blob: 3014b436dc0155907404bef65fecef1675ae8e12 [file] [log] [blame]
Dave Rodgmanfb5fedc2022-11-30 15:20:33 +00001/* BEGIN_HEADER */
2#include "../library/alignment.h"
3
4#include <stdint.h>
Dave Rodgman63e6a882022-12-01 10:01:08 +00005
Dave Rodgman9dc55ba2022-12-01 10:49:53 +00006#if defined(__clang__)
Dave Rodgman63e6a882022-12-01 10:01:08 +00007#pragma clang diagnostic ignored "-Wunreachable-code"
Dave Rodgman9dc55ba2022-12-01 10:49:53 +00008#endif
Dave Rodgmanfb5fedc2022-11-30 15:20:33 +00009/* END_HEADER */
10
11/* BEGIN_CASE */
12void mbedtls_unaligned_access( int size, int offset )
13{
14 /* Define 64-bit aligned raw byte array */
15 uint64_t raw[2];
16
17 /* Populate with known data */
18 uint8_t *x = (uint8_t *) raw;
19 for ( size_t i = 0; i < sizeof(raw); i++ )
20 x[i] = (uint8_t)i;
21
22 TEST_ASSERT( size == 16 || size == 32 || size == 64 );
23
24 uint64_t r = 0;
25 switch ( size )
26 {
27 case 16:
28 r = mbedtls_get_unaligned_uint16( x + offset );
29 break;
30 case 32:
31 r = mbedtls_get_unaligned_uint32( x + offset );
32 break;
33 case 64:
34 r = mbedtls_get_unaligned_uint64( x + offset );
35 break;
36 }
37
38 /* Generate expected result */
39 uint64_t expected = 0;
40 for ( uint8_t i = 0; i < 8; i++ )
41 {
42 uint8_t shift;
43 if ( MBEDTLS_IS_BIG_ENDIAN )
44 {
45 /*
46 * Similar to little-endian case described below, but the shift needs
47 * to be inverted
48 */
49 shift = 7 - ( i * 8 );
50 } else {
51 /* example for offset == 1:
52 * expected = (( 1 + 0 ) << (0 * 8)) | (( 1 + 1 ) << (1 * 8)) | (( 1 + 2 ) << (2 * 8)))
53 * = (1 << 0) | (2 << 8) | (3 << 16) ...
54 * = 0x0807060504030201
55 * x = { 0, 1, 2, 3, ... }
56 * ie expected is the value that would be read from x on a LE system, when
57 * byte swapping is not performed
58 */
59 shift = i * 8;
60 }
61 uint64_t b = offset + i;
62 expected |= b << shift;
63 }
64
65 /* Mask out excess bits from expected result */
66 switch ( size )
67 {
68 case 16:
69 expected &= 0xffff;
70 break;
71 case 32:
72 expected &= 0xffffffff;
73 break;
74 }
75
76 TEST_EQUAL( r, expected );
77
78 /* Write sentinel to the part of the array we will testing writing to */
79 for ( size_t i = 0; i < (size_t) ( size / 8 ); i++ )
80 {
81 x[i + offset] = 0xff;
82 }
83 /*
84 * Write back to the array with mbedtls_put_unaligned_uint16 and validate
85 * that the array is unchanged as a result.
86 */
87 switch ( size )
88 {
89 case 16:
90 mbedtls_put_unaligned_uint16( x + offset, r );
91 break;
92 case 32:
93 mbedtls_put_unaligned_uint32( x + offset, r );
94 break;
95 case 64:
96 mbedtls_put_unaligned_uint64( x + offset, r );
97 break;
98 }
99 for ( size_t i = 0; i < sizeof(x); i++ )
100 {
101 TEST_EQUAL( x[i], (uint8_t)i );
102 }
103}
104/* END_CASE */
105
106/* BEGIN_CASE */
107void mbedtls_byteswap( unsigned int input_h, unsigned int input_l, int size,
108 unsigned int expected_h, unsigned int expected_l )
109{
110 uint64_t input = ( ((uint64_t)input_h ) << 32 ) | ( (uint64_t)input_l );
111 uint64_t expected = ( ((uint64_t)expected_h) << 32 ) | ( (uint64_t)expected_l );
112
113 /* Check against expected */
Dave Rodgman9dc55ba2022-12-01 10:49:53 +0000114 uint64_t r = 0;
Dave Rodgmanfb5fedc2022-11-30 15:20:33 +0000115 switch ( size )
116 {
117 case 16:
118 r = MBEDTLS_BSWAP16( input );
119 break;
120 case 32:
121 r = MBEDTLS_BSWAP32( input );
122 break;
123 case 64:
124 r = MBEDTLS_BSWAP64( input );
125 break;
Dave Rodgman9dc55ba2022-12-01 10:49:53 +0000126 default:
127 TEST_ASSERT( ! "size must be 16, 32 or 64" );
Dave Rodgmanfb5fedc2022-11-30 15:20:33 +0000128 }
129 TEST_EQUAL( r, expected );
130
131 /*
132 * Check byte by byte by extracting bytes from opposite ends of
133 * input and r.
134 */
135 for ( size_t i = 0; i < (size_t)( size / 8 ); i++ )
136 {
137 size_t s1 = i * 8;
138 size_t s2 = ( ( size / 8 - 1 ) - i ) * 8;
139 uint64_t a = ( input & ( (uint64_t)0xff << s1 ) ) >> s1;
140 uint64_t b = ( r & ( (uint64_t)0xff << s2 ) ) >> s2;
141 TEST_EQUAL( a, b );
142 }
143
144 /* Check BSWAP(BSWAP(x)) == x */
145 switch ( size )
146 {
147 case 16:
148 r = MBEDTLS_BSWAP16( r );
149 TEST_EQUAL( r, input & 0xffff );
150 break;
151 case 32:
152 r = MBEDTLS_BSWAP32( r );
153 TEST_EQUAL( r, input & 0xffffffff );
154 break;
155 case 64:
156 r = MBEDTLS_BSWAP64( r );
157 TEST_EQUAL( r, input );
158 break;
159 }
160}
161/* END_CASE */
162
163/* BEGIN_CASE */
164void get_byte()
165{
166 uint8_t data[16];
167
168 for ( size_t i = 0; i < sizeof(data); i++ )
169 data[i] = (uint8_t) i;
170
171 uint64_t u64 = 0x0706050403020100;
172 for ( size_t b = 0; b < 8 ; b++ )
173 {
174 uint8_t actual;
175 switch ( b )
176 {
177 case 0:
178 actual = MBEDTLS_BYTE_0( u64 );
179 break;
180 case 1:
181 actual = MBEDTLS_BYTE_1( u64 );
182 break;
183 case 2:
184 actual = MBEDTLS_BYTE_2( u64 );
185 break;
186 case 3:
187 actual = MBEDTLS_BYTE_3( u64 );
188 break;
189 case 4:
190 actual = MBEDTLS_BYTE_4( u64 );
191 break;
192 case 5:
193 actual = MBEDTLS_BYTE_5( u64 );
194 break;
195 case 6:
196 actual = MBEDTLS_BYTE_6( u64 );
197 break;
198 case 7:
199 actual = MBEDTLS_BYTE_7( u64 );
200 break;
201 }
202 uint8_t expected = b;
203 TEST_EQUAL( actual, expected );
204 }
205
206 uint32_t u32 = 0x03020100;
207 for ( size_t b = 0; b < 4 ; b++ )
208 {
209 uint8_t actual;
210 switch ( b )
211 {
212 case 0:
213 actual = MBEDTLS_BYTE_0( u32 );
214 break;
215 case 1:
216 actual = MBEDTLS_BYTE_1( u32 );
217 break;
218 case 2:
219 actual = MBEDTLS_BYTE_2( u32 );
220 break;
221 case 3:
222 actual = MBEDTLS_BYTE_3( u32 );
223 break;
224 }
225 uint8_t expected = b;
226 TEST_EQUAL( actual, expected );
227 }
228
229 uint16_t u16 = 0x0100;
230 for ( size_t b = 0; b < 2 ; b++ )
231 {
232 uint8_t actual;
233 switch ( b )
234 {
235 case 0:
236 actual = MBEDTLS_BYTE_0( u16 );
237 break;
238 case 1:
239 actual = MBEDTLS_BYTE_1( u16 );
240 break;
241 }
242 uint8_t expected = b;
243 TEST_EQUAL( actual, expected );
244 }
245
246 uint8_t u8 = 0x01;
247 uint8_t actual = MBEDTLS_BYTE_0( u8 );
248 TEST_EQUAL( actual, u8 );
249}
250/* END_CASE */
251
252/* BEGIN_CASE */
253void unaligned_access_endian_aware(int size, int offset, int big_endian )
254{
255 TEST_ASSERT( size == 16 || size == 24 || size == 32 || size == 64 );
256 TEST_ASSERT( offset >= 0 && offset < 8 );
257
258 /* Define 64-bit aligned raw byte array */
259 uint64_t raw[2];
260 /* Populate with known data: x == { 0, 1, 2, ... } */
261 uint8_t *x = (uint8_t *) raw;
262 for ( size_t i = 0; i < sizeof(raw); i++ )
263 x[i] = (uint8_t) i;
264
Dave Rodgman9dc55ba2022-12-01 10:49:53 +0000265 uint64_t read = 0;
Dave Rodgmanfb5fedc2022-11-30 15:20:33 +0000266 if ( big_endian )
267 {
268 switch ( size )
269 {
270 case 16:
271 read = MBEDTLS_GET_UINT16_BE( x, offset );
272 break;
273 case 24:
274 read = MBEDTLS_GET_UINT24_BE( x, offset );
275 break;
276 case 32:
277 read = MBEDTLS_GET_UINT32_BE( x, offset );
278 break;
279 case 64:
280 read = MBEDTLS_GET_UINT64_BE( x, offset );
281 break;
282 }
283 }
284 else
285 {
286 switch ( size )
287 {
288 case 16:
289 read = MBEDTLS_GET_UINT16_LE( x, offset );
290 break;
291 case 24:
292 read = MBEDTLS_GET_UINT24_LE( x, offset );
293 break;
294 case 32:
295 read = MBEDTLS_GET_UINT32_LE( x, offset );
296 break;
297 case 64:
298 read = MBEDTLS_GET_UINT64_LE( x, offset );
299 break;
300 }
301 }
302
303 /* Build up expected value byte by byte, in either big or little endian format */
304 uint64_t expected = 0;
305 for ( size_t i = 0; i < (size_t)(size / 8); i++ )
306 {
307 uint64_t b = x[i + offset];
308 uint8_t shift = (big_endian) ? (8 * ((size / 8 - 1) - i)) : (8 * i);
309 expected |= b << shift;
310 }
311
312 /* Verify read */
313 TEST_EQUAL( read, expected );
314
315 /* Test writing back to memory. First write sentiel */
316 for ( size_t i = 0; i < (size_t)(size / 8); i++ )
317 {
318 x[i + offset] = 0xff;
319 }
320 /* Overwrite sentinel with endian-aware write macro */
321 if ( big_endian )
322 {
323 switch ( size )
324 {
325 case 16:
326 MBEDTLS_PUT_UINT16_BE( read, x, offset );
327 break;
328 case 24:
329 MBEDTLS_PUT_UINT24_BE( read, x, offset );
330 break;
331 case 32:
332 MBEDTLS_PUT_UINT32_BE( read, x, offset );
333 break;
334 case 64:
335 MBEDTLS_PUT_UINT64_BE( read, x, offset );
336 break;
337 }
338 }
339 else
340 {
341 switch ( size )
342 {
343 case 16:
344 MBEDTLS_PUT_UINT16_LE( read, x, offset );
345 break;
346 case 24:
347 MBEDTLS_PUT_UINT24_LE( read, x, offset );
348 break;
349 case 32:
350 MBEDTLS_PUT_UINT32_LE( read, x, offset );
351 break;
352 case 64:
353 MBEDTLS_PUT_UINT64_LE( read, x, offset );
354 break;
355 }
356 }
357
358 /* Verify write - check memory is correct */
359 for ( size_t i = 0; i < sizeof(raw); i++ )
360 TEST_EQUAL( x[i], (uint8_t) i );
361}
362/* END_CASE */
363
364/* BEGIN_CASE */
365void mbedtls_is_big_endian()
366{
367 uint16_t check = 0x1234;
368 uint8_t* p = (uint8_t*) &check;
369
370 if ( MBEDTLS_IS_BIG_ENDIAN )
371 {
372 /* Big-endian: data stored MSB first, i.e. p == { 0x12, 0x34 } */
373 TEST_EQUAL( p[0], 0x12 );
374 TEST_EQUAL( p[1], 0x34 );
375 }
376 else
377 {
378 /* Little-endian: data stored LSB first, i.e. p == { 0x34, 0x12 } */
379 TEST_EQUAL( p[0], 0x34 );
380 TEST_EQUAL( p[1], 0x12 );
381 }
382}
383/* END_CASE */