blob: deac61ef693485734f00228a629703bd37018515 [file] [log] [blame]
#[macro_use] extern crate log;
extern crate ring;
extern crate aes_ctr;
extern crate base64;
extern crate env_logger;
extern crate docopt;
extern crate libc;
extern crate pem;
extern crate rand;
#[macro_use] extern crate serde_derive;
extern crate serde;
extern crate simflash;
extern crate untrusted;
extern crate mcuboot_sys;
use docopt::Docopt;
use rand::{Rng, SeedableRng, XorShiftRng};
use rand::distributions::{IndependentSample, Range};
use std::fmt;
use std::mem;
use std::process;
use std::slice;
use aes_ctr::Aes128Ctr;
use aes_ctr::stream_cipher::generic_array::GenericArray;
use aes_ctr::stream_cipher::{NewFixStreamCipher, StreamCipherCore};
mod caps;
mod tlv;
pub mod testlog;
use simflash::{Flash, SimFlash, SimFlashMap};
use mcuboot_sys::{c, AreaDesc, FlashId};
use caps::Caps;
use tlv::{TlvGen, TlvFlags, AES_SEC_KEY};
const USAGE: &'static str = "
Mcuboot simulator
Usage:
bootsim sizes
bootsim run --device TYPE [--align SIZE]
bootsim runall
bootsim (--help | --version)
Options:
-h, --help Show this message
--version Version
--device TYPE MCU to simulate
Valid values: stm32f4, k64f
--align SIZE Flash write alignment
";
#[derive(Debug, Deserialize)]
struct Args {
flag_help: bool,
flag_version: bool,
flag_device: Option<DeviceName>,
flag_align: Option<AlignArg>,
cmd_sizes: bool,
cmd_run: bool,
cmd_runall: bool,
}
#[derive(Copy, Clone, Debug, Deserialize)]
pub enum DeviceName { Stm32f4, K64f, K64fBig, Nrf52840, Nrf52840SpiFlash, }
pub static ALL_DEVICES: &'static [DeviceName] = &[
DeviceName::Stm32f4,
DeviceName::K64f,
DeviceName::K64fBig,
DeviceName::Nrf52840,
DeviceName::Nrf52840SpiFlash,
];
impl fmt::Display for DeviceName {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let name = match *self {
DeviceName::Stm32f4 => "stm32f4",
DeviceName::K64f => "k64f",
DeviceName::K64fBig => "k64fbig",
DeviceName::Nrf52840 => "nrf52840",
DeviceName::Nrf52840SpiFlash => "Nrf52840SpiFlash",
};
f.write_str(name)
}
}
#[derive(Debug)]
struct AlignArg(u8);
struct AlignArgVisitor;
impl<'de> serde::de::Visitor<'de> for AlignArgVisitor {
type Value = AlignArg;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("1, 2, 4 or 8")
}
fn visit_u8<E>(self, n: u8) -> Result<Self::Value, E>
where E: serde::de::Error
{
Ok(match n {
1 | 2 | 4 | 8 => AlignArg(n),
n => {
let err = format!("Could not deserialize '{}' as alignment", n);
return Err(E::custom(err));
}
})
}
}
impl<'de> serde::de::Deserialize<'de> for AlignArg {
fn deserialize<D>(d: D) -> Result<AlignArg, D::Error>
where D: serde::de::Deserializer<'de>
{
d.deserialize_u8(AlignArgVisitor)
}
}
pub fn main() {
let args: Args = Docopt::new(USAGE)
.and_then(|d| d.deserialize())
.unwrap_or_else(|e| e.exit());
// println!("args: {:#?}", args);
if args.cmd_sizes {
show_sizes();
return;
}
let mut status = RunStatus::new();
if args.cmd_run {
let align = args.flag_align.map(|x| x.0).unwrap_or(1);
let device = match args.flag_device {
None => panic!("Missing mandatory device argument"),
Some(dev) => dev,
};
status.run_single(device, align, 0xff);
}
if args.cmd_runall {
for &dev in ALL_DEVICES {
for &align in &[1, 2, 4, 8] {
for &erased_val in &[0, 0xff] {
status.run_single(dev, align, erased_val);
}
}
}
}
if status.failures > 0 {
error!("{} Tests ran with {} failures", status.failures + status.passes, status.failures);
process::exit(1);
} else {
error!("{} Tests ran successfully", status.passes);
process::exit(0);
}
}
/// A test run, intended to be run from "cargo test", so panics on failure.
pub struct Run {
flashmap: SimFlashMap,
areadesc: AreaDesc,
slots: [SlotInfo; 2],
}
impl Run {
pub fn new(device: DeviceName, align: u8, erased_val: u8) -> Run {
let (flashmap, areadesc) = make_device(device, align, erased_val);
let (slot0_base, slot0_len, slot0_dev_id) = areadesc.find(FlashId::Image0);
let (slot1_base, slot1_len, slot1_dev_id) = areadesc.find(FlashId::Image1);
// NOTE: not accounting "swap_size" because it is not used by sim...
let offset_from_end = c::boot_magic_sz() + c::boot_max_align() * 2;
// Construct a primary image.
let slot0 = SlotInfo {
base_off: slot0_base as usize,
trailer_off: slot0_base + slot0_len - offset_from_end,
len: slot0_len as usize,
dev_id: slot0_dev_id,
};
// And an upgrade image.
let slot1 = SlotInfo {
base_off: slot1_base as usize,
trailer_off: slot1_base + slot1_len - offset_from_end,
len: slot1_len as usize,
dev_id: slot1_dev_id,
};
Run {
flashmap: flashmap,
areadesc: areadesc,
slots: [slot0, slot1],
}
}
pub fn each_device<F>(f: F)
where F: Fn(&mut Run)
{
for &dev in ALL_DEVICES {
for &align in &[1, 2, 4, 8] {
for &erased_val in &[0, 0xff] {
let mut run = Run::new(dev, align, erased_val);
f(&mut run);
}
}
}
}
/// Construct an `Images` that doesn't expect an upgrade to happen.
pub fn make_no_upgrade_image(&self) -> Images {
let mut flashmap = self.flashmap.clone();
let primaries = install_image(&mut flashmap, &self.slots, 0, 32784, false);
let upgrades = install_image(&mut flashmap, &self.slots, 1, 41928, false);
Images {
flashmap: flashmap,
areadesc: self.areadesc.clone(),
slots: [self.slots[0].clone(), self.slots[1].clone()],
primaries: primaries,
upgrades: upgrades,
total_count: None,
}
}
/// Construct an `Images` for normal testing.
pub fn make_image(&self) -> Images {
let mut images = self.make_no_upgrade_image();
mark_upgrade(&mut images.flashmap, &images.slots[1]);
// upgrades without fails, counts number of flash operations
let total_count = match images.run_basic_upgrade() {
Ok(v) => v,
Err(_) => {
panic!("Unable to perform basic upgrade");
},
};
images.total_count = Some(total_count);
images
}
pub fn make_bad_slot1_image(&self) -> Images {
let mut bad_flashmap = self.flashmap.clone();
let primaries = install_image(&mut bad_flashmap, &self.slots, 0, 32784, false);
let upgrades = install_image(&mut bad_flashmap, &self.slots, 1, 41928, true);
Images {
flashmap: bad_flashmap,
areadesc: self.areadesc.clone(),
slots: [self.slots[0].clone(), self.slots[1].clone()],
primaries: primaries,
upgrades: upgrades,
total_count: None,
}
}
}
pub struct RunStatus {
failures: usize,
passes: usize,
}
impl RunStatus {
pub fn new() -> RunStatus {
RunStatus {
failures: 0,
passes: 0,
}
}
pub fn run_single(&mut self, device: DeviceName, align: u8, erased_val: u8) {
warn!("Running on device {} with alignment {}", device, align);
let run = Run::new(device, align, erased_val);
let mut failed = false;
// Creates a badly signed image in slot1 to check that it is not
// upgraded to
let bad_slot1_image = run.make_bad_slot1_image();
failed |= bad_slot1_image.run_signfail_upgrade();
let images = run.make_no_upgrade_image();
failed |= images.run_norevert_newimage();
let images = run.make_image();
failed |= images.run_basic_revert();
failed |= images.run_revert_with_fails();
failed |= images.run_perm_with_fails();
failed |= images.run_perm_with_random_fails(5);
failed |= images.run_norevert();
failed |= images.run_with_status_fails_complete();
failed |= images.run_with_status_fails_with_reset();
//show_flash(&flash);
if failed {
self.failures += 1;
} else {
self.passes += 1;
}
}
pub fn failures(&self) -> usize {
self.failures
}
}
/// Build the Flash and area descriptor for a given device.
pub fn make_device(device: DeviceName, align: u8, erased_val: u8) -> (SimFlashMap, AreaDesc) {
match device {
DeviceName::Stm32f4 => {
// STM style flash. Large sectors, with a large scratch area.
let flash = SimFlash::new(vec![16 * 1024, 16 * 1024, 16 * 1024, 16 * 1024,
64 * 1024,
128 * 1024, 128 * 1024, 128 * 1024],
align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &flash);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
let mut flashmap = SimFlashMap::new();
flashmap.insert(dev_id, flash);
(flashmap, areadesc)
}
DeviceName::K64f => {
// NXP style flash. Small sectors, one small sector for scratch.
let flash = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &flash);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch, dev_id);
let mut flashmap = SimFlashMap::new();
flashmap.insert(dev_id, flash);
(flashmap, areadesc)
}
DeviceName::K64fBig => {
// Simulating an STM style flash on top of an NXP style flash. Underlying flash device
// uses small sectors, but we tell the bootloader they are large.
let flash = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &flash);
areadesc.add_simple_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_simple_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_simple_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
let mut flashmap = SimFlashMap::new();
flashmap.insert(dev_id, flash);
(flashmap, areadesc)
}
DeviceName::Nrf52840 => {
// Simulating the flash on the nrf52840 with partitions set up so that the scratch size
// does not divide into the image size.
let flash = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &flash);
areadesc.add_image(0x008000, 0x034000, FlashId::Image0, dev_id);
areadesc.add_image(0x03c000, 0x034000, FlashId::Image1, dev_id);
areadesc.add_image(0x070000, 0x00d000, FlashId::ImageScratch, dev_id);
let mut flashmap = SimFlashMap::new();
flashmap.insert(dev_id, flash);
(flashmap, areadesc)
}
DeviceName::Nrf52840SpiFlash => {
// Simulate nrf52840 with external SPI flash. The external SPI flash
// has a larger sector size so for now store scratch on that flash.
let flash0 = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let flash1 = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(0, &flash0);
areadesc.add_flash_sectors(1, &flash1);
areadesc.add_image(0x008000, 0x068000, FlashId::Image0, 0);
areadesc.add_image(0x000000, 0x068000, FlashId::Image1, 1);
areadesc.add_image(0x068000, 0x018000, FlashId::ImageScratch, 1);
let mut flashmap = SimFlashMap::new();
flashmap.insert(0, flash0);
flashmap.insert(1, flash1);
(flashmap, areadesc)
}
}
}
impl Images {
/// A simple upgrade without forced failures.
///
/// Returns the number of flash operations which can later be used to
/// inject failures at chosen steps.
pub fn run_basic_upgrade(&self) -> Result<i32, ()> {
let (flashmap, total_count) = try_upgrade(&self.flashmap, &self, None);
info!("Total flash operation count={}", total_count);
if !verify_image(&flashmap, &self.slots, 0, &self.upgrades) {
warn!("Image mismatch after first boot");
Err(())
} else {
Ok(total_count)
}
}
#[cfg(feature = "overwrite-only")]
pub fn run_basic_revert(&self) -> bool {
false
}
#[cfg(not(feature = "overwrite-only"))]
pub fn run_basic_revert(&self) -> bool {
let mut fails = 0;
// FIXME: this test would also pass if no swap is ever performed???
if Caps::SwapUpgrade.present() {
for count in 2 .. 5 {
info!("Try revert: {}", count);
let flashmap = try_revert(&self.flashmap, &self.areadesc, count);
if !verify_image(&flashmap, &self.slots, 0, &self.primaries) {
error!("Revert failure on count {}", count);
fails += 1;
}
}
}
fails > 0
}
pub fn run_perm_with_fails(&self) -> bool {
let mut fails = 0;
let total_flash_ops = self.total_count.unwrap();
// Let's try an image halfway through.
for i in 1 .. total_flash_ops {
info!("Try interruption at {}", i);
let (flashmap, count) = try_upgrade(&self.flashmap, &self, Some(i));
info!("Second boot, count={}", count);
if !verify_image(&flashmap, &self.slots, 0, &self.upgrades) {
warn!("FAIL at step {} of {}", i, total_flash_ops);
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 1");
fails += 1;
}
if Caps::SwapUpgrade.present() {
if !verify_image(&flashmap, &self.slots, 1, &self.primaries) {
warn!("Slot 1 FAIL at step {} of {}", i, total_flash_ops);
fails += 1;
}
}
}
if fails > 0 {
error!("{} out of {} failed {:.2}%", fails, total_flash_ops,
fails as f32 * 100.0 / total_flash_ops as f32);
}
fails > 0
}
pub fn run_perm_with_random_fails_5(&self) -> bool {
self.run_perm_with_random_fails(5)
}
fn run_perm_with_random_fails(&self, total_fails: usize) -> bool {
let mut fails = 0;
let total_flash_ops = self.total_count.unwrap();
let (flashmap, total_counts) = try_random_fails(&self.flashmap, &self,
total_flash_ops, total_fails);
info!("Random interruptions at reset points={:?}", total_counts);
let slot0_ok = verify_image(&flashmap, &self.slots, 0, &self.upgrades);
let slot1_ok = if Caps::SwapUpgrade.present() {
verify_image(&flashmap, &self.slots, 1, &self.primaries)
} else {
true
};
if !slot0_ok || !slot1_ok {
error!("Image mismatch after random interrupts: slot0={} slot1={}",
if slot0_ok { "ok" } else { "fail" },
if slot1_ok { "ok" } else { "fail" });
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
error!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
error!("Mismatched trailer for Slot 1");
fails += 1;
}
if fails > 0 {
error!("Error testing perm upgrade with {} fails", total_fails);
}
fails > 0
}
#[cfg(feature = "overwrite-only")]
pub fn run_revert_with_fails(&self) -> bool {
false
}
#[cfg(not(feature = "overwrite-only"))]
pub fn run_revert_with_fails(&self) -> bool {
let mut fails = 0;
if Caps::SwapUpgrade.present() {
for i in 1 .. (self.total_count.unwrap() - 1) {
info!("Try interruption at {}", i);
if try_revert_with_fail_at(&self.flashmap, &self, i) {
error!("Revert failed at interruption {}", i);
fails += 1;
}
}
}
fails > 0
}
#[cfg(feature = "overwrite-only")]
pub fn run_norevert(&self) -> bool {
false
}
#[cfg(not(feature = "overwrite-only"))]
pub fn run_norevert(&self) -> bool {
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
info!("Try norevert");
// First do a normal upgrade...
let (result, _) = c::boot_go(&mut flashmap, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
//FIXME: copy_done is written by boot_go, is it ok if no copy
// was ever done?
if !verify_image(&flashmap, &self.slots, 0, &self.upgrades) {
warn!("Slot 0 image verification FAIL");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 1");
fails += 1;
}
// Marks image in slot0 as permanent, no revert should happen...
mark_permanent_upgrade(&mut flashmap, &self.slots[0]);
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
let (result, _) = c::boot_go(&mut flashmap, &self.areadesc, None, false);
if result != 0 {
warn!("Failed second boot");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_image(&flashmap, &self.slots, 0, &self.upgrades) {
warn!("Failed image verification");
fails += 1;
}
if fails > 0 {
error!("Error running upgrade without revert");
}
fails > 0
}
// Tests a new image written to slot0 that already has magic and image_ok set
// while there is no image on slot1, so no revert should ever happen...
pub fn run_norevert_newimage(&self) -> bool {
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
info!("Try non-revert on imgtool generated image");
mark_upgrade(&mut flashmap, &self.slots[0]);
// This simulates writing an image created by imgtool to Slot 0
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
// Run the bootloader...
let (result, _) = c::boot_go(&mut flashmap, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
// State should not have changed
if !verify_image(&flashmap, &self.slots, 0, &self.primaries) {
warn!("Failed image verification");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 1");
fails += 1;
}
if fails > 0 {
error!("Expected a non revert with new image");
}
fails > 0
}
// Tests a new image written to slot0 that already has magic and image_ok set
// while there is no image on slot1, so no revert should ever happen...
pub fn run_signfail_upgrade(&self) -> bool {
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
info!("Try upgrade image with bad signature");
mark_upgrade(&mut flashmap, &self.slots[0]);
mark_permanent_upgrade(&mut flashmap, &self.slots[0]);
mark_upgrade(&mut flashmap, &self.slots[1]);
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
// Run the bootloader...
let (result, _) = c::boot_go(&mut flashmap, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
// State should not have changed
if !verify_image(&flashmap, &self.slots, 0, &self.primaries) {
warn!("Failed image verification");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if fails > 0 {
error!("Expected an upgrade failure when image has bad signature");
}
fails > 0
}
#[cfg(not(feature = "overwrite-only"))]
fn trailer_sz(&self, align: usize) -> usize {
c::boot_trailer_sz(align as u8) as usize
}
// FIXME: could get status sz from bootloader
#[cfg(not(feature = "overwrite-only"))]
#[cfg(not(feature = "enc-rsa"))]
#[cfg(not(feature = "enc-kw"))]
fn status_sz(&self, align: usize) -> usize {
self.trailer_sz(align) - (16 + 24)
}
#[cfg(feature = "enc-rsa")]
#[cfg(not(feature = "overwrite-only"))]
fn status_sz(&self, align: usize) -> usize {
self.trailer_sz(align) - (16 + 24 + 32)
}
#[cfg(feature = "enc-kw")]
#[cfg(not(feature = "overwrite-only"))]
fn status_sz(&self, align: usize) -> usize {
self.trailer_sz(align) - (16 + 24 + 32)
}
/// This test runs a simple upgrade with no fails in the images, but
/// allowing for fails in the status area. This should run to the end
/// and warn that write fails were detected...
#[cfg(not(feature = "validate-slot0"))]
pub fn run_with_status_fails_complete(&self) -> bool { false }
#[cfg(feature = "validate-slot0")]
pub fn run_with_status_fails_complete(&self) -> bool {
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
info!("Try swap with status fails");
mark_permanent_upgrade(&mut flashmap, &self.slots[1]);
self.mark_bad_status_with_rate(&mut flashmap, 0, 1.0);
let (result, asserts) = c::boot_go(&mut flashmap, &self.areadesc, None, true);
if result != 0 {
warn!("Failed!");
fails += 1;
}
// Failed writes to the marked "bad" region don't assert anymore.
// Any detected assert() is happening in another part of the code.
if asserts != 0 {
warn!("At least one assert() was called");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_image(&flashmap, &self.slots, 0, &self.upgrades) {
warn!("Failed image verification");
fails += 1;
}
info!("validate slot0 enabled; re-run of boot_go should just work");
let (result, _) = c::boot_go(&mut flashmap, &self.areadesc, None, false);
if result != 0 {
warn!("Failed!");
fails += 1;
}
if fails > 0 {
error!("Error running upgrade with status write fails");
}
fails > 0
}
/// This test runs a simple upgrade with no fails in the images, but
/// allowing for fails in the status area. This should run to the end
/// and warn that write fails were detected...
#[cfg(feature = "validate-slot0")]
pub fn run_with_status_fails_with_reset(&self) -> bool {
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
let mut count = self.total_count.unwrap() / 2;
//info!("count={}\n", count);
info!("Try interrupted swap with status fails");
mark_permanent_upgrade(&mut flashmap, &self.slots[1]);
self.mark_bad_status_with_rate(&mut flashmap, 0, 0.5);
// Should not fail, writing to bad regions does not assert
let (_, asserts) = c::boot_go(&mut flashmap, &self.areadesc, Some(&mut count), true);
if asserts != 0 {
warn!("At least one assert() was called");
fails += 1;
}
self.reset_bad_status(&mut flashmap, 0);
info!("Resuming an interrupted swap operation");
let (_, asserts) = c::boot_go(&mut flashmap, &self.areadesc, None, true);
// This might throw no asserts, for large sector devices, where
// a single failure writing is indistinguishable from no failure,
// or throw a single assert for small sector devices that fail
// multiple times...
if asserts > 1 {
warn!("Expected single assert validating slot0, more detected {}", asserts);
fails += 1;
}
if fails > 0 {
error!("Error running upgrade with status write fails");
}
fails > 0
}
/// Adds a new flash area that fails statistically
#[cfg(not(feature = "overwrite-only"))]
fn mark_bad_status_with_rate(&self, flashmap: &mut SimFlashMap, slot: usize,
rate: f32) {
let dev_id = &self.slots[slot].dev_id;
let flash = flashmap.get_mut(&dev_id).unwrap();
let align = flash.align();
let off = &self.slots[0].base_off;
let len = &self.slots[0].len;
let status_off = off + len - self.trailer_sz(align);
// Mark the status area as a bad area
let _ = flash.add_bad_region(status_off, self.status_sz(align), rate);
}
#[cfg(feature = "validate-slot0")]
fn reset_bad_status(&self, flashmap: &mut SimFlashMap, slot: usize) {
let dev_id = &self.slots[slot].dev_id;
let flash = flashmap.get_mut(&dev_id).unwrap();
flash.reset_bad_regions();
// Disabling write verification the only assert triggered by
// boot_go should be checking for integrity of status bytes.
flash.set_verify_writes(false);
}
#[cfg(not(feature = "validate-slot0"))]
#[cfg(not(feature = "overwrite-only"))]
pub fn run_with_status_fails_with_reset(&self) -> bool {
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
info!("Try interrupted swap with status fails");
mark_permanent_upgrade(&mut flashmap, &self.slots[1]);
self.mark_bad_status_with_rate(&mut flashmap, 0, 1.0);
// This is expected to fail while writing to bad regions...
let (_, asserts) = c::boot_go(&mut flashmap, &self.areadesc, None, true);
if asserts == 0 {
warn!("No assert() detected");
fails += 1;
}
fails > 0
}
#[cfg(feature = "overwrite-only")]
pub fn run_with_status_fails_with_reset(&self) -> bool {
false
}
}
/// Test a boot, optionally stopping after 'n' flash options. Returns a count
/// of the number of flash operations done total.
fn try_upgrade(flashmap: &SimFlashMap, images: &Images,
stop: Option<i32>) -> (SimFlashMap, i32) {
// Clone the flash to have a new copy.
let mut flashmap = flashmap.clone();
mark_permanent_upgrade(&mut flashmap, &images.slots[1]);
let mut counter = stop.unwrap_or(0);
let (first_interrupted, count) = match c::boot_go(&mut flashmap, &images.areadesc, Some(&mut counter), false) {
(-0x13579, _) => (true, stop.unwrap()),
(0, _) => (false, -counter),
(x, _) => panic!("Unknown return: {}", x),
};
counter = 0;
if first_interrupted {
// fl.dump();
match c::boot_go(&mut flashmap, &images.areadesc, Some(&mut counter), false) {
(-0x13579, _) => panic!("Shouldn't stop again"),
(0, _) => (),
(x, _) => panic!("Unknown return: {}", x),
}
}
(flashmap, count - counter)
}
#[cfg(not(feature = "overwrite-only"))]
fn try_revert(flashmap: &SimFlashMap, areadesc: &AreaDesc, count: usize) -> SimFlashMap {
let mut flashmap = flashmap.clone();
// fl.write_file("image0.bin").unwrap();
for i in 0 .. count {
info!("Running boot pass {}", i + 1);
assert_eq!(c::boot_go(&mut flashmap, &areadesc, None, false), (0, 0));
}
flashmap
}
#[cfg(not(feature = "overwrite-only"))]
fn try_revert_with_fail_at(flashmap: &SimFlashMap, images: &Images,
stop: i32) -> bool {
let mut flashmap = flashmap.clone();
let mut fails = 0;
let mut counter = stop;
let (x, _) = c::boot_go(&mut flashmap, &images.areadesc, Some(&mut counter), false);
if x != -0x13579 {
warn!("Should have stopped at interruption point");
fails += 1;
}
if !verify_trailer(&flashmap, &images.slots, 0, None, None, BOOT_FLAG_UNSET) {
warn!("copy_done should be unset");
fails += 1;
}
let (x, _) = c::boot_go(&mut flashmap, &images.areadesc, None, false);
if x != 0 {
warn!("Should have finished upgrade");
fails += 1;
}
if !verify_image(&flashmap, &images.slots, 0, &images.upgrades) {
warn!("Image in slot 0 before revert is invalid at stop={}", stop);
fails += 1;
}
if !verify_image(&flashmap, &images.slots, 1, &images.primaries) {
warn!("Image in slot 1 before revert is invalid at stop={}", stop);
fails += 1;
}
if !verify_trailer(&flashmap, &images.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0 before revert");
fails += 1;
}
if !verify_trailer(&flashmap, &images.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 1 before revert");
fails += 1;
}
// Do Revert
let (x, _) = c::boot_go(&mut flashmap, &images.areadesc, None, false);
if x != 0 {
warn!("Should have finished a revert");
fails += 1;
}
if !verify_image(&flashmap, &images.slots, 0, &images.primaries) {
warn!("Image in slot 0 after revert is invalid at stop={}", stop);
fails += 1;
}
if !verify_image(&flashmap, &images.slots, 1, &images.upgrades) {
warn!("Image in slot 1 after revert is invalid at stop={}", stop);
fails += 1;
}
if !verify_trailer(&flashmap, &images.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 1 after revert");
fails += 1;
}
if !verify_trailer(&flashmap, &images.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 1 after revert");
fails += 1;
}
fails > 0
}
fn try_random_fails(flashmap: &SimFlashMap, images: &Images,
total_ops: i32, count: usize) -> (SimFlashMap, Vec<i32>) {
let mut flashmap = flashmap.clone();
mark_permanent_upgrade(&mut flashmap, &images.slots[1]);
let mut rng = rand::thread_rng();
let mut resets = vec![0i32; count];
let mut remaining_ops = total_ops;
for i in 0 .. count {
let ops = Range::new(1, remaining_ops / 2);
let reset_counter = ops.ind_sample(&mut rng);
let mut counter = reset_counter;
match c::boot_go(&mut flashmap, &images.areadesc, Some(&mut counter), false) {
(0, _) | (-0x13579, _) => (),
(x, _) => panic!("Unknown return: {}", x),
}
remaining_ops -= reset_counter;
resets[i] = reset_counter;
}
match c::boot_go(&mut flashmap, &images.areadesc, None, false) {
(-0x13579, _) => panic!("Should not be have been interrupted!"),
(0, _) => (),
(x, _) => panic!("Unknown return: {}", x),
}
(flashmap, resets)
}
/// Show the flash layout.
#[allow(dead_code)]
fn show_flash(flash: &Flash) {
println!("---- Flash configuration ----");
for sector in flash.sector_iter() {
println!(" {:3}: 0x{:08x}, 0x{:08x}",
sector.num, sector.base, sector.size);
}
println!("");
}
/// Install a "program" into the given image. This fakes the image header, or at least all of the
/// fields used by the given code. Returns a copy of the image that was written.
fn install_image(flashmap: &mut SimFlashMap, slots: &[SlotInfo], slot: usize, len: usize,
bad_sig: bool) -> [Option<Vec<u8>>; 2] {
let offset = slots[slot].base_off;
let slot_len = slots[slot].len;
let dev_id = slots[slot].dev_id;
let mut tlv = make_tlv();
const HDR_SIZE: usize = 32;
// Generate a boot header. Note that the size doesn't include the header.
let header = ImageHeader {
magic: 0x96f3b83d,
load_addr: 0,
hdr_size: HDR_SIZE as u16,
_pad1: 0,
img_size: len as u32,
flags: tlv.get_flags(),
ver: ImageVersion {
major: (offset / (128 * 1024)) as u8,
minor: 0,
revision: 1,
build_num: offset as u32,
},
_pad2: 0,
};
let mut b_header = [0; HDR_SIZE];
b_header[..32].clone_from_slice(header.as_raw());
assert_eq!(b_header.len(), HDR_SIZE);
tlv.add_bytes(&b_header);
// The core of the image itself is just pseudorandom data.
let mut b_img = vec![0; len];
splat(&mut b_img, offset);
// TLV signatures work over plain image
tlv.add_bytes(&b_img);
// Generate encrypted images
let flag = TlvFlags::ENCRYPTED as u32;
let is_encrypted = (tlv.get_flags() & flag) == flag;
let mut b_encimg = vec![];
if is_encrypted {
let key = GenericArray::from_slice(AES_SEC_KEY);
let nonce = GenericArray::from_slice(&[0; 16]);
let mut cipher = Aes128Ctr::new(&key, &nonce);
b_encimg = b_img.clone();
cipher.apply_keystream(&mut b_encimg);
}
// Build the TLV itself.
let mut b_tlv = if bad_sig {
let good_sig = &mut tlv.make_tlv();
vec![0; good_sig.len()]
} else {
tlv.make_tlv()
};
// Pad the block to a flash alignment (8 bytes).
while b_tlv.len() % 8 != 0 {
//FIXME: should be erase_val?
b_tlv.push(0xFF);
}
let mut buf = vec![];
buf.append(&mut b_header.to_vec());
buf.append(&mut b_img);
buf.append(&mut b_tlv.clone());
let mut encbuf = vec![];
if is_encrypted {
encbuf.append(&mut b_header.to_vec());
encbuf.append(&mut b_encimg);
encbuf.append(&mut b_tlv);
}
let result: [Option<Vec<u8>>; 2];
// Since images are always non-encrypted in slot0, we first write an
// encrypted image, re-read to use for verification, erase + flash
// un-encrypted. In slot1 the image is written un-encrypted, and if
// encryption is requested, it follows an erase + flash encrypted.
let flash = flashmap.get_mut(&dev_id).unwrap();
if slot == 0 {
let enc_copy: Option<Vec<u8>>;
if is_encrypted {
flash.write(offset, &encbuf).unwrap();
let mut enc = vec![0u8; encbuf.len()];
flash.read(offset, &mut enc).unwrap();
enc_copy = Some(enc);
flash.erase(offset, slot_len).unwrap();
} else {
enc_copy = None;
}
flash.write(offset, &buf).unwrap();
let mut copy = vec![0u8; buf.len()];
flash.read(offset, &mut copy).unwrap();
result = [Some(copy), enc_copy];
} else {
flash.write(offset, &buf).unwrap();
let mut copy = vec![0u8; buf.len()];
flash.read(offset, &mut copy).unwrap();
let enc_copy: Option<Vec<u8>>;
if is_encrypted {
flash.erase(offset, slot_len).unwrap();
flash.write(offset, &encbuf).unwrap();
let mut enc = vec![0u8; encbuf.len()];
flash.read(offset, &mut enc).unwrap();
enc_copy = Some(enc);
} else {
enc_copy = None;
}
result = [Some(copy), enc_copy];
}
result
}
// The TLV in use depends on what kind of signature we are verifying.
#[cfg(feature = "sig-rsa")]
#[cfg(not(feature = "enc-rsa"))]
fn make_tlv() -> TlvGen {
TlvGen::new_rsa_pss()
}
#[cfg(feature = "sig-ecdsa")]
fn make_tlv() -> TlvGen {
TlvGen::new_ecdsa()
}
#[cfg(not(feature = "sig-rsa"))]
#[cfg(feature = "enc-rsa")]
fn make_tlv() -> TlvGen {
TlvGen::new_enc_rsa()
}
#[cfg(feature = "sig-rsa")]
#[cfg(feature = "enc-rsa")]
fn make_tlv() -> TlvGen {
TlvGen::new_sig_enc_rsa()
}
#[cfg(feature = "enc-kw")]
fn make_tlv() -> TlvGen {
TlvGen::new_enc_kw()
}
#[cfg(not(feature = "sig-rsa"))]
#[cfg(not(feature = "sig-ecdsa"))]
#[cfg(not(feature = "enc-rsa"))]
#[cfg(not(feature = "enc-kw"))]
fn make_tlv() -> TlvGen {
TlvGen::new_hash_only()
}
#[cfg(feature = "enc-rsa")]
fn find_image(images: &[Option<Vec<u8>>; 2], slot: usize) -> &Vec<u8> {
match &images[slot] {
Some(image) => return image,
None => panic!("Invalid image"),
}
}
#[cfg(feature = "enc-kw")]
fn find_image(images: &[Option<Vec<u8>>; 2], slot: usize) -> &Vec<u8> {
match &images[slot] {
Some(image) => return image,
None => panic!("Invalid image"),
}
}
#[cfg(not(feature = "enc-rsa"))]
#[cfg(not(feature = "enc-kw"))]
fn find_image(images: &[Option<Vec<u8>>; 2], _slot: usize) -> &Vec<u8> {
match &images[0] {
Some(image) => return image,
None => panic!("Invalid image"),
}
}
/// Verify that given image is present in the flash at the given offset.
fn verify_image(flashmap: &SimFlashMap, slots: &[SlotInfo], slot: usize,
images: &[Option<Vec<u8>>; 2]) -> bool {
let image = find_image(images, slot);
let buf = image.as_slice();
let dev_id = slots[slot].dev_id;
let mut copy = vec![0u8; buf.len()];
let offset = slots[slot].base_off;
let flash = flashmap.get(&dev_id).unwrap();
flash.read(offset, &mut copy).unwrap();
if buf != &copy[..] {
for i in 0 .. buf.len() {
if buf[i] != copy[i] {
info!("First failure for slot{} at {:#x} {:#x}!={:#x}",
slot, offset + i, buf[i], copy[i]);
break;
}
}
false
} else {
true
}
}
#[cfg(feature = "overwrite-only")]
#[allow(unused_variables)]
// overwrite-only doesn't employ trailer management
fn verify_trailer(flashmap: &SimFlashMap, slots: &[SlotInfo], slot: usize,
magic: Option<u8>, image_ok: Option<u8>,
copy_done: Option<u8>) -> bool {
true
}
#[cfg(not(feature = "overwrite-only"))]
fn verify_trailer(flashmap: &SimFlashMap, slots: &[SlotInfo], slot: usize,
magic: Option<u8>, image_ok: Option<u8>,
copy_done: Option<u8>) -> bool {
let offset = slots[slot].trailer_off;
let dev_id = slots[slot].dev_id;
let mut copy = vec![0u8; c::boot_magic_sz() + c::boot_max_align() * 2];
let mut failed = false;
let flash = flashmap.get(&dev_id).unwrap();
let erased_val = flash.erased_val();
flash.read(offset, &mut copy).unwrap();
failed |= match magic {
Some(v) => {
if v == 1 && &copy[16..] != MAGIC.unwrap() {
warn!("\"magic\" mismatch at {:#x}", offset);
true
} else if v == 3 {
let expected = [erased_val; 16];
if &copy[16..] != expected {
warn!("\"magic\" mismatch at {:#x}", offset);
true
} else {
false
}
} else {
false
}
},
None => false,
};
failed |= match image_ok {
Some(v) => {
if (v == 1 && copy[8] != v) || (v == 3 && copy[8] != erased_val) {
warn!("\"image_ok\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[8]);
true
} else {
false
}
},
None => false,
};
failed |= match copy_done {
Some(v) => {
if (v == 1 && copy[0] != v) || (v == 3 && copy[0] != erased_val) {
warn!("\"copy_done\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[0]);
true
} else {
false
}
},
None => false,
};
!failed
}
/// The image header
#[repr(C)]
pub struct ImageHeader {
magic: u32,
load_addr: u32,
hdr_size: u16,
_pad1: u16,
img_size: u32,
flags: u32,
ver: ImageVersion,
_pad2: u32,
}
impl AsRaw for ImageHeader {}
#[repr(C)]
pub struct ImageVersion {
major: u8,
minor: u8,
revision: u16,
build_num: u32,
}
#[derive(Clone)]
struct SlotInfo {
base_off: usize,
trailer_off: usize,
len: usize,
dev_id: u8,
}
pub struct Images {
flashmap: SimFlashMap,
areadesc: AreaDesc,
slots: [SlotInfo; 2],
primaries: [Option<Vec<u8>>; 2],
upgrades: [Option<Vec<u8>>; 2],
total_count: Option<i32>,
}
const MAGIC: Option<&[u8]> = Some(&[0x77, 0xc2, 0x95, 0xf3,
0x60, 0xd2, 0xef, 0x7f,
0x35, 0x52, 0x50, 0x0f,
0x2c, 0xb6, 0x79, 0x80]);
// Replicates defines found in bootutil.h
const BOOT_MAGIC_GOOD: Option<u8> = Some(1);
const BOOT_MAGIC_UNSET: Option<u8> = Some(3);
const BOOT_FLAG_SET: Option<u8> = Some(1);
const BOOT_FLAG_UNSET: Option<u8> = Some(3);
/// Write out the magic so that the loader tries doing an upgrade.
fn mark_upgrade(flashmap: &mut SimFlashMap, slot: &SlotInfo) {
let flash = flashmap.get_mut(&slot.dev_id).unwrap();
let offset = slot.trailer_off + c::boot_max_align() * 2;
flash.write(offset, MAGIC.unwrap()).unwrap();
}
/// Writes the image_ok flag which, guess what, tells the bootloader
/// the this image is ok (not a test, and no revert is to be performed).
fn mark_permanent_upgrade(flashmap: &mut SimFlashMap, slot: &SlotInfo) {
let flash = flashmap.get_mut(&slot.dev_id).unwrap();
let mut ok = [flash.erased_val(); 8];
ok[0] = 1u8;
let off = slot.trailer_off + c::boot_max_align();
let align = flash.align();
flash.write(off, &ok[..align]).unwrap();
}
// Drop some pseudo-random gibberish onto the data.
fn splat(data: &mut [u8], seed: usize) {
let seed_block = [0x135782ea, 0x92184728, data.len() as u32, seed as u32];
let mut rng: XorShiftRng = SeedableRng::from_seed(seed_block);
rng.fill_bytes(data);
}
/// Return a read-only view into the raw bytes of this object
trait AsRaw : Sized {
fn as_raw<'a>(&'a self) -> &'a [u8] {
unsafe { slice::from_raw_parts(self as *const _ as *const u8,
mem::size_of::<Self>()) }
}
}
fn show_sizes() {
// This isn't panic safe.
for min in &[1, 2, 4, 8] {
let msize = c::boot_trailer_sz(*min);
println!("{:2}: {} (0x{:x})", min, msize, msize);
}
}