
}
// State should not have changed
if !self.verify_images(&flash, 0, 0) {
warn!("Failed image verification");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
warn!("2. Mismatched trailer for the primary slot");
fails += 1;
}
if fails > 0 {
error!("Expected an upgrade failure when image has to big size");
}
fails > 0
}
// Test that an upgrade is rejected. Assumes that the image was build
// such that the upgrade is instead a downgrade.
pub fn run_nodowngrade(&self) -> bool {
if !Caps::DowngradePrevention.present() {
return false;
}
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try no downgrade");
// First, do a normal upgrade.
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Failed first boot");
fails += 1;
}
if !self.verify_images(&flash, 0, 0) {
warn!("Failed verification after downgrade rejection");
fails += 1;
}
if fails > 0 {
error!("Error testing downgrade rejection");
}
fails > 0
}
// Tests a new image written to the primary slot that already has magic and
// image_ok set while there is no image on the secondary slot, so no revert
// should ever happen...
pub fn run_norevert_newimage(&self) -> bool {
if !Caps::modifies_flash() {
info!("Skipping run_norevert_newimage, as configuration doesn't modify flash");
return false;
}
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try non-revert on imgtool generated image");
self.mark_upgrades(&mut flash, 0);
// This simulates writing an image created by imgtool to
// the primary slot
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
// Run the bootloader...
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Failed first boot");
fails += 1;
}
// State should not have changed
if !self.verify_images(&flash, 0, 0) {
warn!("Failed image verification");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot");
fails += 1;
}
if fails > 0 {
error!("Expected a non revert with new image");
}
fails > 0
}
// Tests a new image written to the primary slot that already has magic and
// image_ok set while there is no image on the secondary slot, so no revert
// should ever happen...
pub fn run_signfail_upgrade(&self) -> bool {
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try upgrade image with bad signature");
// Only perform this test if an upgrade is expected to happen.
if !Caps::modifies_flash() {
info!("Skipping upgrade image with bad signature");
return false;
}
self.mark_upgrades(&mut flash, 0);
self.mark_permanent_upgrades(&mut flash, 0);
self.mark_upgrades(&mut flash, 1);
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
// Run the bootloader...
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Failed first boot");
fails += 1;
}
// State should not have changed
if !self.verify_images(&flash, 0, 0) {
warn!("Failed image verification");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if fails > 0 {
error!("Expected an upgrade failure when image has bad signature");
}
fails > 0
}
// Should detect there is a leftover trailer in an otherwise erased
// secondary slot and erase its trailer.
pub fn run_secondary_leftover_trailer(&self) -> bool {
if !Caps::modifies_flash() {
return false;
}
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try with a leftover trailer in the secondary; must be erased");
// Add a trailer on the secondary slot
self.mark_permanent_upgrades(&mut flash, 1);
self.mark_upgrades(&mut flash, 1);
// Run the bootloader...
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Failed first boot");
fails += 1;
}
// State should not have changed
if !self.verify_images(&flash, 0, 0) {
warn!("Failed image verification");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot");
fails += 1;
}
if fails > 0 {
error!("Expected trailer on secondary slot to be erased");
}
fails > 0
}
fn trailer_sz(&self, align: usize) -> usize {
c::boot_trailer_sz(align as u32) as usize
}
fn status_sz(&self, align: usize) -> usize {
c::boot_status_sz(align as u32) as usize
}
/// This test runs a simple upgrade with no fails in the images, but
/// allowing for fails in the status area. This should run to the end
/// and warn that write fails were detected...
pub fn run_with_status_fails_complete(&self) -> bool {
if !Caps::ValidatePrimarySlot.present() || !Caps::modifies_flash() {
return false;
}
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try swap with status fails");
self.mark_permanent_upgrades(&mut flash, 1);
self.mark_bad_status_with_rate(&mut flash, 0, 1.0);
let result = c::boot_go(&mut flash, &self.areadesc, None, None, true);
if !result.success() {
warn!("Failed!");
fails += 1;
}
// Failed writes to the marked "bad" region don't assert anymore.
// Any detected assert() is happening in another part of the code.
if result.asserts() != 0 {
warn!("At least one assert() was called");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_images(&flash, 0, 1) {
warn!("Failed image verification");
fails += 1;
}
info!("validate primary slot enabled; \
re-run of boot_go should just work");
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Failed!");
fails += 1;
}
if fails > 0 {
error!("Error running upgrade with status write fails");
}
fails > 0
}
/// This test runs a simple upgrade with no fails in the images, but
/// allowing for fails in the status area. This should run to the end
/// and warn that write fails were detected...
pub fn run_with_status_fails_with_reset(&self) -> bool {
if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
false
} else if Caps::ValidatePrimarySlot.present() {
let mut flash = self.flash.clone();
let mut fails = 0;
let mut count = self.total_count.unwrap() / 2;
//info!("count={}\n", count);
info!("Try interrupted swap with status fails");
self.mark_permanent_upgrades(&mut flash, 1);
self.mark_bad_status_with_rate(&mut flash, 0, 0.5);
// Should not fail, writing to bad regions does not assert
let asserts = c::boot_go(&mut flash, &self.areadesc,
Some(&mut count), None, true).asserts();
if asserts != 0 {
warn!("At least one assert() was called");
fails += 1;
}
self.reset_bad_status(&mut flash, 0);
info!("Resuming an interrupted swap operation");
let asserts = c::boot_go(&mut flash, &self.areadesc, None, None,
true).asserts();
// This might throw no asserts, for large sector devices, where
// a single failure writing is indistinguishable from no failure,
// or throw a single assert for small sector devices that fail
// multiple times...
if asserts > 1 {
warn!("Expected single assert validating the primary slot, \
more detected {}", asserts);
fails += 1;
}
if fails > 0 {
error!("Error running upgrade with status write fails");
}
fails > 0
} else {
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try interrupted swap with status fails");
self.mark_permanent_upgrades(&mut flash, 1);
self.mark_bad_status_with_rate(&mut flash, 0, 1.0);
// This is expected to fail while writing to bad regions...
let asserts = c::boot_go(&mut flash, &self.areadesc, None, None,
true).asserts();
if asserts == 0 {
warn!("No assert() detected");
fails += 1;
}
fails > 0
}
}
/// Test the direct XIP configuration. With this mode, flash images are never moved, and the
/// bootloader merely selects which partition is the proper one to boot.
pub fn run_direct_xip(&self) -> bool {
if !Caps::DirectXip.present() {
return false;
}
// Clone the flash so we can tell if unchanged.
let mut flash = self.flash.clone();
let result = c::boot_go(&mut flash, &self.areadesc, None, None, true);
// Ensure the boot was successful.
let resp = if let Some(resp) = result.resp() {
resp
} else {
panic!("Boot didn't return a valid result");
};
// This configuration should always try booting from the first upgrade slot.
if let Some((offset, _, dev_id)) = self.areadesc.find(FlashId::Image1) {
assert_eq!(offset, resp.image_off as usize);
assert_eq!(dev_id, resp.flash_dev_id);
} else {
panic!("Unable to find upgrade image");
}
false
}
/// Test the ram-loading.
pub fn run_ram_load(&self) -> bool {
if !Caps::RamLoad.present() {
return false;
}
// Clone the flash so we can tell if unchanged.
let mut flash = self.flash.clone();
// Setup ram based on the ram configuration we determined earlier for the images.
let ram = RamBlock::new(self.ram.total - RAM_LOAD_ADDR, RAM_LOAD_ADDR);
// println!("Ram: {:#?}", self.ram);
// Verify that the images area loaded into this.
let result = ram.invoke(|| c::boot_go(&mut flash, &self.areadesc, None,
None, true));
if !result.success() {
error!("Failed to execute ram-load");
return true;
}
// Verify each image.
for image in &self.images {
let place = self.ram.lookup(&image.slots[0]);
let ram_image = ram.borrow_part(place.offset as usize - RAM_LOAD_ADDR as usize,
place.size as usize);
let src_sz = image.upgrades.size();
if src_sz > ram_image.len() {
error!("Image ended up too large, nonsensical");
return true;
}
let src_image = &image.upgrades.plain[0..src_sz];
let ram_image = &ram_image[0..src_sz];
if ram_image != src_image {
error!("Image not loaded correctly");
return true;
}
}
return false;
}
/// Test the split ram-loading.
pub fn run_split_ram_load(&self) -> bool {
if !Caps::RamLoad.present() {
return false;
}
// Clone the flash so we can tell if unchanged.
let mut flash = self.flash.clone();
// Setup ram based on the ram configuration we determined earlier for the images.
let ram = RamBlock::new(self.ram.total - RAM_LOAD_ADDR, RAM_LOAD_ADDR);
for (idx, _image) in (&self.images).iter().enumerate() {
// Verify that the images area loaded into this.
let result = ram.invoke(|| c::boot_go(&mut flash, &self.areadesc,
None, Some(idx as i32), true));
if !result.success() {
error!("Failed to execute ram-load");
return true;
}
}
// Verify each image.
for image in &self.images {
let place = self.ram.lookup(&image.slots[0]);
let ram_image = ram.borrow_part(place.offset as usize - RAM_LOAD_ADDR as usize,
place.size as usize);
let src_sz = image.upgrades.size();
if src_sz > ram_image.len() {
error!("Image ended up too large, nonsensical");
return true;
}
let src_image = &image.upgrades.plain[0..src_sz];
let ram_image = &ram_image[0..src_sz];
if ram_image != src_image {
error!("Image not loaded correctly");
return true;
}
}
return false;
}
pub fn run_hw_rollback_prot(&self) -> bool {
if !Caps::HwRollbackProtection.present() {
return false;
}
let mut flash = self.flash.clone();
// set the "stored" security counter to a fixed value.
c::set_security_counter(0, 30);
let result = c::boot_go(&mut flash, &self.areadesc, None, None, true);
if result.success() {
warn!("Successful boot when it did not suppose to happen!");
return true;
}
let counter_val = c::get_security_counter(0);
if counter_val != 30 {
warn!("Counter was changed when it did not suppose to!");
return true;
}
false
}
pub fn run_ram_load_boot_with_result(&self, expected_result: bool) -> bool {
if !Caps::RamLoad.present() {
return false;
}
// Clone the flash so we can tell if unchanged.
let mut flash = self.flash.clone();
// Create RAM config.
let ram = RamBlock::new(self.ram.total - RAM_LOAD_ADDR, RAM_LOAD_ADDR);
// Run the bootloader, and verify that it couldn't run to completion.
let result = ram.invoke(|| c::boot_go(&mut flash, &self.areadesc, None,
None, true));
if result.success() != expected_result {
error!("RAM load boot result was not of the expected value! (was: {}, expected: {})", result.success(), expected_result);
return true;
}
false
}
/// Adds a new flash area that fails statistically
fn mark_bad_status_with_rate(&self, flash: &mut SimMultiFlash, slot: usize,
rate: f32) {
if Caps::OverwriteUpgrade.present() {
return;
}
// Set this for each image.
for image in &self.images {
let dev_id = &image.slots[slot].dev_id;
let dev = flash.get_mut(&dev_id).unwrap();
let align = dev.align();
let off = &image.slots[slot].base_off;
let len = &image.slots[slot].len;
let status_off = off + len - self.trailer_sz(align);
// Mark the status area as a bad area
let _ = dev.add_bad_region(status_off, self.status_sz(align), rate);
}
}
fn reset_bad_status(&self, flash: &mut SimMultiFlash, slot: usize) {
if !Caps::ValidatePrimarySlot.present() {
return;
}
for image in &self.images {
let dev_id = &image.slots[slot].dev_id;
let dev = flash.get_mut(&dev_id).unwrap();
dev.reset_bad_regions();
// Disabling write verification the only assert triggered by
// boot_go should be checking for integrity of status bytes.
dev.set_verify_writes(false);
}
}
/// Test a boot, optionally stopping after 'n' flash options. Returns a count
/// of the number of flash operations done total.
fn try_upgrade(&self, stop: Option<i32>, permanent: bool) -> (SimMultiFlash, i32) {
// Clone the flash to have a new copy.
let mut flash = self.flash.clone();
if permanent {
self.mark_permanent_upgrades(&mut flash, 1);
}
let mut counter = stop.unwrap_or(0);
let (first_interrupted, count) = match c::boot_go(&mut flash,
&self.areadesc,
Some(&mut counter),
None, false) {
x if x.interrupted() => (true, stop.unwrap()),
x if x.success() => (false, -counter),
x => panic!("Unknown return: {:?}", x),
};
counter = 0;
if first_interrupted {
// fl.dump();
match c::boot_go(&mut flash, &self.areadesc, Some(&mut counter),
None, false) {
x if x.interrupted() => panic!("Shouldn't stop again"),
x if x.success() => (),
x => panic!("Unknown return: {:?}", x),
}
}
(flash, count - counter)
}
fn try_revert(&self, count: usize) -> SimMultiFlash {
let mut flash = self.flash.clone();
// fl.write_file("image0.bin").unwrap();
for i in 0 .. count {
info!("Running boot pass {}", i + 1);
assert!(c::boot_go(&mut flash, &self.areadesc, None, None, false).success_no_asserts());
}
flash
}
fn try_revert_with_fail_at(&self, stop: i32) -> bool {
let mut flash = self.flash.clone();
let mut fails = 0;
let mut counter = stop;
if !c::boot_go(&mut flash, &self.areadesc, Some(&mut counter), None,
false).interrupted() {
warn!("Should have stopped test at interruption point");
fails += 1;
}
// In a multi-image setup, copy done might be set if any number of
// images was already successfully swapped.
if !self.verify_trailers_loose(&flash, 0, None, None, BOOT_FLAG_UNSET) {
warn!("copy_done should be unset");
fails += 1;
}
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Should have finished test upgrade");
fails += 1;
}
if !self.verify_images(&flash, 0, 1) {
warn!("Image in the primary slot before revert is invalid at stop={}",
stop);
fails += 1;
}
if !self.verify_images(&flash, 1, 0) {
warn!("Image in the secondary slot before revert is invalid at stop={}",
stop);
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot before revert");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot before revert");
fails += 1;
}
// Do Revert
let mut counter = stop;
if !c::boot_go(&mut flash, &self.areadesc, Some(&mut counter), None,
false).interrupted() {
warn!("Should have stopped revert at interruption point");
fails += 1;
}
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Should have finished revert upgrade");
fails += 1;
}
if !self.verify_images(&flash, 0, 0) {
warn!("Image in the primary slot after revert is invalid at stop={}",
stop);
fails += 1;
}
if !self.verify_images(&flash, 1, 1) {
warn!("Image in the secondary slot after revert is invalid at stop={}",
stop);
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot after revert");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot after revert");
fails += 1;
}
if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
warn!("Should have finished 3rd boot");
fails += 1;
}
if !self.verify_images(&flash, 0, 0) {
warn!("Image in the primary slot is invalid on 1st boot after revert");
fails += 1;
}
if !self.verify_images(&flash, 1, 1) {
warn!("Image in the secondary slot is invalid on 1st boot after revert");
fails += 1;
}
fails > 0
}
fn try_random_fails(&self, total_ops: i32, count: usize) -> (SimMultiFlash, Vec<i32>) {
let mut flash = self.flash.clone();
self.mark_permanent_upgrades(&mut flash, 1);
let mut rng = rand::thread_rng();
let mut resets = vec![0i32; count];
let mut remaining_ops = total_ops;
for reset in &mut resets {
let reset_counter = rng.gen_range(1 ..= remaining_ops / 2);
let mut counter = reset_counter;
match c::boot_go(&mut flash, &self.areadesc, Some(&mut counter),
None, false) {
x if x.interrupted() => (),
x => panic!("Unknown return: {:?}", x),
}
remaining_ops -= reset_counter;
*reset = reset_counter;
}
match c::boot_go(&mut flash, &self.areadesc, None, None, false) {
x if x.interrupted() => panic!("Should not be have been interrupted!"),
x if x.success() => (),
x => panic!("Unknown return: {:?}", x),
}
(flash, resets)
}
/// Verify the image in the given flash device, the specified slot
/// against the expected image.
fn verify_images(&self, flash: &SimMultiFlash, slot: usize, against: usize) -> bool {
self.images.iter().all(|image| {
verify_image(flash, &image.slots[slot],
match against {
0 => &image.primaries,
1 => &image.upgrades,
_ => panic!("Invalid 'against'")
})
})
}
/// Verify the images, according to the dependency test.
fn verify_dep_images(&self, flash: &SimMultiFlash, deps: &DepTest) -> bool {
for (image_num, (image, upgrade)) in self.images.iter().zip(deps.upgrades.iter()).enumerate() {
info!("Upgrade: slot:{}, {:?}", image_num, upgrade);
if !verify_image(flash, &image.slots[0],
match upgrade {
UpgradeInfo::Upgraded => &image.upgrades,
UpgradeInfo::Held => &image.primaries,
}) {
error!("Failed to upgrade properly: image: {}, upgrade: {:?}", image_num, upgrade);
return true;
}
}
false
}
/// Verify that at least one of the trailers of the images have the
/// specified values.
fn verify_trailers_loose(&self, flash: &SimMultiFlash, slot: usize,
magic: Option<u8>, image_ok: Option<u8>,
copy_done: Option<u8>) -> bool {
self.images.iter().any(|image| {
verify_trailer(flash, &image.slots[slot],
magic, image_ok, copy_done)
})
}
/// Verify that the trailers of the images have the specified
/// values.
fn verify_trailers(&self, flash: &SimMultiFlash, slot: usize,
magic: Option<u8>, image_ok: Option<u8>,
copy_done: Option<u8>) -> bool {
self.images.iter().all(|image| {
verify_trailer(flash, &image.slots[slot],
magic, image_ok, copy_done)
})
}
/// Mark each of the images for permanent upgrade.
fn mark_permanent_upgrades(&self, flash: &mut SimMultiFlash, slot: usize) {
for image in &self.images {
mark_permanent_upgrade(flash, &image.slots[slot]);
}
}
/// Mark each of the images for permanent upgrade.
fn mark_upgrades(&self, flash: &mut SimMultiFlash, slot: usize) {
for image in &self.images {
mark_upgrade(flash, &image.slots[slot]);
}
}
/// Dump out the flash image(s) to one or more files for debugging
/// purposes. The names will be written as either "{prefix}.mcubin" or
/// "{prefix}-001.mcubin" depending on how many images there are.
pub fn debug_dump(&self, prefix: &str) {
for (id, fdev) in &self.flash {
let name = if self.flash.len() == 1 {
format!("{}.mcubin", prefix)
} else {
format!("{}-{:>0}.mcubin", prefix, id)
};
fdev.write_file(&name).unwrap();
}
}
}
impl RamData {
// TODO: This is not correct. The second slot of each image should be at the same address as
// the primary.
fn new(slots: &[[SlotInfo; 2]]) -> RamData {
let mut addr = RAM_LOAD_ADDR;
let mut places = BTreeMap::new();
// println!("Setup:-------------");
for imgs in slots {
for si in imgs {
// println!("Setup: si: {:?}", si);
let offset = addr;
let size = si.len as u32;
places.insert(SlotKey {
dev_id: si.dev_id,
base_off: si.base_off,
}, SlotPlace { offset, size });
// println!(" load: offset: {}, size: {}", offset, size);
}
addr += imgs[0].len as u32;
}
RamData {
places,
total: addr,
}
}
/// Lookup the ram data associated with a given flash partition. We just panic if not present,
/// because all slots used should be in the map.
fn lookup(&self, slot: &SlotInfo) -> &SlotPlace {
self.places.get(&SlotKey{dev_id: slot.dev_id, base_off: slot.base_off})
.expect("RamData should contain all slots")
}
}
/// Show the flash layout.
#[allow(dead_code)]
fn show_flash(flash: &dyn Flash) {
println!("---- Flash configuration ----");
for sector in flash.sector_iter() {
println!(" {:3}: 0x{:08x}, 0x{:08x}",
sector.num, sector.base, sector.size);
}
println!();
}
#[derive(Debug)]
enum ImageSize {
/// Make the image the specified given size.
Given(usize),
/// Make the image as large as it can be for the partition/device.
Largest,
/// Make the image quite larger than it can be for the partition/device/
Oversized,
}
#[cfg(not(feature = "max-align-32"))]
fn tralier_estimation(dev: &dyn Flash) -> usize {
c::boot_trailer_sz(dev.align() as u32) as usize
}
#[cfg(feature = "max-align-32")]
fn tralier_estimation(dev: &dyn Flash) -> usize {
let sector_size = dev.sector_iter().next().unwrap().size as u32;
align_up(c::boot_trailer_sz(dev.align() as u32), sector_size) as usize
}
fn image_largest_trailer(dev: &dyn Flash) -> usize {
// Using the header size we know, the trailer size, and the slot size, we can compute
// the largest image possible.
let trailer = if Caps::OverwriteUpgrade.present() {
// This computation is incorrect, and we need to figure out the correct size.
// c::boot_status_sz(dev.align() as u32) as usize
16 + 4 * dev.align()
} else if Caps::SwapUsingMove.present() {
let sector_size = dev.sector_iter().next().unwrap().size as u32;
align_up(c::boot_trailer_sz(dev.align() as u32), sector_size) as usize
} else if Caps::SwapUsingScratch.present() {
tralier_estimation(dev)
} else {
panic!("The maximum image size can't be calculated.")
};
trailer
}
/// Install a "program" into the given image. This fakes the image header, or at least all of the
/// fields used by the given code. Returns a copy of the image that was written.
fn install_image(flash: &mut SimMultiFlash, slot: &SlotInfo, len: ImageSize,
ram: &RamData,
deps: &dyn Depender, img_manipulation: ImageManipulation, security_counter:Option<u32>) -> ImageData {
let offset = slot.base_off;
let slot_len = slot.len;
let dev_id = slot.dev_id;
let dev = flash.get_mut(&dev_id).unwrap();
let mut tlv: Box<dyn ManifestGen> = Box::new(make_tlv());
if img_manipulation == ImageManipulation::IgnoreRamLoadFlag {
tlv.set_ignore_ram_load_flag();
}
tlv.set_security_counter(security_counter);
// Add the dependencies early to the tlv.
for dep in deps.my_deps(offset, slot.index) {
tlv.add_dependency(deps.other_id(), &dep);
}
const HDR_SIZE: usize = 32;
let place = ram.lookup(&slot);
let load_addr = if Caps::RamLoad.present() {
match img_manipulation {
ImageManipulation::WrongOffset => u32::MAX,
ImageManipulation::OverlapImages(true) => RAM_LOAD_ADDR,
ImageManipulation::OverlapImages(false) => place.offset - 1,
_ => place.offset
}
} else {
0
};
let len = match len {
ImageSize::Given(size) => size,
ImageSize::Largest => {
let trailer = image_largest_trailer(dev);
let tlv_len = tlv.estimate_size();
info!("slot: 0x{:x}, HDR: 0x{:x}, trailer: 0x{:x}",
slot_len, HDR_SIZE, trailer);
slot_len - HDR_SIZE - trailer - tlv_len
},
ImageSize::Oversized => {
let trailer = image_largest_trailer(dev);
let tlv_len = tlv.estimate_size();
info!("slot: 0x{:x}, HDR: 0x{:x}, trailer: 0x{:x}",
slot_len, HDR_SIZE, trailer);
// the overflow size is rougly estimated to work for all
// configurations. It might be precise if tlv_len will be maked precise.
slot_len - HDR_SIZE - trailer - tlv_len + dev.align()*4
}
};
// Generate a boot header. Note that the size doesn't include the header.
let header = ImageHeader {
magic: tlv.get_magic(),
load_addr,
hdr_size: HDR_SIZE as u16,
protect_tlv_size: tlv.protect_size(),
img_size: len as u32,
flags: tlv.get_flags(),
ver: deps.my_version(offset, slot.index),
_pad2: 0,
};
let mut b_header = [0; HDR_SIZE];
b_header[..32].clone_from_slice(header.as_raw());
assert_eq!(b_header.len(), HDR_SIZE);
tlv.add_bytes(&b_header);
// The core of the image itself is just pseudorandom data.
let mut b_img = vec![0; len];
splat(&mut b_img, offset);
// Add some information at the start of the payload to make it easier
// to see what it is. This will fail if the image itself is too small.
{
let mut wr = Cursor::new(&mut b_img);
writeln!(&mut wr, "offset: {:#x}, dev_id: {:#x}, slot_info: {:?}",
offset, dev_id, slot).unwrap();
writeln!(&mut wr, "version: {:?}", deps.my_version(offset, slot.index)).unwrap();
}
// TLV signatures work over plain image
tlv.add_bytes(&b_img);
// Generate encrypted images
let flag = TlvFlags::ENCRYPTED_AES128 as u32 | TlvFlags::ENCRYPTED_AES256 as u32;
let is_encrypted = (tlv.get_flags() & flag) != 0;
let mut b_encimg = vec![];
if is_encrypted {
let flag = TlvFlags::ENCRYPTED_AES256 as u32;
let aes256 = (tlv.get_flags() & flag) == flag;
tlv.generate_enc_key();
let enc_key = tlv.get_enc_key();
let nonce = GenericArray::from_slice(&[0; 16]);
b_encimg = b_img.clone();
if aes256 {
let key: &GenericArray<u8, U32> = GenericArray::from_slice(enc_key.as_slice());
let block = Aes256::new(&key);
let mut cipher = Aes256Ctr::from_block_cipher(block, &nonce);
cipher.apply_keystream(&mut b_encimg);
} else {
let key: &GenericArray<u8, U16> = GenericArray::from_slice(enc_key.as_slice());
let block = Aes128::new(&key);
let mut cipher = Aes128Ctr::from_block_cipher(block, &nonce);
cipher.apply_keystream(&mut b_encimg);
}
}
// Build the TLV itself.
if img_manipulation == ImageManipulation::BadSignature {
tlv.corrupt_sig();
}
let mut b_tlv = tlv.make_tlv();
let mut buf = vec![];
buf.append(&mut b_header.to_vec());
buf.append(&mut b_img);
buf.append(&mut b_tlv.clone());
// Pad the buffer to a multiple of the flash alignment.
let align = dev.align();
let image_sz = buf.len();
while buf.len() % align != 0 {
buf.push(dev.erased_val());
}
let mut encbuf = vec![];
if is_encrypted {
encbuf.append(&mut b_header.to_vec());
encbuf.append(&mut b_encimg);
encbuf.append(&mut b_tlv);
while encbuf.len() % align != 0 {
encbuf.push(dev.erased_val());
}
}
// Since images are always non-encrypted in the primary slot, we first write
// an encrypted image, re-read to use for verification, erase + flash
// un-encrypted. In the secondary slot the image is written un-encrypted,
// and if encryption is requested, it follows an erase + flash encrypted.
//
// In the case of ram-load when encryption is enabled both slots have to
// be encrypted so in the event when the image is in the primary slot
// the verification will fail as the image is not encrypted.
if slot.index == 0 && !Caps::RamLoad.present() {
let enc_copy: Option<Vec<u8>>;
if is_encrypted {
dev.write(offset, &encbuf).unwrap();
let mut enc = vec![0u8; encbuf.len()];
dev.read(offset, &mut enc).unwrap();
enc_copy = Some(enc);
dev.erase(offset, slot_len).unwrap();
} else {
enc_copy = None;
}
dev.write(offset, &buf).unwrap();
let mut copy = vec![0u8; buf.len()];
dev.read(offset, &mut copy).unwrap();
ImageData {
size: image_sz,
plain: copy,
cipher: enc_copy,
}
} else {
dev.write(offset, &buf).unwrap();
let mut copy = vec![0u8; buf.len()];
dev.read(offset, &mut copy).unwrap();
let enc_copy: Option<Vec<u8>>;
if is_encrypted {
dev.erase(offset, slot_len).unwrap();
dev.write(offset, &encbuf).unwrap();
let mut enc = vec![0u8; encbuf.len()];
dev.read(offset, &mut enc).unwrap();
enc_copy = Some(enc);
} else {
enc_copy = None;
}
ImageData {
size: image_sz,
plain: copy,
cipher: enc_copy,
}
}
}
/// Install no image. This is used when no upgrade happens.
fn install_no_image() -> ImageData {
ImageData {
size: 0,
plain: vec![],
cipher: None,
}
}
/// Construct a TLV generator based on how MCUboot is currently configured. The returned
/// ManifestGen will generate the appropriate entries based on this configuration.
fn make_tlv() -> TlvGen {
let aes_key_size = if Caps::Aes256.present() { 256 } else { 128 };
if Caps::EncKw.present() {
if Caps::RSA2048.present() {
TlvGen::new_rsa_kw(aes_key_size)
} else if Caps::EcdsaP256.present() {
TlvGen::new_ecdsa_kw(aes_key_size)
} else {
TlvGen::new_enc_kw(aes_key_size)
}
} else if Caps::EncRsa.present() {
if Caps::RSA2048.present() {
TlvGen::new_sig_enc_rsa(aes_key_size)
} else {
TlvGen::new_enc_rsa(aes_key_size)
}
} else if Caps::EncEc256.present() {
if Caps::EcdsaP256.present() {
TlvGen::new_ecdsa_ecies_p256(aes_key_size)
} else {
TlvGen::new_ecies_p256(aes_key_size)
}
} else if Caps::EncX25519.present() {
if Caps::Ed25519.present() {
TlvGen::new_ed25519_ecies_x25519(aes_key_size)
} else {
TlvGen::new_ecies_x25519(aes_key_size)
}
} else {
// The non-encrypted configuration.
if Caps::RSA2048.present() {
TlvGen::new_rsa_pss()
} else if Caps::RSA3072.present() {
TlvGen::new_rsa3072_pss()
} else if Caps::EcdsaP256.present() {
TlvGen::new_ecdsa()
} else if Caps::Ed25519.present() {
TlvGen::new_ed25519()
} else if Caps::HwRollbackProtection.present() {
TlvGen::new_sec_cnt()
} else {
TlvGen::new_hash_only()
}
}
}
impl ImageData {
/// Find the image contents for the given slot. This assumes that slot 0
/// is unencrypted, and slot 1 is encrypted.
fn find(&self, slot: usize) -> &Vec<u8> {
let encrypted = Caps::EncRsa.present() || Caps::EncKw.present() ||
Caps::EncEc256.present() || Caps::EncX25519.present();
match (encrypted, slot) {
(false, _) => &self.plain,
(true, 0) => &self.plain,
(true, 1) => self.cipher.as_ref().expect("Invalid image"),
_ => panic!("Invalid slot requested"),
}
}
fn size(&self) -> usize {
self.size
}
}
/// Verify that given image is present in the flash at the given offset.
fn verify_image(flash: &SimMultiFlash, slot: &SlotInfo, images: &ImageData) -> bool {
let image = images.find(slot.index);
let buf = image.as_slice();
let dev_id = slot.dev_id;
let mut copy = vec![0u8; buf.len()];
let offset = slot.base_off;
let dev = flash.get(&dev_id).unwrap();
dev.read(offset, &mut copy).unwrap();
if buf != &copy[..] {
for i in 0 .. buf.len() {
if buf[i] != copy[i] {
info!("First failure for slot{} at {:#x} ({:#x} within) {:#x}!={:#x}",
slot.index, offset + i, i, buf[i], copy[i]);
break;
}
}
false
} else {
true
}
}
fn verify_trailer(flash: &SimMultiFlash, slot: &SlotInfo,
magic: Option<u8>, image_ok: Option<u8>,
copy_done: Option<u8>) -> bool {
if Caps::OverwriteUpgrade.present() {
return true;
}
let offset = slot.trailer_off + c::boot_max_align();
let dev_id = slot.dev_id;
let mut copy = vec![0u8; c::boot_magic_sz() + c::boot_max_align() * 3];
let mut failed = false;
let dev = flash.get(&dev_id).unwrap();
let erased_val = dev.erased_val();
dev.read(offset, &mut copy).unwrap();
failed |= match magic {
Some(v) => {
let magic_off = (c::boot_max_align() * 3) + (c::boot_magic_sz() - MAGIC.len());
if v == 1 && &copy[magic_off..] != MAGIC {
warn!("\"magic\" mismatch at {:#x}", offset);
true
} else if v == 3 {
let expected = [erased_val; 16];
if copy[magic_off..] != expected {
warn!("\"magic\" mismatch at {:#x}", offset);
true
} else {
false
}
} else {
false
}
},
None => false,
};
failed |= match image_ok {
Some(v) => {
let image_ok_off = c::boot_max_align() * 2;
if (v == 1 && copy[image_ok_off] != v) || (v == 3 && copy[image_ok_off] != erased_val) {
warn!("\"image_ok\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[image_ok_off]);
true
} else {
false
}
},
None => false,
};
failed |= match copy_done {
Some(v) => {
let copy_done_off = c::boot_max_align();
if (v == 1 && copy[copy_done_off] != v) || (v == 3 && copy[copy_done_off] != erased_val) {
warn!("\"copy_done\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[copy_done_off]);
true
} else {
false
}
},
None => false,
};
!failed
}
/// Install a partition table. This is a simplified partition table that
/// we write at the beginning of flash so make it easier for external tools
/// to analyze these images.
fn install_ptable(flash: &mut SimMultiFlash, areadesc: &AreaDesc) {
let ids: HashSet<u8> = areadesc.iter_areas().map(|area| area.device_id).collect();
for &id in &ids {
// If there are any partitions in this device that start at 0, and
// aren't marked as the BootLoader partition, avoid adding the
// partition table. This makes it harder to view the image, but
// avoids messing up images already written.
let skip_ptable = areadesc
.iter_areas()
.any(|area| {
area.device_id == id &&
area.off == 0 &&
area.flash_id != FlashId::BootLoader
});
if skip_ptable {
if log_enabled!(Info) {
let special: Vec<FlashId> = areadesc.iter_areas()
.filter(|area| area.device_id == id && area.off == 0)
.map(|area| area.flash_id)
.collect();
info!("Skipping partition table: {:?}", special);
}
break;
}
let mut buf: Vec<u8> = vec![];
write!(&mut buf, "mcuboot\0").unwrap();
// Iterate through all of the partitions in that device, and encode
// into the table.
let count = areadesc.iter_areas().filter(|area| area.device_id == id).count();
buf.write_u32::<LittleEndian>(count as u32).unwrap();
for area in areadesc.iter_areas().filter(|area| area.device_id == id) {
buf.write_u32::<LittleEndian>(area.flash_id as u32).unwrap();
buf.write_u32::<LittleEndian>(area.off).unwrap();
buf.write_u32::<LittleEndian>(area.size).unwrap();
buf.write_u32::<LittleEndian>(0).unwrap();
}
let dev = flash.get_mut(&id).unwrap();
// Pad to alignment.
while buf.len() % dev.align() != 0 {
buf.push(0);
}
dev.write(0, &buf).unwrap();
}
}
/// The image header
#[repr(C)]
#[derive(Debug)]
pub struct ImageHeader {
magic: u32,
load_addr: u32,
hdr_size: u16,
protect_tlv_size: u16,
img_size: u32,
flags: u32,
ver: ImageVersion,
_pad2: u32,
}
impl AsRaw for ImageHeader {}
#[repr(C)]
#[derive(Clone, Debug)]
pub struct ImageVersion {
pub major: u8,
pub minor: u8,
pub revision: u16,
pub build_num: u32,
}
#[derive(Clone, Debug)]
pub struct SlotInfo {
pub base_off: usize,
pub trailer_off: usize,
pub len: usize,
// Which slot within this device.
pub index: usize,
pub dev_id: u8,
}
#[cfg(not(feature = "max-align-32"))]
const MAGIC: &[u8] = &[0x77, 0xc2, 0x95, 0xf3,
0x60, 0xd2, 0xef, 0x7f,
0x35, 0x52, 0x50, 0x0f,
0x2c, 0xb6, 0x79, 0x80];
#[cfg(feature = "max-align-32")]
const MAGIC: &[u8] = &[0x20, 0x00, 0x2d, 0xe1,
0x5d, 0x29, 0x41, 0x0b,
0x8d, 0x77, 0x67, 0x9c,
0x11, 0x0f, 0x1f, 0x8a];
// Replicates defines found in bootutil.h
const BOOT_MAGIC_GOOD: Option<u8> = Some(1);
const BOOT_MAGIC_UNSET: Option<u8> = Some(3);
const BOOT_FLAG_SET: Option<u8> = Some(1);
const BOOT_FLAG_UNSET: Option<u8> = Some(3);
/// Write out the magic so that the loader tries doing an upgrade.
pub fn mark_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo) {
let dev = flash.get_mut(&slot.dev_id).unwrap();
let align = dev.align();
let offset = slot.trailer_off + c::boot_max_align() * 4;
if offset % align != 0 || MAGIC.len() % align != 0 {
// The write size is larger than the magic value. Fill a buffer
// with the erased value, put the MAGIC in it, and write it in its
// entirety.
let mut buf = vec![dev.erased_val(); c::boot_max_align()];
let magic_off = (offset % align) + (c::boot_magic_sz() - MAGIC.len());
buf[magic_off..].copy_from_slice(MAGIC);
dev.write(offset - (offset % align), &buf).unwrap();
} else {
dev.write(offset, MAGIC).unwrap();
}
}
/// Writes the image_ok flag which, guess what, tells the bootloader
/// the this image is ok (not a test, and no revert is to be performed).
fn mark_permanent_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo) {
// Overwrite mode always is permanent, and only the magic is used in
// the trailer. To avoid problems with large write sizes, don't try to
// set anything in this case.
if Caps::OverwriteUpgrade.present() {
return;
}
let dev = flash.get_mut(&slot.dev_id).unwrap();
let align = dev.align();
let mut ok = vec![dev.erased_val(); align];
ok[0] = 1u8;
let off = slot.trailer_off + c::boot_max_align() * 3;
dev.write(off, &ok).unwrap();
}
// Drop some pseudo-random gibberish onto the data.
fn splat(data: &mut [u8], seed: usize) {
let mut seed_block = [0u8; 32];
let mut buf = Cursor::new(&mut seed_block[..]);
buf.write_u32::<LittleEndian>(0x135782ea).unwrap();
buf.write_u32::<LittleEndian>(0x92184728).unwrap();
buf.write_u32::<LittleEndian>(data.len() as u32).unwrap();
buf.write_u32::<LittleEndian>(seed as u32).unwrap();
let mut rng: SmallRng = SeedableRng::from_seed(seed_block);
rng.fill_bytes(data);
}
/// Return a read-only view into the raw bytes of this object
trait AsRaw : Sized {
fn as_raw(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self as *const _ as *const u8,
mem::size_of::<Self>()) }
}
}
/// Determine whether it makes sense to test this configuration with a maximally-sized image.
/// Returns an ImageSize representing the best size to test, possibly just with the given size.
fn maximal(size: usize) -> ImageSize {
if Caps::OverwriteUpgrade.present() ||
Caps::SwapUsingMove.present()
{
ImageSize::Given(size)
} else {
ImageSize::Largest
}
}
pub fn show_sizes() {
// This isn't panic safe.
for min in &[1, 2, 4, 8] {
let msize = c::boot_trailer_sz(*min);
println!("{:2}: {} (0x{:x})", min, msize, msize);
}
}
#[cfg(not(feature = "max-align-32"))]
fn test_alignments() -> &'static [usize] {
&[1, 2, 4, 8]
}
#[cfg(feature = "max-align-32")]
fn test_alignments() -> &'static [usize] {
&[32]
}