blob: d96c88f0985d2add86a967af816c1e6a8b6772e5 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
41#include "mbedtls/bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050042#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000043#include "mbedtls/error.h"
Gabor Mezeic0ae1cf2021-10-20 12:09:35 +020044#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000045
Tom Cosgrove58efe612021-11-15 09:59:53 +000046#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000047#include <string.h>
48
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000049#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020050
Hanno Becker73d7d792018-12-11 10:35:51 +000051#define MPI_VALIDATE_RET( cond ) \
52 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
53#define MPI_VALIDATE( cond ) \
54 MBEDTLS_INTERNAL_VALIDATE( cond )
55
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020056#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
Paul Bakker5121ce52009-01-03 21:22:43 +000057#define biL (ciL << 3) /* bits in limb */
58#define biH (ciL << 2) /* half limb size */
59
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010060#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
61
Paul Bakker5121ce52009-01-03 21:22:43 +000062/*
63 * Convert between bits/chars and number of limbs
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +020064 * Divide first in order to avoid potential overflows
Paul Bakker5121ce52009-01-03 21:22:43 +000065 */
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +020066#define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
67#define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
Paul Bakker5121ce52009-01-03 21:22:43 +000068
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050069/* Implementation that should never be optimized out by the compiler */
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050070static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
71{
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050072 mbedtls_platform_zeroize( v, ciL * n );
73}
74
Paul Bakker5121ce52009-01-03 21:22:43 +000075/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000076 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000077 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020078void mbedtls_mpi_init( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000079{
Hanno Becker73d7d792018-12-11 10:35:51 +000080 MPI_VALIDATE( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +000081
Paul Bakker6c591fa2011-05-05 11:49:20 +000082 X->s = 1;
83 X->n = 0;
84 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000085}
86
87/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000088 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000089 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020090void mbedtls_mpi_free( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000091{
Paul Bakker6c591fa2011-05-05 11:49:20 +000092 if( X == NULL )
93 return;
Paul Bakker5121ce52009-01-03 21:22:43 +000094
Paul Bakker6c591fa2011-05-05 11:49:20 +000095 if( X->p != NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +000096 {
Alexey Skalozube17a8da2016-01-13 17:19:33 +020097 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020098 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +000099 }
100
Paul Bakker6c591fa2011-05-05 11:49:20 +0000101 X->s = 1;
102 X->n = 0;
103 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000104}
105
106/*
107 * Enlarge to the specified number of limbs
108 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200109int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
Paul Bakker5121ce52009-01-03 21:22:43 +0000110{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200111 mbedtls_mpi_uint *p;
Hanno Becker73d7d792018-12-11 10:35:51 +0000112 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000113
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200114 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200115 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakkerf9688572011-05-05 10:00:45 +0000116
Paul Bakker5121ce52009-01-03 21:22:43 +0000117 if( X->n < nblimbs )
118 {
Simon Butcher29176892016-05-20 00:19:09 +0100119 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200120 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakker5121ce52009-01-03 21:22:43 +0000121
Paul Bakker5121ce52009-01-03 21:22:43 +0000122 if( X->p != NULL )
123 {
124 memcpy( p, X->p, X->n * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200125 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200126 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +0000127 }
128
129 X->n = nblimbs;
130 X->p = p;
131 }
132
133 return( 0 );
134}
135
136/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100137 * Resize down as much as possible,
138 * while keeping at least the specified number of limbs
139 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200140int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100141{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200142 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000144 MPI_VALIDATE_RET( X != NULL );
145
146 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
147 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100148
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100149 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100150 if( X->n <= nblimbs )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200151 return( mbedtls_mpi_grow( X, nblimbs ) );
Gilles Peskine322752b2020-01-21 13:59:51 +0100152 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100153
154 for( i = X->n - 1; i > 0; i-- )
155 if( X->p[i] != 0 )
156 break;
157 i++;
158
159 if( i < nblimbs )
160 i = nblimbs;
161
Simon Butcher29176892016-05-20 00:19:09 +0100162 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200163 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100164
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100165 if( X->p != NULL )
166 {
167 memcpy( p, X->p, i * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200168 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200169 mbedtls_free( X->p );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100170 }
171
172 X->n = i;
173 X->p = p;
174
175 return( 0 );
176}
177
Gilles Peskine3130ce22021-06-02 22:17:52 +0200178/* Resize X to have exactly n limbs and set it to 0. */
179static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
180{
181 if( limbs == 0 )
182 {
183 mbedtls_mpi_free( X );
184 return( 0 );
185 }
186 else if( X->n == limbs )
187 {
188 memset( X->p, 0, limbs * ciL );
189 X->s = 1;
190 return( 0 );
191 }
192 else
193 {
194 mbedtls_mpi_free( X );
195 return( mbedtls_mpi_grow( X, limbs ) );
196 }
197}
198
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100199/*
Gilles Peskinef643e8e2021-06-08 23:17:42 +0200200 * Copy the contents of Y into X.
201 *
202 * This function is not constant-time. Leading zeros in Y may be removed.
203 *
204 * Ensure that X does not shrink. This is not guaranteed by the public API,
205 * but some code in the bignum module relies on this property, for example
206 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000207 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200208int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000209{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100210 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000211 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000212 MPI_VALIDATE_RET( X != NULL );
213 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000214
215 if( X == Y )
216 return( 0 );
217
Gilles Peskinedb420622020-01-20 21:12:50 +0100218 if( Y->n == 0 )
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200219 {
Gilles Peskinef643e8e2021-06-08 23:17:42 +0200220 if( X->n != 0 )
221 {
222 X->s = 1;
223 memset( X->p, 0, X->n * ciL );
224 }
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200225 return( 0 );
226 }
227
Paul Bakker5121ce52009-01-03 21:22:43 +0000228 for( i = Y->n - 1; i > 0; i-- )
229 if( Y->p[i] != 0 )
230 break;
231 i++;
232
233 X->s = Y->s;
234
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100235 if( X->n < i )
236 {
237 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
238 }
239 else
240 {
241 memset( X->p + i, 0, ( X->n - i ) * ciL );
242 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000243
Paul Bakker5121ce52009-01-03 21:22:43 +0000244 memcpy( X->p, Y->p, i * ciL );
245
246cleanup:
247
248 return( ret );
249}
250
251/*
252 * Swap the contents of X and Y
253 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200254void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000255{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200256 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000257 MPI_VALIDATE( X != NULL );
258 MPI_VALIDATE( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000259
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200260 memcpy( &T, X, sizeof( mbedtls_mpi ) );
261 memcpy( X, Y, sizeof( mbedtls_mpi ) );
262 memcpy( Y, &T, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000263}
264
265/*
266 * Set value from integer
267 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200268int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000269{
Janos Follath24eed8d2019-11-22 13:21:35 +0000270 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +0000271 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000272
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200273 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000274 memset( X->p, 0, X->n * ciL );
275
276 X->p[0] = ( z < 0 ) ? -z : z;
277 X->s = ( z < 0 ) ? -1 : 1;
278
279cleanup:
280
281 return( ret );
282}
283
284/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285 * Get a specific bit
286 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200287int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000288{
Hanno Becker73d7d792018-12-11 10:35:51 +0000289 MPI_VALIDATE_RET( X != NULL );
290
Paul Bakker2f5947e2011-05-18 15:47:11 +0000291 if( X->n * biL <= pos )
292 return( 0 );
293
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200294 return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000295}
296
Gilles Peskine11cdb052018-11-20 16:47:47 +0100297/* Get a specific byte, without range checks. */
298#define GET_BYTE( X, i ) \
299 ( ( ( X )->p[( i ) / ciL] >> ( ( ( i ) % ciL ) * 8 ) ) & 0xff )
300
Paul Bakker2f5947e2011-05-18 15:47:11 +0000301/*
302 * Set a bit to a specific value of 0 or 1
303 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200304int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000305{
306 int ret = 0;
307 size_t off = pos / biL;
308 size_t idx = pos % biL;
Hanno Becker73d7d792018-12-11 10:35:51 +0000309 MPI_VALIDATE_RET( X != NULL );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310
311 if( val != 0 && val != 1 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200312 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker9af723c2014-05-01 13:03:14 +0200313
Paul Bakker2f5947e2011-05-18 15:47:11 +0000314 if( X->n * biL <= pos )
315 {
316 if( val == 0 )
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200317 return( 0 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000318
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200319 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000320 }
321
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200322 X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
323 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000324
325cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200326
Paul Bakker2f5947e2011-05-18 15:47:11 +0000327 return( ret );
328}
329
330/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200331 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000332 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200333size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000334{
Paul Bakker23986e52011-04-24 08:57:21 +0000335 size_t i, j, count = 0;
Hanno Beckerf25ee7f2018-12-19 16:51:02 +0000336 MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000337
338 for( i = 0; i < X->n; i++ )
Paul Bakkerf9688572011-05-05 10:00:45 +0000339 for( j = 0; j < biL; j++, count++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000340 if( ( ( X->p[i] >> j ) & 1 ) != 0 )
341 return( count );
342
343 return( 0 );
344}
345
346/*
Simon Butcher15b15d12015-11-26 19:35:03 +0000347 * Count leading zero bits in a given integer
348 */
349static size_t mbedtls_clz( const mbedtls_mpi_uint x )
350{
351 size_t j;
Manuel Pégourié-Gonnarde3e8edf2015-12-01 09:31:52 +0100352 mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
Simon Butcher15b15d12015-11-26 19:35:03 +0000353
354 for( j = 0; j < biL; j++ )
355 {
356 if( x & mask ) break;
357
358 mask >>= 1;
359 }
360
361 return j;
362}
363
364/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200365 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000366 */
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200367size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000368{
Paul Bakker23986e52011-04-24 08:57:21 +0000369 size_t i, j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000370
Manuel Pégourié-Gonnard770b5e12015-04-29 17:02:01 +0200371 if( X->n == 0 )
372 return( 0 );
373
Paul Bakker5121ce52009-01-03 21:22:43 +0000374 for( i = X->n - 1; i > 0; i-- )
375 if( X->p[i] != 0 )
376 break;
377
Simon Butcher15b15d12015-11-26 19:35:03 +0000378 j = biL - mbedtls_clz( X->p[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +0000379
Paul Bakker23986e52011-04-24 08:57:21 +0000380 return( ( i * biL ) + j );
Paul Bakker5121ce52009-01-03 21:22:43 +0000381}
382
383/*
384 * Return the total size in bytes
385 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200386size_t mbedtls_mpi_size( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000387{
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200388 return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000389}
390
391/*
392 * Convert an ASCII character to digit value
393 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200394static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
Paul Bakker5121ce52009-01-03 21:22:43 +0000395{
396 *d = 255;
397
398 if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
399 if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
400 if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
401
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200402 if( *d >= (mbedtls_mpi_uint) radix )
403 return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
Paul Bakker5121ce52009-01-03 21:22:43 +0000404
405 return( 0 );
406}
407
408/*
409 * Import from an ASCII string
410 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200411int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000412{
Janos Follath24eed8d2019-11-22 13:21:35 +0000413 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000414 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200415 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200416 mbedtls_mpi_uint d;
417 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000418 MPI_VALIDATE_RET( X != NULL );
419 MPI_VALIDATE_RET( s != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000420
421 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000422 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000423
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200424 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000425
Gilles Peskined4876132021-06-08 18:32:34 +0200426 if( s[0] == 0 )
427 {
428 mbedtls_mpi_free( X );
429 return( 0 );
430 }
431
Gilles Peskine80f56732021-04-03 18:26:13 +0200432 if( s[0] == '-' )
433 {
434 ++s;
435 sign = -1;
436 }
437
Paul Bakkerff60ee62010-03-16 21:09:09 +0000438 slen = strlen( s );
439
Paul Bakker5121ce52009-01-03 21:22:43 +0000440 if( radix == 16 )
441 {
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +0100442 if( slen > MPI_SIZE_T_MAX >> 2 )
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +0200443 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
444
Paul Bakkerff60ee62010-03-16 21:09:09 +0000445 n = BITS_TO_LIMBS( slen << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000446
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200447 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
448 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000449
Paul Bakker23986e52011-04-24 08:57:21 +0000450 for( i = slen, j = 0; i > 0; i--, j++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000451 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200452 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
Paul Bakker66d5d072014-06-17 16:39:18 +0200453 X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000454 }
455 }
456 else
457 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200458 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000459
Paul Bakkerff60ee62010-03-16 21:09:09 +0000460 for( i = 0; i < slen; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000461 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200462 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
463 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
Gilles Peskine80f56732021-04-03 18:26:13 +0200464 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000465 }
466 }
467
Gilles Peskine80f56732021-04-03 18:26:13 +0200468 if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
469 X->s = -1;
470
Paul Bakker5121ce52009-01-03 21:22:43 +0000471cleanup:
472
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200473 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000474
475 return( ret );
476}
477
478/*
Ron Eldora16fa292018-11-20 14:07:01 +0200479 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000480 */
Ron Eldora16fa292018-11-20 14:07:01 +0200481static int mpi_write_hlp( mbedtls_mpi *X, int radix,
482 char **p, const size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000483{
Janos Follath24eed8d2019-11-22 13:21:35 +0000484 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200485 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200486 size_t length = 0;
487 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000488
Ron Eldora16fa292018-11-20 14:07:01 +0200489 do
490 {
491 if( length >= buflen )
492 {
493 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
494 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000495
Ron Eldora16fa292018-11-20 14:07:01 +0200496 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
497 MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
498 /*
499 * Write the residue in the current position, as an ASCII character.
500 */
501 if( r < 0xA )
502 *(--p_end) = (char)( '0' + r );
503 else
504 *(--p_end) = (char)( 'A' + ( r - 0xA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000505
Ron Eldora16fa292018-11-20 14:07:01 +0200506 length++;
507 } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000508
Ron Eldora16fa292018-11-20 14:07:01 +0200509 memmove( *p, p_end, length );
510 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000511
512cleanup:
513
514 return( ret );
515}
516
517/*
518 * Export into an ASCII string
519 */
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100520int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
521 char *buf, size_t buflen, size_t *olen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000522{
Paul Bakker23986e52011-04-24 08:57:21 +0000523 int ret = 0;
524 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000525 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200526 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000527 MPI_VALIDATE_RET( X != NULL );
528 MPI_VALIDATE_RET( olen != NULL );
529 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000530
531 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000532 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000533
Hanno Becker23cfea02019-02-04 09:45:07 +0000534 n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
535 if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
536 * `n`. If radix > 4, this might be a strict
537 * overapproximation of the number of
538 * radix-adic digits needed to present `n`. */
539 if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
540 * present `n`. */
541
Janos Follath80470622019-03-06 13:43:02 +0000542 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000543 n += 1; /* Compensate for the divisions above, which round down `n`
544 * in case it's not even. */
545 n += 1; /* Potential '-'-sign. */
546 n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
547 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000548
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100549 if( buflen < n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000550 {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100551 *olen = n;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200552 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000553 }
554
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100555 p = buf;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200556 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000557
558 if( X->s == -1 )
Hanno Beckerc983c812019-02-01 16:41:30 +0000559 {
Paul Bakker5121ce52009-01-03 21:22:43 +0000560 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000561 buflen--;
562 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000563
564 if( radix == 16 )
565 {
Paul Bakker23986e52011-04-24 08:57:21 +0000566 int c;
567 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000568
Paul Bakker23986e52011-04-24 08:57:21 +0000569 for( i = X->n, k = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000570 {
Paul Bakker23986e52011-04-24 08:57:21 +0000571 for( j = ciL; j > 0; j-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000572 {
Paul Bakker23986e52011-04-24 08:57:21 +0000573 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000574
Paul Bakker6c343d72014-07-10 14:36:19 +0200575 if( c == 0 && k == 0 && ( i + j ) != 2 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000576 continue;
577
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000578 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000579 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000580 k = 1;
581 }
582 }
583 }
584 else
585 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200586 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000587
588 if( T.s == -1 )
589 T.s = 1;
590
Ron Eldora16fa292018-11-20 14:07:01 +0200591 MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000592 }
593
594 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100595 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000596
597cleanup:
598
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200599 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000600
601 return( ret );
602}
603
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200604#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000605/*
606 * Read X from an opened file
607 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200608int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
Paul Bakker5121ce52009-01-03 21:22:43 +0000609{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200610 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000611 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000612 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000613 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000614 * Buffer should have space for (short) label and decimal formatted MPI,
615 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000616 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200617 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Paul Bakker5121ce52009-01-03 21:22:43 +0000618
Hanno Becker73d7d792018-12-11 10:35:51 +0000619 MPI_VALIDATE_RET( X != NULL );
620 MPI_VALIDATE_RET( fin != NULL );
621
622 if( radix < 2 || radix > 16 )
623 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
624
Paul Bakker5121ce52009-01-03 21:22:43 +0000625 memset( s, 0, sizeof( s ) );
626 if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200627 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000628
629 slen = strlen( s );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000630 if( slen == sizeof( s ) - 2 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200631 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000632
Hanno Beckerb2034b72017-04-26 11:46:46 +0100633 if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
634 if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
Paul Bakker5121ce52009-01-03 21:22:43 +0000635
636 p = s + slen;
Hanno Beckerb2034b72017-04-26 11:46:46 +0100637 while( p-- > s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000638 if( mpi_get_digit( &d, radix, *p ) != 0 )
639 break;
640
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200641 return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000642}
643
644/*
645 * Write X into an opened file (or stdout if fout == NULL)
646 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200647int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
Paul Bakker5121ce52009-01-03 21:22:43 +0000648{
Janos Follath24eed8d2019-11-22 13:21:35 +0000649 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000650 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000651 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000652 * Buffer should have space for (short) label and decimal formatted MPI,
653 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000654 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200655 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Hanno Becker73d7d792018-12-11 10:35:51 +0000656 MPI_VALIDATE_RET( X != NULL );
657
658 if( radix < 2 || radix > 16 )
659 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000660
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100661 memset( s, 0, sizeof( s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000662
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100663 MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000664
665 if( p == NULL ) p = "";
666
667 plen = strlen( p );
668 slen = strlen( s );
669 s[slen++] = '\r';
670 s[slen++] = '\n';
671
672 if( fout != NULL )
673 {
674 if( fwrite( p, 1, plen, fout ) != plen ||
675 fwrite( s, 1, slen, fout ) != slen )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200676 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000677 }
678 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200679 mbedtls_printf( "%s%s", p, s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000680
681cleanup:
682
683 return( ret );
684}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200685#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000686
Hanno Beckerda1655a2017-10-18 14:21:44 +0100687
688/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
689 * into the storage form used by mbedtls_mpi. */
Hanno Beckerf8720072018-11-08 11:53:49 +0000690
691static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c( mbedtls_mpi_uint x )
692{
693 uint8_t i;
Hanno Becker031d6332019-05-01 17:09:11 +0100694 unsigned char *x_ptr;
Hanno Beckerf8720072018-11-08 11:53:49 +0000695 mbedtls_mpi_uint tmp = 0;
Hanno Becker031d6332019-05-01 17:09:11 +0100696
697 for( i = 0, x_ptr = (unsigned char*) &x; i < ciL; i++, x_ptr++ )
698 {
699 tmp <<= CHAR_BIT;
700 tmp |= (mbedtls_mpi_uint) *x_ptr;
701 }
702
Hanno Beckerf8720072018-11-08 11:53:49 +0000703 return( tmp );
704}
705
706static mbedtls_mpi_uint mpi_uint_bigendian_to_host( mbedtls_mpi_uint x )
707{
708#if defined(__BYTE_ORDER__)
709
710/* Nothing to do on bigendian systems. */
711#if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
712 return( x );
713#endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
714
715#if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
716
717/* For GCC and Clang, have builtins for byte swapping. */
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000718#if defined(__GNUC__) && defined(__GNUC_PREREQ)
719#if __GNUC_PREREQ(4,3)
Hanno Beckerf8720072018-11-08 11:53:49 +0000720#define have_bswap
721#endif
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000722#endif
723
724#if defined(__clang__) && defined(__has_builtin)
725#if __has_builtin(__builtin_bswap32) && \
726 __has_builtin(__builtin_bswap64)
727#define have_bswap
728#endif
729#endif
730
Hanno Beckerf8720072018-11-08 11:53:49 +0000731#if defined(have_bswap)
732 /* The compiler is hopefully able to statically evaluate this! */
733 switch( sizeof(mbedtls_mpi_uint) )
734 {
735 case 4:
736 return( __builtin_bswap32(x) );
737 case 8:
738 return( __builtin_bswap64(x) );
739 }
740#endif
741#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
742#endif /* __BYTE_ORDER__ */
743
744 /* Fall back to C-based reordering if we don't know the byte order
745 * or we couldn't use a compiler-specific builtin. */
746 return( mpi_uint_bigendian_to_host_c( x ) );
747}
748
Hanno Becker2be8a552018-10-25 12:40:09 +0100749static void mpi_bigendian_to_host( mbedtls_mpi_uint * const p, size_t limbs )
Hanno Beckerda1655a2017-10-18 14:21:44 +0100750{
Hanno Beckerda1655a2017-10-18 14:21:44 +0100751 mbedtls_mpi_uint *cur_limb_left;
752 mbedtls_mpi_uint *cur_limb_right;
Hanno Becker2be8a552018-10-25 12:40:09 +0100753 if( limbs == 0 )
754 return;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100755
756 /*
757 * Traverse limbs and
758 * - adapt byte-order in each limb
759 * - swap the limbs themselves.
760 * For that, simultaneously traverse the limbs from left to right
761 * and from right to left, as long as the left index is not bigger
762 * than the right index (it's not a problem if limbs is odd and the
763 * indices coincide in the last iteration).
764 */
Hanno Beckerda1655a2017-10-18 14:21:44 +0100765 for( cur_limb_left = p, cur_limb_right = p + ( limbs - 1 );
766 cur_limb_left <= cur_limb_right;
767 cur_limb_left++, cur_limb_right-- )
768 {
Hanno Beckerf8720072018-11-08 11:53:49 +0000769 mbedtls_mpi_uint tmp;
770 /* Note that if cur_limb_left == cur_limb_right,
771 * this code effectively swaps the bytes only once. */
772 tmp = mpi_uint_bigendian_to_host( *cur_limb_left );
773 *cur_limb_left = mpi_uint_bigendian_to_host( *cur_limb_right );
774 *cur_limb_right = tmp;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100775 }
Hanno Beckerda1655a2017-10-18 14:21:44 +0100776}
777
Paul Bakker5121ce52009-01-03 21:22:43 +0000778/*
Janos Follatha778a942019-02-13 10:28:28 +0000779 * Import X from unsigned binary data, little endian
780 */
781int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
782 const unsigned char *buf, size_t buflen )
783{
Janos Follath24eed8d2019-11-22 13:21:35 +0000784 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follatha778a942019-02-13 10:28:28 +0000785 size_t i;
786 size_t const limbs = CHARS_TO_LIMBS( buflen );
787
788 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200789 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Janos Follatha778a942019-02-13 10:28:28 +0000790
791 for( i = 0; i < buflen; i++ )
792 X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
793
794cleanup:
795
Janos Follath171a7ef2019-02-15 16:17:45 +0000796 /*
797 * This function is also used to import keys. However, wiping the buffers
798 * upon failure is not necessary because failure only can happen before any
799 * input is copied.
800 */
Janos Follatha778a942019-02-13 10:28:28 +0000801 return( ret );
802}
803
804/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000805 * Import X from unsigned binary data, big endian
806 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200807int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000808{
Janos Follath24eed8d2019-11-22 13:21:35 +0000809 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100810 size_t const limbs = CHARS_TO_LIMBS( buflen );
811 size_t const overhead = ( limbs * ciL ) - buflen;
812 unsigned char *Xp;
Paul Bakker5121ce52009-01-03 21:22:43 +0000813
Hanno Becker8ce11a32018-12-19 16:18:52 +0000814 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +0000815 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
816
Hanno Becker073c1992017-10-17 15:17:27 +0100817 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200818 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000819
Gilles Peskine3130ce22021-06-02 22:17:52 +0200820 /* Avoid calling `memcpy` with NULL source or destination argument,
Hanno Becker0e810b92019-01-03 17:13:11 +0000821 * even if buflen is 0. */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200822 if( buflen != 0 )
Hanno Becker0e810b92019-01-03 17:13:11 +0000823 {
824 Xp = (unsigned char*) X->p;
825 memcpy( Xp + overhead, buf, buflen );
Hanno Beckerda1655a2017-10-18 14:21:44 +0100826
Hanno Becker0e810b92019-01-03 17:13:11 +0000827 mpi_bigendian_to_host( X->p, limbs );
828 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000829
830cleanup:
831
Janos Follath171a7ef2019-02-15 16:17:45 +0000832 /*
833 * This function is also used to import keys. However, wiping the buffers
834 * upon failure is not necessary because failure only can happen before any
835 * input is copied.
836 */
Paul Bakker5121ce52009-01-03 21:22:43 +0000837 return( ret );
838}
839
840/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000841 * Export X into unsigned binary data, little endian
842 */
843int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
844 unsigned char *buf, size_t buflen )
845{
846 size_t stored_bytes = X->n * ciL;
847 size_t bytes_to_copy;
848 size_t i;
849
850 if( stored_bytes < buflen )
851 {
852 bytes_to_copy = stored_bytes;
853 }
854 else
855 {
856 bytes_to_copy = buflen;
857
858 /* The output buffer is smaller than the allocated size of X.
859 * However X may fit if its leading bytes are zero. */
860 for( i = bytes_to_copy; i < stored_bytes; i++ )
861 {
862 if( GET_BYTE( X, i ) != 0 )
863 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
864 }
865 }
866
867 for( i = 0; i < bytes_to_copy; i++ )
868 buf[i] = GET_BYTE( X, i );
869
870 if( stored_bytes < buflen )
871 {
872 /* Write trailing 0 bytes */
873 memset( buf + stored_bytes, 0, buflen - stored_bytes );
874 }
875
876 return( 0 );
877}
878
879/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000880 * Export X into unsigned binary data, big endian
881 */
Gilles Peskine11cdb052018-11-20 16:47:47 +0100882int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
883 unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000884{
Hanno Becker73d7d792018-12-11 10:35:51 +0000885 size_t stored_bytes;
Gilles Peskine11cdb052018-11-20 16:47:47 +0100886 size_t bytes_to_copy;
887 unsigned char *p;
888 size_t i;
Paul Bakker5121ce52009-01-03 21:22:43 +0000889
Hanno Becker73d7d792018-12-11 10:35:51 +0000890 MPI_VALIDATE_RET( X != NULL );
891 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
892
893 stored_bytes = X->n * ciL;
894
Gilles Peskine11cdb052018-11-20 16:47:47 +0100895 if( stored_bytes < buflen )
896 {
897 /* There is enough space in the output buffer. Write initial
898 * null bytes and record the position at which to start
899 * writing the significant bytes. In this case, the execution
900 * trace of this function does not depend on the value of the
901 * number. */
902 bytes_to_copy = stored_bytes;
903 p = buf + buflen - stored_bytes;
904 memset( buf, 0, buflen - stored_bytes );
905 }
906 else
907 {
908 /* The output buffer is smaller than the allocated size of X.
909 * However X may fit if its leading bytes are zero. */
910 bytes_to_copy = buflen;
911 p = buf;
912 for( i = bytes_to_copy; i < stored_bytes; i++ )
913 {
914 if( GET_BYTE( X, i ) != 0 )
915 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
916 }
917 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000918
Gilles Peskine11cdb052018-11-20 16:47:47 +0100919 for( i = 0; i < bytes_to_copy; i++ )
920 p[bytes_to_copy - i - 1] = GET_BYTE( X, i );
Paul Bakker5121ce52009-01-03 21:22:43 +0000921
922 return( 0 );
923}
924
925/*
926 * Left-shift: X <<= count
927 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200928int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000929{
Janos Follath24eed8d2019-11-22 13:21:35 +0000930 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000931 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200932 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000933 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000934
935 v0 = count / (biL );
936 t1 = count & (biL - 1);
937
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200938 i = mbedtls_mpi_bitlen( X ) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000939
Paul Bakkerf9688572011-05-05 10:00:45 +0000940 if( X->n * biL < i )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200941 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000942
943 ret = 0;
944
945 /*
946 * shift by count / limb_size
947 */
948 if( v0 > 0 )
949 {
Paul Bakker23986e52011-04-24 08:57:21 +0000950 for( i = X->n; i > v0; i-- )
951 X->p[i - 1] = X->p[i - v0 - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +0000952
Paul Bakker23986e52011-04-24 08:57:21 +0000953 for( ; i > 0; i-- )
954 X->p[i - 1] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000955 }
956
957 /*
958 * shift by count % limb_size
959 */
960 if( t1 > 0 )
961 {
962 for( i = v0; i < X->n; i++ )
963 {
964 r1 = X->p[i] >> (biL - t1);
965 X->p[i] <<= t1;
966 X->p[i] |= r0;
967 r0 = r1;
968 }
969 }
970
971cleanup:
972
973 return( ret );
974}
975
976/*
977 * Right-shift: X >>= count
978 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200979int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000980{
Paul Bakker23986e52011-04-24 08:57:21 +0000981 size_t i, v0, v1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200982 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000983 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000984
985 v0 = count / biL;
986 v1 = count & (biL - 1);
987
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100988 if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200989 return mbedtls_mpi_lset( X, 0 );
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100990
Paul Bakker5121ce52009-01-03 21:22:43 +0000991 /*
992 * shift by count / limb_size
993 */
994 if( v0 > 0 )
995 {
996 for( i = 0; i < X->n - v0; i++ )
997 X->p[i] = X->p[i + v0];
998
999 for( ; i < X->n; i++ )
1000 X->p[i] = 0;
1001 }
1002
1003 /*
1004 * shift by count % limb_size
1005 */
1006 if( v1 > 0 )
1007 {
Paul Bakker23986e52011-04-24 08:57:21 +00001008 for( i = X->n; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001009 {
Paul Bakker23986e52011-04-24 08:57:21 +00001010 r1 = X->p[i - 1] << (biL - v1);
1011 X->p[i - 1] >>= v1;
1012 X->p[i - 1] |= r0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001013 r0 = r1;
1014 }
1015 }
1016
1017 return( 0 );
1018}
1019
1020/*
1021 * Compare unsigned values
1022 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001023int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +00001024{
Paul Bakker23986e52011-04-24 08:57:21 +00001025 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +00001026 MPI_VALIDATE_RET( X != NULL );
1027 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001028
Paul Bakker23986e52011-04-24 08:57:21 +00001029 for( i = X->n; i > 0; i-- )
1030 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001031 break;
1032
Paul Bakker23986e52011-04-24 08:57:21 +00001033 for( j = Y->n; j > 0; j-- )
1034 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001035 break;
1036
Paul Bakker23986e52011-04-24 08:57:21 +00001037 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001038 return( 0 );
1039
1040 if( i > j ) return( 1 );
1041 if( j > i ) return( -1 );
1042
Paul Bakker23986e52011-04-24 08:57:21 +00001043 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001044 {
Paul Bakker23986e52011-04-24 08:57:21 +00001045 if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
1046 if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001047 }
1048
1049 return( 0 );
1050}
1051
1052/*
1053 * Compare signed values
1054 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001055int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +00001056{
Paul Bakker23986e52011-04-24 08:57:21 +00001057 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +00001058 MPI_VALIDATE_RET( X != NULL );
1059 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001060
Paul Bakker23986e52011-04-24 08:57:21 +00001061 for( i = X->n; i > 0; i-- )
1062 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001063 break;
1064
Paul Bakker23986e52011-04-24 08:57:21 +00001065 for( j = Y->n; j > 0; j-- )
1066 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001067 break;
1068
Paul Bakker23986e52011-04-24 08:57:21 +00001069 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001070 return( 0 );
1071
1072 if( i > j ) return( X->s );
Paul Bakker0c8f73b2012-03-22 14:08:57 +00001073 if( j > i ) return( -Y->s );
Paul Bakker5121ce52009-01-03 21:22:43 +00001074
1075 if( X->s > 0 && Y->s < 0 ) return( 1 );
1076 if( Y->s > 0 && X->s < 0 ) return( -1 );
1077
Paul Bakker23986e52011-04-24 08:57:21 +00001078 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001079 {
Paul Bakker23986e52011-04-24 08:57:21 +00001080 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
1081 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
Paul Bakker5121ce52009-01-03 21:22:43 +00001082 }
1083
1084 return( 0 );
1085}
1086
Janos Follathee6abce2019-09-05 14:47:19 +01001087/*
Paul Bakker5121ce52009-01-03 21:22:43 +00001088 * Compare signed values
1089 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001090int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +00001091{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001092 mbedtls_mpi Y;
1093 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001094 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001095
1096 *p = ( z < 0 ) ? -z : z;
1097 Y.s = ( z < 0 ) ? -1 : 1;
1098 Y.n = 1;
1099 Y.p = p;
1100
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001101 return( mbedtls_mpi_cmp_mpi( X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001102}
1103
1104/*
1105 * Unsigned addition: X = |A| + |B| (HAC 14.7)
1106 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001107int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001108{
Janos Follath24eed8d2019-11-22 13:21:35 +00001109 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001110 size_t i, j;
Janos Follath6c922682015-10-30 17:43:11 +01001111 mbedtls_mpi_uint *o, *p, c, tmp;
Hanno Becker73d7d792018-12-11 10:35:51 +00001112 MPI_VALIDATE_RET( X != NULL );
1113 MPI_VALIDATE_RET( A != NULL );
1114 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001115
1116 if( X == B )
1117 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001118 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +00001119 }
1120
1121 if( X != A )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001122 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Paul Bakker9af723c2014-05-01 13:03:14 +02001123
Paul Bakkerf7ca7b92009-06-20 10:31:06 +00001124 /*
1125 * X should always be positive as a result of unsigned additions.
1126 */
1127 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001128
Paul Bakker23986e52011-04-24 08:57:21 +00001129 for( j = B->n; j > 0; j-- )
1130 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001131 break;
1132
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001133 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001134
1135 o = B->p; p = X->p; c = 0;
1136
Janos Follath6c922682015-10-30 17:43:11 +01001137 /*
1138 * tmp is used because it might happen that p == o
1139 */
Paul Bakker23986e52011-04-24 08:57:21 +00001140 for( i = 0; i < j; i++, o++, p++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001141 {
Janos Follath6c922682015-10-30 17:43:11 +01001142 tmp= *o;
Paul Bakker5121ce52009-01-03 21:22:43 +00001143 *p += c; c = ( *p < c );
Janos Follath6c922682015-10-30 17:43:11 +01001144 *p += tmp; c += ( *p < tmp );
Paul Bakker5121ce52009-01-03 21:22:43 +00001145 }
1146
1147 while( c != 0 )
1148 {
1149 if( i >= X->n )
1150 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001151 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001152 p = X->p + i;
1153 }
1154
Paul Bakker2d319fd2012-09-16 21:34:26 +00001155 *p += c; c = ( *p < c ); i++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +00001156 }
1157
1158cleanup:
1159
1160 return( ret );
1161}
1162
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001163/**
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001164 * Helper for mbedtls_mpi subtraction.
1165 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001166 * Calculate l - r where l and r have the same size.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001167 * This function operates modulo (2^ciL)^n and returns the carry
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001168 * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001169 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001170 * d may be aliased to l or r.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001171 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001172 * \param n Number of limbs of \p d, \p l and \p r.
1173 * \param[out] d The result of the subtraction.
1174 * \param[in] l The left operand.
1175 * \param[in] r The right operand.
1176 *
1177 * \return 1 if `l < r`.
1178 * 0 if `l >= r`.
Paul Bakker5121ce52009-01-03 21:22:43 +00001179 */
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001180static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
1181 mbedtls_mpi_uint *d,
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001182 const mbedtls_mpi_uint *l,
1183 const mbedtls_mpi_uint *r )
Paul Bakker5121ce52009-01-03 21:22:43 +00001184{
Paul Bakker23986e52011-04-24 08:57:21 +00001185 size_t i;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001186 mbedtls_mpi_uint c = 0, t, z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001187
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001188 for( i = 0; i < n; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001189 {
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001190 z = ( l[i] < c ); t = l[i] - c;
1191 c = ( t < r[i] ) + z; d[i] = t - r[i];
Paul Bakker5121ce52009-01-03 21:22:43 +00001192 }
1193
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001194 return( c );
Paul Bakker5121ce52009-01-03 21:22:43 +00001195}
1196
1197/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001198 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +00001199 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001200int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001201{
Janos Follath24eed8d2019-11-22 13:21:35 +00001202 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001203 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001204 mbedtls_mpi_uint carry;
Hanno Becker73d7d792018-12-11 10:35:51 +00001205 MPI_VALIDATE_RET( X != NULL );
1206 MPI_VALIDATE_RET( A != NULL );
1207 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001208
Paul Bakker23986e52011-04-24 08:57:21 +00001209 for( n = B->n; n > 0; n-- )
1210 if( B->p[n - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001211 break;
Gilles Peskinec8a91772021-01-27 22:30:43 +01001212 if( n > A->n )
1213 {
1214 /* B >= (2^ciL)^n > A */
1215 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1216 goto cleanup;
1217 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001218
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001219 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
1220
1221 /* Set the high limbs of X to match A. Don't touch the lower limbs
1222 * because X might be aliased to B, and we must not overwrite the
1223 * significant digits of B. */
1224 if( A->n > n )
1225 memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
1226 if( X->n > A->n )
1227 memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
1228
1229 carry = mpi_sub_hlp( n, X->p, A->p, B->p );
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001230 if( carry != 0 )
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001231 {
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001232 /* Propagate the carry to the first nonzero limb of X. */
1233 for( ; n < X->n && X->p[n] == 0; n++ )
1234 --X->p[n];
1235 /* If we ran out of space for the carry, it means that the result
1236 * is negative. */
1237 if( n == X->n )
Gilles Peskine89b41302020-07-23 01:16:46 +02001238 {
1239 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1240 goto cleanup;
1241 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001242 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001243 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001244
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001245 /* X should always be positive as a result of unsigned subtractions. */
1246 X->s = 1;
1247
Paul Bakker5121ce52009-01-03 21:22:43 +00001248cleanup:
Paul Bakker5121ce52009-01-03 21:22:43 +00001249 return( ret );
1250}
1251
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001252/* Common function for signed addition and subtraction.
1253 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001254 */
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001255static int add_sub_mpi( mbedtls_mpi *X,
1256 const mbedtls_mpi *A, const mbedtls_mpi *B,
1257 int flip_B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001258{
Hanno Becker73d7d792018-12-11 10:35:51 +00001259 int ret, s;
1260 MPI_VALIDATE_RET( X != NULL );
1261 MPI_VALIDATE_RET( A != NULL );
1262 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001263
Hanno Becker73d7d792018-12-11 10:35:51 +00001264 s = A->s;
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001265 if( A->s * B->s * flip_B < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001266 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001267 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001268 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001269 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001270 X->s = s;
1271 }
1272 else
1273 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001274 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001275 X->s = -s;
1276 }
1277 }
1278 else
1279 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001280 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001281 X->s = s;
1282 }
1283
1284cleanup:
1285
1286 return( ret );
1287}
1288
1289/*
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001290 * Signed addition: X = A + B
1291 */
1292int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
1293{
1294 return( add_sub_mpi( X, A, B, 1 ) );
1295}
1296
1297/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001298 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001299 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001300int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001301{
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001302 return( add_sub_mpi( X, A, B, -1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001303}
1304
1305/*
1306 * Signed addition: X = A + b
1307 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001308int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001309{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001310 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001311 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001312 MPI_VALIDATE_RET( X != NULL );
1313 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001314
1315 p[0] = ( b < 0 ) ? -b : b;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001316 B.s = ( b < 0 ) ? -1 : 1;
1317 B.n = 1;
1318 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001319
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001320 return( mbedtls_mpi_add_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001321}
1322
1323/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001324 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001325 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001326int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001327{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001328 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001329 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001330 MPI_VALIDATE_RET( X != NULL );
1331 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001332
1333 p[0] = ( b < 0 ) ? -b : b;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001334 B.s = ( b < 0 ) ? -1 : 1;
1335 B.n = 1;
1336 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001337
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001338 return( mbedtls_mpi_sub_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001339}
1340
Gilles Peskinea5d8d892020-07-23 21:27:15 +02001341/** Helper for mbedtls_mpi multiplication.
1342 *
1343 * Add \p b * \p s to \p d.
1344 *
1345 * \param i The number of limbs of \p s.
1346 * \param[in] s A bignum to multiply, of size \p i.
1347 * It may overlap with \p d, but only if
1348 * \p d <= \p s.
1349 * Its leading limb must not be \c 0.
1350 * \param[in,out] d The bignum to add to.
1351 * It must be sufficiently large to store the
1352 * result of the multiplication. This means
1353 * \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
1354 * is not known a priori.
1355 * \param b A scalar to multiply.
Paul Bakkerfc4f46f2013-06-24 19:23:56 +02001356 */
1357static
1358#if defined(__APPLE__) && defined(__arm__)
1359/*
1360 * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
1361 * appears to need this to prevent bad ARM code generation at -O3.
1362 */
1363__attribute__ ((noinline))
1364#endif
Gilles Peskinea5d8d892020-07-23 21:27:15 +02001365void mpi_mul_hlp( size_t i,
1366 const mbedtls_mpi_uint *s,
1367 mbedtls_mpi_uint *d,
1368 mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001369{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001370 mbedtls_mpi_uint c = 0, t = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001371
1372#if defined(MULADDC_HUIT)
1373 for( ; i >= 8; i -= 8 )
1374 {
1375 MULADDC_INIT
1376 MULADDC_HUIT
1377 MULADDC_STOP
1378 }
1379
1380 for( ; i > 0; i-- )
1381 {
1382 MULADDC_INIT
1383 MULADDC_CORE
1384 MULADDC_STOP
1385 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001386#else /* MULADDC_HUIT */
Paul Bakker5121ce52009-01-03 21:22:43 +00001387 for( ; i >= 16; i -= 16 )
1388 {
1389 MULADDC_INIT
1390 MULADDC_CORE MULADDC_CORE
1391 MULADDC_CORE MULADDC_CORE
1392 MULADDC_CORE MULADDC_CORE
1393 MULADDC_CORE MULADDC_CORE
1394
1395 MULADDC_CORE MULADDC_CORE
1396 MULADDC_CORE MULADDC_CORE
1397 MULADDC_CORE MULADDC_CORE
1398 MULADDC_CORE MULADDC_CORE
1399 MULADDC_STOP
1400 }
1401
1402 for( ; i >= 8; i -= 8 )
1403 {
1404 MULADDC_INIT
1405 MULADDC_CORE MULADDC_CORE
1406 MULADDC_CORE MULADDC_CORE
1407
1408 MULADDC_CORE MULADDC_CORE
1409 MULADDC_CORE MULADDC_CORE
1410 MULADDC_STOP
1411 }
1412
1413 for( ; i > 0; i-- )
1414 {
1415 MULADDC_INIT
1416 MULADDC_CORE
1417 MULADDC_STOP
1418 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001419#endif /* MULADDC_HUIT */
Paul Bakker5121ce52009-01-03 21:22:43 +00001420
1421 t++;
1422
Gilles Peskine8e464c42020-07-24 00:08:38 +02001423 while( c != 0 )
1424 {
Paul Bakker5121ce52009-01-03 21:22:43 +00001425 *d += c; c = ( *d < c ); d++;
1426 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001427}
1428
1429/*
1430 * Baseline multiplication: X = A * B (HAC 14.12)
1431 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001432int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001433{
Janos Follath24eed8d2019-11-22 13:21:35 +00001434 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001435 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001436 mbedtls_mpi TA, TB;
Gilles Peskined65b5002021-06-15 21:44:32 +02001437 int result_is_zero = 0;
Hanno Becker73d7d792018-12-11 10:35:51 +00001438 MPI_VALIDATE_RET( X != NULL );
1439 MPI_VALIDATE_RET( A != NULL );
1440 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001441
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001442 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001443
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001444 if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1445 if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
Paul Bakker5121ce52009-01-03 21:22:43 +00001446
Paul Bakker23986e52011-04-24 08:57:21 +00001447 for( i = A->n; i > 0; i-- )
1448 if( A->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001449 break;
Gilles Peskine38a384d2021-06-17 14:35:25 +02001450 if( i == 0 )
Gilles Peskined65b5002021-06-15 21:44:32 +02001451 result_is_zero = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001452
Paul Bakker23986e52011-04-24 08:57:21 +00001453 for( j = B->n; j > 0; j-- )
1454 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001455 break;
Gilles Peskine38a384d2021-06-17 14:35:25 +02001456 if( j == 0 )
Gilles Peskined65b5002021-06-15 21:44:32 +02001457 result_is_zero = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001458
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001459 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
1460 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001461
Alexey Skalozub8e75e682016-01-13 21:59:27 +02001462 for( ; j > 0; j-- )
1463 mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001464
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001465 /* If the result is 0, we don't shortcut the operation, which reduces
1466 * but does not eliminate side channels leaking the zero-ness. We do
1467 * need to take care to set the sign bit properly since the library does
1468 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskined65b5002021-06-15 21:44:32 +02001469 if( result_is_zero )
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001470 X->s = 1;
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001471 else
1472 X->s = A->s * B->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001473
1474cleanup:
1475
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001476 mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001477
1478 return( ret );
1479}
1480
1481/*
1482 * Baseline multiplication: X = A * b
1483 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001484int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001485{
Hanno Becker73d7d792018-12-11 10:35:51 +00001486 MPI_VALIDATE_RET( X != NULL );
1487 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001488
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001489 /* mpi_mul_hlp can't deal with a leading 0. */
1490 size_t n = A->n;
1491 while( n > 0 && A->p[n - 1] == 0 )
1492 --n;
Paul Bakker5121ce52009-01-03 21:22:43 +00001493
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001494 /* The general method below doesn't work if n==0 or b==0. By chance
1495 * calculating the result is trivial in those cases. */
1496 if( b == 0 || n == 0 )
1497 {
Paul Elliott986b55a2021-04-20 21:46:29 +01001498 return( mbedtls_mpi_lset( X, 0 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001499 }
1500
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001501 /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001502 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001503 /* In general, A * b requires 1 limb more than b. If
1504 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1505 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001506 * copy() will take care of the growth if needed. However, experimentally,
1507 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001508 * calls to calloc() in ECP code, presumably because it reuses the
1509 * same mpi for a while and this way the mpi is more likely to directly
1510 * grow to its final size. */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001511 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
1512 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
1513 mpi_mul_hlp( n, A->p, X->p, b - 1 );
1514
1515cleanup:
1516 return( ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00001517}
1518
1519/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001520 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1521 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001522 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001523static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1524 mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
Simon Butcher15b15d12015-11-26 19:35:03 +00001525{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001526#if defined(MBEDTLS_HAVE_UDBL)
1527 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001528#else
Simon Butcher9803d072016-01-03 00:24:34 +00001529 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1530 const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001531 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1532 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001533 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001534#endif
1535
Simon Butcher15b15d12015-11-26 19:35:03 +00001536 /*
1537 * Check for overflow
1538 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001539 if( 0 == d || u1 >= d )
Simon Butcher15b15d12015-11-26 19:35:03 +00001540 {
Simon Butcherf5ba0452015-12-27 23:01:55 +00001541 if (r != NULL) *r = ~0;
Simon Butcher15b15d12015-11-26 19:35:03 +00001542
Simon Butcherf5ba0452015-12-27 23:01:55 +00001543 return ( ~0 );
Simon Butcher15b15d12015-11-26 19:35:03 +00001544 }
1545
1546#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001547 dividend = (mbedtls_t_udbl) u1 << biL;
1548 dividend |= (mbedtls_t_udbl) u0;
1549 quotient = dividend / d;
1550 if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1551 quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1552
1553 if( r != NULL )
Simon Butcher9803d072016-01-03 00:24:34 +00001554 *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001555
1556 return (mbedtls_mpi_uint) quotient;
1557#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001558
1559 /*
1560 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1561 * Vol. 2 - Seminumerical Algorithms, Knuth
1562 */
1563
1564 /*
1565 * Normalize the divisor, d, and dividend, u0, u1
1566 */
1567 s = mbedtls_clz( d );
1568 d = d << s;
1569
1570 u1 = u1 << s;
Simon Butcher9803d072016-01-03 00:24:34 +00001571 u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001572 u0 = u0 << s;
1573
1574 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001575 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001576
1577 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001578 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001579
1580 /*
1581 * Find the first quotient and remainder
1582 */
1583 q1 = u1 / d1;
1584 r0 = u1 - d1 * q1;
1585
1586 while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1587 {
1588 q1 -= 1;
1589 r0 += d1;
1590
1591 if ( r0 >= radix ) break;
1592 }
1593
Simon Butcherf5ba0452015-12-27 23:01:55 +00001594 rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001595 q0 = rAX / d1;
1596 r0 = rAX - q0 * d1;
1597
1598 while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1599 {
1600 q0 -= 1;
1601 r0 += d1;
1602
1603 if ( r0 >= radix ) break;
1604 }
1605
1606 if (r != NULL)
Simon Butcherf5ba0452015-12-27 23:01:55 +00001607 *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
Simon Butcher15b15d12015-11-26 19:35:03 +00001608
1609 quotient = q1 * radix + q0;
1610
1611 return quotient;
1612#endif
1613}
1614
1615/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001616 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001617 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001618int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1619 const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001620{
Janos Follath24eed8d2019-11-22 13:21:35 +00001621 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001622 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001623 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001624 mbedtls_mpi_uint TP2[3];
Hanno Becker73d7d792018-12-11 10:35:51 +00001625 MPI_VALIDATE_RET( A != NULL );
1626 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001627
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001628 if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1629 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001630
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001631 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001632 mbedtls_mpi_init( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001633 /*
1634 * Avoid dynamic memory allocations for constant-size T2.
1635 *
1636 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1637 * so nobody increase the size of the MPI and we're safe to use an on-stack
1638 * buffer.
1639 */
Alexander K35d6d462019-10-31 14:46:45 +03001640 T2.s = 1;
Alexander Kd19a1932019-11-01 18:20:42 +03001641 T2.n = sizeof( TP2 ) / sizeof( *TP2 );
1642 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001643
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001644 if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001645 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001646 if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1647 if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001648 return( 0 );
1649 }
1650
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001651 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1652 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001653 X.s = Y.s = 1;
1654
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001655 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1656 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
Gilles Peskine2536aa72020-07-24 00:12:59 +02001657 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001658
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001659 k = mbedtls_mpi_bitlen( &Y ) % biL;
Paul Bakkerf9688572011-05-05 10:00:45 +00001660 if( k < biL - 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001661 {
1662 k = biL - 1 - k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001663 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1664 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001665 }
1666 else k = 0;
1667
1668 n = X.n - 1;
1669 t = Y.n - 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001670 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001671
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001672 while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001673 {
1674 Z.p[n - t]++;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001675 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001676 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001677 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001678
1679 for( i = n; i > t ; i-- )
1680 {
1681 if( X.p[i] >= Y.p[t] )
1682 Z.p[i - t - 1] = ~0;
1683 else
1684 {
Simon Butcher15b15d12015-11-26 19:35:03 +00001685 Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1686 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001687 }
1688
Alexander K35d6d462019-10-31 14:46:45 +03001689 T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1690 T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1691 T2.p[2] = X.p[i];
1692
Paul Bakker5121ce52009-01-03 21:22:43 +00001693 Z.p[i - t - 1]++;
1694 do
1695 {
1696 Z.p[i - t - 1]--;
1697
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001698 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
Paul Bakker66d5d072014-06-17 16:39:18 +02001699 T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001700 T1.p[1] = Y.p[t];
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001701 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001702 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001703 while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001704
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001705 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1706 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1707 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001708
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001709 if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001710 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001711 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1712 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1713 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001714 Z.p[i - t - 1]--;
1715 }
1716 }
1717
1718 if( Q != NULL )
1719 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001720 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001721 Q->s = A->s * B->s;
1722 }
1723
1724 if( R != NULL )
1725 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001726 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
Paul Bakkerf02c5642012-11-13 10:25:21 +00001727 X.s = A->s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001728 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001729
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001730 if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001731 R->s = 1;
1732 }
1733
1734cleanup:
1735
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001736 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001737 mbedtls_mpi_free( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001738 mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001739
1740 return( ret );
1741}
1742
1743/*
1744 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001745 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001746int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1747 const mbedtls_mpi *A,
1748 mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001749{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001750 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001751 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001752 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001753
1754 p[0] = ( b < 0 ) ? -b : b;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001755 B.s = ( b < 0 ) ? -1 : 1;
1756 B.n = 1;
1757 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001758
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001759 return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001760}
1761
1762/*
1763 * Modulo: R = A mod B
1764 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001765int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001766{
Janos Follath24eed8d2019-11-22 13:21:35 +00001767 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +00001768 MPI_VALIDATE_RET( R != NULL );
1769 MPI_VALIDATE_RET( A != NULL );
1770 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001771
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001772 if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1773 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001774
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001775 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001776
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001777 while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1778 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001779
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001780 while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1781 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001782
1783cleanup:
1784
1785 return( ret );
1786}
1787
1788/*
1789 * Modulo: r = A mod b
1790 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001791int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001792{
Paul Bakker23986e52011-04-24 08:57:21 +00001793 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001794 mbedtls_mpi_uint x, y, z;
Hanno Becker73d7d792018-12-11 10:35:51 +00001795 MPI_VALIDATE_RET( r != NULL );
1796 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001797
1798 if( b == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001799 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001800
1801 if( b < 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001802 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakker5121ce52009-01-03 21:22:43 +00001803
1804 /*
1805 * handle trivial cases
1806 */
Gilles Peskinec9529f92022-06-09 19:32:46 +02001807 if( b == 1 || A->n == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001808 {
1809 *r = 0;
1810 return( 0 );
1811 }
1812
1813 if( b == 2 )
1814 {
1815 *r = A->p[0] & 1;
1816 return( 0 );
1817 }
1818
1819 /*
1820 * general case
1821 */
Paul Bakker23986e52011-04-24 08:57:21 +00001822 for( i = A->n, y = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001823 {
Paul Bakker23986e52011-04-24 08:57:21 +00001824 x = A->p[i - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001825 y = ( y << biH ) | ( x >> biH );
1826 z = y / b;
1827 y -= z * b;
1828
1829 x <<= biH;
1830 y = ( y << biH ) | ( x >> biH );
1831 z = y / b;
1832 y -= z * b;
1833 }
1834
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001835 /*
1836 * If A is negative, then the current y represents a negative value.
1837 * Flipping it to the positive side.
1838 */
1839 if( A->s < 0 && y != 0 )
1840 y = b - y;
1841
Paul Bakker5121ce52009-01-03 21:22:43 +00001842 *r = y;
1843
1844 return( 0 );
1845}
1846
1847/*
1848 * Fast Montgomery initialization (thanks to Tom St Denis)
1849 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001850static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00001851{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001852 mbedtls_mpi_uint x, m0 = N->p[0];
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001853 unsigned int i;
Paul Bakker5121ce52009-01-03 21:22:43 +00001854
1855 x = m0;
1856 x += ( ( m0 + 2 ) & 4 ) << 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001857
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001858 for( i = biL; i >= 8; i /= 2 )
1859 x *= ( 2 - ( m0 * x ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001860
1861 *mm = ~x + 1;
1862}
1863
Gilles Peskine2a82f722020-06-04 15:00:49 +02001864/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1865 *
1866 * \param[in,out] A One of the numbers to multiply.
Gilles Peskine221626f2020-06-08 22:37:50 +02001867 * It must have at least as many limbs as N
1868 * (A->n >= N->n), and any limbs beyond n are ignored.
Gilles Peskine2a82f722020-06-04 15:00:49 +02001869 * On successful completion, A contains the result of
1870 * the multiplication A * B * R^-1 mod N where
1871 * R = (2^ciL)^n.
1872 * \param[in] B One of the numbers to multiply.
1873 * It must be nonzero and must not have more limbs than N
1874 * (B->n <= N->n).
1875 * \param[in] N The modulo. N must be odd.
1876 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1877 * This is -N^-1 mod 2^ciL.
1878 * \param[in,out] T A bignum for temporary storage.
1879 * It must be at least twice the limb size of N plus 2
1880 * (T->n >= 2 * (N->n + 1)).
1881 * Its initial content is unused and
1882 * its final content is indeterminate.
1883 * Note that unlike the usual convention in the library
1884 * for `const mbedtls_mpi*`, the content of T can change.
Paul Bakker5121ce52009-01-03 21:22:43 +00001885 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001886static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001887 const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001888{
Paul Bakker23986e52011-04-24 08:57:21 +00001889 size_t i, n, m;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001890 mbedtls_mpi_uint u0, u1, *d;
Paul Bakker5121ce52009-01-03 21:22:43 +00001891
1892 memset( T->p, 0, T->n * ciL );
1893
1894 d = T->p;
1895 n = N->n;
1896 m = ( B->n < n ) ? B->n : n;
1897
1898 for( i = 0; i < n; i++ )
1899 {
1900 /*
1901 * T = (T + u0*B + u1*N) / 2^biL
1902 */
1903 u0 = A->p[i];
1904 u1 = ( d[0] + u0 * B->p[0] ) * mm;
1905
1906 mpi_mul_hlp( m, B->p, d, u0 );
1907 mpi_mul_hlp( n, N->p, d, u1 );
1908
1909 *d++ = u0; d[n + 1] = 0;
1910 }
1911
Gilles Peskine221626f2020-06-08 22:37:50 +02001912 /* At this point, d is either the desired result or the desired result
1913 * plus N. We now potentially subtract N, avoiding leaking whether the
1914 * subtraction is performed through side channels. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001915
Gilles Peskine221626f2020-06-08 22:37:50 +02001916 /* Copy the n least significant limbs of d to A, so that
1917 * A = d if d < N (recall that N has n limbs). */
1918 memcpy( A->p, d, n * ciL );
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001919 /* If d >= N then we want to set A to d - N. To prevent timing attacks,
Gilles Peskine221626f2020-06-08 22:37:50 +02001920 * do the calculation without using conditional tests. */
1921 /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
Gilles Peskine132c0972020-06-04 21:05:24 +02001922 d[n] += 1;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001923 d[n] -= mpi_sub_hlp( n, d, d, N->p );
Gilles Peskine221626f2020-06-08 22:37:50 +02001924 /* If d0 < N then d < (2^biL)^n
1925 * so d[n] == 0 and we want to keep A as it is.
1926 * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
1927 * so d[n] == 1 and we want to set A to the result of the subtraction
1928 * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
1929 * This exactly corresponds to a conditional assignment. */
Gabor Mezei18a44942021-10-20 11:59:27 +02001930 mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001931}
1932
1933/*
1934 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001935 *
1936 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001937 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001938static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
1939 mbedtls_mpi_uint mm, const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001940{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001941 mbedtls_mpi_uint z = 1;
1942 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001943
Paul Bakker8ddb6452013-02-27 14:56:33 +01001944 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001945 U.p = &z;
1946
Gilles Peskine4e91d472020-06-04 20:55:15 +02001947 mpi_montmul( A, &U, N, mm, T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001948}
1949
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01001950/**
1951 * Select an MPI from a table without leaking the index.
1952 *
1953 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1954 * reads the entire table in order to avoid leaking the value of idx to an
1955 * attacker able to observe memory access patterns.
1956 *
1957 * \param[out] R Where to write the selected MPI.
1958 * \param[in] T The table to read from.
1959 * \param[in] T_size The number of elements in the table.
1960 * \param[in] idx The index of the element to select;
1961 * this must satisfy 0 <= idx < T_size.
1962 *
1963 * \return \c 0 on success, or a negative error code.
1964 */
1965static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
1966{
1967 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1968
1969 for( size_t i = 0; i < T_size; i++ )
Manuel Pégourié-Gonnardeaafa492021-06-03 10:42:46 +02001970 {
1971 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
Gabor Mezei18a44942021-10-20 11:59:27 +02001972 (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
Manuel Pégourié-Gonnardeaafa492021-06-03 10:42:46 +02001973 }
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01001974
1975cleanup:
1976 return( ret );
1977}
1978
Paul Bakker5121ce52009-01-03 21:22:43 +00001979/*
1980 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1981 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001982int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
1983 const mbedtls_mpi *E, const mbedtls_mpi *N,
Yuto Takano284857e2021-07-14 10:20:09 +01001984 mbedtls_mpi *prec_RR )
Paul Bakker5121ce52009-01-03 21:22:43 +00001985{
Janos Follath24eed8d2019-11-22 13:21:35 +00001986 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001987 size_t wbits, wsize, one = 1;
1988 size_t i, j, nblimbs;
1989 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001990 mbedtls_mpi_uint ei, mm, state;
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01001991 mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001992 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001993
Hanno Becker73d7d792018-12-11 10:35:51 +00001994 MPI_VALIDATE_RET( X != NULL );
1995 MPI_VALIDATE_RET( A != NULL );
1996 MPI_VALIDATE_RET( E != NULL );
1997 MPI_VALIDATE_RET( N != NULL );
1998
Hanno Becker8d1dd1b2017-09-28 11:02:24 +01001999 if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002000 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002001
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002002 if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
2003 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakkerf6198c12012-05-16 08:02:29 +00002004
Chris Jones9246d042020-11-25 15:12:39 +00002005 if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
2006 mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
2007 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2008
Paul Bakkerf6198c12012-05-16 08:02:29 +00002009 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002010 * Init temps and window size
2011 */
2012 mpi_montg_init( &mm, N );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002013 mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
2014 mbedtls_mpi_init( &Apos );
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002015 mbedtls_mpi_init( &WW );
Paul Bakker5121ce52009-01-03 21:22:43 +00002016 memset( W, 0, sizeof( W ) );
2017
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002018 i = mbedtls_mpi_bitlen( E );
Paul Bakker5121ce52009-01-03 21:22:43 +00002019
2020 wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
2021 ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
2022
Peter Kolbuse6bcad32018-12-11 14:01:44 -06002023#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002024 if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
2025 wsize = MBEDTLS_MPI_WINDOW_SIZE;
Peter Kolbuse6bcad32018-12-11 14:01:44 -06002026#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00002027
Paul Bakker5121ce52009-01-03 21:22:43 +00002028 j = N->n + 1;
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002029 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
2030 * and mpi_montred() calls later. Here we ensure that W[1] and X are
2031 * large enough, and later we'll grow other W[i] to the same length.
2032 * They must not be shrunk midway through this function!
2033 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002034 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
2035 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
2036 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002037
2038 /*
Paul Bakker50546922012-05-19 08:40:49 +00002039 * Compensate for negative A (and correct at the end)
2040 */
2041 neg = ( A->s == -1 );
Paul Bakker50546922012-05-19 08:40:49 +00002042 if( neg )
2043 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002044 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Paul Bakker50546922012-05-19 08:40:49 +00002045 Apos.s = 1;
2046 A = &Apos;
2047 }
2048
2049 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002050 * If 1st call, pre-compute R^2 mod N
2051 */
Yuto Takano284857e2021-07-14 10:20:09 +01002052 if( prec_RR == NULL || prec_RR->p == NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +00002053 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002054 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
2055 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
2056 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002057
Yuto Takano284857e2021-07-14 10:20:09 +01002058 if( prec_RR != NULL )
2059 memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002060 }
2061 else
Yuto Takano284857e2021-07-14 10:20:09 +01002062 memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002063
2064 /*
2065 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
2066 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002067 if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002068 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002069 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002070 /* This should be a no-op because W[1] is already that large before
2071 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
2072 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine0759cad2021-06-15 21:22:48 +02002073 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002074 }
Paul Bakkerc2024f42014-01-23 20:38:35 +01002075 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002076 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002077
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002078 /* Note that this is safe because W[1] always has at least N->n limbs
2079 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine4e91d472020-06-04 20:55:15 +02002080 mpi_montmul( &W[1], &RR, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002081
2082 /*
2083 * X = R^2 * R^-1 mod N = R mod N
2084 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002085 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
Gilles Peskine4e91d472020-06-04 20:55:15 +02002086 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002087
2088 if( wsize > 1 )
2089 {
2090 /*
2091 * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
2092 */
Paul Bakker66d5d072014-06-17 16:39:18 +02002093 j = one << ( wsize - 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002094
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002095 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
2096 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002097
2098 for( i = 0; i < wsize - 1; i++ )
Gilles Peskine4e91d472020-06-04 20:55:15 +02002099 mpi_montmul( &W[j], &W[j], N, mm, &T );
Paul Bakker0d7702c2013-10-29 16:18:35 +01002100
Paul Bakker5121ce52009-01-03 21:22:43 +00002101 /*
2102 * W[i] = W[i - 1] * W[1]
2103 */
Paul Bakker66d5d072014-06-17 16:39:18 +02002104 for( i = j + 1; i < ( one << wsize ); i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002105 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002106 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
2107 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002108
Gilles Peskine4e91d472020-06-04 20:55:15 +02002109 mpi_montmul( &W[i], &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002110 }
2111 }
2112
2113 nblimbs = E->n;
2114 bufsize = 0;
2115 nbits = 0;
2116 wbits = 0;
2117 state = 0;
2118
2119 while( 1 )
2120 {
2121 if( bufsize == 0 )
2122 {
Paul Bakker0d7702c2013-10-29 16:18:35 +01002123 if( nblimbs == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002124 break;
2125
Paul Bakker0d7702c2013-10-29 16:18:35 +01002126 nblimbs--;
2127
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002128 bufsize = sizeof( mbedtls_mpi_uint ) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00002129 }
2130
2131 bufsize--;
2132
2133 ei = (E->p[nblimbs] >> bufsize) & 1;
2134
2135 /*
2136 * skip leading 0s
2137 */
2138 if( ei == 0 && state == 0 )
2139 continue;
2140
2141 if( ei == 0 && state == 1 )
2142 {
2143 /*
2144 * out of window, square X
2145 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02002146 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002147 continue;
2148 }
2149
2150 /*
2151 * add ei to current window
2152 */
2153 state = 2;
2154
2155 nbits++;
Paul Bakker66d5d072014-06-17 16:39:18 +02002156 wbits |= ( ei << ( wsize - nbits ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002157
2158 if( nbits == wsize )
2159 {
2160 /*
2161 * X = X^wsize R^-1 mod N
2162 */
2163 for( i = 0; i < wsize; i++ )
Gilles Peskine4e91d472020-06-04 20:55:15 +02002164 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002165
2166 /*
2167 * X = X * W[wbits] R^-1 mod N
2168 */
Manuel Pégourié-Gonnard0b3bde52021-06-10 09:34:00 +02002169 MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002170 mpi_montmul( X, &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002171
2172 state--;
2173 nbits = 0;
2174 wbits = 0;
2175 }
2176 }
2177
2178 /*
2179 * process the remaining bits
2180 */
2181 for( i = 0; i < nbits; i++ )
2182 {
Gilles Peskine4e91d472020-06-04 20:55:15 +02002183 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002184
2185 wbits <<= 1;
2186
Paul Bakker66d5d072014-06-17 16:39:18 +02002187 if( ( wbits & ( one << wsize ) ) != 0 )
Gilles Peskine4e91d472020-06-04 20:55:15 +02002188 mpi_montmul( X, &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002189 }
2190
2191 /*
2192 * X = A^E * R * R^-1 mod N = A^E mod N
2193 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02002194 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002195
Hanno Beckera4af1c42017-04-18 09:07:45 +01002196 if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
Paul Bakkerf6198c12012-05-16 08:02:29 +00002197 {
2198 X->s = -1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002199 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
Paul Bakkerf6198c12012-05-16 08:02:29 +00002200 }
2201
Paul Bakker5121ce52009-01-03 21:22:43 +00002202cleanup:
2203
Paul Bakker66d5d072014-06-17 16:39:18 +02002204 for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002205 mbedtls_mpi_free( &W[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +00002206
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002207 mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002208 mbedtls_mpi_free( &WW );
Paul Bakker6c591fa2011-05-05 11:49:20 +00002209
Yuto Takano284857e2021-07-14 10:20:09 +01002210 if( prec_RR == NULL || prec_RR->p == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002211 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002212
2213 return( ret );
2214}
2215
Paul Bakker5121ce52009-01-03 21:22:43 +00002216/*
2217 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
2218 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002219int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00002220{
Janos Follath24eed8d2019-11-22 13:21:35 +00002221 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00002222 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03002223 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00002224
Hanno Becker73d7d792018-12-11 10:35:51 +00002225 MPI_VALIDATE_RET( G != NULL );
2226 MPI_VALIDATE_RET( A != NULL );
2227 MPI_VALIDATE_RET( B != NULL );
2228
Alexander Ke8ad49f2019-08-16 16:16:07 +03002229 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00002230
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002231 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
2232 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002233
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002234 lz = mbedtls_mpi_lsb( &TA );
2235 lzt = mbedtls_mpi_lsb( &TB );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002236
Gilles Peskineb5e56ec2021-06-09 13:26:43 +02002237 /* The loop below gives the correct result when A==0 but not when B==0.
2238 * So have a special case for B==0. Leverage the fact that we just
2239 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
2240 * slightly more efficient than cmp_int(). */
2241 if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
2242 {
2243 ret = mbedtls_mpi_copy( G, A );
2244 goto cleanup;
2245 }
2246
Paul Bakker66d5d072014-06-17 16:39:18 +02002247 if( lzt < lz )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002248 lz = lzt;
2249
Paul Bakker5121ce52009-01-03 21:22:43 +00002250 TA.s = TB.s = 1;
2251
Gilles Peskineea9aa142021-06-16 13:42:04 +02002252 /* We mostly follow the procedure described in HAC 14.54, but with some
2253 * minor differences:
2254 * - Sequences of multiplications or divisions by 2 are grouped into a
2255 * single shift operation.
Gilles Peskine37d690c2021-06-21 18:58:39 +02002256 * - The procedure in HAC assumes that 0 < TB <= TA.
2257 * - The condition TB <= TA is not actually necessary for correctness.
2258 * TA and TB have symmetric roles except for the loop termination
2259 * condition, and the shifts at the beginning of the loop body
2260 * remove any significance from the ordering of TA vs TB before
2261 * the shifts.
2262 * - If TA = 0, the loop goes through 0 iterations and the result is
2263 * correctly TB.
2264 * - The case TB = 0 was short-circuited above.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002265 *
2266 * For the correctness proof below, decompose the original values of
2267 * A and B as
2268 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2269 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2270 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2271 * and gcd(A',B') is odd or 0.
2272 *
2273 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
2274 * The code maintains the following invariant:
2275 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine6537bdb2021-06-15 22:09:39 +02002276 */
2277
Gilles Peskineea9aa142021-06-16 13:42:04 +02002278 /* Proof that the loop terminates:
2279 * At each iteration, either the right-shift by 1 is made on a nonzero
2280 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2281 * by at least 1, or the right-shift by 1 is made on zero and then
2282 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2283 * since in that case TB is calculated from TB-TA with the condition TB>TA).
2284 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002285 while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002286 {
Gilles Peskineea9aa142021-06-16 13:42:04 +02002287 /* Divisions by 2 preserve the invariant (I). */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002288 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
2289 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002290
Gilles Peskineea9aa142021-06-16 13:42:04 +02002291 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2292 * TA-TB is even so the division by 2 has an integer result.
2293 * Invariant (I) is preserved since any odd divisor of both TA and TB
2294 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case0e7791f2021-12-20 21:14:10 -08002295 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskineea9aa142021-06-16 13:42:04 +02002296 * divides TA.
2297 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002298 if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002299 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002300 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
2301 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002302 }
2303 else
2304 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002305 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
2306 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002307 }
Gilles Peskineea9aa142021-06-16 13:42:04 +02002308 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002309 }
2310
Gilles Peskineea9aa142021-06-16 13:42:04 +02002311 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2312 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2313 * - If there was at least one loop iteration, then one of TA or TB is odd,
2314 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2315 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2316 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskineb798b352021-06-21 11:40:38 +02002317 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002318 */
2319
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002320 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
2321 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002322
2323cleanup:
2324
Alexander Ke8ad49f2019-08-16 16:16:07 +03002325 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00002326
2327 return( ret );
2328}
2329
Gilles Peskine8f454702021-04-01 15:57:18 +02002330/* Fill X with n_bytes random bytes.
2331 * X must already have room for those bytes.
Gilles Peskine23422e42021-06-03 11:51:09 +02002332 * The ordering of the bytes returned from the RNG is suitable for
2333 * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
Gilles Peskinea16001e2021-04-13 21:55:35 +02002334 * The size and sign of X are unchanged.
Gilles Peskine8f454702021-04-01 15:57:18 +02002335 * n_bytes must not be 0.
2336 */
2337static int mpi_fill_random_internal(
2338 mbedtls_mpi *X, size_t n_bytes,
2339 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2340{
2341 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2342 const size_t limbs = CHARS_TO_LIMBS( n_bytes );
2343 const size_t overhead = ( limbs * ciL ) - n_bytes;
2344
2345 if( X->n < limbs )
2346 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Gilles Peskine8f454702021-04-01 15:57:18 +02002347
Gilles Peskinea16001e2021-04-13 21:55:35 +02002348 memset( X->p, 0, overhead );
2349 memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
Gilles Peskine8f454702021-04-01 15:57:18 +02002350 MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
2351 mpi_bigendian_to_host( X->p, limbs );
2352
2353cleanup:
2354 return( ret );
2355}
2356
Paul Bakker33dc46b2014-04-30 16:11:39 +02002357/*
2358 * Fill X with size bytes of random.
2359 *
2360 * Use a temporary bytes representation to make sure the result is the same
Paul Bakkerc37b0ac2014-05-01 14:19:23 +02002361 * regardless of the platform endianness (useful when f_rng is actually
Paul Bakker33dc46b2014-04-30 16:11:39 +02002362 * deterministic, eg for tests).
2363 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002364int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002365 int (*f_rng)(void *, unsigned char *, size_t),
2366 void *p_rng )
Paul Bakker287781a2011-03-26 13:18:49 +00002367{
Janos Follath24eed8d2019-11-22 13:21:35 +00002368 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker6dab6202019-01-02 16:42:29 +00002369 size_t const limbs = CHARS_TO_LIMBS( size );
Hanno Beckerda1655a2017-10-18 14:21:44 +01002370
Hanno Becker8ce11a32018-12-19 16:18:52 +00002371 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002372 MPI_VALIDATE_RET( f_rng != NULL );
Paul Bakker33dc46b2014-04-30 16:11:39 +02002373
Hanno Beckerda1655a2017-10-18 14:21:44 +01002374 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +02002375 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Gilles Peskine8f454702021-04-01 15:57:18 +02002376 if( size == 0 )
2377 return( 0 );
Paul Bakker287781a2011-03-26 13:18:49 +00002378
Gilles Peskine8f454702021-04-01 15:57:18 +02002379 ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
Paul Bakker287781a2011-03-26 13:18:49 +00002380
2381cleanup:
2382 return( ret );
2383}
2384
Gilles Peskine4699fa42021-03-29 22:02:55 +02002385int mbedtls_mpi_random( mbedtls_mpi *X,
2386 mbedtls_mpi_sint min,
2387 const mbedtls_mpi *N,
2388 int (*f_rng)(void *, unsigned char *, size_t),
2389 void *p_rng )
2390{
Gilles Peskine4699fa42021-03-29 22:02:55 +02002391 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002392 int count;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002393 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002394 size_t n_bits = mbedtls_mpi_bitlen( N );
2395 size_t n_bytes = ( n_bits + 7 ) / 8;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002396 mbedtls_mpi lower_bound;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002397
Gilles Peskine9312ba52021-03-29 22:14:51 +02002398 if( min < 0 )
2399 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2400 if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
2401 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2402
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002403 /*
2404 * When min == 0, each try has at worst a probability 1/2 of failing
2405 * (the msb has a probability 1/2 of being 0, and then the result will
2406 * be < N), so after 30 tries failure probability is a most 2**(-30).
2407 *
2408 * When N is just below a power of 2, as is the case when generating
Gilles Peskine3f613632021-04-15 11:45:19 +02002409 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002410 * overwhelming probability. When N is just above a power of 2,
Gilles Peskine3f613632021-04-15 11:45:19 +02002411 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002412 * a probability of failing that is almost 1/2.
2413 *
2414 * The probabilities are almost the same if min is nonzero but negligible
2415 * compared to N. This is always the case when N is crypto-sized, but
2416 * it's convenient to support small N for testing purposes. When N
2417 * is small, use a higher repeat count, otherwise the probability of
2418 * failure is macroscopic.
2419 */
Gilles Peskine11779072021-06-02 21:18:59 +02002420 count = ( n_bytes > 4 ? 30 : 250 );
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002421
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002422 mbedtls_mpi_init( &lower_bound );
2423
Gilles Peskine8f454702021-04-01 15:57:18 +02002424 /* Ensure that target MPI has exactly the same number of limbs
2425 * as the upper bound, even if the upper bound has leading zeros.
2426 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskine3130ce22021-06-02 22:17:52 +02002427 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002428 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
2429 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
Gilles Peskine8f454702021-04-01 15:57:18 +02002430
Gilles Peskine4699fa42021-03-29 22:02:55 +02002431 /*
2432 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
2433 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
2434 * - use the same byte ordering;
2435 * - keep the leftmost n_bits bits of the generated octet string;
2436 * - try until result is in the desired range.
2437 * This also avoids any bias, which is especially important for ECDSA.
2438 */
2439 do
2440 {
Gilles Peskine8f454702021-04-01 15:57:18 +02002441 MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002442 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
2443
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002444 if( --count == 0 )
Gilles Peskine4699fa42021-03-29 22:02:55 +02002445 {
2446 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2447 goto cleanup;
2448 }
2449
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002450 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
2451 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002452 }
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002453 while( lt_lower != 0 || lt_upper == 0 );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002454
2455cleanup:
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002456 mbedtls_mpi_free( &lower_bound );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002457 return( ret );
2458}
2459
Paul Bakker5121ce52009-01-03 21:22:43 +00002460/*
2461 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2462 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002463int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00002464{
Janos Follath24eed8d2019-11-22 13:21:35 +00002465 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002466 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Hanno Becker73d7d792018-12-11 10:35:51 +00002467 MPI_VALIDATE_RET( X != NULL );
2468 MPI_VALIDATE_RET( A != NULL );
2469 MPI_VALIDATE_RET( N != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00002470
Hanno Becker4bcb4912017-04-18 15:49:39 +01002471 if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002472 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002473
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002474 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2475 mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2476 mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002477
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002478 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002479
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002480 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002481 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002482 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002483 goto cleanup;
2484 }
2485
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002486 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2487 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2488 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2489 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002490
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002491 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2492 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2493 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2494 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002495
2496 do
2497 {
2498 while( ( TU.p[0] & 1 ) == 0 )
2499 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002500 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002501
2502 if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2503 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002504 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2505 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002506 }
2507
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002508 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2509 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002510 }
2511
2512 while( ( TV.p[0] & 1 ) == 0 )
2513 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002514 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002515
2516 if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2517 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002518 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2519 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002520 }
2521
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002522 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2523 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002524 }
2525
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002526 if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002527 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002528 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2529 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2530 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002531 }
2532 else
2533 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002534 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2535 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2536 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002537 }
2538 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002539 while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002540
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002541 while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2542 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002543
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002544 while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2545 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002546
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002547 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002548
2549cleanup:
2550
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002551 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2552 mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2553 mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002554
2555 return( ret );
2556}
2557
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002558#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002559
Paul Bakker5121ce52009-01-03 21:22:43 +00002560static const int small_prime[] =
2561{
2562 3, 5, 7, 11, 13, 17, 19, 23,
2563 29, 31, 37, 41, 43, 47, 53, 59,
2564 61, 67, 71, 73, 79, 83, 89, 97,
2565 101, 103, 107, 109, 113, 127, 131, 137,
2566 139, 149, 151, 157, 163, 167, 173, 179,
2567 181, 191, 193, 197, 199, 211, 223, 227,
2568 229, 233, 239, 241, 251, 257, 263, 269,
2569 271, 277, 281, 283, 293, 307, 311, 313,
2570 317, 331, 337, 347, 349, 353, 359, 367,
2571 373, 379, 383, 389, 397, 401, 409, 419,
2572 421, 431, 433, 439, 443, 449, 457, 461,
2573 463, 467, 479, 487, 491, 499, 503, 509,
2574 521, 523, 541, 547, 557, 563, 569, 571,
2575 577, 587, 593, 599, 601, 607, 613, 617,
2576 619, 631, 641, 643, 647, 653, 659, 661,
2577 673, 677, 683, 691, 701, 709, 719, 727,
2578 733, 739, 743, 751, 757, 761, 769, 773,
2579 787, 797, 809, 811, 821, 823, 827, 829,
2580 839, 853, 857, 859, 863, 877, 881, 883,
2581 887, 907, 911, 919, 929, 937, 941, 947,
2582 953, 967, 971, 977, 983, 991, 997, -103
2583};
2584
2585/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002586 * Small divisors test (X must be positive)
2587 *
2588 * Return values:
2589 * 0: no small factor (possible prime, more tests needed)
2590 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002591 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002592 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002593 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002594static int mpi_check_small_factors( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +00002595{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002596 int ret = 0;
2597 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002598 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002599
Paul Bakker5121ce52009-01-03 21:22:43 +00002600 if( ( X->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002601 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002602
2603 for( i = 0; small_prime[i] > 0; i++ )
2604 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002605 if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002606 return( 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002607
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002608 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002609
2610 if( r == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002611 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002612 }
2613
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002614cleanup:
2615 return( ret );
2616}
2617
2618/*
2619 * Miller-Rabin pseudo-primality test (HAC 4.24)
2620 */
Janos Follathda31fa12018-09-03 14:45:23 +01002621static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002622 int (*f_rng)(void *, unsigned char *, size_t),
2623 void *p_rng )
2624{
Pascal Junodb99183d2015-03-11 16:49:45 +01002625 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002626 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002627 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002628
Hanno Becker8ce11a32018-12-19 16:18:52 +00002629 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002630 MPI_VALIDATE_RET( f_rng != NULL );
2631
2632 mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2633 mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002634 mbedtls_mpi_init( &RR );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002635
Paul Bakker5121ce52009-01-03 21:22:43 +00002636 /*
2637 * W = |X| - 1
2638 * R = W >> lsb( W )
2639 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002640 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2641 s = mbedtls_mpi_lsb( &W );
2642 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2643 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002644
Janos Follathda31fa12018-09-03 14:45:23 +01002645 for( i = 0; i < rounds; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002646 {
2647 /*
2648 * pick a random A, 1 < A < |X| - 1
2649 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002650 count = 0;
2651 do {
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002652 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
Pascal Junodb99183d2015-03-11 16:49:45 +01002653
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002654 j = mbedtls_mpi_bitlen( &A );
2655 k = mbedtls_mpi_bitlen( &W );
Pascal Junodb99183d2015-03-11 16:49:45 +01002656 if (j > k) {
Darryl Greene3f95ed2018-10-02 13:21:35 +01002657 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002658 }
2659
2660 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002661 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2662 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002663 }
2664
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002665 } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2666 mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002667
2668 /*
2669 * A = A^R mod |X|
2670 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002671 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002672
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002673 if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2674 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002675 continue;
2676
2677 j = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002678 while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002679 {
2680 /*
2681 * A = A * A mod |X|
2682 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002683 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2684 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002685
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002686 if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002687 break;
2688
2689 j++;
2690 }
2691
2692 /*
2693 * not prime if A != |X| - 1 or A == 1
2694 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002695 if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2696 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002697 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002698 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002699 break;
2700 }
2701 }
2702
2703cleanup:
Hanno Becker73d7d792018-12-11 10:35:51 +00002704 mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2705 mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002706 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002707
2708 return( ret );
2709}
2710
2711/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002712 * Pseudo-primality test: small factors, then Miller-Rabin
2713 */
Janos Follatha0b67c22018-09-18 14:48:23 +01002714int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2715 int (*f_rng)(void *, unsigned char *, size_t),
2716 void *p_rng )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002717{
Janos Follath24eed8d2019-11-22 13:21:35 +00002718 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002719 mbedtls_mpi XX;
Hanno Becker8ce11a32018-12-19 16:18:52 +00002720 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002721 MPI_VALIDATE_RET( f_rng != NULL );
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002722
2723 XX.s = 1;
2724 XX.n = X->n;
2725 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002726
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002727 if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2728 mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2729 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002730
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002731 if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002732 return( 0 );
2733
2734 if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2735 {
2736 if( ret == 1 )
2737 return( 0 );
2738
2739 return( ret );
2740 }
2741
Janos Follathda31fa12018-09-03 14:45:23 +01002742 return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
Janos Follathf301d232018-08-14 13:34:01 +01002743}
2744
Janos Follatha0b67c22018-09-18 14:48:23 +01002745#if !defined(MBEDTLS_DEPRECATED_REMOVED)
Janos Follathf301d232018-08-14 13:34:01 +01002746/*
2747 * Pseudo-primality test, error probability 2^-80
2748 */
2749int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
2750 int (*f_rng)(void *, unsigned char *, size_t),
2751 void *p_rng )
2752{
Hanno Becker8ce11a32018-12-19 16:18:52 +00002753 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002754 MPI_VALIDATE_RET( f_rng != NULL );
2755
Janos Follatha0b67c22018-09-18 14:48:23 +01002756 /*
2757 * In the past our key generation aimed for an error rate of at most
2758 * 2^-80. Since this function is deprecated, aim for the same certainty
2759 * here as well.
2760 */
Hanno Becker73d7d792018-12-11 10:35:51 +00002761 return( mbedtls_mpi_is_prime_ext( X, 40, f_rng, p_rng ) );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002762}
Janos Follatha0b67c22018-09-18 14:48:23 +01002763#endif
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002764
2765/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002766 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002767 *
Janos Follathf301d232018-08-14 13:34:01 +01002768 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2769 * be either 1024 bits or 1536 bits long, and flags must contain
2770 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002771 */
Janos Follath7c025a92018-08-14 11:08:41 +01002772int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002773 int (*f_rng)(void *, unsigned char *, size_t),
2774 void *p_rng )
Paul Bakker5121ce52009-01-03 21:22:43 +00002775{
Jethro Beekman66689272018-02-14 19:24:10 -08002776#ifdef MBEDTLS_HAVE_INT64
2777// ceil(2^63.5)
2778#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2779#else
2780// ceil(2^31.5)
2781#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2782#endif
2783 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002784 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002785 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002786 mbedtls_mpi_uint r;
2787 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002788
Hanno Becker8ce11a32018-12-19 16:18:52 +00002789 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002790 MPI_VALIDATE_RET( f_rng != NULL );
2791
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002792 if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2793 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002794
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002795 mbedtls_mpi_init( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002796
2797 n = BITS_TO_LIMBS( nbits );
2798
Janos Follathda31fa12018-09-03 14:45:23 +01002799 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2800 {
2801 /*
2802 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2803 */
2804 rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
2805 ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
2806 ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
2807 }
2808 else
2809 {
2810 /*
2811 * 2^-100 error probability, number of rounds computed based on HAC,
2812 * fact 4.48
2813 */
2814 rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
2815 ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
2816 ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
2817 ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
2818 }
2819
Jethro Beekman66689272018-02-14 19:24:10 -08002820 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002821 {
Jethro Beekman66689272018-02-14 19:24:10 -08002822 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2823 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2824 if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2825
2826 k = n * biL;
2827 if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2828 X->p[0] |= 1;
2829
Janos Follath7c025a92018-08-14 11:08:41 +01002830 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002831 {
Janos Follatha0b67c22018-09-18 14:48:23 +01002832 ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
Jethro Beekman66689272018-02-14 19:24:10 -08002833
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002834 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
Paul Bakker5121ce52009-01-03 21:22:43 +00002835 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002836 }
Jethro Beekman66689272018-02-14 19:24:10 -08002837 else
Paul Bakker5121ce52009-01-03 21:22:43 +00002838 {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002839 /*
Tom Cosgrove5205c972022-07-28 06:12:08 +01002840 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002841 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2842 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002843 */
Jethro Beekman66689272018-02-14 19:24:10 -08002844
2845 X->p[0] |= 2;
2846
2847 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2848 if( r == 0 )
2849 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2850 else if( r == 1 )
2851 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2852
2853 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2854 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2855 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2856
2857 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002858 {
Jethro Beekman66689272018-02-14 19:24:10 -08002859 /*
2860 * First, check small factors for X and Y
2861 * before doing Miller-Rabin on any of them
2862 */
2863 if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
2864 ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002865 ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002866 == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002867 ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002868 == 0 )
Jethro Beekman66689272018-02-14 19:24:10 -08002869 goto cleanup;
2870
2871 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2872 goto cleanup;
2873
2874 /*
2875 * Next candidates. We want to preserve Y = (X-1) / 2 and
2876 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2877 * so up Y by 6 and X by 12.
2878 */
2879 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
2880 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002881 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002882 }
2883 }
2884
2885cleanup:
2886
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002887 mbedtls_mpi_free( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002888
2889 return( ret );
2890}
2891
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002892#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002893
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002894#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002895
Paul Bakker23986e52011-04-24 08:57:21 +00002896#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002897
2898static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2899{
2900 { 693, 609, 21 },
2901 { 1764, 868, 28 },
2902 { 768454923, 542167814, 1 }
2903};
2904
Paul Bakker5121ce52009-01-03 21:22:43 +00002905/*
2906 * Checkup routine
2907 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002908int mbedtls_mpi_self_test( int verbose )
Paul Bakker5121ce52009-01-03 21:22:43 +00002909{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002910 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002911 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002912
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002913 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
2914 mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002915
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002916 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002917 "EFE021C2645FD1DC586E69184AF4A31E" \
2918 "D5F53E93B5F123FA41680867BA110131" \
2919 "944FE7952E2517337780CB0DB80E61AA" \
2920 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
2921
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002922 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002923 "B2E7EFD37075B9F03FF989C7C5051C20" \
2924 "34D2A323810251127E7BF8625A4F49A5" \
2925 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2926 "5B5C25763222FEFCCFC38B832366C29E" ) );
2927
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002928 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002929 "0066A198186C18C10B2F5ED9B522752A" \
2930 "9830B69916E535C8F047518A889A43A5" \
2931 "94B6BED27A168D31D4A52F88925AA8F5" ) );
2932
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002933 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002934
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002935 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002936 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2937 "9E857EA95A03512E2BAE7391688D264A" \
2938 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2939 "8001B72E848A38CAE1C65F78E56ABDEF" \
2940 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2941 "ECF677152EF804370C1A305CAF3B5BF1" \
2942 "30879B56C61DE584A0F53A2447A51E" ) );
2943
2944 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002945 mbedtls_printf( " MPI test #1 (mul_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002946
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002947 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002948 {
2949 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002950 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002951
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002952 ret = 1;
2953 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002954 }
2955
2956 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002957 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002958
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002959 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002960
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002961 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002962 "256567336059E52CAE22925474705F39A94" ) );
2963
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002964 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002965 "6613F26162223DF488E9CD48CC132C7A" \
2966 "0AC93C701B001B092E4E5B9F73BCD27B" \
2967 "9EE50D0657C77F374E903CDFA4C642" ) );
2968
2969 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002970 mbedtls_printf( " MPI test #2 (div_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002971
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002972 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
2973 mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002974 {
2975 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002976 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002977
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002978 ret = 1;
2979 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002980 }
2981
2982 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002983 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002984
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002985 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002986
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002987 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002988 "36E139AEA55215609D2816998ED020BB" \
2989 "BD96C37890F65171D948E9BC7CBAA4D9" \
2990 "325D24D6A3C12710F10A09FA08AB87" ) );
2991
2992 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002993 mbedtls_printf( " MPI test #3 (exp_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002994
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002995 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002996 {
2997 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002998 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002999
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003000 ret = 1;
3001 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003002 }
3003
3004 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003005 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003006
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003007 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00003008
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003009 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003010 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
3011 "C3DBA76456363A10869622EAC2DD84EC" \
3012 "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
3013
3014 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003015 mbedtls_printf( " MPI test #4 (inv_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00003016
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003017 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00003018 {
3019 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003020 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003021
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003022 ret = 1;
3023 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003024 }
3025
3026 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003027 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003028
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003029 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003030 mbedtls_printf( " MPI test #5 (simple gcd): " );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003031
Paul Bakker66d5d072014-06-17 16:39:18 +02003032 for( i = 0; i < GCD_PAIR_COUNT; i++ )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003033 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003034 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
3035 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003036
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003037 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003038
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003039 if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003040 {
3041 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003042 mbedtls_printf( "failed at %d\n", i );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003043
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003044 ret = 1;
3045 goto cleanup;
3046 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003047 }
3048
3049 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003050 mbedtls_printf( "passed\n" );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003051
Paul Bakker5121ce52009-01-03 21:22:43 +00003052cleanup:
3053
3054 if( ret != 0 && verbose != 0 )
Kenneth Soerensen518d4352020-04-01 17:22:45 +02003055 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00003056
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003057 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
3058 mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00003059
3060 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003061 mbedtls_printf( "\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003062
3063 return( ret );
3064}
3065
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003066#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00003067
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003068#endif /* MBEDTLS_BIGNUM_C */