blob: 668edc74c9763c9e71cba3d6f769ef1b8af66203 [file] [log] [blame]
Janos Follathb0697532016-08-18 12:38:46 +01001/**
Gilles Peskine6a2fb612021-05-24 22:25:04 +02002 * \file ecp_internal_alt.h
Janos Follathb0697532016-08-18 12:38:46 +01003 *
Janos Follath372697b2016-10-28 16:53:11 +01004 * \brief Function declarations for alternative implementation of elliptic curve
5 * point arithmetic.
Darryl Greena40a1012018-01-05 15:33:17 +00006 */
7/*
Bence Szépkúti1e148272020-08-07 13:07:28 +02008 * Copyright The Mbed TLS Contributors
Dave Rodgman16799db2023-11-02 19:47:20 +00009 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
Janos Follathb0697532016-08-18 12:38:46 +010010 */
Janos Follathaab9efb2016-12-02 13:49:21 +000011
12/*
13 * References:
14 *
Janos Follath5634b862016-12-08 16:15:51 +000015 * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
16 * <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
Janos Follathaab9efb2016-12-02 13:49:21 +000017 *
18 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
19 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
20 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
21 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
22 *
23 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
24 * render ECC resistant against Side Channel Attacks. IACR Cryptology
25 * ePrint Archive, 2004, vol. 2004, p. 342.
26 * <http://eprint.iacr.org/2004/342.pdf>
Janos Follath5634b862016-12-08 16:15:51 +000027 *
28 * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
29 * <http://www.secg.org/sec2-v2.pdf>
30 *
31 * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
32 * Curve Cryptography.
33 *
34 * [6] Digital Signature Standard (DSS), FIPS 186-4.
35 * <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
36 *
Darryl Green11999bb2018-03-13 15:22:58 +000037 * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
Janos Follath5634b862016-12-08 16:15:51 +000038 * Security (TLS), RFC 4492.
39 * <https://tools.ietf.org/search/rfc4492>
40 *
41 * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
42 *
43 * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
44 * Springer Science & Business Media, 1 Aug 2000
Janos Follathaab9efb2016-12-02 13:49:21 +000045 */
46
Janos Follathc44ab972016-11-18 16:38:23 +000047#ifndef MBEDTLS_ECP_INTERNAL_H
48#define MBEDTLS_ECP_INTERNAL_H
Janos Follathb0697532016-08-18 12:38:46 +010049
Bence Szépkútic662b362021-05-27 11:25:03 +020050#include "mbedtls/build_info.h"
Andrzej Kurekc470b6b2019-01-31 08:20:20 -050051
Janos Follathc44ab972016-11-18 16:38:23 +000052#if defined(MBEDTLS_ECP_INTERNAL_ALT)
Janos Follathb0697532016-08-18 12:38:46 +010053
Janos Follathaab9efb2016-12-02 13:49:21 +000054/**
Janos Follath5634b862016-12-08 16:15:51 +000055 * \brief Indicate if the Elliptic Curve Point module extension can
56 * handle the group.
Janos Follathaab9efb2016-12-02 13:49:21 +000057 *
Janos Follath5634b862016-12-08 16:15:51 +000058 * \param grp The pointer to the elliptic curve group that will be the
59 * basis of the cryptographic computations.
Janos Follathaab9efb2016-12-02 13:49:21 +000060 *
61 * \return Non-zero if successful.
62 */
Gilles Peskine449bd832023-01-11 14:50:10 +010063unsigned char mbedtls_internal_ecp_grp_capable(const mbedtls_ecp_group *grp);
Janos Follathb0697532016-08-18 12:38:46 +010064
Janos Follathaab9efb2016-12-02 13:49:21 +000065/**
Janos Follath5634b862016-12-08 16:15:51 +000066 * \brief Initialise the Elliptic Curve Point module extension.
Janos Follathaab9efb2016-12-02 13:49:21 +000067 *
68 * If mbedtls_internal_ecp_grp_capable returns true for a
69 * group, this function has to be able to initialise the
Janos Follath5634b862016-12-08 16:15:51 +000070 * module for it.
Janos Follathaab9efb2016-12-02 13:49:21 +000071 *
Janos Follath5634b862016-12-08 16:15:51 +000072 * This module can be a driver to a crypto hardware
73 * accelerator, for which this could be an initialise function.
74 *
75 * \param grp The pointer to the group the module needs to be
Janos Follathaab9efb2016-12-02 13:49:21 +000076 * initialised for.
77 *
78 * \return 0 if successful.
79 */
Gilles Peskine449bd832023-01-11 14:50:10 +010080int mbedtls_internal_ecp_init(const mbedtls_ecp_group *grp);
Janos Follathb0697532016-08-18 12:38:46 +010081
Janos Follathaab9efb2016-12-02 13:49:21 +000082/**
Janos Follath5634b862016-12-08 16:15:51 +000083 * \brief Frees and deallocates the Elliptic Curve Point module
84 * extension.
Janos Follathaab9efb2016-12-02 13:49:21 +000085 *
Janos Follath5634b862016-12-08 16:15:51 +000086 * \param grp The pointer to the group the module was initialised for.
Janos Follathaab9efb2016-12-02 13:49:21 +000087 */
Gilles Peskine449bd832023-01-11 14:50:10 +010088void mbedtls_internal_ecp_free(const mbedtls_ecp_group *grp);
Janos Follathb0697532016-08-18 12:38:46 +010089
Gilles Peskinee8c04fe2018-09-14 17:44:21 +020090#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
Janos Follathaab9efb2016-12-02 13:49:21 +000091
Janos Follathb0697532016-08-18 12:38:46 +010092#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
Janos Follathaab9efb2016-12-02 13:49:21 +000093/**
94 * \brief Randomize jacobian coordinates:
95 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
96 *
Janos Follathaab9efb2016-12-02 13:49:21 +000097 * \param grp Pointer to the group representing the curve.
98 *
99 * \param pt The point on the curve to be randomised, given with Jacobian
100 * coordinates.
101 *
102 * \param f_rng A function pointer to the random number generator.
103 *
104 * \param p_rng A pointer to the random number generator state.
105 *
106 * \return 0 if successful.
107 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100108int mbedtls_internal_ecp_randomize_jac(const mbedtls_ecp_group *grp,
109 mbedtls_ecp_point *pt, int (*f_rng)(void *,
110 unsigned char *,
111 size_t),
112 void *p_rng);
Janos Follathb0697532016-08-18 12:38:46 +0100113#endif
114
115#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
Janos Follathaab9efb2016-12-02 13:49:21 +0000116/**
117 * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates.
118 *
119 * The coordinates of Q must be normalized (= affine),
120 * but those of P don't need to. R is not normalized.
121 *
Janos Follath5634b862016-12-08 16:15:51 +0000122 * This function is used only as a subrutine of
123 * ecp_mul_comb().
124 *
Janos Follathaab9efb2016-12-02 13:49:21 +0000125 * Special cases: (1) P or Q is zero, (2) R is zero,
126 * (3) P == Q.
127 * None of these cases can happen as intermediate step in
128 * ecp_mul_comb():
129 * - at each step, P, Q and R are multiples of the base
130 * point, the factor being less than its order, so none of
131 * them is zero;
132 * - Q is an odd multiple of the base point, P an even
133 * multiple, due to the choice of precomputed points in the
134 * modified comb method.
135 * So branches for these cases do not leak secret information.
136 *
137 * We accept Q->Z being unset (saving memory in tables) as
138 * meaning 1.
139 *
Janos Follath5634b862016-12-08 16:15:51 +0000140 * Cost in field operations if done by [5] 3.22:
Janos Follathaab9efb2016-12-02 13:49:21 +0000141 * 1A := 8M + 3S
142 *
143 * \param grp Pointer to the group representing the curve.
144 *
145 * \param R Pointer to a point structure to hold the result.
146 *
147 * \param P Pointer to the first summand, given with Jacobian
148 * coordinates
149 *
150 * \param Q Pointer to the second summand, given with affine
151 * coordinates.
152 *
153 * \return 0 if successful.
154 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100155int mbedtls_internal_ecp_add_mixed(const mbedtls_ecp_group *grp,
156 mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
157 const mbedtls_ecp_point *Q);
Janos Follathb0697532016-08-18 12:38:46 +0100158#endif
159
Janos Follathaab9efb2016-12-02 13:49:21 +0000160/**
161 * \brief Point doubling R = 2 P, Jacobian coordinates.
162 *
163 * Cost: 1D := 3M + 4S (A == 0)
164 * 4M + 4S (A == -3)
165 * 3M + 6S + 1a otherwise
Janos Follath5634b862016-12-08 16:15:51 +0000166 * when the implementation is based on the "dbl-1998-cmo-2"
167 * doubling formulas in [8] and standard optimizations are
168 * applied when curve parameter A is one of { 0, -3 }.
Janos Follathaab9efb2016-12-02 13:49:21 +0000169 *
170 * \param grp Pointer to the group representing the curve.
171 *
172 * \param R Pointer to a point structure to hold the result.
173 *
174 * \param P Pointer to the point that has to be doubled, given with
175 * Jacobian coordinates.
176 *
177 * \return 0 if successful.
178 */
Janos Follathb0697532016-08-18 12:38:46 +0100179#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100180int mbedtls_internal_ecp_double_jac(const mbedtls_ecp_group *grp,
181 mbedtls_ecp_point *R, const mbedtls_ecp_point *P);
Janos Follathb0697532016-08-18 12:38:46 +0100182#endif
183
Janos Follathaab9efb2016-12-02 13:49:21 +0000184/**
185 * \brief Normalize jacobian coordinates of an array of (pointers to)
186 * points.
187 *
188 * Using Montgomery's trick to perform only one inversion mod P
189 * the cost is:
190 * 1N(t) := 1I + (6t - 3)M + 1S
Janos Follath5634b862016-12-08 16:15:51 +0000191 * (See for example Algorithm 10.3.4. in [9])
192 *
193 * This function is used only as a subrutine of
194 * ecp_mul_comb().
Janos Follathaab9efb2016-12-02 13:49:21 +0000195 *
196 * Warning: fails (returning an error) if one of the points is
197 * zero!
198 * This should never happen, see choice of w in ecp_mul_comb().
199 *
200 * \param grp Pointer to the group representing the curve.
201 *
202 * \param T Array of pointers to the points to normalise.
203 *
204 * \param t_len Number of elements in the array.
205 *
206 * \return 0 if successful,
207 * an error if one of the points is zero.
208 */
Janos Follathb0697532016-08-18 12:38:46 +0100209#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100210int mbedtls_internal_ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
211 mbedtls_ecp_point *T[], size_t t_len);
Janos Follathb0697532016-08-18 12:38:46 +0100212#endif
213
Janos Follathaab9efb2016-12-02 13:49:21 +0000214/**
215 * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
216 *
Janos Follath5634b862016-12-08 16:15:51 +0000217 * Cost in field operations if done by [5] 3.2.1:
Janos Follathaab9efb2016-12-02 13:49:21 +0000218 * 1N := 1I + 3M + 1S
219 *
220 * \param grp Pointer to the group representing the curve.
221 *
222 * \param pt pointer to the point to be normalised. This is an
223 * input/output parameter.
224 *
225 * \return 0 if successful.
226 */
Janos Follathb0697532016-08-18 12:38:46 +0100227#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100228int mbedtls_internal_ecp_normalize_jac(const mbedtls_ecp_group *grp,
229 mbedtls_ecp_point *pt);
Janos Follathb0697532016-08-18 12:38:46 +0100230#endif
231
Gilles Peskinee8c04fe2018-09-14 17:44:21 +0200232#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
Janos Follathaab9efb2016-12-02 13:49:21 +0000233
Gilles Peskinee8c04fe2018-09-14 17:44:21 +0200234#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
Janos Follathaab9efb2016-12-02 13:49:21 +0000235
Janos Follathb0697532016-08-18 12:38:46 +0100236#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100237int mbedtls_internal_ecp_double_add_mxz(const mbedtls_ecp_group *grp,
238 mbedtls_ecp_point *R,
239 mbedtls_ecp_point *S,
240 const mbedtls_ecp_point *P,
241 const mbedtls_ecp_point *Q,
242 const mbedtls_mpi *d);
Janos Follathb0697532016-08-18 12:38:46 +0100243#endif
244
Janos Follathaab9efb2016-12-02 13:49:21 +0000245/**
246 * \brief Randomize projective x/z coordinates:
247 * (X, Z) -> (l X, l Z) for random l
Janos Follathaab9efb2016-12-02 13:49:21 +0000248 *
249 * \param grp pointer to the group representing the curve
250 *
251 * \param P the point on the curve to be randomised given with
252 * projective coordinates. This is an input/output parameter.
253 *
254 * \param f_rng a function pointer to the random number generator
255 *
256 * \param p_rng a pointer to the random number generator state
257 *
258 * \return 0 if successful
259 */
Janos Follathb0697532016-08-18 12:38:46 +0100260#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100261int mbedtls_internal_ecp_randomize_mxz(const mbedtls_ecp_group *grp,
262 mbedtls_ecp_point *P, int (*f_rng)(void *,
263 unsigned char *,
264 size_t),
265 void *p_rng);
Janos Follathb0697532016-08-18 12:38:46 +0100266#endif
267
Janos Follathaab9efb2016-12-02 13:49:21 +0000268/**
269 * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
270 *
271 * \param grp pointer to the group representing the curve
272 *
273 * \param P pointer to the point to be normalised. This is an
274 * input/output parameter.
275 *
276 * \return 0 if successful
277 */
Janos Follathb0697532016-08-18 12:38:46 +0100278#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
Gilles Peskine449bd832023-01-11 14:50:10 +0100279int mbedtls_internal_ecp_normalize_mxz(const mbedtls_ecp_group *grp,
280 mbedtls_ecp_point *P);
Janos Follathb0697532016-08-18 12:38:46 +0100281#endif
282
Gilles Peskinee8c04fe2018-09-14 17:44:21 +0200283#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
Janos Follathaab9efb2016-12-02 13:49:21 +0000284
Janos Follathc44ab972016-11-18 16:38:23 +0000285#endif /* MBEDTLS_ECP_INTERNAL_ALT */
Janos Follathb0697532016-08-18 12:38:46 +0100286
Gilles Peskine6a2fb612021-05-24 22:25:04 +0200287#endif /* ecp_internal_alt.h */