| Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 1 | /* ecc.c - TinyCrypt implementation of common ECC functions */ | 
|  | 2 |  | 
|  | 3 | /* | 
|  | 4 | * Copyright (c) 2014, Kenneth MacKay | 
|  | 5 | * All rights reserved. | 
|  | 6 | * | 
|  | 7 | * Redistribution and use in source and binary forms, with or without | 
|  | 8 | * modification, are permitted provided that the following conditions are met: | 
|  | 9 | * * Redistributions of source code must retain the above copyright notice, | 
|  | 10 | * this list of conditions and the following disclaimer. | 
|  | 11 | * * Redistributions in binary form must reproduce the above copyright notice, | 
|  | 12 | * this list of conditions and the following disclaimer in the documentation | 
|  | 13 | * and/or other materials provided with the distribution. | 
|  | 14 | * | 
|  | 15 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | 
|  | 16 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
|  | 17 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
|  | 18 | * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR | 
|  | 19 | * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
|  | 20 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | 21 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | 
|  | 22 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | 23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
|  | 24 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | 25 | * | 
|  | 26 | *  Copyright (C) 2017 by Intel Corporation, All Rights Reserved. | 
|  | 27 | * | 
|  | 28 | *  Redistribution and use in source and binary forms, with or without | 
|  | 29 | *  modification, are permitted provided that the following conditions are met: | 
|  | 30 | * | 
|  | 31 | *    - Redistributions of source code must retain the above copyright notice, | 
|  | 32 | *     this list of conditions and the following disclaimer. | 
|  | 33 | * | 
|  | 34 | *    - Redistributions in binary form must reproduce the above copyright | 
|  | 35 | *    notice, this list of conditions and the following disclaimer in the | 
|  | 36 | *    documentation and/or other materials provided with the distribution. | 
|  | 37 | * | 
|  | 38 | *    - Neither the name of Intel Corporation nor the names of its contributors | 
|  | 39 | *    may be used to endorse or promote products derived from this software | 
|  | 40 | *    without specific prior written permission. | 
|  | 41 | * | 
|  | 42 | *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | 43 | *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | 44 | *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | 45 | *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | 46 | *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | 47 | *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | 48 | *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | 49 | *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | 50 | *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | 51 | *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | 52 | *  POSSIBILITY OF SUCH DAMAGE. | 
|  | 53 | */ | 
|  | 54 |  | 
| Manuel Pégourié-Gonnard | afdc1b5 | 2019-05-09 11:24:11 +0200 | [diff] [blame] | 55 | #if defined(MBEDTLS_USE_TINYCRYPT) | 
| Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 56 | #include <tinycrypt/ecc.h> | 
| Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 57 | #include <string.h> | 
|  | 58 |  | 
|  | 59 | /* IMPORTANT: Make sure a cryptographically-secure PRNG is set and the platform | 
|  | 60 | * has access to enough entropy in order to feed the PRNG regularly. */ | 
|  | 61 | #if default_RNG_defined | 
|  | 62 | static uECC_RNG_Function g_rng_function = &default_CSPRNG; | 
|  | 63 | #else | 
|  | 64 | static uECC_RNG_Function g_rng_function = 0; | 
|  | 65 | #endif | 
|  | 66 |  | 
|  | 67 | void uECC_set_rng(uECC_RNG_Function rng_function) | 
|  | 68 | { | 
|  | 69 | g_rng_function = rng_function; | 
|  | 70 | } | 
|  | 71 |  | 
|  | 72 | uECC_RNG_Function uECC_get_rng(void) | 
|  | 73 | { | 
|  | 74 | return g_rng_function; | 
|  | 75 | } | 
|  | 76 |  | 
|  | 77 | int uECC_curve_private_key_size(uECC_Curve curve) | 
|  | 78 | { | 
|  | 79 | return BITS_TO_BYTES(curve->num_n_bits); | 
|  | 80 | } | 
|  | 81 |  | 
|  | 82 | int uECC_curve_public_key_size(uECC_Curve curve) | 
|  | 83 | { | 
|  | 84 | return 2 * curve->num_bytes; | 
|  | 85 | } | 
|  | 86 |  | 
|  | 87 | void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words) | 
|  | 88 | { | 
|  | 89 | wordcount_t i; | 
|  | 90 | for (i = 0; i < num_words; ++i) { | 
|  | 91 | vli[i] = 0; | 
|  | 92 | } | 
|  | 93 | } | 
|  | 94 |  | 
|  | 95 | uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words) | 
|  | 96 | { | 
|  | 97 | uECC_word_t bits = 0; | 
|  | 98 | wordcount_t i; | 
|  | 99 | for (i = 0; i < num_words; ++i) { | 
|  | 100 | bits |= vli[i]; | 
|  | 101 | } | 
|  | 102 | return (bits == 0); | 
|  | 103 | } | 
|  | 104 |  | 
|  | 105 | uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit) | 
|  | 106 | { | 
|  | 107 | return (vli[bit >> uECC_WORD_BITS_SHIFT] & | 
|  | 108 | ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK))); | 
|  | 109 | } | 
|  | 110 |  | 
|  | 111 | /* Counts the number of words in vli. */ | 
|  | 112 | static wordcount_t vli_numDigits(const uECC_word_t *vli, | 
|  | 113 | const wordcount_t max_words) | 
|  | 114 | { | 
|  | 115 |  | 
|  | 116 | wordcount_t i; | 
|  | 117 | /* Search from the end until we find a non-zero digit. We do it in reverse | 
|  | 118 | * because we expect that most digits will be nonzero. */ | 
|  | 119 | for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) { | 
|  | 120 | } | 
|  | 121 |  | 
|  | 122 | return (i + 1); | 
|  | 123 | } | 
|  | 124 |  | 
|  | 125 | bitcount_t uECC_vli_numBits(const uECC_word_t *vli, | 
|  | 126 | const wordcount_t max_words) | 
|  | 127 | { | 
|  | 128 |  | 
|  | 129 | uECC_word_t i; | 
|  | 130 | uECC_word_t digit; | 
|  | 131 |  | 
|  | 132 | wordcount_t num_digits = vli_numDigits(vli, max_words); | 
|  | 133 | if (num_digits == 0) { | 
|  | 134 | return 0; | 
|  | 135 | } | 
|  | 136 |  | 
|  | 137 | digit = vli[num_digits - 1]; | 
|  | 138 | for (i = 0; digit; ++i) { | 
|  | 139 | digit >>= 1; | 
|  | 140 | } | 
|  | 141 |  | 
|  | 142 | return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i); | 
|  | 143 | } | 
|  | 144 |  | 
|  | 145 | void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src, | 
|  | 146 | wordcount_t num_words) | 
|  | 147 | { | 
|  | 148 | wordcount_t i; | 
|  | 149 |  | 
|  | 150 | for (i = 0; i < num_words; ++i) { | 
|  | 151 | dest[i] = src[i]; | 
|  | 152 | } | 
|  | 153 | } | 
|  | 154 |  | 
|  | 155 | cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, | 
|  | 156 | const uECC_word_t *right, | 
|  | 157 | wordcount_t num_words) | 
|  | 158 | { | 
|  | 159 | wordcount_t i; | 
|  | 160 |  | 
|  | 161 | for (i = num_words - 1; i >= 0; --i) { | 
|  | 162 | if (left[i] > right[i]) { | 
|  | 163 | return 1; | 
|  | 164 | } else if (left[i] < right[i]) { | 
|  | 165 | return -1; | 
|  | 166 | } | 
|  | 167 | } | 
|  | 168 | return 0; | 
|  | 169 | } | 
|  | 170 |  | 
|  | 171 | uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right, | 
|  | 172 | wordcount_t num_words) | 
|  | 173 | { | 
|  | 174 |  | 
|  | 175 | uECC_word_t diff = 0; | 
|  | 176 | wordcount_t i; | 
|  | 177 |  | 
|  | 178 | for (i = num_words - 1; i >= 0; --i) { | 
|  | 179 | diff |= (left[i] ^ right[i]); | 
|  | 180 | } | 
|  | 181 | return !(diff == 0); | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | uECC_word_t cond_set(uECC_word_t p_true, uECC_word_t p_false, unsigned int cond) | 
|  | 185 | { | 
|  | 186 | return (p_true*(cond)) | (p_false*(!cond)); | 
|  | 187 | } | 
|  | 188 |  | 
|  | 189 | /* Computes result = left - right, returning borrow, in constant time. | 
|  | 190 | * Can modify in place. */ | 
|  | 191 | uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left, | 
|  | 192 | const uECC_word_t *right, wordcount_t num_words) | 
|  | 193 | { | 
|  | 194 | uECC_word_t borrow = 0; | 
|  | 195 | wordcount_t i; | 
|  | 196 | for (i = 0; i < num_words; ++i) { | 
|  | 197 | uECC_word_t diff = left[i] - right[i] - borrow; | 
|  | 198 | uECC_word_t val = (diff > left[i]); | 
|  | 199 | borrow = cond_set(val, borrow, (diff != left[i])); | 
|  | 200 |  | 
|  | 201 | result[i] = diff; | 
|  | 202 | } | 
|  | 203 | return borrow; | 
|  | 204 | } | 
|  | 205 |  | 
|  | 206 | /* Computes result = left + right, returning carry, in constant time. | 
|  | 207 | * Can modify in place. */ | 
|  | 208 | static uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left, | 
|  | 209 | const uECC_word_t *right, wordcount_t num_words) | 
|  | 210 | { | 
|  | 211 | uECC_word_t carry = 0; | 
|  | 212 | wordcount_t i; | 
|  | 213 | for (i = 0; i < num_words; ++i) { | 
|  | 214 | uECC_word_t sum = left[i] + right[i] + carry; | 
|  | 215 | uECC_word_t val = (sum < left[i]); | 
|  | 216 | carry = cond_set(val, carry, (sum != left[i])); | 
|  | 217 | result[i] = sum; | 
|  | 218 | } | 
|  | 219 | return carry; | 
|  | 220 | } | 
|  | 221 |  | 
|  | 222 | cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right, | 
|  | 223 | wordcount_t num_words) | 
|  | 224 | { | 
|  | 225 | uECC_word_t tmp[NUM_ECC_WORDS]; | 
|  | 226 | uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words); | 
|  | 227 | uECC_word_t equal = uECC_vli_isZero(tmp, num_words); | 
|  | 228 | return (!equal - 2 * neg); | 
|  | 229 | } | 
|  | 230 |  | 
|  | 231 | /* Computes vli = vli >> 1. */ | 
|  | 232 | static void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words) | 
|  | 233 | { | 
|  | 234 | uECC_word_t *end = vli; | 
|  | 235 | uECC_word_t carry = 0; | 
|  | 236 |  | 
|  | 237 | vli += num_words; | 
|  | 238 | while (vli-- > end) { | 
|  | 239 | uECC_word_t temp = *vli; | 
|  | 240 | *vli = (temp >> 1) | carry; | 
|  | 241 | carry = temp << (uECC_WORD_BITS - 1); | 
|  | 242 | } | 
|  | 243 | } | 
|  | 244 |  | 
|  | 245 | static void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t *r0, | 
|  | 246 | uECC_word_t *r1, uECC_word_t *r2) | 
|  | 247 | { | 
|  | 248 |  | 
|  | 249 | uECC_dword_t p = (uECC_dword_t)a * b; | 
|  | 250 | uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0; | 
|  | 251 | r01 += p; | 
|  | 252 | *r2 += (r01 < p); | 
|  | 253 | *r1 = r01 >> uECC_WORD_BITS; | 
|  | 254 | *r0 = (uECC_word_t)r01; | 
|  | 255 |  | 
|  | 256 | } | 
|  | 257 |  | 
|  | 258 | /* Computes result = left * right. Result must be 2 * num_words long. */ | 
|  | 259 | static void uECC_vli_mult(uECC_word_t *result, const uECC_word_t *left, | 
|  | 260 | const uECC_word_t *right, wordcount_t num_words) | 
|  | 261 | { | 
|  | 262 |  | 
|  | 263 | uECC_word_t r0 = 0; | 
|  | 264 | uECC_word_t r1 = 0; | 
|  | 265 | uECC_word_t r2 = 0; | 
|  | 266 | wordcount_t i, k; | 
|  | 267 |  | 
|  | 268 | /* Compute each digit of result in sequence, maintaining the carries. */ | 
|  | 269 | for (k = 0; k < num_words; ++k) { | 
|  | 270 |  | 
|  | 271 | for (i = 0; i <= k; ++i) { | 
|  | 272 | muladd(left[i], right[k - i], &r0, &r1, &r2); | 
|  | 273 | } | 
|  | 274 |  | 
|  | 275 | result[k] = r0; | 
|  | 276 | r0 = r1; | 
|  | 277 | r1 = r2; | 
|  | 278 | r2 = 0; | 
|  | 279 | } | 
|  | 280 |  | 
|  | 281 | for (k = num_words; k < num_words * 2 - 1; ++k) { | 
|  | 282 |  | 
|  | 283 | for (i = (k + 1) - num_words; i < num_words; ++i) { | 
|  | 284 | muladd(left[i], right[k - i], &r0, &r1, &r2); | 
|  | 285 | } | 
|  | 286 | result[k] = r0; | 
|  | 287 | r0 = r1; | 
|  | 288 | r1 = r2; | 
|  | 289 | r2 = 0; | 
|  | 290 | } | 
|  | 291 | result[num_words * 2 - 1] = r0; | 
|  | 292 | } | 
|  | 293 |  | 
|  | 294 | void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left, | 
|  | 295 | const uECC_word_t *right, const uECC_word_t *mod, | 
|  | 296 | wordcount_t num_words) | 
|  | 297 | { | 
|  | 298 | uECC_word_t carry = uECC_vli_add(result, left, right, num_words); | 
|  | 299 | if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) { | 
|  | 300 | /* result > mod (result = mod + remainder), so subtract mod to get | 
|  | 301 | * remainder. */ | 
|  | 302 | uECC_vli_sub(result, result, mod, num_words); | 
|  | 303 | } | 
|  | 304 | } | 
|  | 305 |  | 
|  | 306 | void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left, | 
|  | 307 | const uECC_word_t *right, const uECC_word_t *mod, | 
|  | 308 | wordcount_t num_words) | 
|  | 309 | { | 
|  | 310 | uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words); | 
|  | 311 | if (l_borrow) { | 
|  | 312 | /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x, | 
|  | 313 | * we can get the correct result from result + mod (with overflow). */ | 
|  | 314 | uECC_vli_add(result, result, mod, num_words); | 
|  | 315 | } | 
|  | 316 | } | 
|  | 317 |  | 
|  | 318 | /* Computes result = product % mod, where product is 2N words long. */ | 
|  | 319 | /* Currently only designed to work for curve_p or curve_n. */ | 
|  | 320 | void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product, | 
|  | 321 | const uECC_word_t *mod, wordcount_t num_words) | 
|  | 322 | { | 
|  | 323 | uECC_word_t mod_multiple[2 * NUM_ECC_WORDS]; | 
|  | 324 | uECC_word_t tmp[2 * NUM_ECC_WORDS]; | 
|  | 325 | uECC_word_t *v[2] = {tmp, product}; | 
|  | 326 | uECC_word_t index; | 
|  | 327 |  | 
|  | 328 | /* Shift mod so its highest set bit is at the maximum position. */ | 
|  | 329 | bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) - | 
|  | 330 | uECC_vli_numBits(mod, num_words); | 
|  | 331 | wordcount_t word_shift = shift / uECC_WORD_BITS; | 
|  | 332 | wordcount_t bit_shift = shift % uECC_WORD_BITS; | 
|  | 333 | uECC_word_t carry = 0; | 
|  | 334 | uECC_vli_clear(mod_multiple, word_shift); | 
|  | 335 | if (bit_shift > 0) { | 
|  | 336 | for(index = 0; index < (uECC_word_t)num_words; ++index) { | 
|  | 337 | mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry; | 
|  | 338 | carry = mod[index] >> (uECC_WORD_BITS - bit_shift); | 
|  | 339 | } | 
|  | 340 | } else { | 
|  | 341 | uECC_vli_set(mod_multiple + word_shift, mod, num_words); | 
|  | 342 | } | 
|  | 343 |  | 
|  | 344 | for (index = 1; shift >= 0; --shift) { | 
|  | 345 | uECC_word_t borrow = 0; | 
|  | 346 | wordcount_t i; | 
|  | 347 | for (i = 0; i < num_words * 2; ++i) { | 
|  | 348 | uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow; | 
|  | 349 | if (diff != v[index][i]) { | 
|  | 350 | borrow = (diff > v[index][i]); | 
|  | 351 | } | 
|  | 352 | v[1 - index][i] = diff; | 
|  | 353 | } | 
|  | 354 | /* Swap the index if there was no borrow */ | 
|  | 355 | index = !(index ^ borrow); | 
|  | 356 | uECC_vli_rshift1(mod_multiple, num_words); | 
|  | 357 | mod_multiple[num_words - 1] |= mod_multiple[num_words] << | 
|  | 358 | (uECC_WORD_BITS - 1); | 
|  | 359 | uECC_vli_rshift1(mod_multiple + num_words, num_words); | 
|  | 360 | } | 
|  | 361 | uECC_vli_set(result, v[index], num_words); | 
|  | 362 | } | 
|  | 363 |  | 
|  | 364 | void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left, | 
|  | 365 | const uECC_word_t *right, const uECC_word_t *mod, | 
|  | 366 | wordcount_t num_words) | 
|  | 367 | { | 
|  | 368 | uECC_word_t product[2 * NUM_ECC_WORDS]; | 
|  | 369 | uECC_vli_mult(product, left, right, num_words); | 
|  | 370 | uECC_vli_mmod(result, product, mod, num_words); | 
|  | 371 | } | 
|  | 372 |  | 
|  | 373 | void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left, | 
|  | 374 | const uECC_word_t *right, uECC_Curve curve) | 
|  | 375 | { | 
|  | 376 | uECC_word_t product[2 * NUM_ECC_WORDS]; | 
|  | 377 | uECC_vli_mult(product, left, right, curve->num_words); | 
|  | 378 |  | 
|  | 379 | curve->mmod_fast(result, product); | 
|  | 380 | } | 
|  | 381 |  | 
|  | 382 | static void uECC_vli_modSquare_fast(uECC_word_t *result, | 
|  | 383 | const uECC_word_t *left, | 
|  | 384 | uECC_Curve curve) | 
|  | 385 | { | 
|  | 386 | uECC_vli_modMult_fast(result, left, left, curve); | 
|  | 387 | } | 
|  | 388 |  | 
|  | 389 |  | 
|  | 390 | #define EVEN(vli) (!(vli[0] & 1)) | 
|  | 391 |  | 
|  | 392 | static void vli_modInv_update(uECC_word_t *uv, | 
|  | 393 | const uECC_word_t *mod, | 
|  | 394 | wordcount_t num_words) | 
|  | 395 | { | 
|  | 396 |  | 
|  | 397 | uECC_word_t carry = 0; | 
|  | 398 |  | 
|  | 399 | if (!EVEN(uv)) { | 
|  | 400 | carry = uECC_vli_add(uv, uv, mod, num_words); | 
|  | 401 | } | 
|  | 402 | uECC_vli_rshift1(uv, num_words); | 
|  | 403 | if (carry) { | 
|  | 404 | uv[num_words - 1] |= HIGH_BIT_SET; | 
|  | 405 | } | 
|  | 406 | } | 
|  | 407 |  | 
|  | 408 | void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input, | 
|  | 409 | const uECC_word_t *mod, wordcount_t num_words) | 
|  | 410 | { | 
|  | 411 | uECC_word_t a[NUM_ECC_WORDS], b[NUM_ECC_WORDS]; | 
|  | 412 | uECC_word_t u[NUM_ECC_WORDS], v[NUM_ECC_WORDS]; | 
|  | 413 | cmpresult_t cmpResult; | 
|  | 414 |  | 
|  | 415 | if (uECC_vli_isZero(input, num_words)) { | 
|  | 416 | uECC_vli_clear(result, num_words); | 
|  | 417 | return; | 
|  | 418 | } | 
|  | 419 |  | 
|  | 420 | uECC_vli_set(a, input, num_words); | 
|  | 421 | uECC_vli_set(b, mod, num_words); | 
|  | 422 | uECC_vli_clear(u, num_words); | 
|  | 423 | u[0] = 1; | 
|  | 424 | uECC_vli_clear(v, num_words); | 
|  | 425 | while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) { | 
|  | 426 | if (EVEN(a)) { | 
|  | 427 | uECC_vli_rshift1(a, num_words); | 
|  | 428 | vli_modInv_update(u, mod, num_words); | 
|  | 429 | } else if (EVEN(b)) { | 
|  | 430 | uECC_vli_rshift1(b, num_words); | 
|  | 431 | vli_modInv_update(v, mod, num_words); | 
|  | 432 | } else if (cmpResult > 0) { | 
|  | 433 | uECC_vli_sub(a, a, b, num_words); | 
|  | 434 | uECC_vli_rshift1(a, num_words); | 
|  | 435 | if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) { | 
|  | 436 | uECC_vli_add(u, u, mod, num_words); | 
|  | 437 | } | 
|  | 438 | uECC_vli_sub(u, u, v, num_words); | 
|  | 439 | vli_modInv_update(u, mod, num_words); | 
|  | 440 | } else { | 
|  | 441 | uECC_vli_sub(b, b, a, num_words); | 
|  | 442 | uECC_vli_rshift1(b, num_words); | 
|  | 443 | if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) { | 
|  | 444 | uECC_vli_add(v, v, mod, num_words); | 
|  | 445 | } | 
|  | 446 | uECC_vli_sub(v, v, u, num_words); | 
|  | 447 | vli_modInv_update(v, mod, num_words); | 
|  | 448 | } | 
|  | 449 | } | 
|  | 450 | uECC_vli_set(result, u, num_words); | 
|  | 451 | } | 
|  | 452 |  | 
|  | 453 | /* ------ Point operations ------ */ | 
|  | 454 |  | 
|  | 455 | void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1, | 
|  | 456 | uECC_word_t * Z1, uECC_Curve curve) | 
|  | 457 | { | 
|  | 458 | /* t1 = X, t2 = Y, t3 = Z */ | 
|  | 459 | uECC_word_t t4[NUM_ECC_WORDS]; | 
|  | 460 | uECC_word_t t5[NUM_ECC_WORDS]; | 
|  | 461 | wordcount_t num_words = curve->num_words; | 
|  | 462 |  | 
|  | 463 | if (uECC_vli_isZero(Z1, num_words)) { | 
|  | 464 | return; | 
|  | 465 | } | 
|  | 466 |  | 
|  | 467 | uECC_vli_modSquare_fast(t4, Y1, curve);   /* t4 = y1^2 */ | 
|  | 468 | uECC_vli_modMult_fast(t5, X1, t4, curve); /* t5 = x1*y1^2 = A */ | 
|  | 469 | uECC_vli_modSquare_fast(t4, t4, curve);   /* t4 = y1^4 */ | 
|  | 470 | uECC_vli_modMult_fast(Y1, Y1, Z1, curve); /* t2 = y1*z1 = z3 */ | 
|  | 471 | uECC_vli_modSquare_fast(Z1, Z1, curve);   /* t3 = z1^2 */ | 
|  | 472 |  | 
|  | 473 | uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = x1 + z1^2 */ | 
|  | 474 | uECC_vli_modAdd(Z1, Z1, Z1, curve->p, num_words); /* t3 = 2*z1^2 */ | 
|  | 475 | uECC_vli_modSub(Z1, X1, Z1, curve->p, num_words); /* t3 = x1 - z1^2 */ | 
|  | 476 | uECC_vli_modMult_fast(X1, X1, Z1, curve); /* t1 = x1^2 - z1^4 */ | 
|  | 477 |  | 
|  | 478 | uECC_vli_modAdd(Z1, X1, X1, curve->p, num_words); /* t3 = 2*(x1^2 - z1^4) */ | 
|  | 479 | uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = 3*(x1^2 - z1^4) */ | 
|  | 480 | if (uECC_vli_testBit(X1, 0)) { | 
|  | 481 | uECC_word_t l_carry = uECC_vli_add(X1, X1, curve->p, num_words); | 
|  | 482 | uECC_vli_rshift1(X1, num_words); | 
|  | 483 | X1[num_words - 1] |= l_carry << (uECC_WORD_BITS - 1); | 
|  | 484 | } else { | 
|  | 485 | uECC_vli_rshift1(X1, num_words); | 
|  | 486 | } | 
|  | 487 |  | 
|  | 488 | /* t1 = 3/2*(x1^2 - z1^4) = B */ | 
|  | 489 | uECC_vli_modSquare_fast(Z1, X1, curve); /* t3 = B^2 */ | 
|  | 490 | uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - A */ | 
|  | 491 | uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - 2A = x3 */ | 
|  | 492 | uECC_vli_modSub(t5, t5, Z1, curve->p, num_words); /* t5 = A - x3 */ | 
|  | 493 | uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = B * (A - x3) */ | 
|  | 494 | /* t4 = B * (A - x3) - y1^4 = y3: */ | 
|  | 495 | uECC_vli_modSub(t4, X1, t4, curve->p, num_words); | 
|  | 496 |  | 
|  | 497 | uECC_vli_set(X1, Z1, num_words); | 
|  | 498 | uECC_vli_set(Z1, Y1, num_words); | 
|  | 499 | uECC_vli_set(Y1, t4, num_words); | 
|  | 500 | } | 
|  | 501 |  | 
|  | 502 | void x_side_default(uECC_word_t *result, | 
|  | 503 | const uECC_word_t *x, | 
|  | 504 | uECC_Curve curve) | 
|  | 505 | { | 
|  | 506 | uECC_word_t _3[NUM_ECC_WORDS] = {3}; /* -a = 3 */ | 
|  | 507 | wordcount_t num_words = curve->num_words; | 
|  | 508 |  | 
|  | 509 | uECC_vli_modSquare_fast(result, x, curve); /* r = x^2 */ | 
|  | 510 | uECC_vli_modSub(result, result, _3, curve->p, num_words); /* r = x^2 - 3 */ | 
|  | 511 | uECC_vli_modMult_fast(result, result, x, curve); /* r = x^3 - 3x */ | 
|  | 512 | /* r = x^3 - 3x + b: */ | 
|  | 513 | uECC_vli_modAdd(result, result, curve->b, curve->p, num_words); | 
|  | 514 | } | 
|  | 515 |  | 
|  | 516 | uECC_Curve uECC_secp256r1(void) | 
|  | 517 | { | 
|  | 518 | return &curve_secp256r1; | 
|  | 519 | } | 
|  | 520 |  | 
|  | 521 | void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int*product) | 
|  | 522 | { | 
|  | 523 | unsigned int tmp[NUM_ECC_WORDS]; | 
|  | 524 | int carry; | 
|  | 525 |  | 
|  | 526 | /* t */ | 
|  | 527 | uECC_vli_set(result, product, NUM_ECC_WORDS); | 
|  | 528 |  | 
|  | 529 | /* s1 */ | 
|  | 530 | tmp[0] = tmp[1] = tmp[2] = 0; | 
|  | 531 | tmp[3] = product[11]; | 
|  | 532 | tmp[4] = product[12]; | 
|  | 533 | tmp[5] = product[13]; | 
|  | 534 | tmp[6] = product[14]; | 
|  | 535 | tmp[7] = product[15]; | 
|  | 536 | carry = uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS); | 
|  | 537 | carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS); | 
|  | 538 |  | 
|  | 539 | /* s2 */ | 
|  | 540 | tmp[3] = product[12]; | 
|  | 541 | tmp[4] = product[13]; | 
|  | 542 | tmp[5] = product[14]; | 
|  | 543 | tmp[6] = product[15]; | 
|  | 544 | tmp[7] = 0; | 
|  | 545 | carry += uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS); | 
|  | 546 | carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS); | 
|  | 547 |  | 
|  | 548 | /* s3 */ | 
|  | 549 | tmp[0] = product[8]; | 
|  | 550 | tmp[1] = product[9]; | 
|  | 551 | tmp[2] = product[10]; | 
|  | 552 | tmp[3] = tmp[4] = tmp[5] = 0; | 
|  | 553 | tmp[6] = product[14]; | 
|  | 554 | tmp[7] = product[15]; | 
|  | 555 | carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS); | 
|  | 556 |  | 
|  | 557 | /* s4 */ | 
|  | 558 | tmp[0] = product[9]; | 
|  | 559 | tmp[1] = product[10]; | 
|  | 560 | tmp[2] = product[11]; | 
|  | 561 | tmp[3] = product[13]; | 
|  | 562 | tmp[4] = product[14]; | 
|  | 563 | tmp[5] = product[15]; | 
|  | 564 | tmp[6] = product[13]; | 
|  | 565 | tmp[7] = product[8]; | 
|  | 566 | carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS); | 
|  | 567 |  | 
|  | 568 | /* d1 */ | 
|  | 569 | tmp[0] = product[11]; | 
|  | 570 | tmp[1] = product[12]; | 
|  | 571 | tmp[2] = product[13]; | 
|  | 572 | tmp[3] = tmp[4] = tmp[5] = 0; | 
|  | 573 | tmp[6] = product[8]; | 
|  | 574 | tmp[7] = product[10]; | 
|  | 575 | carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS); | 
|  | 576 |  | 
|  | 577 | /* d2 */ | 
|  | 578 | tmp[0] = product[12]; | 
|  | 579 | tmp[1] = product[13]; | 
|  | 580 | tmp[2] = product[14]; | 
|  | 581 | tmp[3] = product[15]; | 
|  | 582 | tmp[4] = tmp[5] = 0; | 
|  | 583 | tmp[6] = product[9]; | 
|  | 584 | tmp[7] = product[11]; | 
|  | 585 | carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS); | 
|  | 586 |  | 
|  | 587 | /* d3 */ | 
|  | 588 | tmp[0] = product[13]; | 
|  | 589 | tmp[1] = product[14]; | 
|  | 590 | tmp[2] = product[15]; | 
|  | 591 | tmp[3] = product[8]; | 
|  | 592 | tmp[4] = product[9]; | 
|  | 593 | tmp[5] = product[10]; | 
|  | 594 | tmp[6] = 0; | 
|  | 595 | tmp[7] = product[12]; | 
|  | 596 | carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS); | 
|  | 597 |  | 
|  | 598 | /* d4 */ | 
|  | 599 | tmp[0] = product[14]; | 
|  | 600 | tmp[1] = product[15]; | 
|  | 601 | tmp[2] = 0; | 
|  | 602 | tmp[3] = product[9]; | 
|  | 603 | tmp[4] = product[10]; | 
|  | 604 | tmp[5] = product[11]; | 
|  | 605 | tmp[6] = 0; | 
|  | 606 | tmp[7] = product[13]; | 
|  | 607 | carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS); | 
|  | 608 |  | 
|  | 609 | if (carry < 0) { | 
|  | 610 | do { | 
|  | 611 | carry += uECC_vli_add(result, result, curve_secp256r1.p, NUM_ECC_WORDS); | 
|  | 612 | } | 
|  | 613 | while (carry < 0); | 
|  | 614 | } else  { | 
|  | 615 | while (carry || | 
|  | 616 | uECC_vli_cmp_unsafe(curve_secp256r1.p, result, NUM_ECC_WORDS) != 1) { | 
|  | 617 | carry -= uECC_vli_sub(result, result, curve_secp256r1.p, NUM_ECC_WORDS); | 
|  | 618 | } | 
|  | 619 | } | 
|  | 620 | } | 
|  | 621 |  | 
|  | 622 | uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve) | 
|  | 623 | { | 
|  | 624 | return uECC_vli_isZero(point, curve->num_words * 2); | 
|  | 625 | } | 
|  | 626 |  | 
|  | 627 | void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z, | 
|  | 628 | uECC_Curve curve) | 
|  | 629 | { | 
|  | 630 | uECC_word_t t1[NUM_ECC_WORDS]; | 
|  | 631 |  | 
|  | 632 | uECC_vli_modSquare_fast(t1, Z, curve);    /* z^2 */ | 
|  | 633 | uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */ | 
|  | 634 | uECC_vli_modMult_fast(t1, t1, Z, curve);  /* z^3 */ | 
|  | 635 | uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */ | 
|  | 636 | } | 
|  | 637 |  | 
|  | 638 | /* P = (x1, y1) => 2P, (x2, y2) => P' */ | 
|  | 639 | static void XYcZ_initial_double(uECC_word_t * X1, uECC_word_t * Y1, | 
|  | 640 | uECC_word_t * X2, uECC_word_t * Y2, | 
|  | 641 | const uECC_word_t * const initial_Z, | 
|  | 642 | uECC_Curve curve) | 
|  | 643 | { | 
|  | 644 | uECC_word_t z[NUM_ECC_WORDS]; | 
|  | 645 | wordcount_t num_words = curve->num_words; | 
|  | 646 | if (initial_Z) { | 
|  | 647 | uECC_vli_set(z, initial_Z, num_words); | 
|  | 648 | } else { | 
|  | 649 | uECC_vli_clear(z, num_words); | 
|  | 650 | z[0] = 1; | 
|  | 651 | } | 
|  | 652 |  | 
|  | 653 | uECC_vli_set(X2, X1, num_words); | 
|  | 654 | uECC_vli_set(Y2, Y1, num_words); | 
|  | 655 |  | 
|  | 656 | apply_z(X1, Y1, z, curve); | 
|  | 657 | curve->double_jacobian(X1, Y1, z, curve); | 
|  | 658 | apply_z(X2, Y2, z, curve); | 
|  | 659 | } | 
|  | 660 |  | 
|  | 661 | void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, | 
|  | 662 | uECC_word_t * X2, uECC_word_t * Y2, | 
|  | 663 | uECC_Curve curve) | 
|  | 664 | { | 
|  | 665 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ | 
|  | 666 | uECC_word_t t5[NUM_ECC_WORDS]; | 
|  | 667 | wordcount_t num_words = curve->num_words; | 
|  | 668 |  | 
|  | 669 | uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */ | 
|  | 670 | uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */ | 
|  | 671 | uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */ | 
|  | 672 | uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */ | 
|  | 673 | uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */ | 
|  | 674 | uECC_vli_modSquare_fast(t5, Y2, curve); /* t5 = (y2 - y1)^2 = D */ | 
|  | 675 |  | 
|  | 676 | uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */ | 
|  | 677 | uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */ | 
|  | 678 | uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */ | 
|  | 679 | uECC_vli_modMult_fast(Y1, Y1, X2, curve); /* t2 = y1*(C - B) */ | 
|  | 680 | uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */ | 
|  | 681 | uECC_vli_modMult_fast(Y2, Y2, X2, curve); /* t4 = (y2 - y1)*(B - x3) */ | 
|  | 682 | uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */ | 
|  | 683 |  | 
|  | 684 | uECC_vli_set(X2, t5, num_words); | 
|  | 685 | } | 
|  | 686 |  | 
|  | 687 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) | 
|  | 688 | Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) | 
|  | 689 | or P => P - Q, Q => P + Q | 
|  | 690 | */ | 
|  | 691 | static void XYcZ_addC(uECC_word_t * X1, uECC_word_t * Y1, | 
|  | 692 | uECC_word_t * X2, uECC_word_t * Y2, | 
|  | 693 | uECC_Curve curve) | 
|  | 694 | { | 
|  | 695 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ | 
|  | 696 | uECC_word_t t5[NUM_ECC_WORDS]; | 
|  | 697 | uECC_word_t t6[NUM_ECC_WORDS]; | 
|  | 698 | uECC_word_t t7[NUM_ECC_WORDS]; | 
|  | 699 | wordcount_t num_words = curve->num_words; | 
|  | 700 |  | 
|  | 701 | uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */ | 
|  | 702 | uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */ | 
|  | 703 | uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */ | 
|  | 704 | uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */ | 
|  | 705 | uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */ | 
|  | 706 | uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */ | 
|  | 707 |  | 
|  | 708 | uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */ | 
|  | 709 | uECC_vli_modMult_fast(Y1, Y1, t6, curve); /* t2 = y1 * (C - B) = E */ | 
|  | 710 | uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */ | 
|  | 711 | uECC_vli_modSquare_fast(X2, Y2, curve); /* t3 = (y2 - y1)^2 = D */ | 
|  | 712 | uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */ | 
|  | 713 |  | 
|  | 714 | uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */ | 
|  | 715 | uECC_vli_modMult_fast(Y2, Y2, t7, curve); /* t4 = (y2 - y1)*(B - x3) */ | 
|  | 716 | /* t4 = (y2 - y1)*(B - x3) - E = y3: */ | 
|  | 717 | uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); | 
|  | 718 |  | 
|  | 719 | uECC_vli_modSquare_fast(t7, t5, curve); /* t7 = (y2 + y1)^2 = F */ | 
|  | 720 | uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */ | 
|  | 721 | uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */ | 
|  | 722 | uECC_vli_modMult_fast(t6, t6, t5, curve); /* t6 = (y2+y1)*(x3' - B) */ | 
|  | 723 | /* t2 = (y2+y1)*(x3' - B) - E = y3': */ | 
|  | 724 | uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words); | 
|  | 725 |  | 
|  | 726 | uECC_vli_set(X1, t7, num_words); | 
|  | 727 | } | 
|  | 728 |  | 
|  | 729 | void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point, | 
|  | 730 | const uECC_word_t * scalar, | 
|  | 731 | const uECC_word_t * initial_Z, | 
|  | 732 | bitcount_t num_bits, uECC_Curve curve) | 
|  | 733 | { | 
|  | 734 | /* R0 and R1 */ | 
|  | 735 | uECC_word_t Rx[2][NUM_ECC_WORDS]; | 
|  | 736 | uECC_word_t Ry[2][NUM_ECC_WORDS]; | 
|  | 737 | uECC_word_t z[NUM_ECC_WORDS]; | 
|  | 738 | bitcount_t i; | 
|  | 739 | uECC_word_t nb; | 
|  | 740 | wordcount_t num_words = curve->num_words; | 
|  | 741 |  | 
|  | 742 | uECC_vli_set(Rx[1], point, num_words); | 
|  | 743 | uECC_vli_set(Ry[1], point + num_words, num_words); | 
|  | 744 |  | 
|  | 745 | XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve); | 
|  | 746 |  | 
|  | 747 | for (i = num_bits - 2; i > 0; --i) { | 
|  | 748 | nb = !uECC_vli_testBit(scalar, i); | 
|  | 749 | XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve); | 
|  | 750 | XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve); | 
|  | 751 | } | 
|  | 752 |  | 
|  | 753 | nb = !uECC_vli_testBit(scalar, 0); | 
|  | 754 | XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve); | 
|  | 755 |  | 
|  | 756 | /* Find final 1/Z value. */ | 
|  | 757 | uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */ | 
|  | 758 | uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */ | 
|  | 759 | uECC_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */ | 
|  | 760 | uECC_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0))*/ | 
|  | 761 | /* yP / (xP * Yb * (X1 - X0)) */ | 
|  | 762 | uECC_vli_modMult_fast(z, z, point + num_words, curve); | 
|  | 763 | /* Xb * yP / (xP * Yb * (X1 - X0)) */ | 
|  | 764 | uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve); | 
|  | 765 | /* End 1/Z calculation */ | 
|  | 766 |  | 
|  | 767 | XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve); | 
|  | 768 | apply_z(Rx[0], Ry[0], z, curve); | 
|  | 769 |  | 
|  | 770 | uECC_vli_set(result, Rx[0], num_words); | 
|  | 771 | uECC_vli_set(result + num_words, Ry[0], num_words); | 
|  | 772 | } | 
|  | 773 |  | 
|  | 774 | uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0, | 
|  | 775 | uECC_word_t *k1, uECC_Curve curve) | 
|  | 776 | { | 
|  | 777 |  | 
|  | 778 | wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits); | 
|  | 779 |  | 
|  | 780 | bitcount_t num_n_bits = curve->num_n_bits; | 
|  | 781 |  | 
|  | 782 | uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) || | 
|  | 783 | (num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) && | 
|  | 784 | uECC_vli_testBit(k0, num_n_bits)); | 
|  | 785 |  | 
|  | 786 | uECC_vli_add(k1, k0, curve->n, num_n_words); | 
|  | 787 |  | 
|  | 788 | return carry; | 
|  | 789 | } | 
|  | 790 |  | 
|  | 791 | uECC_word_t EccPoint_compute_public_key(uECC_word_t *result, | 
|  | 792 | uECC_word_t *private_key, | 
|  | 793 | uECC_Curve curve) | 
|  | 794 | { | 
|  | 795 |  | 
|  | 796 | uECC_word_t tmp1[NUM_ECC_WORDS]; | 
|  | 797 | uECC_word_t tmp2[NUM_ECC_WORDS]; | 
|  | 798 | uECC_word_t *p2[2] = {tmp1, tmp2}; | 
|  | 799 | uECC_word_t carry; | 
|  | 800 |  | 
|  | 801 | /* Regularize the bitcount for the private key so that attackers cannot | 
|  | 802 | * use a side channel attack to learn the number of leading zeros. */ | 
|  | 803 | carry = regularize_k(private_key, tmp1, tmp2, curve); | 
|  | 804 |  | 
|  | 805 | EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve); | 
|  | 806 |  | 
|  | 807 | if (EccPoint_isZero(result, curve)) { | 
|  | 808 | return 0; | 
|  | 809 | } | 
|  | 810 | return 1; | 
|  | 811 | } | 
|  | 812 |  | 
|  | 813 | /* Converts an integer in uECC native format to big-endian bytes. */ | 
|  | 814 | void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes, | 
|  | 815 | const unsigned int *native) | 
|  | 816 | { | 
|  | 817 | wordcount_t i; | 
|  | 818 | for (i = 0; i < num_bytes; ++i) { | 
|  | 819 | unsigned b = num_bytes - 1 - i; | 
|  | 820 | bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE)); | 
|  | 821 | } | 
|  | 822 | } | 
|  | 823 |  | 
|  | 824 | /* Converts big-endian bytes to an integer in uECC native format. */ | 
|  | 825 | void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes, | 
|  | 826 | int num_bytes) | 
|  | 827 | { | 
|  | 828 | wordcount_t i; | 
|  | 829 | uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE); | 
|  | 830 | for (i = 0; i < num_bytes; ++i) { | 
|  | 831 | unsigned b = num_bytes - 1 - i; | 
|  | 832 | native[b / uECC_WORD_SIZE] |= | 
|  | 833 | (uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE)); | 
|  | 834 | } | 
|  | 835 | } | 
|  | 836 |  | 
|  | 837 | int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top, | 
|  | 838 | wordcount_t num_words) | 
|  | 839 | { | 
|  | 840 | uECC_word_t mask = (uECC_word_t)-1; | 
|  | 841 | uECC_word_t tries; | 
|  | 842 | bitcount_t num_bits = uECC_vli_numBits(top, num_words); | 
|  | 843 |  | 
|  | 844 | if (!g_rng_function) { | 
|  | 845 | return 0; | 
|  | 846 | } | 
|  | 847 |  | 
|  | 848 | for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) { | 
|  | 849 | if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) { | 
|  | 850 | return 0; | 
|  | 851 | } | 
|  | 852 | random[num_words - 1] &= | 
|  | 853 | mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits)); | 
|  | 854 | if (!uECC_vli_isZero(random, num_words) && | 
|  | 855 | uECC_vli_cmp(top, random, num_words) == 1) { | 
|  | 856 | return 1; | 
|  | 857 | } | 
|  | 858 | } | 
|  | 859 | return 0; | 
|  | 860 | } | 
|  | 861 |  | 
|  | 862 |  | 
|  | 863 | int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve) | 
|  | 864 | { | 
|  | 865 | uECC_word_t tmp1[NUM_ECC_WORDS]; | 
|  | 866 | uECC_word_t tmp2[NUM_ECC_WORDS]; | 
|  | 867 | wordcount_t num_words = curve->num_words; | 
|  | 868 |  | 
|  | 869 | /* The point at infinity is invalid. */ | 
|  | 870 | if (EccPoint_isZero(point, curve)) { | 
|  | 871 | return -1; | 
|  | 872 | } | 
|  | 873 |  | 
|  | 874 | /* x and y must be smaller than p. */ | 
|  | 875 | if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 || | 
|  | 876 | uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) { | 
|  | 877 | return -2; | 
|  | 878 | } | 
|  | 879 |  | 
|  | 880 | uECC_vli_modSquare_fast(tmp1, point + num_words, curve); | 
|  | 881 | curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */ | 
|  | 882 |  | 
|  | 883 | /* Make sure that y^2 == x^3 + ax + b */ | 
|  | 884 | if (uECC_vli_equal(tmp1, tmp2, num_words) != 0) | 
|  | 885 | return -3; | 
|  | 886 |  | 
|  | 887 | return 0; | 
|  | 888 | } | 
|  | 889 |  | 
|  | 890 | int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve) | 
|  | 891 | { | 
|  | 892 |  | 
|  | 893 | uECC_word_t _public[NUM_ECC_WORDS * 2]; | 
|  | 894 |  | 
|  | 895 | uECC_vli_bytesToNative(_public, public_key, curve->num_bytes); | 
|  | 896 | uECC_vli_bytesToNative( | 
|  | 897 | _public + curve->num_words, | 
|  | 898 | public_key + curve->num_bytes, | 
|  | 899 | curve->num_bytes); | 
|  | 900 |  | 
|  | 901 | if (uECC_vli_cmp_unsafe(_public, curve->G, NUM_ECC_WORDS * 2) == 0) { | 
|  | 902 | return -4; | 
|  | 903 | } | 
|  | 904 |  | 
|  | 905 | return uECC_valid_point(_public, curve); | 
|  | 906 | } | 
|  | 907 |  | 
|  | 908 | int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key, | 
|  | 909 | uECC_Curve curve) | 
|  | 910 | { | 
|  | 911 |  | 
|  | 912 | uECC_word_t _private[NUM_ECC_WORDS]; | 
|  | 913 | uECC_word_t _public[NUM_ECC_WORDS * 2]; | 
|  | 914 |  | 
|  | 915 | uECC_vli_bytesToNative( | 
|  | 916 | _private, | 
|  | 917 | private_key, | 
|  | 918 | BITS_TO_BYTES(curve->num_n_bits)); | 
|  | 919 |  | 
|  | 920 | /* Make sure the private key is in the range [1, n-1]. */ | 
|  | 921 | if (uECC_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) { | 
|  | 922 | return 0; | 
|  | 923 | } | 
|  | 924 |  | 
|  | 925 | if (uECC_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) != 1) { | 
|  | 926 | return 0; | 
|  | 927 | } | 
|  | 928 |  | 
|  | 929 | /* Compute public key. */ | 
|  | 930 | if (!EccPoint_compute_public_key(_public, _private, curve)) { | 
|  | 931 | return 0; | 
|  | 932 | } | 
|  | 933 |  | 
|  | 934 | uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public); | 
|  | 935 | uECC_vli_nativeToBytes( | 
|  | 936 | public_key + | 
|  | 937 | curve->num_bytes, curve->num_bytes, _public + curve->num_words); | 
|  | 938 | return 1; | 
|  | 939 | } | 
| Jarno Lamsa | 4613220 | 2019-04-29 14:29:52 +0300 | [diff] [blame] | 940 | #else | 
| Manuel Pégourié-Gonnard | afdc1b5 | 2019-05-09 11:24:11 +0200 | [diff] [blame] | 941 | typedef int mbedtls_dummy_tinycrypt_def; | 
|  | 942 | #endif /* MBEDTLS_USE_TINYCRYPT */ | 
| Jarno Lamsa | 18987a4 | 2019-04-24 15:40:43 +0300 | [diff] [blame] | 943 |  |