blob: b72d8328a73c830032bd8f377c4a4ce53da3bd79 [file] [log] [blame]
Paul Bakkerf3b86c12011-01-27 15:24:17 +00001/**
2 * \brief HAVEGE: HArdware Volatile Entropy Gathering and Expansion
Paul Bakker5121ce52009-01-03 21:22:43 +00003 *
Paul Bakker530927b2015-02-13 14:24:10 +01004 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
Paul Bakkerb96f1542010-07-18 20:36:00 +00005 *
Manuel Pégourié-Gonnarde12abf92015-01-28 17:13:45 +00006 * This file is part of mbed TLS (https://polarssl.org)
Paul Bakkere0ccd0a2009-01-04 16:27:10 +00007 *
Paul Bakker5121ce52009-01-03 21:22:43 +00008 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 */
22/*
23 * The HAVEGE RNG was designed by Andre Seznec in 2002.
24 *
25 * http://www.irisa.fr/caps/projects/hipsor/publi.php
26 *
27 * Contact: seznec(at)irisa_dot_fr - orocheco(at)irisa_dot_fr
28 */
29
Paul Bakker40e46942009-01-03 21:51:57 +000030#include "polarssl/config.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000031
Paul Bakker40e46942009-01-03 21:51:57 +000032#if defined(POLARSSL_HAVEGE_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000033
Paul Bakker40e46942009-01-03 21:51:57 +000034#include "polarssl/havege.h"
35#include "polarssl/timing.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000036
Paul Bakker23986e52011-04-24 08:57:21 +000037#include <string.h>
38#include <time.h>
39
Paul Bakker5121ce52009-01-03 21:22:43 +000040/* ------------------------------------------------------------------------
41 * On average, one iteration accesses two 8-word blocks in the havege WALK
42 * table, and generates 16 words in the RES array.
43 *
44 * The data read in the WALK table is updated and permuted after each use.
45 * The result of the hardware clock counter read is used for this update.
46 *
47 * 25 conditional tests are present. The conditional tests are grouped in
48 * two nested groups of 12 conditional tests and 1 test that controls the
49 * permutation; on average, there should be 6 tests executed and 3 of them
50 * should be mispredicted.
51 * ------------------------------------------------------------------------
52 */
53
54#define SWAP(X,Y) { int *T = X; X = Y; Y = T; }
55
56#define TST1_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;
57#define TST2_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;
58
59#define TST1_LEAVE U1++; }
60#define TST2_LEAVE U2++; }
61
62#define ONE_ITERATION \
63 \
64 PTEST = PT1 >> 20; \
65 \
66 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \
67 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \
68 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \
69 \
70 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \
71 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \
72 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \
73 \
74 PTX = (PT1 >> 18) & 7; \
75 PT1 &= 0x1FFF; \
76 PT2 &= 0x1FFF; \
77 CLK = (int) hardclock(); \
78 \
79 i = 0; \
80 A = &WALK[PT1 ]; RES[i++] ^= *A; \
81 B = &WALK[PT2 ]; RES[i++] ^= *B; \
82 C = &WALK[PT1 ^ 1]; RES[i++] ^= *C; \
83 D = &WALK[PT2 ^ 4]; RES[i++] ^= *D; \
84 \
85 IN = (*A >> (1)) ^ (*A << (31)) ^ CLK; \
86 *A = (*B >> (2)) ^ (*B << (30)) ^ CLK; \
87 *B = IN ^ U1; \
88 *C = (*C >> (3)) ^ (*C << (29)) ^ CLK; \
89 *D = (*D >> (4)) ^ (*D << (28)) ^ CLK; \
90 \
91 A = &WALK[PT1 ^ 2]; RES[i++] ^= *A; \
92 B = &WALK[PT2 ^ 2]; RES[i++] ^= *B; \
93 C = &WALK[PT1 ^ 3]; RES[i++] ^= *C; \
94 D = &WALK[PT2 ^ 6]; RES[i++] ^= *D; \
95 \
96 if( PTEST & 1 ) SWAP( A, C ); \
97 \
98 IN = (*A >> (5)) ^ (*A << (27)) ^ CLK; \
99 *A = (*B >> (6)) ^ (*B << (26)) ^ CLK; \
100 *B = IN; CLK = (int) hardclock(); \
101 *C = (*C >> (7)) ^ (*C << (25)) ^ CLK; \
102 *D = (*D >> (8)) ^ (*D << (24)) ^ CLK; \
103 \
104 A = &WALK[PT1 ^ 4]; \
105 B = &WALK[PT2 ^ 1]; \
106 \
107 PTEST = PT2 >> 1; \
108 \
109 PT2 = (RES[(i - 8) ^ PTY] ^ WALK[PT2 ^ PTY ^ 7]); \
110 PT2 = ((PT2 & 0x1FFF) & (~8)) ^ ((PT1 ^ 8) & 0x8); \
111 PTY = (PT2 >> 10) & 7; \
112 \
113 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \
114 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \
115 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \
116 \
117 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \
118 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \
119 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \
120 \
121 C = &WALK[PT1 ^ 5]; \
122 D = &WALK[PT2 ^ 5]; \
123 \
124 RES[i++] ^= *A; \
125 RES[i++] ^= *B; \
126 RES[i++] ^= *C; \
127 RES[i++] ^= *D; \
128 \
129 IN = (*A >> ( 9)) ^ (*A << (23)) ^ CLK; \
130 *A = (*B >> (10)) ^ (*B << (22)) ^ CLK; \
131 *B = IN ^ U2; \
132 *C = (*C >> (11)) ^ (*C << (21)) ^ CLK; \
133 *D = (*D >> (12)) ^ (*D << (20)) ^ CLK; \
134 \
135 A = &WALK[PT1 ^ 6]; RES[i++] ^= *A; \
136 B = &WALK[PT2 ^ 3]; RES[i++] ^= *B; \
137 C = &WALK[PT1 ^ 7]; RES[i++] ^= *C; \
138 D = &WALK[PT2 ^ 7]; RES[i++] ^= *D; \
139 \
140 IN = (*A >> (13)) ^ (*A << (19)) ^ CLK; \
141 *A = (*B >> (14)) ^ (*B << (18)) ^ CLK; \
142 *B = IN; \
143 *C = (*C >> (15)) ^ (*C << (17)) ^ CLK; \
144 *D = (*D >> (16)) ^ (*D << (16)) ^ CLK; \
145 \
146 PT1 = ( RES[(i - 8) ^ PTX] ^ \
147 WALK[PT1 ^ PTX ^ 7] ) & (~1); \
148 PT1 ^= (PT2 ^ 0x10) & 0x10; \
149 \
150 for( n++, i = 0; i < 16; i++ ) \
151 hs->pool[n % COLLECT_SIZE] ^= RES[i];
152
153/*
154 * Entropy gathering function
155 */
156static void havege_fill( havege_state *hs )
157{
158 int i, n = 0;
159 int U1, U2, *A, *B, *C, *D;
160 int PT1, PT2, *WALK, RES[16];
161 int PTX, PTY, CLK, PTEST, IN;
162
163 WALK = hs->WALK;
164 PT1 = hs->PT1;
165 PT2 = hs->PT2;
166
167 PTX = U1 = 0;
168 PTY = U2 = 0;
169
170 memset( RES, 0, sizeof( RES ) );
171
172 while( n < COLLECT_SIZE * 4 )
173 {
174 ONE_ITERATION
175 ONE_ITERATION
176 ONE_ITERATION
177 ONE_ITERATION
178 }
179
180 hs->PT1 = PT1;
181 hs->PT2 = PT2;
182
183 hs->offset[0] = 0;
184 hs->offset[1] = COLLECT_SIZE / 2;
185}
186
187/*
188 * HAVEGE initialization
189 */
190void havege_init( havege_state *hs )
191{
192 memset( hs, 0, sizeof( havege_state ) );
193
194 havege_fill( hs );
195}
196
197/*
198 * HAVEGE rand function
199 */
Paul Bakkera3d195c2011-11-27 21:07:34 +0000200int havege_random( void *p_rng, unsigned char *buf, size_t len )
Paul Bakker5121ce52009-01-03 21:22:43 +0000201{
Paul Bakkera3d195c2011-11-27 21:07:34 +0000202 int val;
203 size_t use_len;
Paul Bakker5121ce52009-01-03 21:22:43 +0000204 havege_state *hs = (havege_state *) p_rng;
Paul Bakkera3d195c2011-11-27 21:07:34 +0000205 unsigned char *p = buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000206
Paul Bakkera3d195c2011-11-27 21:07:34 +0000207 while( len > 0 )
208 {
209 use_len = len;
210 if( use_len > sizeof(int) )
211 use_len = sizeof(int);
Paul Bakker5121ce52009-01-03 21:22:43 +0000212
Paul Bakkera3d195c2011-11-27 21:07:34 +0000213 if( hs->offset[1] >= COLLECT_SIZE )
214 havege_fill( hs );
Paul Bakker5121ce52009-01-03 21:22:43 +0000215
Paul Bakkera3d195c2011-11-27 21:07:34 +0000216 val = hs->pool[hs->offset[0]++];
217 val ^= hs->pool[hs->offset[1]++];
218
219 memcpy( p, &val, use_len );
220
221 len -= use_len;
222 p += use_len;
223 }
224
225 return( 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000226}
227
Paul Bakker5121ce52009-01-03 21:22:43 +0000228#endif