blob: d0008a9f674d168abae268f0cd8a33cb8a66abed [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100108 * that a key either exists or not,
109 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100110 * as applicable.
111 *
112 * Implementations shall not return this error code to indicate that a
113 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
114 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200115#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
117/** The parameters passed to the function are invalid.
118 *
119 * Implementations may return this error any time a parameter or
120 * combination of parameters are recognized as invalid.
121 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100122 * Implementations shall not return this error code to indicate that a
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
124 * instead.
125 */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** There is not enough runtime memory.
129 *
130 * If the action is carried out across multiple security realms, this
131 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200132#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100133
134/** There is not enough persistent storage.
135 *
136 * Functions that modify the key storage return this error code if
137 * there is insufficient storage space on the host media. In addition,
138 * many functions that do not otherwise access storage may return this
139 * error code if the implementation requires a mandatory log entry for
140 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200141#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100142
143/** There was a communication failure inside the implementation.
144 *
145 * This can indicate a communication failure between the application
146 * and an external cryptoprocessor or between the cryptoprocessor and
147 * an external volatile or persistent memory. A communication failure
148 * may be transient or permanent depending on the cause.
149 *
150 * \warning If a function returns this error, it is undetermined
151 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200152 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100153 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
154 * if the requested action was completed successfully in an external
155 * cryptoprocessor but there was a breakdown of communication before
156 * the cryptoprocessor could report the status to the application.
157 */
David Saadab4ecc272019-02-14 13:48:10 +0200158#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100159
160/** There was a storage failure that may have led to data loss.
161 *
162 * This error indicates that some persistent storage is corrupted.
163 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200164 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165 * between the cryptoprocessor and its external storage (use
166 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
167 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
168 *
169 * Note that a storage failure does not indicate that any data that was
170 * previously read is invalid. However this previously read data may no
171 * longer be readable from storage.
172 *
173 * When a storage failure occurs, it is no longer possible to ensure
174 * the global integrity of the keystore. Depending on the global
175 * integrity guarantees offered by the implementation, access to other
176 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100177 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100178 *
179 * Implementations should only use this error code to report a
180 * permanent storage corruption. However application writers should
181 * keep in mind that transient errors while reading the storage may be
182 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200183#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100184
185/** A hardware failure was detected.
186 *
187 * A hardware failure may be transient or permanent depending on the
188 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200189#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100190
191/** A tampering attempt was detected.
192 *
193 * If an application receives this error code, there is no guarantee
194 * that previously accessed or computed data was correct and remains
195 * confidential. Applications should not perform any security function
196 * and should enter a safe failure state.
197 *
198 * Implementations may return this error code if they detect an invalid
199 * state that cannot happen during normal operation and that indicates
200 * that the implementation's security guarantees no longer hold. Depending
201 * on the implementation architecture and on its security and safety goals,
202 * the implementation may forcibly terminate the application.
203 *
204 * This error code is intended as a last resort when a security breach
205 * is detected and it is unsure whether the keystore data is still
206 * protected. Implementations shall only return this error code
207 * to report an alarm from a tampering detector, to indicate that
208 * the confidentiality of stored data can no longer be guaranteed,
209 * or to indicate that the integrity of previously returned data is now
210 * considered compromised. Implementations shall not use this error code
211 * to indicate a hardware failure that merely makes it impossible to
212 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
213 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
214 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
215 * instead).
216 *
217 * This error indicates an attack against the application. Implementations
218 * shall not return this error code as a consequence of the behavior of
219 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200220#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100221
222/** There is not enough entropy to generate random data needed
223 * for the requested action.
224 *
225 * This error indicates a failure of a hardware random generator.
226 * Application writers should note that this error can be returned not
227 * only by functions whose purpose is to generate random data, such
228 * as key, IV or nonce generation, but also by functions that execute
229 * an algorithm with a randomized result, as well as functions that
230 * use randomization of intermediate computations as a countermeasure
231 * to certain attacks.
232 *
233 * Implementations should avoid returning this error after psa_crypto_init()
234 * has succeeded. Implementations should generate sufficient
235 * entropy during initialization and subsequently use a cryptographically
236 * secure pseudorandom generator (PRNG). However implementations may return
237 * this error at any time if a policy requires the PRNG to be reseeded
238 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200239#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100240
241/** The signature, MAC or hash is incorrect.
242 *
243 * Verification functions return this error if the verification
244 * calculations completed successfully, and the value to be verified
245 * was determined to be incorrect.
246 *
247 * If the value to verify has an invalid size, implementations may return
248 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The decrypted padding is incorrect.
252 *
253 * \warning In some protocols, when decrypting data, it is essential that
254 * the behavior of the application does not depend on whether the padding
255 * is correct, down to precise timing. Applications should prefer
256 * protocols that use authenticated encryption rather than plain
257 * encryption. If the application must perform a decryption of
258 * unauthenticated data, the application writer should take care not
259 * to reveal whether the padding is invalid.
260 *
261 * Implementations should strive to make valid and invalid padding
262 * as close as possible to indistinguishable to an external observer.
263 * In particular, the timing of a decryption operation should not
264 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200265#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100266
David Saadab4ecc272019-02-14 13:48:10 +0200267/** Return this error when there's insufficient data when attempting
268 * to read from a resource. */
269#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270
Andrew Thoelke3c2b8032019-08-22 12:20:12 +0100271/** The key handle is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272 */
David Saadab4ecc272019-02-14 13:48:10 +0200273#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100274
275/**@}*/
276
277/** \defgroup crypto_types Key and algorithm types
278 * @{
279 */
280
281/** An invalid key type value.
282 *
283 * Zero is not the encoding of any key type.
284 */
285#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
286
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100287/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100288 *
289 * Key types defined by this standard will never have the
290 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
291 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
292 * respect the bitwise structure used by standard encodings whenever practical.
293 */
294#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
295
296#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
297#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
298#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
299#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
300#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
301
302#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
303
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100304/** Whether a key type is vendor-defined.
305 *
306 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
307 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100308#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
309 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
310
311/** Whether a key type is an unstructured array of bytes.
312 *
313 * This encompasses both symmetric keys and non-key data.
314 */
315#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
316 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
317 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
318
319/** Whether a key type is asymmetric: either a key pair or a public key. */
320#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
321 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
322 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
323 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
324/** Whether a key type is the public part of a key pair. */
325#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
326 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
327/** Whether a key type is a key pair containing a private part and a public
328 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200329#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100330 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
331/** The key pair type corresponding to a public key type.
332 *
333 * You may also pass a key pair type as \p type, it will be left unchanged.
334 *
335 * \param type A public key type or key pair type.
336 *
337 * \return The corresponding key pair type.
338 * If \p type is not a public key or a key pair,
339 * the return value is undefined.
340 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200341#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
343/** The public key type corresponding to a key pair type.
344 *
345 * You may also pass a key pair type as \p type, it will be left unchanged.
346 *
347 * \param type A public key type or key pair type.
348 *
349 * \return The corresponding public key type.
350 * If \p type is not a public key or a key pair,
351 * the return value is undefined.
352 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200353#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100354 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
355
356/** Raw data.
357 *
358 * A "key" of this type cannot be used for any cryptographic operation.
359 * Applications may use this type to store arbitrary data in the keystore. */
360#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
361
362/** HMAC key.
363 *
364 * The key policy determines which underlying hash algorithm the key can be
365 * used for.
366 *
367 * HMAC keys should generally have the same size as the underlying hash.
368 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
369 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
370#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
371
372/** A secret for key derivation.
373 *
374 * The key policy determines which key derivation algorithm the key
375 * can be used for.
376 */
377#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
378
Gilles Peskine737c6be2019-05-21 16:01:06 +0200379/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 *
381 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
382 * 32 bytes (AES-256).
383 */
384#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
385
386/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
387 *
388 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
389 * 24 bytes (3-key 3DES).
390 *
391 * Note that single DES and 2-key 3DES are weak and strongly
392 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
393 * is weak and deprecated and should only be used in legacy protocols.
394 */
395#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
396
Gilles Peskine737c6be2019-05-21 16:01:06 +0200397/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100398 * Camellia block cipher. */
399#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
400
401/** Key for the RC4 stream cipher.
402 *
403 * Note that RC4 is weak and deprecated and should only be used in
404 * legacy protocols. */
405#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
406
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200407/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
408 *
409 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
410 *
411 * Implementations must support 12-byte nonces, may support 8-byte nonces,
412 * and should reject other sizes.
413 */
414#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005)
415
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416/** RSA public key. */
417#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
418/** RSA key pair (private and public key). */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200419#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x70010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420/** Whether a key type is an RSA key (pair or public-only). */
421#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200422 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100424#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200425#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x70030000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100426#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100427/** Elliptic curve key pair.
428 *
429 * \param curve A value of type ::psa_ecc_curve_t that identifies the
430 * ECC curve to be used.
431 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200432#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
433 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100434/** Elliptic curve public key.
435 *
436 * \param curve A value of type ::psa_ecc_curve_t that identifies the
437 * ECC curve to be used.
438 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100439#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
440 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
441
442/** Whether a key type is an elliptic curve key (pair or public-only). */
443#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200444 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100445 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100446/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200447#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200449 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100450/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100451#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
452 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
453 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
454
455/** Extract the curve from an elliptic curve key type. */
456#define PSA_KEY_TYPE_GET_CURVE(type) \
457 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
458 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
459 0))
460
461/* The encoding of curve identifiers is currently aligned with the
462 * TLS Supported Groups Registry (formerly known as the
463 * TLS EC Named Curve Registry)
464 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
465 * The values are defined by RFC 8422 and RFC 7027. */
466#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
467#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
468#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
469#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
470#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
471#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
472#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
473#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
474#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
475#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
476#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
477#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
478#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
479#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
480#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
481#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
482#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
483#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
484#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
485#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
486#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
487#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
488#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
489#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
490#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
491#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
492#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
493#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200494/** Curve25519.
495 *
496 * This is the curve defined in Bernstein et al.,
497 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
498 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
499 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100500#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200501/** Curve448
502 *
503 * This is the curve defined in Hamburg,
504 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
505 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
506 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100507#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
508
Andrew Thoelkefd368e52019-09-25 22:14:29 +0100509/** Minimum value for a vendor-defined ECC curve identifier
510 *
511 * The range for vendor-defined curve identifiers is a subset of the IANA
512 * registry private use range, `0xfe00` - `0xfeff`.
513 */
514#define PSA_ECC_CURVE_VENDOR_MIN ((psa_ecc_curve_t) 0xfe00)
515/** Maximum value for a vendor-defined ECC curve identifier
516 *
517 * The range for vendor-defined curve identifiers is a subset of the IANA
518 * registry private use range, `0xfe00` - `0xfeff`.
519 */
520#define PSA_ECC_CURVE_VENDOR_MAX ((psa_ecc_curve_t) 0xfe7f)
521
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200522#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x60040000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200523#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x70040000)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200524#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x0000ffff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100525/** Diffie-Hellman key pair.
526 *
527 * \param group A value of type ::psa_dh_group_t that identifies the
528 * Diffie-Hellman group to be used.
529 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200530#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
531 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100532/** Diffie-Hellman public key.
533 *
534 * \param group A value of type ::psa_dh_group_t that identifies the
535 * Diffie-Hellman group to be used.
536 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200537#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
538 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
539
540/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
541#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200542 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200543 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
544/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200545#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200546 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200547 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200548/** Whether a key type is a Diffie-Hellman public key. */
549#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
550 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
551 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
552
553/** Extract the group from a Diffie-Hellman key type. */
554#define PSA_KEY_TYPE_GET_GROUP(type) \
555 ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \
556 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
557 0))
558
559/* The encoding of group identifiers is currently aligned with the
560 * TLS Supported Groups Registry (formerly known as the
561 * TLS EC Named Curve Registry)
562 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
563 * The values are defined by RFC 7919. */
564#define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x0100)
565#define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x0101)
566#define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x0102)
567#define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x0103)
568#define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x0104)
Jaeden Amero8851c402019-01-11 14:20:03 +0000569
Andrew Thoelkefd368e52019-09-25 22:14:29 +0100570/** Minimum value for a vendor-defined Diffie Hellman group identifier
571 *
572 * The range for vendor-defined group identifiers is a subset of the IANA
573 * registry private use range, `0x01fc` - `0x01ff`.
574 */
575#define PSA_DH_GROUP_VENDOR_MIN ((psa_dh_group_t) 0x01fc)
576/** Maximum value for a vendor-defined Diffie Hellman group identifier
577 *
578 * The range for vendor-defined group identifiers is a subset of the IANA
579 * registry private use range, `0x01fc` - `0x01ff`.
580 */
581#define PSA_DH_GROUP_VENDOR_MAX ((psa_dh_group_t) 0x01fd)
582
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100583/** The block size of a block cipher.
584 *
585 * \param type A cipher key type (value of type #psa_key_type_t).
586 *
587 * \return The block size for a block cipher, or 1 for a stream cipher.
588 * The return value is undefined if \p type is not a supported
589 * cipher key type.
590 *
591 * \note It is possible to build stream cipher algorithms on top of a block
592 * cipher, for example CTR mode (#PSA_ALG_CTR).
593 * This macro only takes the key type into account, so it cannot be
594 * used to determine the size of the data that #psa_cipher_update()
595 * might buffer for future processing in general.
596 *
597 * \note This macro returns a compile-time constant if its argument is one.
598 *
599 * \warning This macro may evaluate its argument multiple times.
600 */
601#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
602 ( \
603 (type) == PSA_KEY_TYPE_AES ? 16 : \
604 (type) == PSA_KEY_TYPE_DES ? 8 : \
605 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
606 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
607 0)
608
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100609/** Vendor-defined algorithm flag.
610 *
611 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
612 * bit set. Vendors who define additional algorithms must use an encoding with
613 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
614 * used by standard encodings whenever practical.
615 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100616#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100617
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100618#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
619#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
620#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
621#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
622#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
623#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
624#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100625#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
626#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100627
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100628/** Whether an algorithm is vendor-defined.
629 *
630 * See also #PSA_ALG_VENDOR_FLAG.
631 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100632#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
633 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
634
635/** Whether the specified algorithm is a hash algorithm.
636 *
637 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
638 *
639 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
640 * This macro may return either 0 or 1 if \p alg is not a supported
641 * algorithm identifier.
642 */
643#define PSA_ALG_IS_HASH(alg) \
644 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
645
646/** Whether the specified algorithm is a MAC algorithm.
647 *
648 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
649 *
650 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
651 * This macro may return either 0 or 1 if \p alg is not a supported
652 * algorithm identifier.
653 */
654#define PSA_ALG_IS_MAC(alg) \
655 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
656
657/** Whether the specified algorithm is a symmetric cipher algorithm.
658 *
659 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
660 *
661 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
662 * This macro may return either 0 or 1 if \p alg is not a supported
663 * algorithm identifier.
664 */
665#define PSA_ALG_IS_CIPHER(alg) \
666 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
667
668/** Whether the specified algorithm is an authenticated encryption
669 * with associated data (AEAD) algorithm.
670 *
671 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
672 *
673 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
674 * This macro may return either 0 or 1 if \p alg is not a supported
675 * algorithm identifier.
676 */
677#define PSA_ALG_IS_AEAD(alg) \
678 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
679
680/** Whether the specified algorithm is a public-key signature algorithm.
681 *
682 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
683 *
684 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
685 * This macro may return either 0 or 1 if \p alg is not a supported
686 * algorithm identifier.
687 */
688#define PSA_ALG_IS_SIGN(alg) \
689 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
690
691/** Whether the specified algorithm is a public-key encryption algorithm.
692 *
693 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
694 *
695 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
696 * This macro may return either 0 or 1 if \p alg is not a supported
697 * algorithm identifier.
698 */
699#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
700 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
701
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100702/** Whether the specified algorithm is a key agreement algorithm.
703 *
704 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
705 *
706 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
707 * This macro may return either 0 or 1 if \p alg is not a supported
708 * algorithm identifier.
709 */
710#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100711 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100712
713/** Whether the specified algorithm is a key derivation algorithm.
714 *
715 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
716 *
717 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
718 * This macro may return either 0 or 1 if \p alg is not a supported
719 * algorithm identifier.
720 */
721#define PSA_ALG_IS_KEY_DERIVATION(alg) \
722 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
723
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100724#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100725/** MD2 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100726#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100727/** MD4 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100728#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100729/** MD5 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100730#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100731/** PSA_ALG_RIPEMD160 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100732#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100733/** SHA1 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100734#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
735/** SHA2-224 */
736#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
737/** SHA2-256 */
738#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
739/** SHA2-384 */
740#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
741/** SHA2-512 */
742#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
743/** SHA2-512/224 */
744#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
745/** SHA2-512/256 */
746#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
747/** SHA3-224 */
748#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
749/** SHA3-256 */
750#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
751/** SHA3-384 */
752#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
753/** SHA3-512 */
754#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
755
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100756/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100757 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100758 * This value may be used to form the algorithm usage field of a policy
759 * for a signature algorithm that is parametrized by a hash. The key
760 * may then be used to perform operations using the same signature
761 * algorithm parametrized with any supported hash.
762 *
763 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100764 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100765 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100766 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100767 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
768 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100769 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200770 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100771 * ```
772 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100773 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100774 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
775 * call to sign or verify a message may use a different hash.
776 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100777 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
778 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
779 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100780 * ```
781 *
782 * This value may not be used to build other algorithms that are
783 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100784 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100785 *
786 * This value may not be used to build an algorithm specification to
787 * perform an operation. It is only valid to build policies.
788 */
789#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
790
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100791#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
792#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
793/** Macro to build an HMAC algorithm.
794 *
795 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
796 *
797 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
798 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
799 *
800 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100801 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100802 * hash algorithm.
803 */
804#define PSA_ALG_HMAC(hash_alg) \
805 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
806
807#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
808 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
809
810/** Whether the specified algorithm is an HMAC algorithm.
811 *
812 * HMAC is a family of MAC algorithms that are based on a hash function.
813 *
814 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
815 *
816 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
817 * This macro may return either 0 or 1 if \p alg is not a supported
818 * algorithm identifier.
819 */
820#define PSA_ALG_IS_HMAC(alg) \
821 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
822 PSA_ALG_HMAC_BASE)
823
824/* In the encoding of a MAC algorithm, the bits corresponding to
825 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
826 * truncated. As an exception, the value 0 means the untruncated algorithm,
827 * whatever its length is. The length is encoded in 6 bits, so it can
828 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
829 * to full length is correctly encoded as 0 and any non-trivial truncation
830 * is correctly encoded as a value between 1 and 63. */
831#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
832#define PSA_MAC_TRUNCATION_OFFSET 8
833
834/** Macro to build a truncated MAC algorithm.
835 *
836 * A truncated MAC algorithm is identical to the corresponding MAC
837 * algorithm except that the MAC value for the truncated algorithm
838 * consists of only the first \p mac_length bytes of the MAC value
839 * for the untruncated algorithm.
840 *
841 * \note This macro may allow constructing algorithm identifiers that
842 * are not valid, either because the specified length is larger
843 * than the untruncated MAC or because the specified length is
844 * smaller than permitted by the implementation.
845 *
846 * \note It is implementation-defined whether a truncated MAC that
847 * is truncated to the same length as the MAC of the untruncated
848 * algorithm is considered identical to the untruncated algorithm
849 * for policy comparison purposes.
850 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200851 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100852 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
853 * is true). This may be a truncated or untruncated
854 * MAC algorithm.
855 * \param mac_length Desired length of the truncated MAC in bytes.
856 * This must be at most the full length of the MAC
857 * and must be at least an implementation-specified
858 * minimum. The implementation-specified minimum
859 * shall not be zero.
860 *
861 * \return The corresponding MAC algorithm with the specified
862 * length.
863 * \return Unspecified if \p alg is not a supported
864 * MAC algorithm or if \p mac_length is too small or
865 * too large for the specified MAC algorithm.
866 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200867#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
868 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100869 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
870
871/** Macro to build the base MAC algorithm corresponding to a truncated
872 * MAC algorithm.
873 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200874 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100875 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
876 * is true). This may be a truncated or untruncated
877 * MAC algorithm.
878 *
879 * \return The corresponding base MAC algorithm.
880 * \return Unspecified if \p alg is not a supported
881 * MAC algorithm.
882 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200883#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
884 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100885
886/** Length to which a MAC algorithm is truncated.
887 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200888 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100889 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
890 * is true).
891 *
892 * \return Length of the truncated MAC in bytes.
893 * \return 0 if \p alg is a non-truncated MAC algorithm.
894 * \return Unspecified if \p alg is not a supported
895 * MAC algorithm.
896 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200897#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
898 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100899
900#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100901/** The CBC-MAC construction over a block cipher
902 *
903 * \warning CBC-MAC is insecure in many cases.
904 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
905 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100906#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100907/** The CMAC construction over a block cipher */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100908#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100909
910/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
911 *
912 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
913 *
914 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
915 * This macro may return either 0 or 1 if \p alg is not a supported
916 * algorithm identifier.
917 */
918#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
919 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
920 PSA_ALG_CIPHER_MAC_BASE)
921
922#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
923#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
924
925/** Whether the specified algorithm is a stream cipher.
926 *
927 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
928 * by applying a bitwise-xor with a stream of bytes that is generated
929 * from a key.
930 *
931 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
932 *
933 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
934 * This macro may return either 0 or 1 if \p alg is not a supported
935 * algorithm identifier or if it is not a symmetric cipher algorithm.
936 */
937#define PSA_ALG_IS_STREAM_CIPHER(alg) \
938 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
939 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
940
941/** The ARC4 stream cipher algorithm.
942 */
943#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
944
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200945/** The ChaCha20 stream cipher.
946 *
947 * ChaCha20 is defined in RFC 7539.
948 *
949 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
950 * must be 12.
951 *
952 * The initial block counter is always 0.
953 *
954 */
955#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
956
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100957/** The CTR stream cipher mode.
958 *
959 * CTR is a stream cipher which is built from a block cipher.
960 * The underlying block cipher is determined by the key type.
961 * For example, to use AES-128-CTR, use this algorithm with
962 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
963 */
964#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
965
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100966/** The CFB stream cipher mode.
967 *
968 * The underlying block cipher is determined by the key type.
969 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100970#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
971
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100972/** The OFB stream cipher mode.
973 *
974 * The underlying block cipher is determined by the key type.
975 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100976#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
977
978/** The XTS cipher mode.
979 *
980 * XTS is a cipher mode which is built from a block cipher. It requires at
981 * least one full block of input, but beyond this minimum the input
982 * does not need to be a whole number of blocks.
983 */
984#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
985
986/** The CBC block cipher chaining mode, with no padding.
987 *
988 * The underlying block cipher is determined by the key type.
989 *
990 * This symmetric cipher mode can only be used with messages whose lengths
991 * are whole number of blocks for the chosen block cipher.
992 */
993#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
994
995/** The CBC block cipher chaining mode with PKCS#7 padding.
996 *
997 * The underlying block cipher is determined by the key type.
998 *
999 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1000 */
1001#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
1002
Gilles Peskine679693e2019-05-06 15:10:16 +02001003#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1004
1005/** Whether the specified algorithm is an AEAD mode on a block cipher.
1006 *
1007 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1008 *
1009 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1010 * a block cipher, 0 otherwise.
1011 * This macro may return either 0 or 1 if \p alg is not a supported
1012 * algorithm identifier.
1013 */
1014#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1015 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1016 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1017
Gilles Peskine9153ec02019-02-15 13:02:02 +01001018/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001019 *
1020 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001021 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001022#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001023
1024/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001025 *
1026 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001027 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001028#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
1029
1030/** The Chacha20-Poly1305 AEAD algorithm.
1031 *
1032 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001033 *
1034 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1035 * and should reject other sizes.
1036 *
1037 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001038 */
1039#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001040
1041/* In the encoding of a AEAD algorithm, the bits corresponding to
1042 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1043 * The constants for default lengths follow this encoding.
1044 */
1045#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
1046#define PSA_AEAD_TAG_LENGTH_OFFSET 8
1047
1048/** Macro to build a shortened AEAD algorithm.
1049 *
1050 * A shortened AEAD algorithm is similar to the corresponding AEAD
1051 * algorithm, but has an authentication tag that consists of fewer bytes.
1052 * Depending on the algorithm, the tag length may affect the calculation
1053 * of the ciphertext.
1054 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001055 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001056 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1057 * is true).
1058 * \param tag_length Desired length of the authentication tag in bytes.
1059 *
1060 * \return The corresponding AEAD algorithm with the specified
1061 * length.
1062 * \return Unspecified if \p alg is not a supported
1063 * AEAD algorithm or if \p tag_length is not valid
1064 * for the specified AEAD algorithm.
1065 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001066#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
1067 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001068 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1069 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1070
1071/** Calculate the corresponding AEAD algorithm with the default tag length.
1072 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001073 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1074 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001075 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001076 * \return The corresponding AEAD algorithm with the default
1077 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001078 */
Unknowne2e19952019-08-21 03:33:04 -04001079#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
1080 ( \
1081 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
1082 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
1083 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001084 0)
Unknowne2e19952019-08-21 03:33:04 -04001085#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \
1086 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
1087 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001088 ref :
1089
1090#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1091/** RSA PKCS#1 v1.5 signature with hashing.
1092 *
1093 * This is the signature scheme defined by RFC 8017
1094 * (PKCS#1: RSA Cryptography Specifications) under the name
1095 * RSASSA-PKCS1-v1_5.
1096 *
1097 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1098 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001099 * This includes #PSA_ALG_ANY_HASH
1100 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001101 *
1102 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001103 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001104 * hash algorithm.
1105 */
1106#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1107 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1108/** Raw PKCS#1 v1.5 signature.
1109 *
1110 * The input to this algorithm is the DigestInfo structure used by
1111 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1112 * steps 3&ndash;6.
1113 */
1114#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1115#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1116 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1117
1118#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1119/** RSA PSS signature with hashing.
1120 *
1121 * This is the signature scheme defined by RFC 8017
1122 * (PKCS#1: RSA Cryptography Specifications) under the name
1123 * RSASSA-PSS, with the message generation function MGF1, and with
1124 * a salt length equal to the length of the hash. The specified
1125 * hash algorithm is used to hash the input message, to create the
1126 * salted hash, and for the mask generation.
1127 *
1128 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1129 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001130 * This includes #PSA_ALG_ANY_HASH
1131 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001132 *
1133 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001134 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001135 * hash algorithm.
1136 */
1137#define PSA_ALG_RSA_PSS(hash_alg) \
1138 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1139#define PSA_ALG_IS_RSA_PSS(alg) \
1140 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1141
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001142#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1143/** ECDSA signature with hashing.
1144 *
1145 * This is the ECDSA signature scheme defined by ANSI X9.62,
1146 * with a random per-message secret number (*k*).
1147 *
1148 * The representation of the signature as a byte string consists of
1149 * the concatentation of the signature values *r* and *s*. Each of
1150 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1151 * of the base point of the curve in octets. Each value is represented
1152 * in big-endian order (most significant octet first).
1153 *
1154 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1155 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001156 * This includes #PSA_ALG_ANY_HASH
1157 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001158 *
1159 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001160 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001161 * hash algorithm.
1162 */
1163#define PSA_ALG_ECDSA(hash_alg) \
1164 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1165/** ECDSA signature without hashing.
1166 *
1167 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1168 * without specifying a hash algorithm. This algorithm may only be
1169 * used to sign or verify a sequence of bytes that should be an
1170 * already-calculated hash. Note that the input is padded with
1171 * zeros on the left or truncated on the left as required to fit
1172 * the curve size.
1173 */
1174#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1175#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1176/** Deterministic ECDSA signature with hashing.
1177 *
1178 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1179 *
1180 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1181 *
1182 * Note that when this algorithm is used for verification, signatures
1183 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1184 * same private key are accepted. In other words,
1185 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1186 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1187 *
1188 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1189 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001190 * This includes #PSA_ALG_ANY_HASH
1191 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001192 *
1193 * \return The corresponding deterministic ECDSA signature
1194 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001195 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001196 * hash algorithm.
1197 */
1198#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1199 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine972630e2019-11-29 11:55:48 +01001200#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001201#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001202 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001203 PSA_ALG_ECDSA_BASE)
1204#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001205 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001206#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1207 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1208#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1209 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1210
Gilles Peskined35b4892019-01-14 16:02:15 +01001211/** Whether the specified algorithm is a hash-and-sign algorithm.
1212 *
1213 * Hash-and-sign algorithms are public-key signature algorithms structured
1214 * in two parts: first the calculation of a hash in a way that does not
1215 * depend on the key, then the calculation of a signature from the
1216 * hash value and the key.
1217 *
1218 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1219 *
1220 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1221 * This macro may return either 0 or 1 if \p alg is not a supported
1222 * algorithm identifier.
1223 */
1224#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1225 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001226 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001227
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001228/** Get the hash used by a hash-and-sign signature algorithm.
1229 *
1230 * A hash-and-sign algorithm is a signature algorithm which is
1231 * composed of two phases: first a hashing phase which does not use
1232 * the key and produces a hash of the input message, then a signing
1233 * phase which only uses the hash and the key and not the message
1234 * itself.
1235 *
1236 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1237 * #PSA_ALG_IS_SIGN(\p alg) is true).
1238 *
1239 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1240 * algorithm.
1241 * \return 0 if \p alg is a signature algorithm that does not
1242 * follow the hash-and-sign structure.
1243 * \return Unspecified if \p alg is not a signature algorithm or
1244 * if it is not supported by the implementation.
1245 */
1246#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001247 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001248 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1249 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1250 0)
1251
1252/** RSA PKCS#1 v1.5 encryption.
1253 */
1254#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1255
1256#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1257/** RSA OAEP encryption.
1258 *
1259 * This is the encryption scheme defined by RFC 8017
1260 * (PKCS#1: RSA Cryptography Specifications) under the name
1261 * RSAES-OAEP, with the message generation function MGF1.
1262 *
1263 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1264 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1265 * for MGF1.
1266 *
1267 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001268 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001269 * hash algorithm.
1270 */
1271#define PSA_ALG_RSA_OAEP(hash_alg) \
1272 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1273#define PSA_ALG_IS_RSA_OAEP(alg) \
1274 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1275#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1276 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1277 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1278 0)
1279
Gilles Peskine6843c292019-01-18 16:44:49 +01001280#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001281/** Macro to build an HKDF algorithm.
1282 *
1283 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1284 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001285 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001286 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001287 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001288 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1289 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1290 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1291 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001292 * starting to generate output.
1293 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001294 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1295 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1296 *
1297 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001298 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001299 * hash algorithm.
1300 */
1301#define PSA_ALG_HKDF(hash_alg) \
1302 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1303/** Whether the specified algorithm is an HKDF algorithm.
1304 *
1305 * HKDF is a family of key derivation algorithms that are based on a hash
1306 * function and the HMAC construction.
1307 *
1308 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1309 *
1310 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1311 * This macro may return either 0 or 1 if \c alg is not a supported
1312 * key derivation algorithm identifier.
1313 */
1314#define PSA_ALG_IS_HKDF(alg) \
1315 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1316#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1317 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1318
Gilles Peskine6843c292019-01-18 16:44:49 +01001319#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001320/** Macro to build a TLS-1.2 PRF algorithm.
1321 *
1322 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1323 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1324 * used with either SHA-256 or SHA-384.
1325 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001326 * This key derivation algorithm uses the following inputs, which must be
1327 * passed in the order given here:
1328 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001329 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1330 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001331 *
1332 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001333 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001334 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001335 *
1336 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1337 * TLS 1.2 PRF using HMAC-SHA-256.
1338 *
1339 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1340 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1341 *
1342 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001343 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001344 * hash algorithm.
1345 */
1346#define PSA_ALG_TLS12_PRF(hash_alg) \
1347 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1348
1349/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1350 *
1351 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1352 *
1353 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1354 * This macro may return either 0 or 1 if \c alg is not a supported
1355 * key derivation algorithm identifier.
1356 */
1357#define PSA_ALG_IS_TLS12_PRF(alg) \
1358 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1359#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1360 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1361
Gilles Peskine6843c292019-01-18 16:44:49 +01001362#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001363/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1364 *
1365 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1366 * from the PreSharedKey (PSK) through the application of padding
1367 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1368 * The latter is based on HMAC and can be used with either SHA-256
1369 * or SHA-384.
1370 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001371 * This key derivation algorithm uses the following inputs, which must be
1372 * passed in the order given here:
1373 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001374 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1375 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001376 *
1377 * For the application to TLS-1.2, the seed (which is
1378 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1379 * ClientHello.Random + ServerHello.Random,
1380 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001381 *
1382 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1383 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1384 *
1385 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1386 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1387 *
1388 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001389 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001390 * hash algorithm.
1391 */
1392#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1393 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1394
1395/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1396 *
1397 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1398 *
1399 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1400 * This macro may return either 0 or 1 if \c alg is not a supported
1401 * key derivation algorithm identifier.
1402 */
1403#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1404 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1405#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1406 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1407
Gilles Peskinea52460c2019-04-12 00:11:21 +02001408#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1409#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001410
Gilles Peskine6843c292019-01-18 16:44:49 +01001411/** Macro to build a combined algorithm that chains a key agreement with
1412 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001413 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001414 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1415 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1416 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1417 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001418 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001419 * \return The corresponding key agreement and derivation
1420 * algorithm.
1421 * \return Unspecified if \p ka_alg is not a supported
1422 * key agreement algorithm or \p kdf_alg is not a
1423 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001424 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001425#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1426 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001427
1428#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1429 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1430
Gilles Peskine6843c292019-01-18 16:44:49 +01001431#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1432 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001433
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001434/** Whether the specified algorithm is a raw key agreement algorithm.
1435 *
1436 * A raw key agreement algorithm is one that does not specify
1437 * a key derivation function.
1438 * Usually, raw key agreement algorithms are constructed directly with
1439 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1440 * constructed with PSA_ALG_KEY_AGREEMENT().
1441 *
1442 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1443 *
1444 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1445 * This macro may return either 0 or 1 if \p alg is not a supported
1446 * algorithm identifier.
1447 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001448#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001449 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1450 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001451
1452#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1453 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1454
1455/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001456 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001457 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001458 * `g^{ab}` in big-endian format.
1459 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1460 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001461 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001462#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1463
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001464/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1465 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001466 * This includes the raw finite field Diffie-Hellman algorithm as well as
1467 * finite-field Diffie-Hellman followed by any supporter key derivation
1468 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001469 *
1470 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1471 *
1472 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1473 * This macro may return either 0 or 1 if \c alg is not a supported
1474 * key agreement algorithm identifier.
1475 */
1476#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001477 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001478
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001479/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1480 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001481 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001482 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1483 * `m` is the bit size associated with the curve, i.e. the bit size of the
1484 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1485 * the byte containing the most significant bit of the shared secret
1486 * is padded with zero bits. The byte order is either little-endian
1487 * or big-endian depending on the curve type.
1488 *
1489 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1490 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1491 * in little-endian byte order.
1492 * The bit size is 448 for Curve448 and 255 for Curve25519.
1493 * - For Weierstrass curves over prime fields (curve types
1494 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1495 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1496 * in big-endian byte order.
1497 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1498 * - For Weierstrass curves over binary fields (curve types
1499 * `PSA_ECC_CURVE_SECTXXX`),
1500 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1501 * in big-endian byte order.
1502 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001503 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001504#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1505
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001506/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1507 * algorithm.
1508 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001509 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1510 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1511 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001512 *
1513 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1514 *
1515 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1516 * 0 otherwise.
1517 * This macro may return either 0 or 1 if \c alg is not a supported
1518 * key agreement algorithm identifier.
1519 */
1520#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001521 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001522
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001523/** Whether the specified algorithm encoding is a wildcard.
1524 *
1525 * Wildcard values may only be used to set the usage algorithm field in
1526 * a policy, not to perform an operation.
1527 *
1528 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1529 *
1530 * \return 1 if \c alg is a wildcard algorithm encoding.
1531 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1532 * an operation).
1533 * \return This macro may return either 0 or 1 if \c alg is not a supported
1534 * algorithm identifier.
1535 */
1536#define PSA_ALG_IS_WILDCARD(alg) \
1537 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1538 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1539 (alg) == PSA_ALG_ANY_HASH)
1540
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001541/**@}*/
1542
1543/** \defgroup key_lifetimes Key lifetimes
1544 * @{
1545 */
1546
1547/** A volatile key only exists as long as the handle to it is not closed.
1548 * The key material is guaranteed to be erased on a power reset.
1549 */
1550#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1551
1552/** The default storage area for persistent keys.
1553 *
1554 * A persistent key remains in storage until it is explicitly destroyed or
1555 * until the corresponding storage area is wiped. This specification does
1556 * not define any mechanism to wipe a storage area, but implementations may
1557 * provide their own mechanism (for example to perform a factory reset,
1558 * to prepare for device refurbishment, or to uninstall an application).
1559 *
1560 * This lifetime value is the default storage area for the calling
1561 * application. Implementations may offer other storage areas designated
1562 * by other lifetime values as implementation-specific extensions.
1563 */
1564#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1565
Gilles Peskine4a231b82019-05-06 18:56:14 +02001566/** The minimum value for a key identifier chosen by the application.
1567 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001568#define PSA_KEY_ID_USER_MIN ((psa_app_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001569/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001570 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001571#define PSA_KEY_ID_USER_MAX ((psa_app_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001572/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001573 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001574#define PSA_KEY_ID_VENDOR_MIN ((psa_app_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001575/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001576 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001577#define PSA_KEY_ID_VENDOR_MAX ((psa_app_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001578
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001579/**@}*/
1580
1581/** \defgroup policy Key policies
1582 * @{
1583 */
1584
1585/** Whether the key may be exported.
1586 *
1587 * A public key or the public part of a key pair may always be exported
1588 * regardless of the value of this permission flag.
1589 *
1590 * If a key does not have export permission, implementations shall not
1591 * allow the key to be exported in plain form from the cryptoprocessor,
1592 * whether through psa_export_key() or through a proprietary interface.
1593 * The key may however be exportable in a wrapped form, i.e. in a form
1594 * where it is encrypted by another key.
1595 */
1596#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1597
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001598/** Whether the key may be copied.
1599 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001600 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001601 * with the same policy or a more restrictive policy.
1602 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001603 * For lifetimes for which the key is located in a secure element which
1604 * enforce the non-exportability of keys, copying a key outside the secure
1605 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1606 * Copying the key inside the secure element is permitted with just
1607 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1608 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001609 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1610 * is sufficient to permit the copy.
1611 */
1612#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1613
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001614/** Whether the key may be used to encrypt a message.
1615 *
1616 * This flag allows the key to be used for a symmetric encryption operation,
1617 * for an AEAD encryption-and-authentication operation,
1618 * or for an asymmetric encryption operation,
1619 * if otherwise permitted by the key's type and policy.
1620 *
1621 * For a key pair, this concerns the public key.
1622 */
1623#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1624
1625/** Whether the key may be used to decrypt a message.
1626 *
1627 * This flag allows the key to be used for a symmetric decryption operation,
1628 * for an AEAD decryption-and-verification operation,
1629 * or for an asymmetric decryption operation,
1630 * if otherwise permitted by the key's type and policy.
1631 *
1632 * For a key pair, this concerns the private key.
1633 */
1634#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1635
1636/** Whether the key may be used to sign a message.
1637 *
1638 * This flag allows the key to be used for a MAC calculation operation
1639 * or for an asymmetric signature operation,
1640 * if otherwise permitted by the key's type and policy.
1641 *
1642 * For a key pair, this concerns the private key.
1643 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001644#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00000400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001645
1646/** Whether the key may be used to verify a message signature.
1647 *
1648 * This flag allows the key to be used for a MAC verification operation
1649 * or for an asymmetric signature verification operation,
1650 * if otherwise permitted by by the key's type and policy.
1651 *
1652 * For a key pair, this concerns the public key.
1653 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001654#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00000800)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001655
1656/** Whether the key may be used to derive other keys.
1657 */
1658#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1659
1660/**@}*/
1661
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001662/** \defgroup derivation Key derivation
1663 * @{
1664 */
1665
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001666/** A secret input for key derivation.
1667 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001668 * This should be a key of type #PSA_KEY_TYPE_DERIVE
1669 * (passed to psa_key_derivation_input_key())
1670 * or the shared secret resulting from a key agreement
1671 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02001672 *
1673 * The secret can also be a direct input (passed to
1674 * key_derivation_input_bytes()). In this case, the derivation operation
1675 * may not be used to derive keys: the operation will only allow
1676 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001677 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001678#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001679
1680/** A label for key derivation.
1681 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001682 * This should be a direct input.
1683 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001684 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001685#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001686
1687/** A salt for key derivation.
1688 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001689 * This should be a direct input.
1690 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001691 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001692#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001693
1694/** An information string for key derivation.
1695 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001696 * This should be a direct input.
1697 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001698 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001699#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001700
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001701/** A seed for key derivation.
1702 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001703 * This should be a direct input.
1704 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001705 */
1706#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1707
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001708/**@}*/
1709
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001710#endif /* PSA_CRYPTO_VALUES_H */