blob: 9ca2b6772edc2e151bfb719dddf21c3793bdaa33 [file] [log] [blame]
Jarno Lamsa18987a42019-04-24 15:40:43 +03001/* ecc.c - TinyCrypt implementation of common ECC functions */
2
3/*
Simon Butcher92c3d1f2019-09-09 17:25:08 +01004 * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved.
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8/*
Jarno Lamsa18987a42019-04-24 15:40:43 +03009 * Copyright (c) 2014, Kenneth MacKay
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions are met:
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright notice,
17 * this list of conditions and the following disclaimer in the documentation
18 * and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
22 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
24 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
25 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
27 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions are met:
35 *
36 * - Redistributions of source code must retain the above copyright notice,
37 * this list of conditions and the following disclaimer.
38 *
39 * - Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 *
43 * - Neither the name of Intel Corporation nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
48 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
51 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
52 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
53 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
54 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
55 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
57 * POSSIBILITY OF SUCH DAMAGE.
58 */
59
Hanno Becker36ae7582019-07-23 15:52:35 +010060#if !defined(MBEDTLS_CONFIG_FILE)
61#include "mbedtls/config.h"
62#else
63#include MBEDTLS_CONFIG_FILE
64#endif
65
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +020066#if defined(MBEDTLS_USE_TINYCRYPT)
Jarno Lamsa18987a42019-04-24 15:40:43 +030067#include <tinycrypt/ecc.h>
Jarno Lamsa18987a42019-04-24 15:40:43 +030068#include <string.h>
69
70/* IMPORTANT: Make sure a cryptographically-secure PRNG is set and the platform
71 * has access to enough entropy in order to feed the PRNG regularly. */
72#if default_RNG_defined
73static uECC_RNG_Function g_rng_function = &default_CSPRNG;
74#else
75static uECC_RNG_Function g_rng_function = 0;
76#endif
77
78void uECC_set_rng(uECC_RNG_Function rng_function)
79{
80 g_rng_function = rng_function;
81}
82
83uECC_RNG_Function uECC_get_rng(void)
84{
85 return g_rng_function;
86}
87
88int uECC_curve_private_key_size(uECC_Curve curve)
89{
90 return BITS_TO_BYTES(curve->num_n_bits);
91}
92
93int uECC_curve_public_key_size(uECC_Curve curve)
94{
95 return 2 * curve->num_bytes;
96}
97
98void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words)
99{
100 wordcount_t i;
101 for (i = 0; i < num_words; ++i) {
102 vli[i] = 0;
103 }
104}
105
106uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words)
107{
108 uECC_word_t bits = 0;
109 wordcount_t i;
110 for (i = 0; i < num_words; ++i) {
111 bits |= vli[i];
112 }
113 return (bits == 0);
114}
115
116uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit)
117{
118 return (vli[bit >> uECC_WORD_BITS_SHIFT] &
119 ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK)));
120}
121
122/* Counts the number of words in vli. */
123static wordcount_t vli_numDigits(const uECC_word_t *vli,
124 const wordcount_t max_words)
125{
126
127 wordcount_t i;
128 /* Search from the end until we find a non-zero digit. We do it in reverse
129 * because we expect that most digits will be nonzero. */
130 for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
131 }
132
133 return (i + 1);
134}
135
136bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
137 const wordcount_t max_words)
138{
139
140 uECC_word_t i;
141 uECC_word_t digit;
142
143 wordcount_t num_digits = vli_numDigits(vli, max_words);
144 if (num_digits == 0) {
145 return 0;
146 }
147
148 digit = vli[num_digits - 1];
149 for (i = 0; digit; ++i) {
150 digit >>= 1;
151 }
152
153 return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i);
154}
155
156void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
157 wordcount_t num_words)
158{
159 wordcount_t i;
160
161 for (i = 0; i < num_words; ++i) {
162 dest[i] = src[i];
163 }
164}
165
166cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
167 const uECC_word_t *right,
168 wordcount_t num_words)
169{
170 wordcount_t i;
171
172 for (i = num_words - 1; i >= 0; --i) {
173 if (left[i] > right[i]) {
174 return 1;
175 } else if (left[i] < right[i]) {
176 return -1;
177 }
178 }
179 return 0;
180}
181
182uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
183 wordcount_t num_words)
184{
185
186 uECC_word_t diff = 0;
187 wordcount_t i;
188
189 for (i = num_words - 1; i >= 0; --i) {
190 diff |= (left[i] ^ right[i]);
191 }
192 return !(diff == 0);
193}
194
195uECC_word_t cond_set(uECC_word_t p_true, uECC_word_t p_false, unsigned int cond)
196{
197 return (p_true*(cond)) | (p_false*(!cond));
198}
199
200/* Computes result = left - right, returning borrow, in constant time.
201 * Can modify in place. */
202uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
203 const uECC_word_t *right, wordcount_t num_words)
204{
205 uECC_word_t borrow = 0;
206 wordcount_t i;
207 for (i = 0; i < num_words; ++i) {
208 uECC_word_t diff = left[i] - right[i] - borrow;
209 uECC_word_t val = (diff > left[i]);
210 borrow = cond_set(val, borrow, (diff != left[i]));
211
212 result[i] = diff;
213 }
214 return borrow;
215}
216
217/* Computes result = left + right, returning carry, in constant time.
218 * Can modify in place. */
219static uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left,
220 const uECC_word_t *right, wordcount_t num_words)
221{
222 uECC_word_t carry = 0;
223 wordcount_t i;
224 for (i = 0; i < num_words; ++i) {
225 uECC_word_t sum = left[i] + right[i] + carry;
226 uECC_word_t val = (sum < left[i]);
227 carry = cond_set(val, carry, (sum != left[i]));
228 result[i] = sum;
229 }
230 return carry;
231}
232
233cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
234 wordcount_t num_words)
235{
236 uECC_word_t tmp[NUM_ECC_WORDS];
237 uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words);
238 uECC_word_t equal = uECC_vli_isZero(tmp, num_words);
239 return (!equal - 2 * neg);
240}
241
242/* Computes vli = vli >> 1. */
243static void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words)
244{
245 uECC_word_t *end = vli;
246 uECC_word_t carry = 0;
247
248 vli += num_words;
249 while (vli-- > end) {
250 uECC_word_t temp = *vli;
251 *vli = (temp >> 1) | carry;
252 carry = temp << (uECC_WORD_BITS - 1);
253 }
254}
255
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200256/* Compute (r2, r1, r0) = a * b + (r1, r0):
257 * [in] a, b: operands to be multiplied
258 * [in] r0, r1: low and high-order words of operand to add
259 * [out] r0, r1: low and high-order words of the result
260 * [out] r2: carry
261 */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300262static void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t *r0,
263 uECC_word_t *r1, uECC_word_t *r2)
264{
265
266 uECC_dword_t p = (uECC_dword_t)a * b;
267 uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
268 r01 += p;
269 *r2 += (r01 < p);
270 *r1 = r01 >> uECC_WORD_BITS;
271 *r0 = (uECC_word_t)r01;
272
273}
274
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200275/* State for implementing random delays in uECC_vli_mult_rnd().
276 *
277 * The state is initialised by randomizing delays and setting i = 0.
278 * Each call to uECC_vli_mult_rnd() uses one byte of delays and increments i.
279 *
280 * A scalar muliplication uses 14 field multiplications per bit of exponent.
281 */
282typedef struct {
283 uint8_t delays[14 * 256];
284 uint16_t i;
285} wait_state_t;
286
287#if 0
288static void wait_init(wait_state_t *s)
289{
290 g_rng_function(s->delays, sizeof(s->delays));
291 s->i = 0;
292}
293#endif
294
295/* Computes result = left * right. Result must be 2 * num_words long.
296 *
297 * As a counter-measure against horizontal attacks, add noise by performing
298 * a random number of extra computations performing random additional accesses
299 * to limbs of the input.
300 *
301 * Each of the two actual computation loops is surrounded by two
302 * similar-looking waiting loops, to make the beginning and end of the actual
303 * computation harder to spot.
304 *
305 * We add 4 waiting loops of between 0 and 3 calls to muladd() each. That
306 * makes an average of 6 extra calls. Compared to the main computation which
307 * makes 64 such calls, this represents an average performance degradation of
308 * less than 10%.
309 *
310 * Compared to the original uECC_vli_mult(), loose the num_words argument as we
311 * know it's always 8. This saves a bit of code size and execution speed.
312 */
313static void uECC_vli_mult_rnd(uECC_word_t *result, const uECC_word_t *left,
314 const uECC_word_t *right, wait_state_t *s)
Jarno Lamsa18987a42019-04-24 15:40:43 +0300315{
316
317 uECC_word_t r0 = 0;
318 uECC_word_t r1 = 0;
319 uECC_word_t r2 = 0;
320 wordcount_t i, k;
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200321 const uint8_t num_words = 8;
322
323 /* Fetch 8 bit worth of delay from the state; 0 if we have no state */
324 uint8_t delays = s ? s->delays[s->i++] : 0;
325 uECC_word_t rr0 = 0, rr1 = 0;
326 volatile uECC_word_t r;
327
328 /* Mimic start of next loop: k in [0, 3] */
329 k = 0 + (delays & 0x03);
330 delays >>= 2;
331 /* k = 0 -> i in [1, 0] -> 0 extra muladd;
332 * k = 3 -> i in [1, 3] -> 3 extra muladd */
333 for (i = 0; i <= k; ++i) {
334 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
335 }
336 r = rr0;
337 rr0 = rr1;
338 rr1 = r2;
339 r2 = 0;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300340
341 /* Compute each digit of result in sequence, maintaining the carries. */
342 for (k = 0; k < num_words; ++k) {
343
344 for (i = 0; i <= k; ++i) {
345 muladd(left[i], right[k - i], &r0, &r1, &r2);
346 }
347
348 result[k] = r0;
349 r0 = r1;
350 r1 = r2;
351 r2 = 0;
352 }
353
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200354 /* Mimic end of previous loop: k in [4, 7] */
355 k = 4 + (delays & 0x03);
356 delays >>= 2;
357 /* k = 4 -> i in [5, 4] -> 0 extra muladd;
358 * k = 7 -> i in [5, 7] -> 3 extra muladd */
359 for (i = 5; i <= k; ++i) {
360 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
361 }
362 r = rr0;
363 rr0 = rr1;
364 rr1 = r2;
365 r2 = 0;
366
367 /* Mimic start of next loop: k in [8, 11] */
368 k = 11 - (delays & 0x03);
369 delays >>= 2;
370 /* k = 8 -> i in [5, 7] -> 3 extra muladd;
371 * k = 11 -> i in [8, 7] -> 0 extra muladd */
372 for (i = (k + 5) - num_words; i < num_words; ++i) {
373 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
374 }
375 r = rr0;
376 rr0 = rr1;
377 rr1 = r2;
378 r2 = 0;
379
Jarno Lamsa18987a42019-04-24 15:40:43 +0300380 for (k = num_words; k < num_words * 2 - 1; ++k) {
381
382 for (i = (k + 1) - num_words; i < num_words; ++i) {
383 muladd(left[i], right[k - i], &r0, &r1, &r2);
384 }
385 result[k] = r0;
386 r0 = r1;
387 r1 = r2;
388 r2 = 0;
389 }
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200390
Jarno Lamsa18987a42019-04-24 15:40:43 +0300391 result[num_words * 2 - 1] = r0;
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200392
393 /* Mimic end of previous loop: k in [12, 15] */
394 k = 15 - (delays & 0x03);
395 delays >>= 2;
396 /* k = 12 -> i in [5, 7] -> 3 extra muladd;
397 * k = 15 -> i in [8, 7] -> 0 extra muladd */
398 for (i = (k + 1) - num_words; i < num_words; ++i) {
399 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
400 }
401 r = rr0;
402 rr0 = rr1;
403 rr1 = r2;
404 r2 = 0;
405
406 /* avoid warning that r is set but not used */
407 (void) r;
408}
409
410/* Computes result = left * right. Result must be 2 * num_words long. */
411static void uECC_vli_mult(uECC_word_t *result, const uECC_word_t *left,
412 const uECC_word_t *right, wordcount_t num_words)
413{
414 (void) num_words;
415 uECC_vli_mult_rnd(result, left, right, NULL);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300416}
417
418void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
419 const uECC_word_t *right, const uECC_word_t *mod,
420 wordcount_t num_words)
421{
422 uECC_word_t carry = uECC_vli_add(result, left, right, num_words);
423 if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) {
424 /* result > mod (result = mod + remainder), so subtract mod to get
425 * remainder. */
426 uECC_vli_sub(result, result, mod, num_words);
427 }
428}
429
430void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
431 const uECC_word_t *right, const uECC_word_t *mod,
432 wordcount_t num_words)
433{
434 uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words);
435 if (l_borrow) {
436 /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
437 * we can get the correct result from result + mod (with overflow). */
438 uECC_vli_add(result, result, mod, num_words);
439 }
440}
441
442/* Computes result = product % mod, where product is 2N words long. */
443/* Currently only designed to work for curve_p or curve_n. */
444void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
445 const uECC_word_t *mod, wordcount_t num_words)
446{
447 uECC_word_t mod_multiple[2 * NUM_ECC_WORDS];
448 uECC_word_t tmp[2 * NUM_ECC_WORDS];
449 uECC_word_t *v[2] = {tmp, product};
450 uECC_word_t index;
451
452 /* Shift mod so its highest set bit is at the maximum position. */
453 bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) -
454 uECC_vli_numBits(mod, num_words);
455 wordcount_t word_shift = shift / uECC_WORD_BITS;
456 wordcount_t bit_shift = shift % uECC_WORD_BITS;
457 uECC_word_t carry = 0;
458 uECC_vli_clear(mod_multiple, word_shift);
459 if (bit_shift > 0) {
460 for(index = 0; index < (uECC_word_t)num_words; ++index) {
461 mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry;
462 carry = mod[index] >> (uECC_WORD_BITS - bit_shift);
463 }
464 } else {
465 uECC_vli_set(mod_multiple + word_shift, mod, num_words);
466 }
467
468 for (index = 1; shift >= 0; --shift) {
469 uECC_word_t borrow = 0;
470 wordcount_t i;
471 for (i = 0; i < num_words * 2; ++i) {
472 uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow;
473 if (diff != v[index][i]) {
474 borrow = (diff > v[index][i]);
475 }
476 v[1 - index][i] = diff;
477 }
478 /* Swap the index if there was no borrow */
479 index = !(index ^ borrow);
480 uECC_vli_rshift1(mod_multiple, num_words);
481 mod_multiple[num_words - 1] |= mod_multiple[num_words] <<
482 (uECC_WORD_BITS - 1);
483 uECC_vli_rshift1(mod_multiple + num_words, num_words);
484 }
485 uECC_vli_set(result, v[index], num_words);
486}
487
488void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
489 const uECC_word_t *right, const uECC_word_t *mod,
490 wordcount_t num_words)
491{
492 uECC_word_t product[2 * NUM_ECC_WORDS];
493 uECC_vli_mult(product, left, right, num_words);
494 uECC_vli_mmod(result, product, mod, num_words);
495}
496
497void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
498 const uECC_word_t *right, uECC_Curve curve)
499{
500 uECC_word_t product[2 * NUM_ECC_WORDS];
501 uECC_vli_mult(product, left, right, curve->num_words);
502
503 curve->mmod_fast(result, product);
504}
505
506static void uECC_vli_modSquare_fast(uECC_word_t *result,
507 const uECC_word_t *left,
508 uECC_Curve curve)
509{
510 uECC_vli_modMult_fast(result, left, left, curve);
511}
512
513
514#define EVEN(vli) (!(vli[0] & 1))
515
516static void vli_modInv_update(uECC_word_t *uv,
517 const uECC_word_t *mod,
518 wordcount_t num_words)
519{
520
521 uECC_word_t carry = 0;
522
523 if (!EVEN(uv)) {
524 carry = uECC_vli_add(uv, uv, mod, num_words);
525 }
526 uECC_vli_rshift1(uv, num_words);
527 if (carry) {
528 uv[num_words - 1] |= HIGH_BIT_SET;
529 }
530}
531
532void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
533 const uECC_word_t *mod, wordcount_t num_words)
534{
535 uECC_word_t a[NUM_ECC_WORDS], b[NUM_ECC_WORDS];
536 uECC_word_t u[NUM_ECC_WORDS], v[NUM_ECC_WORDS];
537 cmpresult_t cmpResult;
538
539 if (uECC_vli_isZero(input, num_words)) {
540 uECC_vli_clear(result, num_words);
541 return;
542 }
543
544 uECC_vli_set(a, input, num_words);
545 uECC_vli_set(b, mod, num_words);
546 uECC_vli_clear(u, num_words);
547 u[0] = 1;
548 uECC_vli_clear(v, num_words);
549 while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) {
550 if (EVEN(a)) {
551 uECC_vli_rshift1(a, num_words);
552 vli_modInv_update(u, mod, num_words);
553 } else if (EVEN(b)) {
554 uECC_vli_rshift1(b, num_words);
555 vli_modInv_update(v, mod, num_words);
556 } else if (cmpResult > 0) {
557 uECC_vli_sub(a, a, b, num_words);
558 uECC_vli_rshift1(a, num_words);
559 if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) {
560 uECC_vli_add(u, u, mod, num_words);
561 }
562 uECC_vli_sub(u, u, v, num_words);
563 vli_modInv_update(u, mod, num_words);
564 } else {
565 uECC_vli_sub(b, b, a, num_words);
566 uECC_vli_rshift1(b, num_words);
567 if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) {
568 uECC_vli_add(v, v, mod, num_words);
569 }
570 uECC_vli_sub(v, v, u, num_words);
571 vli_modInv_update(v, mod, num_words);
572 }
573 }
574 uECC_vli_set(result, u, num_words);
575}
576
577/* ------ Point operations ------ */
578
579void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
580 uECC_word_t * Z1, uECC_Curve curve)
581{
582 /* t1 = X, t2 = Y, t3 = Z */
583 uECC_word_t t4[NUM_ECC_WORDS];
584 uECC_word_t t5[NUM_ECC_WORDS];
585 wordcount_t num_words = curve->num_words;
586
587 if (uECC_vli_isZero(Z1, num_words)) {
588 return;
589 }
590
591 uECC_vli_modSquare_fast(t4, Y1, curve); /* t4 = y1^2 */
592 uECC_vli_modMult_fast(t5, X1, t4, curve); /* t5 = x1*y1^2 = A */
593 uECC_vli_modSquare_fast(t4, t4, curve); /* t4 = y1^4 */
594 uECC_vli_modMult_fast(Y1, Y1, Z1, curve); /* t2 = y1*z1 = z3 */
595 uECC_vli_modSquare_fast(Z1, Z1, curve); /* t3 = z1^2 */
596
597 uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = x1 + z1^2 */
598 uECC_vli_modAdd(Z1, Z1, Z1, curve->p, num_words); /* t3 = 2*z1^2 */
599 uECC_vli_modSub(Z1, X1, Z1, curve->p, num_words); /* t3 = x1 - z1^2 */
600 uECC_vli_modMult_fast(X1, X1, Z1, curve); /* t1 = x1^2 - z1^4 */
601
602 uECC_vli_modAdd(Z1, X1, X1, curve->p, num_words); /* t3 = 2*(x1^2 - z1^4) */
603 uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = 3*(x1^2 - z1^4) */
604 if (uECC_vli_testBit(X1, 0)) {
605 uECC_word_t l_carry = uECC_vli_add(X1, X1, curve->p, num_words);
606 uECC_vli_rshift1(X1, num_words);
607 X1[num_words - 1] |= l_carry << (uECC_WORD_BITS - 1);
608 } else {
609 uECC_vli_rshift1(X1, num_words);
610 }
611
612 /* t1 = 3/2*(x1^2 - z1^4) = B */
613 uECC_vli_modSquare_fast(Z1, X1, curve); /* t3 = B^2 */
614 uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - A */
615 uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - 2A = x3 */
616 uECC_vli_modSub(t5, t5, Z1, curve->p, num_words); /* t5 = A - x3 */
617 uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = B * (A - x3) */
618 /* t4 = B * (A - x3) - y1^4 = y3: */
619 uECC_vli_modSub(t4, X1, t4, curve->p, num_words);
620
621 uECC_vli_set(X1, Z1, num_words);
622 uECC_vli_set(Z1, Y1, num_words);
623 uECC_vli_set(Y1, t4, num_words);
624}
625
626void x_side_default(uECC_word_t *result,
627 const uECC_word_t *x,
628 uECC_Curve curve)
629{
630 uECC_word_t _3[NUM_ECC_WORDS] = {3}; /* -a = 3 */
631 wordcount_t num_words = curve->num_words;
632
633 uECC_vli_modSquare_fast(result, x, curve); /* r = x^2 */
634 uECC_vli_modSub(result, result, _3, curve->p, num_words); /* r = x^2 - 3 */
635 uECC_vli_modMult_fast(result, result, x, curve); /* r = x^3 - 3x */
636 /* r = x^3 - 3x + b: */
637 uECC_vli_modAdd(result, result, curve->b, curve->p, num_words);
638}
639
640uECC_Curve uECC_secp256r1(void)
641{
642 return &curve_secp256r1;
643}
644
645void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int*product)
646{
647 unsigned int tmp[NUM_ECC_WORDS];
648 int carry;
649
650 /* t */
651 uECC_vli_set(result, product, NUM_ECC_WORDS);
652
653 /* s1 */
654 tmp[0] = tmp[1] = tmp[2] = 0;
655 tmp[3] = product[11];
656 tmp[4] = product[12];
657 tmp[5] = product[13];
658 tmp[6] = product[14];
659 tmp[7] = product[15];
660 carry = uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
661 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
662
663 /* s2 */
664 tmp[3] = product[12];
665 tmp[4] = product[13];
666 tmp[5] = product[14];
667 tmp[6] = product[15];
668 tmp[7] = 0;
669 carry += uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
670 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
671
672 /* s3 */
673 tmp[0] = product[8];
674 tmp[1] = product[9];
675 tmp[2] = product[10];
676 tmp[3] = tmp[4] = tmp[5] = 0;
677 tmp[6] = product[14];
678 tmp[7] = product[15];
679 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
680
681 /* s4 */
682 tmp[0] = product[9];
683 tmp[1] = product[10];
684 tmp[2] = product[11];
685 tmp[3] = product[13];
686 tmp[4] = product[14];
687 tmp[5] = product[15];
688 tmp[6] = product[13];
689 tmp[7] = product[8];
690 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
691
692 /* d1 */
693 tmp[0] = product[11];
694 tmp[1] = product[12];
695 tmp[2] = product[13];
696 tmp[3] = tmp[4] = tmp[5] = 0;
697 tmp[6] = product[8];
698 tmp[7] = product[10];
699 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
700
701 /* d2 */
702 tmp[0] = product[12];
703 tmp[1] = product[13];
704 tmp[2] = product[14];
705 tmp[3] = product[15];
706 tmp[4] = tmp[5] = 0;
707 tmp[6] = product[9];
708 tmp[7] = product[11];
709 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
710
711 /* d3 */
712 tmp[0] = product[13];
713 tmp[1] = product[14];
714 tmp[2] = product[15];
715 tmp[3] = product[8];
716 tmp[4] = product[9];
717 tmp[5] = product[10];
718 tmp[6] = 0;
719 tmp[7] = product[12];
720 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
721
722 /* d4 */
723 tmp[0] = product[14];
724 tmp[1] = product[15];
725 tmp[2] = 0;
726 tmp[3] = product[9];
727 tmp[4] = product[10];
728 tmp[5] = product[11];
729 tmp[6] = 0;
730 tmp[7] = product[13];
731 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
732
733 if (carry < 0) {
734 do {
735 carry += uECC_vli_add(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
736 }
737 while (carry < 0);
738 } else {
739 while (carry ||
740 uECC_vli_cmp_unsafe(curve_secp256r1.p, result, NUM_ECC_WORDS) != 1) {
741 carry -= uECC_vli_sub(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
742 }
743 }
744}
745
746uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve)
747{
748 return uECC_vli_isZero(point, curve->num_words * 2);
749}
750
751void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z,
752 uECC_Curve curve)
753{
754 uECC_word_t t1[NUM_ECC_WORDS];
755
756 uECC_vli_modSquare_fast(t1, Z, curve); /* z^2 */
757 uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */
758 uECC_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */
759 uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */
760}
761
762/* P = (x1, y1) => 2P, (x2, y2) => P' */
763static void XYcZ_initial_double(uECC_word_t * X1, uECC_word_t * Y1,
764 uECC_word_t * X2, uECC_word_t * Y2,
765 const uECC_word_t * const initial_Z,
766 uECC_Curve curve)
767{
768 uECC_word_t z[NUM_ECC_WORDS];
769 wordcount_t num_words = curve->num_words;
770 if (initial_Z) {
771 uECC_vli_set(z, initial_Z, num_words);
772 } else {
773 uECC_vli_clear(z, num_words);
774 z[0] = 1;
775 }
776
777 uECC_vli_set(X2, X1, num_words);
778 uECC_vli_set(Y2, Y1, num_words);
779
780 apply_z(X1, Y1, z, curve);
781 curve->double_jacobian(X1, Y1, z, curve);
782 apply_z(X2, Y2, z, curve);
783}
784
785void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1,
786 uECC_word_t * X2, uECC_word_t * Y2,
787 uECC_Curve curve)
788{
789 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
790 uECC_word_t t5[NUM_ECC_WORDS];
791 wordcount_t num_words = curve->num_words;
792
793 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
794 uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
795 uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
796 uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
797 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
798 uECC_vli_modSquare_fast(t5, Y2, curve); /* t5 = (y2 - y1)^2 = D */
799
800 uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */
801 uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */
802 uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */
803 uECC_vli_modMult_fast(Y1, Y1, X2, curve); /* t2 = y1*(C - B) */
804 uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */
805 uECC_vli_modMult_fast(Y2, Y2, X2, curve); /* t4 = (y2 - y1)*(B - x3) */
806 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */
807
808 uECC_vli_set(X2, t5, num_words);
809}
810
811/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
812 Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
813 or P => P - Q, Q => P + Q
814 */
815static void XYcZ_addC(uECC_word_t * X1, uECC_word_t * Y1,
816 uECC_word_t * X2, uECC_word_t * Y2,
817 uECC_Curve curve)
818{
819 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
820 uECC_word_t t5[NUM_ECC_WORDS];
821 uECC_word_t t6[NUM_ECC_WORDS];
822 uECC_word_t t7[NUM_ECC_WORDS];
823 wordcount_t num_words = curve->num_words;
824
825 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
826 uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
827 uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
828 uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
829 uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */
830 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
831
832 uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */
833 uECC_vli_modMult_fast(Y1, Y1, t6, curve); /* t2 = y1 * (C - B) = E */
834 uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */
835 uECC_vli_modSquare_fast(X2, Y2, curve); /* t3 = (y2 - y1)^2 = D */
836 uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */
837
838 uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */
839 uECC_vli_modMult_fast(Y2, Y2, t7, curve); /* t4 = (y2 - y1)*(B - x3) */
840 /* t4 = (y2 - y1)*(B - x3) - E = y3: */
841 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words);
842
843 uECC_vli_modSquare_fast(t7, t5, curve); /* t7 = (y2 + y1)^2 = F */
844 uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */
845 uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */
846 uECC_vli_modMult_fast(t6, t6, t5, curve); /* t6 = (y2+y1)*(x3' - B) */
847 /* t2 = (y2+y1)*(x3' - B) - E = y3': */
848 uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words);
849
850 uECC_vli_set(X1, t7, num_words);
851}
852
853void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point,
854 const uECC_word_t * scalar,
855 const uECC_word_t * initial_Z,
856 bitcount_t num_bits, uECC_Curve curve)
857{
858 /* R0 and R1 */
859 uECC_word_t Rx[2][NUM_ECC_WORDS];
860 uECC_word_t Ry[2][NUM_ECC_WORDS];
861 uECC_word_t z[NUM_ECC_WORDS];
862 bitcount_t i;
863 uECC_word_t nb;
864 wordcount_t num_words = curve->num_words;
865
866 uECC_vli_set(Rx[1], point, num_words);
867 uECC_vli_set(Ry[1], point + num_words, num_words);
868
869 XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve);
870
871 for (i = num_bits - 2; i > 0; --i) {
872 nb = !uECC_vli_testBit(scalar, i);
873 XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
874 XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
875 }
876
877 nb = !uECC_vli_testBit(scalar, 0);
878 XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
879
880 /* Find final 1/Z value. */
881 uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */
882 uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */
883 uECC_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */
884 uECC_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0))*/
885 /* yP / (xP * Yb * (X1 - X0)) */
886 uECC_vli_modMult_fast(z, z, point + num_words, curve);
887 /* Xb * yP / (xP * Yb * (X1 - X0)) */
888 uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve);
889 /* End 1/Z calculation */
890
891 XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
892 apply_z(Rx[0], Ry[0], z, curve);
893
894 uECC_vli_set(result, Rx[0], num_words);
895 uECC_vli_set(result + num_words, Ry[0], num_words);
896}
897
898uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0,
899 uECC_word_t *k1, uECC_Curve curve)
900{
901
902 wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
903
904 bitcount_t num_n_bits = curve->num_n_bits;
905
906 uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) ||
907 (num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) &&
908 uECC_vli_testBit(k0, num_n_bits));
909
910 uECC_vli_add(k1, k0, curve->n, num_n_words);
911
912 return carry;
913}
914
915uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
916 uECC_word_t *private_key,
917 uECC_Curve curve)
918{
919
920 uECC_word_t tmp1[NUM_ECC_WORDS];
921 uECC_word_t tmp2[NUM_ECC_WORDS];
922 uECC_word_t *p2[2] = {tmp1, tmp2};
923 uECC_word_t carry;
924
925 /* Regularize the bitcount for the private key so that attackers cannot
926 * use a side channel attack to learn the number of leading zeros. */
927 carry = regularize_k(private_key, tmp1, tmp2, curve);
928
929 EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve);
930
931 if (EccPoint_isZero(result, curve)) {
932 return 0;
933 }
934 return 1;
935}
936
937/* Converts an integer in uECC native format to big-endian bytes. */
938void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
939 const unsigned int *native)
940{
941 wordcount_t i;
942 for (i = 0; i < num_bytes; ++i) {
943 unsigned b = num_bytes - 1 - i;
944 bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE));
945 }
946}
947
948/* Converts big-endian bytes to an integer in uECC native format. */
949void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
950 int num_bytes)
951{
952 wordcount_t i;
953 uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE);
954 for (i = 0; i < num_bytes; ++i) {
955 unsigned b = num_bytes - 1 - i;
956 native[b / uECC_WORD_SIZE] |=
957 (uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE));
958 }
959}
960
961int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
962 wordcount_t num_words)
963{
964 uECC_word_t mask = (uECC_word_t)-1;
965 uECC_word_t tries;
966 bitcount_t num_bits = uECC_vli_numBits(top, num_words);
967
968 if (!g_rng_function) {
969 return 0;
970 }
971
972 for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
973 if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) {
974 return 0;
975 }
976 random[num_words - 1] &=
977 mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits));
978 if (!uECC_vli_isZero(random, num_words) &&
979 uECC_vli_cmp(top, random, num_words) == 1) {
980 return 1;
981 }
982 }
983 return 0;
984}
985
986
987int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve)
988{
989 uECC_word_t tmp1[NUM_ECC_WORDS];
990 uECC_word_t tmp2[NUM_ECC_WORDS];
991 wordcount_t num_words = curve->num_words;
992
993 /* The point at infinity is invalid. */
994 if (EccPoint_isZero(point, curve)) {
995 return -1;
996 }
997
998 /* x and y must be smaller than p. */
999 if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 ||
1000 uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) {
1001 return -2;
1002 }
1003
1004 uECC_vli_modSquare_fast(tmp1, point + num_words, curve);
1005 curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */
1006
1007 /* Make sure that y^2 == x^3 + ax + b */
1008 if (uECC_vli_equal(tmp1, tmp2, num_words) != 0)
1009 return -3;
1010
1011 return 0;
1012}
1013
1014int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve)
1015{
1016
1017 uECC_word_t _public[NUM_ECC_WORDS * 2];
1018
1019 uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
1020 uECC_vli_bytesToNative(
1021 _public + curve->num_words,
1022 public_key + curve->num_bytes,
1023 curve->num_bytes);
1024
1025 if (uECC_vli_cmp_unsafe(_public, curve->G, NUM_ECC_WORDS * 2) == 0) {
1026 return -4;
1027 }
1028
1029 return uECC_valid_point(_public, curve);
1030}
1031
1032int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key,
1033 uECC_Curve curve)
1034{
1035
1036 uECC_word_t _private[NUM_ECC_WORDS];
1037 uECC_word_t _public[NUM_ECC_WORDS * 2];
1038
1039 uECC_vli_bytesToNative(
1040 _private,
1041 private_key,
1042 BITS_TO_BYTES(curve->num_n_bits));
1043
1044 /* Make sure the private key is in the range [1, n-1]. */
1045 if (uECC_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) {
1046 return 0;
1047 }
1048
1049 if (uECC_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) != 1) {
1050 return 0;
1051 }
1052
1053 /* Compute public key. */
1054 if (!EccPoint_compute_public_key(_public, _private, curve)) {
1055 return 0;
1056 }
1057
1058 uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public);
1059 uECC_vli_nativeToBytes(
1060 public_key +
1061 curve->num_bytes, curve->num_bytes, _public + curve->num_words);
1062 return 1;
1063}
Jarno Lamsa46132202019-04-29 14:29:52 +03001064#else
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +02001065typedef int mbedtls_dummy_tinycrypt_def;
1066#endif /* MBEDTLS_USE_TINYCRYPT */
Jarno Lamsa18987a42019-04-24 15:40:43 +03001067