| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /* |
| * Modifications are Copyright (c) 2019 Arm Limited. |
| */ |
| |
| /** |
| * This file provides an interface to the boot loader. Functions defined in |
| * this file should only be called while the boot loader is running. |
| */ |
| |
| #include <assert.h> |
| #include <stddef.h> |
| #include <stdbool.h> |
| #include <inttypes.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <os/os_malloc.h> |
| #include "bootutil/bootutil.h" |
| #include "bootutil/image.h" |
| #include "bootutil_priv.h" |
| #include "bootutil/bootutil_log.h" |
| |
| #ifdef MCUBOOT_ENC_IMAGES |
| #include "bootutil/enc_key.h" |
| #endif |
| |
| #include "mcuboot_config/mcuboot_config.h" |
| |
| MCUBOOT_LOG_MODULE_DECLARE(mcuboot); |
| |
| static struct boot_loader_state boot_data; |
| |
| #if (BOOT_IMAGE_NUMBER > 1) |
| #define IMAGES_ITER(x) for ((x) = 0; (x) < BOOT_IMAGE_NUMBER; ++(x)) |
| #else |
| #define IMAGES_ITER(x) |
| #endif |
| |
| /* |
| * This macro allows some control on the allocation of local variables. |
| * When running natively on a target, we don't want to allocated huge |
| * variables on the stack, so make them global instead. For the simulator |
| * we want to run as many threads as there are tests, and it's safer |
| * to just make those variables stack allocated. |
| */ |
| #if !defined(__BOOTSIM__) |
| #define TARGET_STATIC static |
| #else |
| #define TARGET_STATIC |
| #endif |
| |
| #if defined(MCUBOOT_VALIDATE_PRIMARY_SLOT) && !defined(MCUBOOT_OVERWRITE_ONLY) |
| /* |
| * FIXME: this might have to be updated for threaded sim |
| */ |
| static int boot_status_fails = 0; |
| #define BOOT_STATUS_ASSERT(x) \ |
| do { \ |
| if (!(x)) { \ |
| boot_status_fails++; \ |
| } \ |
| } while (0) |
| #else |
| #define BOOT_STATUS_ASSERT(x) ASSERT(x) |
| #endif |
| |
| struct boot_status_table { |
| uint8_t bst_magic_primary_slot; |
| uint8_t bst_magic_scratch; |
| uint8_t bst_copy_done_primary_slot; |
| uint8_t bst_status_source; |
| }; |
| |
| /** |
| * This set of tables maps swap state contents to boot status location. |
| * When searching for a match, these tables must be iterated in order. |
| */ |
| static const struct boot_status_table boot_status_tables[] = { |
| { |
| /* | primary slot | scratch | |
| * ----------+--------------+--------------| |
| * magic | Good | Any | |
| * copy-done | Set | N/A | |
| * ----------+--------------+--------------' |
| * source: none | |
| * ----------------------------------------' |
| */ |
| .bst_magic_primary_slot = BOOT_MAGIC_GOOD, |
| .bst_magic_scratch = BOOT_MAGIC_NOTGOOD, |
| .bst_copy_done_primary_slot = BOOT_FLAG_SET, |
| .bst_status_source = BOOT_STATUS_SOURCE_NONE, |
| }, |
| |
| { |
| /* | primary slot | scratch | |
| * ----------+--------------+--------------| |
| * magic | Good | Any | |
| * copy-done | Unset | N/A | |
| * ----------+--------------+--------------' |
| * source: primary slot | |
| * ----------------------------------------' |
| */ |
| .bst_magic_primary_slot = BOOT_MAGIC_GOOD, |
| .bst_magic_scratch = BOOT_MAGIC_NOTGOOD, |
| .bst_copy_done_primary_slot = BOOT_FLAG_UNSET, |
| .bst_status_source = BOOT_STATUS_SOURCE_PRIMARY_SLOT, |
| }, |
| |
| { |
| /* | primary slot | scratch | |
| * ----------+--------------+--------------| |
| * magic | Any | Good | |
| * copy-done | Any | N/A | |
| * ----------+--------------+--------------' |
| * source: scratch | |
| * ----------------------------------------' |
| */ |
| .bst_magic_primary_slot = BOOT_MAGIC_ANY, |
| .bst_magic_scratch = BOOT_MAGIC_GOOD, |
| .bst_copy_done_primary_slot = BOOT_FLAG_ANY, |
| .bst_status_source = BOOT_STATUS_SOURCE_SCRATCH, |
| }, |
| { |
| /* | primary slot | scratch | |
| * ----------+--------------+--------------| |
| * magic | Unset | Any | |
| * copy-done | Unset | N/A | |
| * ----------+--------------+--------------| |
| * source: varies | |
| * ----------------------------------------+--------------------------+ |
| * This represents one of two cases: | |
| * o No swaps ever (no status to read, so no harm in checking). | |
| * o Mid-revert; status in primary slot. | |
| * -------------------------------------------------------------------' |
| */ |
| .bst_magic_primary_slot = BOOT_MAGIC_UNSET, |
| .bst_magic_scratch = BOOT_MAGIC_ANY, |
| .bst_copy_done_primary_slot = BOOT_FLAG_UNSET, |
| .bst_status_source = BOOT_STATUS_SOURCE_PRIMARY_SLOT, |
| }, |
| }; |
| |
| #define BOOT_STATUS_TABLES_COUNT \ |
| (sizeof boot_status_tables / sizeof boot_status_tables[0]) |
| |
| #define BOOT_LOG_SWAP_STATE(area, state) \ |
| BOOT_LOG_INF("%s: magic=%s, swap_type=0x%x, copy_done=0x%x, " \ |
| "image_ok=0x%x", \ |
| (area), \ |
| ((state)->magic == BOOT_MAGIC_GOOD ? "good" : \ |
| (state)->magic == BOOT_MAGIC_UNSET ? "unset" : \ |
| "bad"), \ |
| (state)->swap_type, \ |
| (state)->copy_done, \ |
| (state)->image_ok) |
| |
| /** |
| * Determines where in flash the most recent boot status is stored. The boot |
| * status is necessary for completing a swap that was interrupted by a boot |
| * loader reset. |
| * |
| * @return A BOOT_STATUS_SOURCE_[...] code indicating where status should |
| * be read from. |
| */ |
| static int |
| boot_status_source(struct boot_loader_state *state) |
| { |
| const struct boot_status_table *table; |
| struct boot_swap_state state_scratch; |
| struct boot_swap_state state_primary_slot; |
| int rc; |
| size_t i; |
| uint8_t source; |
| uint8_t image_index; |
| |
| #if (BOOT_IMAGE_NUMBER == 1) |
| (void)state; |
| #endif |
| |
| image_index = BOOT_CURR_IMG(state); |
| rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_PRIMARY(image_index), |
| &state_primary_slot); |
| assert(rc == 0); |
| |
| rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SCRATCH, &state_scratch); |
| assert(rc == 0); |
| |
| BOOT_LOG_SWAP_STATE("Primary image", &state_primary_slot); |
| BOOT_LOG_SWAP_STATE("Scratch", &state_scratch); |
| |
| for (i = 0; i < BOOT_STATUS_TABLES_COUNT; i++) { |
| table = &boot_status_tables[i]; |
| |
| if (boot_magic_compatible_check(table->bst_magic_primary_slot, |
| state_primary_slot.magic) && |
| boot_magic_compatible_check(table->bst_magic_scratch, |
| state_scratch.magic) && |
| (table->bst_copy_done_primary_slot == BOOT_FLAG_ANY || |
| table->bst_copy_done_primary_slot == state_primary_slot.copy_done)) |
| { |
| source = table->bst_status_source; |
| |
| #if (BOOT_IMAGE_NUMBER > 1) |
| /* In case of multi-image boot it can happen that if boot status |
| * info is found on scratch area then it does not belong to the |
| * currently examined image. |
| */ |
| if (source == BOOT_STATUS_SOURCE_SCRATCH && |
| state_scratch.image_num != BOOT_CURR_IMG(state)) { |
| source = BOOT_STATUS_SOURCE_NONE; |
| } |
| #endif |
| |
| BOOT_LOG_INF("Boot source: %s", |
| source == BOOT_STATUS_SOURCE_NONE ? "none" : |
| source == BOOT_STATUS_SOURCE_SCRATCH ? "scratch" : |
| source == BOOT_STATUS_SOURCE_PRIMARY_SLOT ? |
| "primary slot" : "BUG; can't happen"); |
| return source; |
| } |
| } |
| |
| BOOT_LOG_INF("Boot source: none"); |
| return BOOT_STATUS_SOURCE_NONE; |
| } |
| |
| /* |
| * Compute the total size of the given image. Includes the size of |
| * the TLVs. |
| */ |
| #if !defined(MCUBOOT_OVERWRITE_ONLY) || defined(MCUBOOT_OVERWRITE_ONLY_FAST) |
| static int |
| boot_read_image_size(struct boot_loader_state *state, int slot, |
| struct image_header *hdr, uint32_t *size) |
| { |
| const struct flash_area *fap; |
| struct image_tlv_info info; |
| int area_id; |
| int rc; |
| |
| #if (BOOT_IMAGE_NUMBER == 1) |
| (void)state; |
| #endif |
| |
| area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot); |
| rc = flash_area_open(area_id, &fap); |
| if (rc != 0) { |
| rc = BOOT_EFLASH; |
| goto done; |
| } |
| |
| rc = flash_area_read(fap, hdr->ih_hdr_size + hdr->ih_img_size, |
| &info, sizeof(info)); |
| if (rc != 0) { |
| rc = BOOT_EFLASH; |
| goto done; |
| } |
| if (info.it_magic != IMAGE_TLV_INFO_MAGIC) { |
| rc = BOOT_EBADIMAGE; |
| goto done; |
| } |
| *size = hdr->ih_hdr_size + hdr->ih_img_size + info.it_tlv_tot; |
| rc = 0; |
| |
| done: |
| flash_area_close(fap); |
| return rc; |
| } |
| #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| |
| static int |
| boot_read_image_header(struct boot_loader_state *state, int slot, |
| struct image_header *out_hdr) |
| { |
| const struct flash_area *fap; |
| int area_id; |
| int rc; |
| |
| #if (BOOT_IMAGE_NUMBER == 1) |
| (void)state; |
| #endif |
| |
| area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot); |
| rc = flash_area_open(area_id, &fap); |
| if (rc != 0) { |
| rc = BOOT_EFLASH; |
| goto done; |
| } |
| |
| rc = flash_area_read(fap, 0, out_hdr, sizeof *out_hdr); |
| if (rc != 0) { |
| rc = BOOT_EFLASH; |
| goto done; |
| } |
| |
| rc = 0; |
| |
| done: |
| flash_area_close(fap); |
| return rc; |
| } |
| |
| static int |
| boot_read_image_headers(struct boot_loader_state *state, bool require_all) |
| { |
| int rc; |
| int i; |
| |
| for (i = 0; i < BOOT_NUM_SLOTS; i++) { |
| rc = boot_read_image_header(state, i, boot_img_hdr(state, i)); |
| if (rc != 0) { |
| /* If `require_all` is set, fail on any single fail, otherwise |
| * if at least the first slot's header was read successfully, |
| * then the boot loader can attempt a boot. |
| * |
| * Failure to read any headers is a fatal error. |
| */ |
| if (i > 0 && !require_all) { |
| return 0; |
| } else { |
| return rc; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static uint8_t |
| boot_write_sz(struct boot_loader_state *state) |
| { |
| uint8_t elem_sz; |
| uint8_t align; |
| |
| /* Figure out what size to write update status update as. The size depends |
| * on what the minimum write size is for scratch area, active image slot. |
| * We need to use the bigger of those 2 values. |
| */ |
| elem_sz = flash_area_align(BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT)); |
| align = flash_area_align(BOOT_SCRATCH_AREA(state)); |
| if (align > elem_sz) { |
| elem_sz = align; |
| } |
| |
| return elem_sz; |
| } |
| |
| /* |
| * Slots are compatible when all sectors that store upto to size of the image |
| * round up to sector size, in both slot's are able to fit in the scratch |
| * area, and have sizes that are a multiple of each other (powers of two |
| * presumably!). |
| */ |
| static int |
| boot_slots_compatible(struct boot_loader_state *state) |
| { |
| size_t num_sectors_primary; |
| size_t num_sectors_secondary; |
| size_t sz0, sz1; |
| size_t primary_slot_sz, secondary_slot_sz; |
| size_t scratch_sz; |
| size_t i, j; |
| int8_t smaller; |
| |
| num_sectors_primary = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT); |
| num_sectors_secondary = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT); |
| if ((num_sectors_primary > BOOT_MAX_IMG_SECTORS) || |
| (num_sectors_secondary > BOOT_MAX_IMG_SECTORS)) { |
| BOOT_LOG_WRN("Cannot upgrade: more sectors than allowed"); |
| return 0; |
| } |
| |
| scratch_sz = boot_scratch_area_size(state); |
| |
| /* |
| * The following loop scans all sectors in a linear fashion, assuring that |
| * for each possible sector in each slot, it is able to fit in the other |
| * slot's sector or sectors. Slot's should be compatible as long as any |
| * number of a slot's sectors are able to fit into another, which only |
| * excludes cases where sector sizes are not a multiple of each other. |
| */ |
| i = sz0 = primary_slot_sz = 0; |
| j = sz1 = secondary_slot_sz = 0; |
| smaller = 0; |
| while (i < num_sectors_primary || j < num_sectors_secondary) { |
| if (sz0 == sz1) { |
| sz0 += boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i); |
| sz1 += boot_img_sector_size(state, BOOT_SECONDARY_SLOT, j); |
| i++; |
| j++; |
| } else if (sz0 < sz1) { |
| sz0 += boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i); |
| /* Guarantee that multiple sectors of the secondary slot |
| * fit into the primary slot. |
| */ |
| if (smaller == 2) { |
| BOOT_LOG_WRN("Cannot upgrade: slots have non-compatible sectors"); |
| return 0; |
| } |
| smaller = 1; |
| i++; |
| } else { |
| sz1 += boot_img_sector_size(state, BOOT_SECONDARY_SLOT, j); |
| /* Guarantee that multiple sectors of the primary slot |
| * fit into the secondary slot. |
| */ |
| if (smaller == 1) { |
| BOOT_LOG_WRN("Cannot upgrade: slots have non-compatible sectors"); |
| return 0; |
| } |
| smaller = 2; |
| j++; |
| } |
| if (sz0 == sz1) { |
| primary_slot_sz += sz0; |
| secondary_slot_sz += sz1; |
| /* Scratch has to fit each swap operation to the size of the larger |
| * sector among the primary slot and the secondary slot. |
| */ |
| if (sz0 > scratch_sz || sz1 > scratch_sz) { |
| BOOT_LOG_WRN("Cannot upgrade: not all sectors fit inside scratch"); |
| return 0; |
| } |
| smaller = sz0 = sz1 = 0; |
| } |
| } |
| |
| if ((i != num_sectors_primary) || |
| (j != num_sectors_secondary) || |
| (primary_slot_sz != secondary_slot_sz)) { |
| BOOT_LOG_WRN("Cannot upgrade: slots are not compatible"); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| #ifndef MCUBOOT_USE_FLASH_AREA_GET_SECTORS |
| static int |
| boot_initialize_area(struct boot_loader_state *state, int flash_area) |
| { |
| int num_sectors = BOOT_MAX_IMG_SECTORS; |
| int rc; |
| |
| if (flash_area == FLASH_AREA_IMAGE_PRIMARY(BOOT_CURR_IMG(state))) { |
| rc = flash_area_to_sectors(flash_area, &num_sectors, |
| BOOT_IMG(state, BOOT_PRIMARY_SLOT).sectors); |
| BOOT_IMG(state, BOOT_PRIMARY_SLOT).num_sectors = (size_t)num_sectors; |
| |
| } else if (flash_area == FLASH_AREA_IMAGE_SECONDARY(BOOT_CURR_IMG(state))) { |
| rc = flash_area_to_sectors(flash_area, &num_sectors, |
| BOOT_IMG(state, BOOT_SECONDARY_SLOT).sectors); |
| BOOT_IMG(state, BOOT_SECONDARY_SLOT).num_sectors = (size_t)num_sectors; |
| |
| } else if (flash_area == FLASH_AREA_IMAGE_SCRATCH) { |
| rc = flash_area_to_sectors(flash_area, &num_sectors, |
| state->scratch.sectors); |
| state->scratch.num_sectors = (size_t)num_sectors; |
| } else { |
| return BOOT_EFLASH; |
| } |
| |
| return rc; |
| } |
| #else /* defined(MCUBOOT_USE_FLASH_AREA_GET_SECTORS) */ |
| static int |
| boot_initialize_area(struct boot_loader_state *state, int flash_area) |
| { |
| uint32_t num_sectors; |
| struct flash_sector *out_sectors; |
| size_t *out_num_sectors; |
| int rc; |
| |
| num_sectors = BOOT_MAX_IMG_SECTORS; |
| |
| if (flash_area == FLASH_AREA_IMAGE_PRIMARY(BOOT_CURR_IMG(state))) { |
| out_sectors = BOOT_IMG(state, BOOT_PRIMARY_SLOT).sectors; |
| out_num_sectors = &BOOT_IMG(state, BOOT_PRIMARY_SLOT).num_sectors; |
| } else if (flash_area == FLASH_AREA_IMAGE_SECONDARY(BOOT_CURR_IMG(state))) { |
| out_sectors = BOOT_IMG(state, BOOT_SECONDARY_SLOT).sectors; |
| out_num_sectors = &BOOT_IMG(state, BOOT_SECONDARY_SLOT).num_sectors; |
| } else if (flash_area == FLASH_AREA_IMAGE_SCRATCH) { |
| out_sectors = state->scratch.sectors; |
| out_num_sectors = &state->scratch.num_sectors; |
| } else { |
| return BOOT_EFLASH; |
| } |
| |
| rc = flash_area_get_sectors(flash_area, &num_sectors, out_sectors); |
| if (rc != 0) { |
| return rc; |
| } |
| *out_num_sectors = num_sectors; |
| return 0; |
| } |
| #endif /* !defined(MCUBOOT_USE_FLASH_AREA_GET_SECTORS) */ |
| |
| /** |
| * Determines the sector layout of both image slots and the scratch area. |
| * This information is necessary for calculating the number of bytes to erase |
| * and copy during an image swap. The information collected during this |
| * function is used to populate the state. |
| */ |
| static int |
| boot_read_sectors(struct boot_loader_state *state) |
| { |
| uint8_t image_index; |
| int rc; |
| |
| image_index = BOOT_CURR_IMG(state); |
| |
| rc = boot_initialize_area(state, FLASH_AREA_IMAGE_PRIMARY(image_index)); |
| if (rc != 0) { |
| return BOOT_EFLASH; |
| } |
| |
| rc = boot_initialize_area(state, FLASH_AREA_IMAGE_SECONDARY(image_index)); |
| if (rc != 0) { |
| return BOOT_EFLASH; |
| } |
| |
| rc = boot_initialize_area(state, FLASH_AREA_IMAGE_SCRATCH); |
| if (rc != 0) { |
| return BOOT_EFLASH; |
| } |
| |
| BOOT_WRITE_SZ(state) = boot_write_sz(state); |
| |
| return 0; |
| } |
| |
| static uint32_t |
| boot_status_internal_off(int idx, int state, int elem_sz) |
| { |
| int idx_sz; |
| |
| idx_sz = elem_sz * BOOT_STATUS_STATE_COUNT; |
| |
| return (idx - BOOT_STATUS_IDX_0) * idx_sz + |
| (state - BOOT_STATUS_STATE_0) * elem_sz; |
| } |
| |
| /** |
| * Reads the status of a partially-completed swap, if any. This is necessary |
| * to recover in case the boot lodaer was reset in the middle of a swap |
| * operation. |
| */ |
| static int |
| boot_read_status_bytes(const struct flash_area *fap, |
| struct boot_loader_state *state, struct boot_status *bs) |
| { |
| uint32_t off; |
| uint8_t status; |
| int max_entries; |
| int found; |
| int found_idx; |
| int invalid; |
| int rc; |
| int i; |
| |
| off = boot_status_off(fap); |
| max_entries = boot_status_entries(BOOT_CURR_IMG(state), fap); |
| |
| found = 0; |
| found_idx = 0; |
| invalid = 0; |
| for (i = 0; i < max_entries; i++) { |
| rc = flash_area_read_is_empty(fap, off + i * BOOT_WRITE_SZ(state), |
| &status, 1); |
| if (rc < 0) { |
| return BOOT_EFLASH; |
| } |
| |
| if (rc == 1) { |
| if (found && !found_idx) { |
| found_idx = i; |
| } |
| } else if (!found) { |
| found = 1; |
| } else if (found_idx) { |
| invalid = 1; |
| break; |
| } |
| } |
| |
| if (invalid) { |
| /* This means there was an error writing status on the last |
| * swap. Tell user and move on to validation! |
| */ |
| BOOT_LOG_ERR("Detected inconsistent status!"); |
| |
| #if !defined(MCUBOOT_VALIDATE_PRIMARY_SLOT) |
| /* With validation of the primary slot disabled, there is no way |
| * to be sure the swapped primary slot is OK, so abort! |
| */ |
| assert(0); |
| #endif |
| } |
| |
| if (found) { |
| if (!found_idx) { |
| found_idx = i; |
| } |
| found_idx--; |
| bs->idx = (found_idx / BOOT_STATUS_STATE_COUNT) + 1; |
| bs->state = (found_idx % BOOT_STATUS_STATE_COUNT) + 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Reads the boot status from the flash. The boot status contains |
| * the current state of an interrupted image copy operation. If the boot |
| * status is not present, or it indicates that previous copy finished, |
| * there is no operation in progress. |
| */ |
| static int |
| boot_read_status(struct boot_loader_state *state, struct boot_status *bs) |
| { |
| const struct flash_area *fap; |
| uint32_t off; |
| uint8_t swap_info; |
| int status_loc; |
| int area_id; |
| int rc; |
| |
| memset(bs, 0, sizeof *bs); |
| bs->idx = BOOT_STATUS_IDX_0; |
| bs->state = BOOT_STATUS_STATE_0; |
| bs->swap_type = BOOT_SWAP_TYPE_NONE; |
| |
| #ifdef MCUBOOT_OVERWRITE_ONLY |
| /* Overwrite-only doesn't make use of the swap status area. */ |
| return 0; |
| #endif |
| |
| status_loc = boot_status_source(state); |
| switch (status_loc) { |
| case BOOT_STATUS_SOURCE_NONE: |
| return 0; |
| |
| case BOOT_STATUS_SOURCE_SCRATCH: |
| area_id = FLASH_AREA_IMAGE_SCRATCH; |
| break; |
| |
| case BOOT_STATUS_SOURCE_PRIMARY_SLOT: |
| area_id = FLASH_AREA_IMAGE_PRIMARY(BOOT_CURR_IMG(state)); |
| break; |
| |
| default: |
| assert(0); |
| return BOOT_EBADARGS; |
| } |
| |
| rc = flash_area_open(area_id, &fap); |
| if (rc != 0) { |
| return BOOT_EFLASH; |
| } |
| |
| rc = boot_read_status_bytes(fap, state, bs); |
| if (rc == 0) { |
| off = boot_swap_info_off(fap); |
| rc = flash_area_read_is_empty(fap, off, &swap_info, sizeof swap_info); |
| if (rc == 1) { |
| BOOT_SET_SWAP_INFO(swap_info, 0, BOOT_SWAP_TYPE_NONE); |
| rc = 0; |
| } |
| |
| /* Extract the swap type info */ |
| bs->swap_type = BOOT_GET_SWAP_TYPE(swap_info); |
| } |
| |
| flash_area_close(fap); |
| |
| return rc; |
| } |
| |
| /** |
| * Writes the supplied boot status to the flash file system. The boot status |
| * contains the current state of an in-progress image copy operation. |
| * |
| * @param bs The boot status to write. |
| * |
| * @return 0 on success; nonzero on failure. |
| */ |
| int |
| boot_write_status(struct boot_loader_state *state, struct boot_status *bs) |
| { |
| const struct flash_area *fap; |
| uint32_t off; |
| int area_id; |
| int rc; |
| uint8_t buf[BOOT_MAX_ALIGN]; |
| uint8_t align; |
| uint8_t erased_val; |
| |
| /* NOTE: The first sector copied (that is the last sector on slot) contains |
| * the trailer. Since in the last step the primary slot is erased, the |
| * first two status writes go to the scratch which will be copied to |
| * the primary slot! |
| */ |
| |
| if (bs->use_scratch) { |
| /* Write to scratch. */ |
| area_id = FLASH_AREA_IMAGE_SCRATCH; |
| } else { |
| /* Write to the primary slot. */ |
| area_id = FLASH_AREA_IMAGE_PRIMARY(BOOT_CURR_IMG(state)); |
| } |
| |
| rc = flash_area_open(area_id, &fap); |
| if (rc != 0) { |
| rc = BOOT_EFLASH; |
| goto done; |
| } |
| |
| off = boot_status_off(fap) + |
| boot_status_internal_off(bs->idx, bs->state, |
| BOOT_WRITE_SZ(state)); |
| align = flash_area_align(fap); |
| erased_val = flash_area_erased_val(fap); |
| memset(buf, erased_val, BOOT_MAX_ALIGN); |
| buf[0] = bs->state; |
| |
| rc = flash_area_write(fap, off, buf, align); |
| if (rc != 0) { |
| rc = BOOT_EFLASH; |
| goto done; |
| } |
| |
| rc = 0; |
| |
| done: |
| flash_area_close(fap); |
| return rc; |
| } |
| |
| /* |
| * Validate image hash/signature in a slot. |
| */ |
| static int |
| boot_image_check(struct boot_loader_state *state, struct image_header *hdr, |
| const struct flash_area *fap, struct boot_status *bs) |
| { |
| TARGET_STATIC uint8_t tmpbuf[BOOT_TMPBUF_SZ]; |
| uint8_t image_index; |
| int rc; |
| |
| #if (BOOT_IMAGE_NUMBER == 1) |
| (void)state; |
| #endif |
| |
| image_index = BOOT_CURR_IMG(state); |
| |
| #ifndef MCUBOOT_ENC_IMAGES |
| (void)bs; |
| (void)rc; |
| if (bootutil_img_validate(NULL, image_index, hdr, fap, tmpbuf, |
| BOOT_TMPBUF_SZ, NULL, 0, NULL)) { |
| return BOOT_EBADIMAGE; |
| } |
| #else |
| if ((fap->fa_id == FLASH_AREA_IMAGE_SECONDARY(image_index)) |
| && IS_ENCRYPTED(hdr)) { |
| rc = boot_enc_load(state->enc, image_index, hdr, fap, bs->enckey[1]); |
| if (rc < 0) { |
| return BOOT_EBADIMAGE; |
| } |
| if (rc == 0 && boot_enc_set_key(state->enc, 1, bs->enckey[1])) { |
| return BOOT_EBADIMAGE; |
| } |
| } |
| if (bootutil_img_validate(state->enc, image_index, hdr, fap, tmpbuf, |
| BOOT_TMPBUF_SZ, NULL, 0, NULL)) { |
| return BOOT_EBADIMAGE; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static int |
| split_image_check(struct image_header *app_hdr, |
| const struct flash_area *app_fap, |
| struct image_header *loader_hdr, |
| const struct flash_area *loader_fap) |
| { |
| static void *tmpbuf; |
| uint8_t loader_hash[32]; |
| |
| if (!tmpbuf) { |
| tmpbuf = malloc(BOOT_TMPBUF_SZ); |
| if (!tmpbuf) { |
| return BOOT_ENOMEM; |
| } |
| } |
| |
| if (bootutil_img_validate(NULL, 0, loader_hdr, loader_fap, tmpbuf, |
| BOOT_TMPBUF_SZ, NULL, 0, loader_hash)) { |
| return BOOT_EBADIMAGE; |
| } |
| |
| if (bootutil_img_validate(NULL, 0, app_hdr, app_fap, tmpbuf, |
| BOOT_TMPBUF_SZ, loader_hash, 32, NULL)) { |
| return BOOT_EBADIMAGE; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Check that a memory area consists of a given value. |
| */ |
| static inline bool |
| boot_data_is_set_to(uint8_t val, void *data, size_t len) |
| { |
| uint8_t i; |
| uint8_t *p = (uint8_t *)data; |
| for (i = 0; i < len; i++) { |
| if (val != p[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static int |
| boot_check_header_erased(struct boot_loader_state *state, int slot) |
| { |
| const struct flash_area *fap; |
| struct image_header *hdr; |
| uint8_t erased_val; |
| int area_id; |
| int rc; |
| |
| area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot); |
| rc = flash_area_open(area_id, &fap); |
| if (rc != 0) { |
| return -1; |
| } |
| |
| erased_val = flash_area_erased_val(fap); |
| flash_area_close(fap); |
| |
| hdr = boot_img_hdr(state, slot); |
| if (!boot_data_is_set_to(erased_val, &hdr->ih_magic, sizeof(hdr->ih_magic))) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| boot_validate_slot(struct boot_loader_state *state, int slot, |
| struct boot_status *bs) |
| { |
| const struct flash_area *fap; |
| struct image_header *hdr; |
| int area_id; |
| int rc; |
| |
| area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot); |
| rc = flash_area_open(area_id, &fap); |
| if (rc != 0) { |
| return BOOT_EFLASH; |
| } |
| |
| hdr = boot_img_hdr(state, slot); |
| if (boot_check_header_erased(state, slot) == 0 || |
| (hdr->ih_flags & IMAGE_F_NON_BOOTABLE)) { |
| /* No bootable image in slot; continue booting from the primary slot. */ |
| rc = -1; |
| goto out; |
| } |
| |
| if (hdr->ih_magic != IMAGE_MAGIC || boot_image_check(state, hdr, fap, bs)) { |
| if (slot != BOOT_PRIMARY_SLOT) { |
| flash_area_erase(fap, 0, fap->fa_size); |
| /* Image in the secondary slot is invalid. Erase the image and |
| * continue booting from the primary slot. |
| */ |
| } |
| BOOT_LOG_ERR("Image in the %s slot is not valid!", |
| (slot == BOOT_PRIMARY_SLOT) ? "primary" : "secondary"); |
| rc = -1; |
| goto out; |
| } |
| |
| /* Image in the secondary slot is valid. */ |
| rc = 0; |
| |
| out: |
| flash_area_close(fap); |
| return rc; |
| } |
| |
| /** |
| * Determines which swap operation to perform, if any. If it is determined |
| * that a swap operation is required, the image in the secondary slot is checked |
| * for validity. If the image in the secondary slot is invalid, it is erased, |
| * and a swap type of "none" is indicated. |
| * |
| * @return The type of swap to perform (BOOT_SWAP_TYPE...) |
| */ |
| static int |
| boot_validated_swap_type(struct boot_loader_state *state, |
| struct boot_status *bs) |
| { |
| int swap_type; |
| |
| #if (BOOT_IMAGE_NUMBER == 1) |
| swap_type = boot_swap_type(); |
| #else |
| swap_type = boot_swap_type_multi(BOOT_CURR_IMG(state)); |
| #endif |
| switch (swap_type) { |
| case BOOT_SWAP_TYPE_TEST: |
| case BOOT_SWAP_TYPE_PERM: |
| case BOOT_SWAP_TYPE_REVERT: |
| /* Boot loader wants to switch to the secondary slot. |
| * Ensure image is valid. |
| */ |
| if (boot_validate_slot(state, BOOT_SECONDARY_SLOT, bs) != 0) { |
| swap_type = BOOT_SWAP_TYPE_FAIL; |
| } |
| } |
| |
| return swap_type; |
| } |
| |
| /** |
| * Calculates the number of sectors the scratch area can contain. A "last" |
| * source sector is specified because images are copied backwards in flash |
| * (final index to index number 0). |
| * |
| * @param last_sector_idx The index of the last source sector |
| * (inclusive). |
| * @param out_first_sector_idx The index of the first source sector |
| * (inclusive) gets written here. |
| * |
| * @return The number of bytes comprised by the |
| * [first-sector, last-sector] range. |
| */ |
| #ifndef MCUBOOT_OVERWRITE_ONLY |
| static uint32_t |
| boot_copy_sz(struct boot_loader_state *state, int last_sector_idx, |
| int *out_first_sector_idx) |
| { |
| size_t scratch_sz; |
| uint32_t new_sz; |
| uint32_t sz; |
| int i; |
| |
| sz = 0; |
| |
| scratch_sz = boot_scratch_area_size(state); |
| for (i = last_sector_idx; i >= 0; i--) { |
| new_sz = sz + boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i); |
| /* |
| * The secondary slot is not being checked here, because |
| * `boot_slots_compatible` already provides assurance that the copy size |
| * will be compatible with the primary slot and scratch. |
| */ |
| if (new_sz > scratch_sz) { |
| break; |
| } |
| sz = new_sz; |
| } |
| |
| /* i currently refers to a sector that doesn't fit or it is -1 because all |
| * sectors have been processed. In both cases, exclude sector i. |
| */ |
| *out_first_sector_idx = i + 1; |
| return sz; |
| } |
| #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| |
| /** |
| * Erases a region of flash. |
| * |
| * @param flash_area The flash_area containing the region to erase. |
| * @param off The offset within the flash area to start the |
| * erase. |
| * @param sz The number of bytes to erase. |
| * |
| * @return 0 on success; nonzero on failure. |
| */ |
| static inline int |
| boot_erase_sector(const struct flash_area *fap, uint32_t off, uint32_t sz) |
| { |
| return flash_area_erase(fap, off, sz); |
| } |
| |
| /** |
| * Copies the contents of one flash region to another. You must erase the |
| * destination region prior to calling this function. |
| * |
| * @param flash_area_id_src The ID of the source flash area. |
| * @param flash_area_id_dst The ID of the destination flash area. |
| * @param off_src The offset within the source flash area to |
| * copy from. |
| * @param off_dst The offset within the destination flash area to |
| * copy to. |
| * @param sz The number of bytes to copy. |
| * |
| * @return 0 on success; nonzero on failure. |
| */ |
| static int |
| boot_copy_sector(struct boot_loader_state *state, |
| const struct flash_area *fap_src, |
| const struct flash_area *fap_dst, |
| uint32_t off_src, uint32_t off_dst, uint32_t sz) |
| { |
| uint32_t bytes_copied; |
| int chunk_sz; |
| int rc; |
| #ifdef MCUBOOT_ENC_IMAGES |
| uint32_t off; |
| size_t blk_off; |
| struct image_header *hdr; |
| uint16_t idx; |
| uint32_t blk_sz; |
| uint8_t image_index; |
| #endif |
| |
| TARGET_STATIC uint8_t buf[1024]; |
| |
| #if !defined(MCUBOOT_ENC_IMAGES) |
| (void)state; |
| #endif |
| |
| bytes_copied = 0; |
| while (bytes_copied < sz) { |
| if (sz - bytes_copied > sizeof buf) { |
| chunk_sz = sizeof buf; |
| } else { |
| chunk_sz = sz - bytes_copied; |
| } |
| |
| rc = flash_area_read(fap_src, off_src + bytes_copied, buf, chunk_sz); |
| if (rc != 0) { |
| return BOOT_EFLASH; |
| } |
| |
| #ifdef MCUBOOT_ENC_IMAGES |
| image_index = BOOT_CURR_IMG(state); |
| if (fap_src->fa_id == FLASH_AREA_IMAGE_SECONDARY(image_index) || |
| fap_dst->fa_id == FLASH_AREA_IMAGE_SECONDARY(image_index)) { |
| /* assume the secondary slot as src, needs decryption */ |
| hdr = boot_img_hdr(state, BOOT_SECONDARY_SLOT); |
| off = off_src; |
| if (fap_dst->fa_id == FLASH_AREA_IMAGE_SECONDARY(image_index)) { |
| /* might need encryption (metadata from the primary slot) */ |
| hdr = boot_img_hdr(state, BOOT_PRIMARY_SLOT); |
| off = off_dst; |
| } |
| if (IS_ENCRYPTED(hdr)) { |
| blk_sz = chunk_sz; |
| idx = 0; |
| if (off + bytes_copied < hdr->ih_hdr_size) { |
| /* do not decrypt header */ |
| blk_off = 0; |
| blk_sz = chunk_sz - hdr->ih_hdr_size; |
| idx = hdr->ih_hdr_size; |
| } else { |
| blk_off = ((off + bytes_copied) - hdr->ih_hdr_size) & 0xf; |
| } |
| if (off + bytes_copied + chunk_sz > hdr->ih_hdr_size + hdr->ih_img_size) { |
| /* do not decrypt TLVs */ |
| if (off + bytes_copied >= hdr->ih_hdr_size + hdr->ih_img_size) { |
| blk_sz = 0; |
| } else { |
| blk_sz = (hdr->ih_hdr_size + hdr->ih_img_size) - (off + bytes_copied); |
| } |
| } |
| boot_encrypt(state->enc, image_index, fap_src, |
| (off + bytes_copied + idx) - hdr->ih_hdr_size, blk_sz, |
| blk_off, &buf[idx]); |
| } |
| } |
| #endif |
| |
| rc = flash_area_write(fap_dst, off_dst + bytes_copied, buf, chunk_sz); |
| if (rc != 0) { |
| return BOOT_EFLASH; |
| } |
| |
| bytes_copied += chunk_sz; |
| |
| MCUBOOT_WATCHDOG_FEED(); |
| } |
| |
| return 0; |
| } |
| |
| #ifndef MCUBOOT_OVERWRITE_ONLY |
| static inline int |
| boot_status_init(const struct boot_loader_state *state, |
| const struct flash_area *fap, |
| const struct boot_status *bs) |
| { |
| struct boot_swap_state swap_state; |
| uint8_t image_index; |
| int rc; |
| |
| #if (BOOT_IMAGE_NUMBER == 1) |
| (void)state; |
| #endif |
| |
| image_index = BOOT_CURR_IMG(state); |
| |
| BOOT_LOG_DBG("initializing status; fa_id=%d", fap->fa_id); |
| |
| rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SECONDARY(image_index), |
| &swap_state); |
| assert(rc == 0); |
| |
| if (bs->swap_type != BOOT_SWAP_TYPE_NONE) { |
| rc = boot_write_swap_info(fap, bs->swap_type, image_index); |
| assert(rc == 0); |
| } |
| |
| if (swap_state.image_ok == BOOT_FLAG_SET) { |
| rc = boot_write_image_ok(fap); |
| assert(rc == 0); |
| } |
| |
| rc = boot_write_swap_size(fap, bs->swap_size); |
| assert(rc == 0); |
| |
| #ifdef MCUBOOT_ENC_IMAGES |
| rc = boot_write_enc_key(fap, 0, bs->enckey[0]); |
| assert(rc == 0); |
| |
| rc = boot_write_enc_key(fap, 1, bs->enckey[1]); |
| assert(rc == 0); |
| #endif |
| |
| rc = boot_write_magic(fap); |
| assert(rc == 0); |
| |
| return 0; |
| } |
| |
| #endif |
| |
| #ifndef MCUBOOT_OVERWRITE_ONLY |
| static int |
| boot_erase_trailer_sectors(const struct boot_loader_state *state, |
| const struct flash_area *fap) |
| { |
| uint8_t slot; |
| uint32_t sector; |
| uint32_t trailer_sz; |
| uint32_t total_sz; |
| uint32_t off; |
| uint32_t sz; |
| int fa_id_primary; |
| int fa_id_secondary; |
| uint8_t image_index; |
| int rc; |
| |
| BOOT_LOG_DBG("erasing trailer; fa_id=%d", fap->fa_id); |
| |
| image_index = BOOT_CURR_IMG(state); |
| fa_id_primary = flash_area_id_from_multi_image_slot(image_index, |
| BOOT_PRIMARY_SLOT); |
| fa_id_secondary = flash_area_id_from_multi_image_slot(image_index, |
| BOOT_SECONDARY_SLOT); |
| |
| if (fap->fa_id == fa_id_primary) { |
| slot = BOOT_PRIMARY_SLOT; |
| } else if (fap->fa_id == fa_id_secondary) { |
| slot = BOOT_SECONDARY_SLOT; |
| } else { |
| return BOOT_EFLASH; |
| } |
| |
| /* delete starting from last sector and moving to beginning */ |
| sector = boot_img_num_sectors(state, slot) - 1; |
| trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state)); |
| total_sz = 0; |
| do { |
| sz = boot_img_sector_size(state, slot, sector); |
| off = boot_img_sector_off(state, slot, sector); |
| rc = boot_erase_sector(fap, off, sz); |
| assert(rc == 0); |
| |
| sector--; |
| total_sz += sz; |
| } while (total_sz < trailer_sz); |
| |
| return rc; |
| } |
| #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| |
| /** |
| * Swaps the contents of two flash regions within the two image slots. |
| * |
| * @param idx The index of the first sector in the range of |
| * sectors being swapped. |
| * @param sz The number of bytes to swap. |
| * @param bs The current boot status. This struct gets |
| * updated according to the outcome. |
| * |
| * @return 0 on success; nonzero on failure. |
| */ |
| #ifndef MCUBOOT_OVERWRITE_ONLY |
| static void |
| boot_swap_sectors(int idx, uint32_t sz, struct boot_loader_state *state, |
| struct boot_status *bs) |
| { |
| const struct flash_area *fap_primary_slot; |
| const struct flash_area *fap_secondary_slot; |
| const struct flash_area *fap_scratch; |
| uint32_t copy_sz; |
| uint32_t trailer_sz; |
| uint32_t img_off; |
| uint32_t scratch_trailer_off; |
| struct boot_swap_state swap_state; |
| size_t last_sector; |
| bool erase_scratch; |
| uint8_t image_index; |
| int rc; |
| |
| /* Calculate offset from start of image area. */ |
| img_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx); |
| |
| copy_sz = sz; |
| trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state)); |
| |
| /* sz in this function is always sized on a multiple of the sector size. |
| * The check against the start offset of the last sector |
| * is to determine if we're swapping the last sector. The last sector |
| * needs special handling because it's where the trailer lives. If we're |
| * copying it, we need to use scratch to write the trailer temporarily. |
| * |
| * NOTE: `use_scratch` is a temporary flag (never written to flash) which |
| * controls if special handling is needed (swapping last sector). |
| */ |
| last_sector = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT) - 1; |
| if ((img_off + sz) > |
| boot_img_sector_off(state, BOOT_PRIMARY_SLOT, last_sector)) { |
| copy_sz -= trailer_sz; |
| } |
| |
| bs->use_scratch = (bs->idx == BOOT_STATUS_IDX_0 && copy_sz != sz); |
| |
| image_index = BOOT_CURR_IMG(state); |
| |
| rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(image_index), |
| &fap_primary_slot); |
| assert (rc == 0); |
| |
| rc = flash_area_open(FLASH_AREA_IMAGE_SECONDARY(image_index), |
| &fap_secondary_slot); |
| assert (rc == 0); |
| |
| rc = flash_area_open(FLASH_AREA_IMAGE_SCRATCH, &fap_scratch); |
| assert (rc == 0); |
| |
| if (bs->state == BOOT_STATUS_STATE_0) { |
| BOOT_LOG_DBG("erasing scratch area"); |
| rc = boot_erase_sector(fap_scratch, 0, fap_scratch->fa_size); |
| assert(rc == 0); |
| |
| if (bs->idx == BOOT_STATUS_IDX_0) { |
| /* Write a trailer to the scratch area, even if we don't need the |
| * scratch area for status. We need a temporary place to store the |
| * `swap-type` while we erase the primary trailer. |
| */ |
| rc = boot_status_init(state, fap_scratch, bs); |
| assert(rc == 0); |
| |
| if (!bs->use_scratch) { |
| /* Prepare the primary status area... here it is known that the |
| * last sector is not being used by the image data so it's safe |
| * to erase. |
| */ |
| rc = boot_erase_trailer_sectors(state, fap_primary_slot); |
| assert(rc == 0); |
| |
| rc = boot_status_init(state, fap_primary_slot, bs); |
| assert(rc == 0); |
| |
| /* Erase the temporary trailer from the scratch area. */ |
| rc = boot_erase_sector(fap_scratch, 0, fap_scratch->fa_size); |
| assert(rc == 0); |
| } |
| } |
| |
| rc = boot_copy_sector(state, fap_secondary_slot, fap_scratch, |
| img_off, 0, copy_sz); |
| assert(rc == 0); |
| |
| bs->state = BOOT_STATUS_STATE_1; |
| rc = boot_write_status(state, bs); |
| BOOT_STATUS_ASSERT(rc == 0); |
| } |
| |
| if (bs->state == BOOT_STATUS_STATE_1) { |
| rc = boot_erase_sector(fap_secondary_slot, img_off, sz); |
| assert(rc == 0); |
| |
| rc = boot_copy_sector(state, fap_primary_slot, fap_secondary_slot, |
| img_off, img_off, copy_sz); |
| assert(rc == 0); |
| |
| if (bs->idx == BOOT_STATUS_IDX_0 && !bs->use_scratch) { |
| /* If not all sectors of the slot are being swapped, |
| * guarantee here that only the primary slot will have the state. |
| */ |
| rc = boot_erase_trailer_sectors(state, fap_secondary_slot); |
| assert(rc == 0); |
| } |
| |
| bs->state = BOOT_STATUS_STATE_2; |
| rc = boot_write_status(state, bs); |
| BOOT_STATUS_ASSERT(rc == 0); |
| } |
| |
| if (bs->state == BOOT_STATUS_STATE_2) { |
| rc = boot_erase_sector(fap_primary_slot, img_off, sz); |
| assert(rc == 0); |
| |
| /* NOTE: If this is the final sector, we exclude the image trailer from |
| * this copy (copy_sz was truncated earlier). |
| */ |
| rc = boot_copy_sector(state, fap_scratch, fap_primary_slot, |
| 0, img_off, copy_sz); |
| assert(rc == 0); |
| |
| if (bs->use_scratch) { |
| scratch_trailer_off = boot_status_off(fap_scratch); |
| |
| /* copy current status that is being maintained in scratch */ |
| rc = boot_copy_sector(state, fap_scratch, fap_primary_slot, |
| scratch_trailer_off, img_off + copy_sz, |
| BOOT_STATUS_STATE_COUNT * BOOT_WRITE_SZ(state)); |
| BOOT_STATUS_ASSERT(rc == 0); |
| |
| rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SCRATCH, |
| &swap_state); |
| assert(rc == 0); |
| |
| if (swap_state.image_ok == BOOT_FLAG_SET) { |
| rc = boot_write_image_ok(fap_primary_slot); |
| assert(rc == 0); |
| } |
| |
| if (swap_state.swap_type != BOOT_SWAP_TYPE_NONE) { |
| rc = boot_write_swap_info(fap_primary_slot, |
| swap_state.swap_type, image_index); |
| assert(rc == 0); |
| } |
| |
| rc = boot_write_swap_size(fap_primary_slot, bs->swap_size); |
| assert(rc == 0); |
| |
| #ifdef MCUBOOT_ENC_IMAGES |
| rc = boot_write_enc_key(fap_primary_slot, 0, bs->enckey[0]); |
| assert(rc == 0); |
| |
| rc = boot_write_enc_key(fap_primary_slot, 1, bs->enckey[1]); |
| assert(rc == 0); |
| #endif |
| rc = boot_write_magic(fap_primary_slot); |
| assert(rc == 0); |
| } |
| |
| /* If we wrote a trailer to the scratch area, erase it after we persist |
| * a trailer to the primary slot. We do this to prevent mcuboot from |
| * reading a stale status from the scratch area in case of immediate |
| * reset. |
| */ |
| erase_scratch = bs->use_scratch; |
| bs->use_scratch = 0; |
| |
| bs->idx++; |
| bs->state = BOOT_STATUS_STATE_0; |
| rc = boot_write_status(state, bs); |
| BOOT_STATUS_ASSERT(rc == 0); |
| |
| if (erase_scratch) { |
| rc = boot_erase_sector(fap_scratch, 0, sz); |
| assert(rc == 0); |
| } |
| } |
| |
| flash_area_close(fap_primary_slot); |
| flash_area_close(fap_secondary_slot); |
| flash_area_close(fap_scratch); |
| } |
| #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| |
| /** |
| * Overwrite primary slot with the image contained in the secondary slot. |
| * If a prior copy operation was interrupted by a system reset, this function |
| * redos the copy. |
| * |
| * @param bs The current boot status. This function reads |
| * this struct to determine if it is resuming |
| * an interrupted swap operation. This |
| * function writes the updated status to this |
| * function on return. |
| * |
| * @return 0 on success; nonzero on failure. |
| */ |
| #if defined(MCUBOOT_OVERWRITE_ONLY) || defined(MCUBOOT_BOOTSTRAP) |
| static int |
| boot_copy_image(struct boot_loader_state *state, struct boot_status *bs) |
| { |
| size_t sect_count; |
| size_t sect; |
| int rc; |
| size_t size; |
| size_t this_size; |
| size_t last_sector; |
| const struct flash_area *fap_primary_slot; |
| const struct flash_area *fap_secondary_slot; |
| uint8_t image_index; |
| |
| (void)bs; |
| |
| #if defined(MCUBOOT_OVERWRITE_ONLY_FAST) |
| uint32_t src_size = 0; |
| rc = boot_read_image_size(state, BOOT_SECONDARY_SLOT, |
| boot_img_hdr(state, BOOT_SECONDARY_SLOT), |
| &src_size); |
| assert(rc == 0); |
| #endif |
| |
| BOOT_LOG_INF("Image upgrade secondary slot -> primary slot"); |
| BOOT_LOG_INF("Erasing the primary slot"); |
| |
| image_index = BOOT_CURR_IMG(state); |
| |
| rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(image_index), |
| &fap_primary_slot); |
| assert (rc == 0); |
| |
| rc = flash_area_open(FLASH_AREA_IMAGE_SECONDARY(image_index), |
| &fap_secondary_slot); |
| assert (rc == 0); |
| |
| sect_count = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT); |
| for (sect = 0, size = 0; sect < sect_count; sect++) { |
| this_size = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, sect); |
| rc = boot_erase_sector(fap_primary_slot, size, this_size); |
| assert(rc == 0); |
| |
| size += this_size; |
| |
| #if defined(MCUBOOT_OVERWRITE_ONLY_FAST) |
| if (size >= src_size) { |
| break; |
| } |
| #endif |
| } |
| |
| #ifdef MCUBOOT_ENC_IMAGES |
| if (IS_ENCRYPTED(boot_img_hdr(state, BOOT_SECONDARY_SLOT))) { |
| rc = boot_enc_load(state->enc, image_index, |
| boot_img_hdr(state, BOOT_SECONDARY_SLOT), |
| fap_secondary_slot, bs->enckey[1]); |
| |
| if (rc < 0) { |
| return BOOT_EBADIMAGE; |
| } |
| if (rc == 0 && boot_enc_set_key(state->enc, 1, bs->enckey[1])) { |
| return BOOT_EBADIMAGE; |
| } |
| } |
| #endif |
| |
| BOOT_LOG_INF("Copying the secondary slot to the primary slot: 0x%zx bytes", |
| size); |
| rc = boot_copy_sector(state, fap_secondary_slot, fap_primary_slot, 0, 0, size); |
| |
| /* |
| * Erases header and trailer. The trailer is erased because when a new |
| * image is written without a trailer as is the case when using newt, the |
| * trailer that was left might trigger a new upgrade. |
| */ |
| BOOT_LOG_DBG("erasing secondary header"); |
| rc = boot_erase_sector(fap_secondary_slot, |
| boot_img_sector_off(state, BOOT_SECONDARY_SLOT, 0), |
| boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0)); |
| assert(rc == 0); |
| last_sector = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT) - 1; |
| BOOT_LOG_DBG("erasing secondary trailer"); |
| rc = boot_erase_sector(fap_secondary_slot, |
| boot_img_sector_off(state, BOOT_SECONDARY_SLOT, |
| last_sector), |
| boot_img_sector_size(state, BOOT_SECONDARY_SLOT, |
| last_sector)); |
| assert(rc == 0); |
| |
| flash_area_close(fap_primary_slot); |
| flash_area_close(fap_secondary_slot); |
| |
| /* TODO: Perhaps verify the primary slot's signature again? */ |
| |
| return 0; |
| } |
| #endif |
| |
| #if !defined(MCUBOOT_OVERWRITE_ONLY) |
| /** |
| * Swaps the two images in flash. If a prior copy operation was interrupted |
| * by a system reset, this function completes that operation. |
| * |
| * @param bs The current boot status. This function reads |
| * this struct to determine if it is resuming |
| * an interrupted swap operation. This |
| * function writes the updated status to this |
| * function on return. |
| * |
| * @return 0 on success; nonzero on failure. |
| */ |
| static int |
| boot_swap_image(struct boot_loader_state *state, struct boot_status *bs) |
| { |
| uint32_t sz; |
| int first_sector_idx; |
| int last_sector_idx; |
| int last_idx_secondary_slot; |
| uint32_t swap_idx; |
| struct image_header *hdr; |
| #ifdef MCUBOOT_ENC_IMAGES |
| const struct flash_area *fap; |
| uint8_t slot; |
| uint8_t i; |
| #endif |
| uint32_t size; |
| uint32_t copy_size; |
| uint32_t primary_slot_size; |
| uint32_t secondary_slot_size; |
| uint8_t image_index; |
| int rc; |
| |
| /* FIXME: just do this if asked by user? */ |
| |
| size = copy_size = 0; |
| image_index = BOOT_CURR_IMG(state); |
| |
| if (bs->idx == BOOT_STATUS_IDX_0 && bs->state == BOOT_STATUS_STATE_0) { |
| /* |
| * No swap ever happened, so need to find the largest image which |
| * will be used to determine the amount of sectors to swap. |
| */ |
| hdr = boot_img_hdr(state, BOOT_PRIMARY_SLOT); |
| if (hdr->ih_magic == IMAGE_MAGIC) { |
| rc = boot_read_image_size(state, BOOT_PRIMARY_SLOT, hdr, ©_size); |
| assert(rc == 0); |
| } |
| |
| #ifdef MCUBOOT_ENC_IMAGES |
| if (IS_ENCRYPTED(hdr)) { |
| fap = BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT); |
| rc = boot_enc_load(state->enc, image_index, hdr, fap, bs->enckey[0]); |
| assert(rc >= 0); |
| |
| if (rc == 0) { |
| rc = boot_enc_set_key(state->enc, 0, bs->enckey[0]); |
| assert(rc == 0); |
| } else { |
| rc = 0; |
| } |
| } else { |
| memset(bs->enckey[0], 0xff, BOOT_ENC_KEY_SIZE); |
| } |
| #endif |
| |
| hdr = boot_img_hdr(state, BOOT_SECONDARY_SLOT); |
| if (hdr->ih_magic == IMAGE_MAGIC) { |
| rc = boot_read_image_size(state, BOOT_SECONDARY_SLOT, hdr, &size); |
| assert(rc == 0); |
| } |
| |
| #ifdef MCUBOOT_ENC_IMAGES |
| hdr = boot_img_hdr(state, BOOT_SECONDARY_SLOT); |
| if (IS_ENCRYPTED(hdr)) { |
| fap = BOOT_IMG_AREA(state, BOOT_SECONDARY_SLOT); |
| rc = boot_enc_load(state->enc, image_index, hdr, fap, bs->enckey[1]); |
| assert(rc >= 0); |
| |
| if (rc == 0) { |
| rc = boot_enc_set_key(state->enc, 1, bs->enckey[1]); |
| assert(rc == 0); |
| } else { |
| rc = 0; |
| } |
| } else { |
| memset(bs->enckey[1], 0xff, BOOT_ENC_KEY_SIZE); |
| } |
| #endif |
| |
| if (size > copy_size) { |
| copy_size = size; |
| } |
| |
| bs->swap_size = copy_size; |
| } else { |
| /* |
| * If a swap was under way, the swap_size should already be present |
| * in the trailer... |
| */ |
| rc = boot_read_swap_size(image_index, &bs->swap_size); |
| assert(rc == 0); |
| |
| copy_size = bs->swap_size; |
| |
| #ifdef MCUBOOT_ENC_IMAGES |
| for (slot = 0; slot <= 1; slot++) { |
| rc = boot_read_enc_key(image_index, slot, bs->enckey[slot]); |
| assert(rc == 0); |
| |
| for (i = 0; i < BOOT_ENC_KEY_SIZE; i++) { |
| if (bs->enckey[slot][i] != 0xff) { |
| break; |
| } |
| } |
| |
| if (i != BOOT_ENC_KEY_SIZE) { |
| boot_enc_set_key(state->enc, slot, bs->enckey[slot]); |
| } |
| } |
| #endif |
| } |
| |
| primary_slot_size = 0; |
| secondary_slot_size = 0; |
| last_sector_idx = 0; |
| last_idx_secondary_slot = 0; |
| |
| /* |
| * Knowing the size of the largest image between both slots, here we |
| * find what is the last sector in the primary slot that needs swapping. |
| * Since we already know that both slots are compatible, the secondary |
| * slot's last sector is not really required after this check is finished. |
| */ |
| while (1) { |
| if ((primary_slot_size < copy_size) || |
| (primary_slot_size < secondary_slot_size)) { |
| primary_slot_size += boot_img_sector_size(state, |
| BOOT_PRIMARY_SLOT, |
| last_sector_idx); |
| } |
| if ((secondary_slot_size < copy_size) || |
| (secondary_slot_size < primary_slot_size)) { |
| secondary_slot_size += boot_img_sector_size(state, |
| BOOT_SECONDARY_SLOT, |
| last_idx_secondary_slot); |
| } |
| if (primary_slot_size >= copy_size && |
| secondary_slot_size >= copy_size && |
| primary_slot_size == secondary_slot_size) { |
| break; |
| } |
| last_sector_idx++; |
| last_idx_secondary_slot++; |
| } |
| |
| swap_idx = 0; |
| while (last_sector_idx >= 0) { |
| sz = boot_copy_sz(state, last_sector_idx, &first_sector_idx); |
| if (swap_idx >= (bs->idx - BOOT_STATUS_IDX_0)) { |
| boot_swap_sectors(first_sector_idx, sz, state, bs); |
| } |
| |
| last_sector_idx = first_sector_idx - 1; |
| swap_idx++; |
| } |
| |
| #ifdef MCUBOOT_VALIDATE_PRIMARY_SLOT |
| if (boot_status_fails > 0) { |
| BOOT_LOG_WRN("%d status write fails performing the swap", |
| boot_status_fails); |
| } |
| #endif |
| |
| return 0; |
| } |
| #endif |
| |
| /** |
| * Marks the image in the primary slot as fully copied. |
| */ |
| #ifndef MCUBOOT_OVERWRITE_ONLY |
| static int |
| boot_set_copy_done(uint8_t image_index) |
| { |
| const struct flash_area *fap; |
| int rc; |
| |
| rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(image_index), |
| &fap); |
| if (rc != 0) { |
| return BOOT_EFLASH; |
| } |
| |
| rc = boot_write_copy_done(fap); |
| flash_area_close(fap); |
| return rc; |
| } |
| #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| |
| /** |
| * Marks a reverted image in the primary slot as confirmed. This is necessary to |
| * ensure the status bytes from the image revert operation don't get processed |
| * on a subsequent boot. |
| * |
| * NOTE: image_ok is tested before writing because if there's a valid permanent |
| * image installed on the primary slot and the new image to be upgrade to has a |
| * bad sig, image_ok would be overwritten. |
| */ |
| #ifndef MCUBOOT_OVERWRITE_ONLY |
| static int |
| boot_set_image_ok(uint8_t image_index) |
| { |
| const struct flash_area *fap; |
| struct boot_swap_state state; |
| int rc; |
| |
| rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(image_index), |
| &fap); |
| if (rc != 0) { |
| return BOOT_EFLASH; |
| } |
| |
| rc = boot_read_swap_state(fap, &state); |
| if (rc != 0) { |
| rc = BOOT_EFLASH; |
| goto out; |
| } |
| |
| if (state.image_ok == BOOT_FLAG_UNSET) { |
| rc = boot_write_image_ok(fap); |
| } |
| |
| out: |
| flash_area_close(fap); |
| return rc; |
| } |
| #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| |
| #if (BOOT_IMAGE_NUMBER > 1) |
| /** |
| * Check the image dependency whether it is satisfied and modify |
| * the swap type if necessary. |
| * |
| * @param dep Image dependency which has to be verified. |
| * |
| * @return 0 on success; nonzero on failure. |
| */ |
| static int |
| boot_verify_single_dependency(struct boot_loader_state *state, |
| struct image_dependency *dep) |
| { |
| struct image_version *dep_version; |
| size_t dep_slot; |
| int rc; |
| |
| /* Determine the source of the image which is the subject of |
| * the dependency and get it's version. */ |
| dep_slot = (state->swap_type[dep->image_id] != BOOT_SWAP_TYPE_NONE) ? |
| BOOT_SECONDARY_SLOT : BOOT_PRIMARY_SLOT; |
| dep_version = &state->imgs[dep->image_id][dep_slot].hdr.ih_ver; |
| |
| rc = boot_is_version_sufficient(&dep->image_min_version, dep_version); |
| if (rc != 0) { |
| /* Dependency not satisfied. |
| * Modify the swap type to decrease the version number of the image |
| * (which will be located in the primary slot after the boot process), |
| * consequently the number of unsatisfied dependencies will be |
| * decreased or remain the same. |
| */ |
| switch (BOOT_SWAP_TYPE(state)) { |
| case BOOT_SWAP_TYPE_TEST: |
| case BOOT_SWAP_TYPE_PERM: |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE; |
| break; |
| case BOOT_SWAP_TYPE_NONE: |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_REVERT; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * Read all dependency TLVs of an image from the flash and verify |
| * one after another to see if they are all satisfied. |
| * |
| * @param slot Image slot number. |
| * |
| * @return 0 on success; nonzero on failure. |
| */ |
| static int |
| boot_verify_all_dependency(struct boot_loader_state *state, uint32_t slot) |
| { |
| const struct flash_area *fap; |
| struct image_header *hdr; |
| struct image_tlv_info info; |
| struct image_tlv tlv; |
| struct image_dependency dep; |
| uint32_t off; |
| uint32_t end; |
| bool dep_tlvs_found = false; |
| int area_id; |
| int rc; |
| |
| area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot); |
| rc = flash_area_open(area_id, &fap); |
| if (rc != 0) { |
| rc = BOOT_EFLASH; |
| goto done; |
| } |
| |
| hdr = boot_img_hdr(state, slot); |
| /* The TLVs come after the image. */ |
| off = hdr->ih_hdr_size + hdr->ih_img_size; |
| |
| /* The TLV area always starts with an image_tlv_info structure. */ |
| rc = flash_area_read(fap, off, &info, sizeof(info)); |
| if (rc != 0) { |
| rc = BOOT_EFLASH; |
| goto done; |
| } |
| |
| if (info.it_magic != IMAGE_TLV_INFO_MAGIC) { |
| rc = BOOT_EBADIMAGE; |
| goto done; |
| } |
| end = off + info.it_tlv_tot; |
| off += sizeof(info); |
| |
| /* Traverse through all of the TLVs to find the dependency TLVs. */ |
| for (; off < end; off += sizeof(tlv) + tlv.it_len) { |
| rc = flash_area_read(fap, off, &tlv, sizeof(tlv)); |
| if (rc != 0) { |
| rc = BOOT_EFLASH; |
| goto done; |
| } |
| |
| if (tlv.it_type == IMAGE_TLV_DEPENDENCY) { |
| if (!dep_tlvs_found) { |
| dep_tlvs_found = true; |
| } |
| |
| if (tlv.it_len != sizeof(dep)) { |
| rc = BOOT_EBADIMAGE; |
| goto done; |
| } |
| |
| rc = flash_area_read(fap, off + sizeof(tlv), &dep, tlv.it_len); |
| if (rc != 0) { |
| rc = BOOT_EFLASH; |
| goto done; |
| } |
| |
| /* Verify dependency and modify the swap type if not satisfied. */ |
| rc = boot_verify_single_dependency(state, &dep); |
| if (rc != 0) { |
| /* Dependency not satisfied. */ |
| goto done; |
| } |
| |
| /* Dependency satisfied, no action needed. |
| * Continue with the next TLV entry. |
| */ |
| } else if (dep_tlvs_found) { |
| /* The dependency TLVs are contiguous in the TLV area. If a |
| * dependency had already been found and the last read TLV |
| * has a different type then there are no more dependency TLVs. |
| * The search can be finished. |
| */ |
| break; |
| } |
| } |
| |
| done: |
| flash_area_close(fap); |
| return rc; |
| } |
| |
| /** |
| * Verify whether the image dependencies in the TLV area are |
| * all satisfied and modify the swap type if necessary. |
| * |
| * @return 0 if all dependencies are satisfied, |
| * nonzero otherwise. |
| */ |
| static int |
| boot_verify_single_image_dependency(struct boot_loader_state *state) |
| { |
| size_t slot; |
| |
| /* Determine the source of the dependency TLVs. Those dependencies have to |
| * be checked which belong to the image that will be located in the primary |
| * slot after the firmware update process. |
| */ |
| if (BOOT_SWAP_TYPE(state) != BOOT_SWAP_TYPE_NONE && |
| BOOT_SWAP_TYPE(state) != BOOT_SWAP_TYPE_FAIL) { |
| slot = BOOT_SECONDARY_SLOT; |
| } else { |
| slot = BOOT_PRIMARY_SLOT; |
| } |
| |
| return boot_verify_all_dependency(state, slot); |
| } |
| |
| /** |
| * Iterate over all the images and verify whether the image dependencies in the |
| * TLV area are all satisfied and update the related swap type if necessary. |
| */ |
| static void |
| boot_verify_all_image_dependency(struct boot_loader_state *state) |
| { |
| int rc; |
| |
| BOOT_CURR_IMG(state) = 0; |
| while (BOOT_CURR_IMG(state) < BOOT_IMAGE_NUMBER) { |
| rc = boot_verify_single_image_dependency(state); |
| if (rc == 0) { |
| /* All dependencies've been satisfied, continue with next image. */ |
| BOOT_CURR_IMG(state)++; |
| } else if (rc == BOOT_EBADVERSION) { |
| /* Dependency check needs to be restarted. */ |
| BOOT_CURR_IMG(state) = 0; |
| } else { |
| /* Other error happened, images are inconsistent */ |
| return; |
| } |
| } |
| } |
| #endif /* (BOOT_IMAGE_NUMBER > 1) */ |
| |
| /** |
| * Performs a clean (not aborted) image update. |
| * |
| * @param bs The current boot status. |
| * |
| * @return 0 on success; nonzero on failure. |
| */ |
| static int |
| boot_perform_update(struct boot_loader_state *state, struct boot_status *bs) |
| { |
| int rc; |
| #ifndef MCUBOOT_OVERWRITE_ONLY |
| uint8_t swap_type; |
| #endif |
| |
| /* At this point there are no aborted swaps. */ |
| #if defined(MCUBOOT_OVERWRITE_ONLY) |
| rc = boot_copy_image(state, bs); |
| #elif defined(MCUBOOT_BOOTSTRAP) |
| /* Check if the image update was triggered by a bad image in the |
| * primary slot (the validity of the image in the secondary slot had |
| * already been checked). |
| */ |
| if (boot_check_header_erased(state, BOOT_PRIMARY_SLOT) == 0 || |
| boot_validate_slot(state, BOOT_PRIMARY_SLOT, bs) != 0) { |
| rc = boot_copy_image(state, bs); |
| } else { |
| rc = boot_swap_image(state, bs); |
| } |
| #else |
| rc = boot_swap_image(state, bs); |
| #endif |
| assert(rc == 0); |
| |
| #ifndef MCUBOOT_OVERWRITE_ONLY |
| /* The following state needs image_ok be explicitly set after the |
| * swap was finished to avoid a new revert. |
| */ |
| swap_type = BOOT_SWAP_TYPE(state); |
| if (swap_type == BOOT_SWAP_TYPE_REVERT || |
| swap_type == BOOT_SWAP_TYPE_PERM) { |
| rc = boot_set_image_ok(BOOT_CURR_IMG(state)); |
| if (rc != 0) { |
| BOOT_SWAP_TYPE(state) = swap_type = BOOT_SWAP_TYPE_PANIC; |
| } |
| } |
| |
| if (swap_type == BOOT_SWAP_TYPE_TEST || |
| swap_type == BOOT_SWAP_TYPE_PERM || |
| swap_type == BOOT_SWAP_TYPE_REVERT) { |
| rc = boot_set_copy_done(BOOT_CURR_IMG(state)); |
| if (rc != 0) { |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC; |
| } |
| } |
| #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| |
| return rc; |
| } |
| |
| /** |
| * Completes a previously aborted image swap. |
| * |
| * @param bs The current boot status. |
| * |
| * @return 0 on success; nonzero on failure. |
| */ |
| #if !defined(MCUBOOT_OVERWRITE_ONLY) |
| static int |
| boot_complete_partial_swap(struct boot_loader_state *state, |
| struct boot_status *bs) |
| { |
| int rc; |
| |
| /* Determine the type of swap operation being resumed from the |
| * `swap-type` trailer field. |
| */ |
| rc = boot_swap_image(state, bs); |
| assert(rc == 0); |
| |
| BOOT_SWAP_TYPE(state) = bs->swap_type; |
| |
| /* The following states need image_ok be explicitly set after the |
| * swap was finished to avoid a new revert. |
| */ |
| if (bs->swap_type == BOOT_SWAP_TYPE_REVERT || |
| bs->swap_type == BOOT_SWAP_TYPE_PERM) { |
| rc = boot_set_image_ok(BOOT_CURR_IMG(state)); |
| if (rc != 0) { |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC; |
| } |
| } |
| |
| if (bs->swap_type == BOOT_SWAP_TYPE_TEST || |
| bs->swap_type == BOOT_SWAP_TYPE_PERM || |
| bs->swap_type == BOOT_SWAP_TYPE_REVERT) { |
| rc = boot_set_copy_done(BOOT_CURR_IMG(state)); |
| if (rc != 0) { |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC; |
| } |
| } |
| |
| if (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_PANIC) { |
| BOOT_LOG_ERR("panic!"); |
| assert(0); |
| |
| /* Loop forever... */ |
| while (1) {} |
| } |
| |
| return rc; |
| } |
| #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| |
| #if (BOOT_IMAGE_NUMBER > 1) |
| /** |
| * Review the validity of previously determined swap types of other images. |
| * |
| * @param aborted_swap The current image upgrade is a |
| * partial/aborted swap. |
| */ |
| static void |
| boot_review_image_swap_types(struct boot_loader_state *state, |
| bool aborted_swap) |
| { |
| /* In that case if we rebooted in the middle of an image upgrade process, we |
| * must review the validity of swap types, that were previously determined |
| * for other images. The image_ok flag had not been set before the reboot |
| * for any of the updated images (only the copy_done flag) and thus falsely |
| * the REVERT swap type has been determined for the previous images that had |
| * been updated before the reboot. |
| * |
| * There are two separate scenarios that we have to deal with: |
| * |
| * 1. The reboot has happened during swapping an image: |
| * The current image upgrade has been determined as a |
| * partial/aborted swap. |
| * 2. The reboot has happened between two separate image upgrades: |
| * In this scenario we must check the swap type of the current image. |
| * In those cases if it is NONE or REVERT we cannot certainly determine |
| * the fact of a reboot. In a consistent state images must move in the |
| * same direction or stay in place, e.g. in practice REVERT and TEST |
| * swap types cannot be present at the same time. If the swap type of |
| * the current image is either TEST, PERM or FAIL we must review the |
| * already determined swap types of other images and set each false |
| * REVERT swap types to NONE (these images had been successfully |
| * updated before the system rebooted between two separate image |
| * upgrades). |
| */ |
| |
| if (BOOT_CURR_IMG(state) == 0) { |
| /* Nothing to do */ |
| return; |
| } |
| |
| if (!aborted_swap) { |
| if ((BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_NONE) || |
| (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_REVERT)) { |
| /* Nothing to do */ |
| return; |
| } |
| } |
| |
| for (uint8_t i = 0; i < BOOT_CURR_IMG(state); i++) { |
| if (state->swap_type[i] == BOOT_SWAP_TYPE_REVERT) { |
| state->swap_type[i] = BOOT_SWAP_TYPE_NONE; |
| } |
| } |
| } |
| #endif |
| |
| /** |
| * Prepare image to be updated if required. |
| * |
| * Prepare image to be updated if required with completing an image swap |
| * operation if one was aborted and/or determining the type of the |
| * swap operation. In case of any error set the swap type to NONE. |
| * |
| * @param state TODO |
| * @param bs Pointer where the read and possibly updated |
| * boot status can be written to. |
| */ |
| static void |
| boot_prepare_image_for_update(struct boot_loader_state *state, |
| struct boot_status *bs) |
| { |
| int rc; |
| |
| /* Determine the sector layout of the image slots and scratch area. */ |
| rc = boot_read_sectors(state); |
| if (rc != 0) { |
| BOOT_LOG_WRN("Failed reading sectors; BOOT_MAX_IMG_SECTORS=%d" |
| " - too small?", BOOT_MAX_IMG_SECTORS); |
| /* Unable to determine sector layout, continue with next image |
| * if there is one. |
| */ |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE; |
| return; |
| } |
| |
| /* Attempt to read an image header from each slot. */ |
| rc = boot_read_image_headers(state, false); |
| if (rc != 0) { |
| /* Continue with next image if there is one. */ |
| BOOT_LOG_WRN("Failed reading image headers; Image=%u", |
| BOOT_CURR_IMG(state)); |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE; |
| return; |
| } |
| |
| /* If the current image's slots aren't compatible, no swap is possible. |
| * Just boot into primary slot. |
| */ |
| if (boot_slots_compatible(state)) { |
| rc = boot_read_status(state, bs); |
| if (rc != 0) { |
| BOOT_LOG_WRN("Failed reading boot status; Image=%u", |
| BOOT_CURR_IMG(state)); |
| /* Continue with next image if there is one. */ |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE; |
| return; |
| } |
| |
| /* Determine if we rebooted in the middle of an image swap |
| * operation. If a partial swap was detected, complete it. |
| */ |
| if (bs->idx != BOOT_STATUS_IDX_0 || bs->state != BOOT_STATUS_STATE_0) { |
| |
| #if (BOOT_IMAGE_NUMBER > 1) |
| boot_review_image_swap_types(state, true); |
| #endif |
| |
| #ifdef MCUBOOT_OVERWRITE_ONLY |
| /* Should never arrive here, overwrite-only mode has |
| * no swap state. |
| */ |
| assert(0); |
| #else |
| /* Determine the type of swap operation being resumed from the |
| * `swap-type` trailer field. |
| */ |
| rc = boot_complete_partial_swap(state, bs); |
| assert(rc == 0); |
| #endif |
| /* Attempt to read an image header from each slot. Ensure that |
| * image headers in slots are aligned with headers in boot_data. |
| */ |
| rc = boot_read_image_headers(state, false); |
| assert(rc == 0); |
| |
| /* Swap has finished set to NONE */ |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE; |
| } else { |
| /* There was no partial swap, determine swap type. */ |
| if (bs->swap_type == BOOT_SWAP_TYPE_NONE) { |
| BOOT_SWAP_TYPE(state) = boot_validated_swap_type(state, bs); |
| } else if (boot_validate_slot(state, BOOT_SECONDARY_SLOT, bs) != 0) { |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_FAIL; |
| } else { |
| BOOT_SWAP_TYPE(state) = bs->swap_type; |
| } |
| |
| #if (BOOT_IMAGE_NUMBER > 1) |
| boot_review_image_swap_types(state, false); |
| #endif |
| |
| #ifdef MCUBOOT_BOOTSTRAP |
| if (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_NONE) { |
| /* Header checks are done first because they are |
| * inexpensive. Since overwrite-only copies starting from |
| * offset 0, if interrupted, it might leave a valid header |
| * magic, so also run validation on the primary slot to be |
| * sure it's not OK. |
| */ |
| if (boot_check_header_erased(state, BOOT_PRIMARY_SLOT) == 0 || |
| boot_validate_slot(state, BOOT_PRIMARY_SLOT, bs) != 0) { |
| if (boot_img_hdr(state, |
| BOOT_SECONDARY_SLOT)->ih_magic == IMAGE_MAGIC && |
| boot_validate_slot(state, BOOT_SECONDARY_SLOT, bs) == 0) |
| { |
| /* Set swap type to REVERT to overwrite the primary |
| * slot with the image contained in secondary slot |
| * and to trigger the explicit setting of the |
| * image_ok flag. |
| */ |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_REVERT; |
| } |
| } |
| } |
| #endif |
| } |
| } else { |
| /* In that case if slots are not compatible. */ |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE; |
| } |
| } |
| |
| int |
| context_boot_go(struct boot_loader_state *state, struct boot_rsp *rsp) |
| { |
| size_t slot; |
| struct boot_status bs; |
| int rc; |
| int fa_id; |
| int image_index; |
| |
| /* The array of slot sectors are defined here (as opposed to file scope) so |
| * that they don't get allocated for non-boot-loader apps. This is |
| * necessary because the gcc option "-fdata-sections" doesn't seem to have |
| * any effect in older gcc versions (e.g., 4.8.4). |
| */ |
| TARGET_STATIC boot_sector_t primary_slot_sectors[BOOT_IMAGE_NUMBER][BOOT_MAX_IMG_SECTORS]; |
| TARGET_STATIC boot_sector_t secondary_slot_sectors[BOOT_IMAGE_NUMBER][BOOT_MAX_IMG_SECTORS]; |
| TARGET_STATIC boot_sector_t scratch_sectors[BOOT_MAX_IMG_SECTORS]; |
| |
| memset(state, 0, sizeof(struct boot_loader_state)); |
| |
| /* Iterate over all the images. By the end of the loop the swap type has |
| * to be determined for each image and all aborted swaps have to be |
| * completed. |
| */ |
| IMAGES_ITER(BOOT_CURR_IMG(state)) { |
| |
| #if defined(MCUBOOT_ENC_IMAGES) && (BOOT_IMAGE_NUMBER > 1) |
| /* The keys used for encryption may no longer be valid (could belong to |
| * another images). Therefore, mark them as invalid to force their reload |
| * by boot_enc_load(). |
| */ |
| boot_enc_mark_keys_invalid(state->enc); |
| #endif |
| |
| image_index = BOOT_CURR_IMG(state); |
| |
| BOOT_IMG(state, BOOT_PRIMARY_SLOT).sectors = |
| primary_slot_sectors[image_index]; |
| BOOT_IMG(state, BOOT_SECONDARY_SLOT).sectors = |
| secondary_slot_sectors[image_index]; |
| state->scratch.sectors = scratch_sectors; |
| |
| /* Open primary and secondary image areas for the duration |
| * of this call. |
| */ |
| for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) { |
| fa_id = flash_area_id_from_multi_image_slot(image_index, slot); |
| rc = flash_area_open(fa_id, &BOOT_IMG_AREA(state, slot)); |
| assert(rc == 0); |
| } |
| rc = flash_area_open(FLASH_AREA_IMAGE_SCRATCH, |
| &BOOT_SCRATCH_AREA(state)); |
| assert(rc == 0); |
| |
| /* Determine swap type and complete swap if it has been aborted. */ |
| boot_prepare_image_for_update(state, &bs); |
| } |
| |
| #if (BOOT_IMAGE_NUMBER > 1) |
| /* Iterate over all the images and verify whether the image dependencies |
| * are all satisfied and update swap type if necessary. |
| */ |
| boot_verify_all_image_dependency(state); |
| #endif |
| |
| /* Iterate over all the images. At this point there are no aborted swaps |
| * and the swap types are determined for each image. By the end of the loop |
| * all required update operations will have been finished. |
| */ |
| IMAGES_ITER(BOOT_CURR_IMG(state)) { |
| |
| #if (BOOT_IMAGE_NUMBER > 1) |
| #ifdef MCUBOOT_ENC_IMAGES |
| /* The keys used for encryption may no longer be valid (could belong to |
| * another images). Therefore, mark them as invalid to force their reload |
| * by boot_enc_load(). |
| */ |
| boot_enc_mark_keys_invalid(); |
| #endif /* MCUBOOT_ENC_IMAGES */ |
| |
| /* Indicate that swap is not aborted */ |
| memset(&bs, 0, sizeof bs); |
| bs.idx = BOOT_STATUS_IDX_0; |
| bs.state = BOOT_STATUS_STATE_0; |
| #endif /* (BOOT_IMAGE_NUMBER > 1) */ |
| |
| /* Set the previously determined swap type */ |
| bs.swap_type = BOOT_SWAP_TYPE(state); |
| |
| switch (BOOT_SWAP_TYPE(state)) { |
| case BOOT_SWAP_TYPE_NONE: |
| break; |
| |
| case BOOT_SWAP_TYPE_TEST: /* fallthrough */ |
| case BOOT_SWAP_TYPE_PERM: /* fallthrough */ |
| case BOOT_SWAP_TYPE_REVERT: |
| rc = boot_perform_update(state, &bs); |
| assert(rc == 0); |
| break; |
| |
| case BOOT_SWAP_TYPE_FAIL: |
| /* The image in secondary slot was invalid and is now erased. Ensure |
| * we don't try to boot into it again on the next reboot. Do this by |
| * pretending we just reverted back to primary slot. |
| */ |
| #ifndef MCUBOOT_OVERWRITE_ONLY |
| /* image_ok needs to be explicitly set to avoid a new revert. */ |
| rc = boot_set_image_ok(BOOT_CURR_IMG(state)); |
| if (rc != 0) { |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC; |
| } |
| #endif /* !MCUBOOT_OVERWRITE_ONLY */ |
| break; |
| |
| default: |
| BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC; |
| } |
| |
| if (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_PANIC) { |
| BOOT_LOG_ERR("panic!"); |
| assert(0); |
| |
| /* Loop forever... */ |
| while (1) {} |
| } |
| } |
| |
| /* Iterate over all the images. At this point all required update operations |
| * have finished. By the end of the loop each image in the primary slot will |
| * have been re-validated. |
| */ |
| IMAGES_ITER(BOOT_CURR_IMG(state)) { |
| if (BOOT_SWAP_TYPE(state) != BOOT_SWAP_TYPE_NONE) { |
| /* Attempt to read an image header from each slot. Ensure that image |
| * headers in slots are aligned with headers in boot_data. |
| */ |
| rc = boot_read_image_headers(state, false); |
| if (rc != 0) { |
| goto out; |
| } |
| /* Since headers were reloaded, it can be assumed we just performed |
| * a swap or overwrite. Now the header info that should be used to |
| * provide the data for the bootstrap, which previously was at |
| * secondary slot, was updated to primary slot. |
| */ |
| } |
| |
| #ifdef MCUBOOT_VALIDATE_PRIMARY_SLOT |
| rc = boot_validate_slot(state, BOOT_PRIMARY_SLOT, NULL); |
| if (rc != 0) { |
| rc = BOOT_EBADIMAGE; |
| goto out; |
| } |
| #else |
| /* Even if we're not re-validating the primary slot, we could be booting |
| * onto an empty flash chip. At least do a basic sanity check that |
| * the magic number on the image is OK. |
| */ |
| if (BOOT_IMG(state, BOOT_PRIMARY_SLOT).hdr.ih_magic != IMAGE_MAGIC) { |
| BOOT_LOG_ERR("bad image magic 0x%lx; Image=%u", (unsigned long) |
| &boot_img_hdr(state,BOOT_PRIMARY_SLOT)->ih_magic, |
| BOOT_CURR_IMG(state)); |
| rc = BOOT_EBADIMAGE; |
| goto out; |
| } |
| #endif |
| } |
| |
| #if (BOOT_IMAGE_NUMBER > 1) |
| /* Always boot from the primary slot of Image 0. */ |
| BOOT_CURR_IMG(state) = 0; |
| #endif |
| rsp->br_flash_dev_id = BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT)->fa_device_id; |
| rsp->br_image_off = boot_img_slot_off(state, BOOT_PRIMARY_SLOT); |
| rsp->br_hdr = boot_img_hdr(state, BOOT_PRIMARY_SLOT); |
| |
| out: |
| IMAGES_ITER(BOOT_CURR_IMG(state)) { |
| flash_area_close(BOOT_SCRATCH_AREA(state)); |
| for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) { |
| flash_area_close(BOOT_IMG_AREA(state, BOOT_NUM_SLOTS - 1 - slot)); |
| } |
| } |
| return rc; |
| } |
| |
| /** |
| * Prepares the booting process. This function moves images around in flash as |
| * appropriate, and tells you what address to boot from. |
| * |
| * @param rsp On success, indicates how booting should occur. |
| * |
| * @return 0 on success; nonzero on failure. |
| */ |
| int |
| boot_go(struct boot_rsp *rsp) |
| { |
| return context_boot_go(&boot_data, rsp); |
| } |
| |
| int |
| split_go(int loader_slot, int split_slot, void **entry) |
| { |
| boot_sector_t *sectors; |
| uintptr_t entry_val; |
| int loader_flash_id; |
| int split_flash_id; |
| int rc; |
| |
| sectors = malloc(BOOT_MAX_IMG_SECTORS * 2 * sizeof *sectors); |
| if (sectors == NULL) { |
| return SPLIT_GO_ERR; |
| } |
| BOOT_IMG(&boot_data, loader_slot).sectors = sectors + 0; |
| BOOT_IMG(&boot_data, split_slot).sectors = sectors + BOOT_MAX_IMG_SECTORS; |
| |
| loader_flash_id = flash_area_id_from_image_slot(loader_slot); |
| rc = flash_area_open(loader_flash_id, |
| &BOOT_IMG_AREA(&boot_data, loader_slot)); |
| assert(rc == 0); |
| split_flash_id = flash_area_id_from_image_slot(split_slot); |
| rc = flash_area_open(split_flash_id, |
| &BOOT_IMG_AREA(&boot_data, split_slot)); |
| assert(rc == 0); |
| |
| /* Determine the sector layout of the image slots and scratch area. */ |
| rc = boot_read_sectors(&boot_data); |
| if (rc != 0) { |
| rc = SPLIT_GO_ERR; |
| goto done; |
| } |
| |
| rc = boot_read_image_headers(&boot_data, true); |
| if (rc != 0) { |
| goto done; |
| } |
| |
| /* Don't check the bootable image flag because we could really call a |
| * bootable or non-bootable image. Just validate that the image check |
| * passes which is distinct from the normal check. |
| */ |
| rc = split_image_check(boot_img_hdr(&boot_data, split_slot), |
| BOOT_IMG_AREA(&boot_data, split_slot), |
| boot_img_hdr(&boot_data, loader_slot), |
| BOOT_IMG_AREA(&boot_data, loader_slot)); |
| if (rc != 0) { |
| rc = SPLIT_GO_NON_MATCHING; |
| goto done; |
| } |
| |
| entry_val = boot_img_slot_off(&boot_data, split_slot) + |
| boot_img_hdr(&boot_data, split_slot)->ih_hdr_size; |
| *entry = (void *) entry_val; |
| rc = SPLIT_GO_OK; |
| |
| done: |
| flash_area_close(BOOT_IMG_AREA(&boot_data, split_slot)); |
| flash_area_close(BOOT_IMG_AREA(&boot_data, loader_slot)); |
| free(sectors); |
| return rc; |
| } |