blob: cef1469ee24e1d43697599cc82263d7b3fcbce7e [file] [log] [blame]
Jarno Lamsa18987a42019-04-24 15:40:43 +03001/* ecc.c - TinyCrypt implementation of common ECC functions */
2
3/*
Simon Butcher92c3d1f2019-09-09 17:25:08 +01004 * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved.
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8/*
Jarno Lamsa18987a42019-04-24 15:40:43 +03009 * Copyright (c) 2014, Kenneth MacKay
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions are met:
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright notice,
17 * this list of conditions and the following disclaimer in the documentation
18 * and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
22 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
24 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
25 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
27 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions are met:
35 *
36 * - Redistributions of source code must retain the above copyright notice,
37 * this list of conditions and the following disclaimer.
38 *
39 * - Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 *
43 * - Neither the name of Intel Corporation nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
48 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
51 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
52 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
53 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
54 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
55 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
57 * POSSIBILITY OF SUCH DAMAGE.
58 */
59
Hanno Becker36ae7582019-07-23 15:52:35 +010060#if !defined(MBEDTLS_CONFIG_FILE)
61#include "mbedtls/config.h"
62#else
63#include MBEDTLS_CONFIG_FILE
64#endif
65
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +020066#if defined(MBEDTLS_USE_TINYCRYPT)
Jarno Lamsa18987a42019-04-24 15:40:43 +030067#include <tinycrypt/ecc.h>
Jarno Lamsa18987a42019-04-24 15:40:43 +030068#include <string.h>
69
70/* IMPORTANT: Make sure a cryptographically-secure PRNG is set and the platform
71 * has access to enough entropy in order to feed the PRNG regularly. */
72#if default_RNG_defined
73static uECC_RNG_Function g_rng_function = &default_CSPRNG;
74#else
75static uECC_RNG_Function g_rng_function = 0;
76#endif
77
78void uECC_set_rng(uECC_RNG_Function rng_function)
79{
80 g_rng_function = rng_function;
81}
82
83uECC_RNG_Function uECC_get_rng(void)
84{
85 return g_rng_function;
86}
87
88int uECC_curve_private_key_size(uECC_Curve curve)
89{
90 return BITS_TO_BYTES(curve->num_n_bits);
91}
92
93int uECC_curve_public_key_size(uECC_Curve curve)
94{
95 return 2 * curve->num_bytes;
96}
97
98void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words)
99{
100 wordcount_t i;
101 for (i = 0; i < num_words; ++i) {
102 vli[i] = 0;
103 }
104}
105
106uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words)
107{
108 uECC_word_t bits = 0;
109 wordcount_t i;
110 for (i = 0; i < num_words; ++i) {
111 bits |= vli[i];
112 }
113 return (bits == 0);
114}
115
116uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit)
117{
118 return (vli[bit >> uECC_WORD_BITS_SHIFT] &
119 ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK)));
120}
121
122/* Counts the number of words in vli. */
123static wordcount_t vli_numDigits(const uECC_word_t *vli,
124 const wordcount_t max_words)
125{
126
127 wordcount_t i;
128 /* Search from the end until we find a non-zero digit. We do it in reverse
129 * because we expect that most digits will be nonzero. */
130 for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
131 }
132
133 return (i + 1);
134}
135
136bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
137 const wordcount_t max_words)
138{
139
140 uECC_word_t i;
141 uECC_word_t digit;
142
143 wordcount_t num_digits = vli_numDigits(vli, max_words);
144 if (num_digits == 0) {
145 return 0;
146 }
147
148 digit = vli[num_digits - 1];
149 for (i = 0; digit; ++i) {
150 digit >>= 1;
151 }
152
153 return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i);
154}
155
156void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
157 wordcount_t num_words)
158{
159 wordcount_t i;
160
161 for (i = 0; i < num_words; ++i) {
162 dest[i] = src[i];
163 }
164}
165
166cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
167 const uECC_word_t *right,
168 wordcount_t num_words)
169{
170 wordcount_t i;
171
172 for (i = num_words - 1; i >= 0; --i) {
173 if (left[i] > right[i]) {
174 return 1;
175 } else if (left[i] < right[i]) {
176 return -1;
177 }
178 }
179 return 0;
180}
181
182uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
183 wordcount_t num_words)
184{
185
186 uECC_word_t diff = 0;
187 wordcount_t i;
188
189 for (i = num_words - 1; i >= 0; --i) {
190 diff |= (left[i] ^ right[i]);
191 }
192 return !(diff == 0);
193}
194
195uECC_word_t cond_set(uECC_word_t p_true, uECC_word_t p_false, unsigned int cond)
196{
197 return (p_true*(cond)) | (p_false*(!cond));
198}
199
200/* Computes result = left - right, returning borrow, in constant time.
201 * Can modify in place. */
202uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
203 const uECC_word_t *right, wordcount_t num_words)
204{
205 uECC_word_t borrow = 0;
206 wordcount_t i;
207 for (i = 0; i < num_words; ++i) {
208 uECC_word_t diff = left[i] - right[i] - borrow;
209 uECC_word_t val = (diff > left[i]);
210 borrow = cond_set(val, borrow, (diff != left[i]));
211
212 result[i] = diff;
213 }
214 return borrow;
215}
216
217/* Computes result = left + right, returning carry, in constant time.
218 * Can modify in place. */
219static uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left,
220 const uECC_word_t *right, wordcount_t num_words)
221{
222 uECC_word_t carry = 0;
223 wordcount_t i;
224 for (i = 0; i < num_words; ++i) {
225 uECC_word_t sum = left[i] + right[i] + carry;
226 uECC_word_t val = (sum < left[i]);
227 carry = cond_set(val, carry, (sum != left[i]));
228 result[i] = sum;
229 }
230 return carry;
231}
232
233cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
234 wordcount_t num_words)
235{
236 uECC_word_t tmp[NUM_ECC_WORDS];
237 uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words);
238 uECC_word_t equal = uECC_vli_isZero(tmp, num_words);
239 return (!equal - 2 * neg);
240}
241
242/* Computes vli = vli >> 1. */
243static void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words)
244{
245 uECC_word_t *end = vli;
246 uECC_word_t carry = 0;
247
248 vli += num_words;
249 while (vli-- > end) {
250 uECC_word_t temp = *vli;
251 *vli = (temp >> 1) | carry;
252 carry = temp << (uECC_WORD_BITS - 1);
253 }
254}
255
256static void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t *r0,
257 uECC_word_t *r1, uECC_word_t *r2)
258{
259
260 uECC_dword_t p = (uECC_dword_t)a * b;
261 uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
262 r01 += p;
263 *r2 += (r01 < p);
264 *r1 = r01 >> uECC_WORD_BITS;
265 *r0 = (uECC_word_t)r01;
266
267}
268
269/* Computes result = left * right. Result must be 2 * num_words long. */
270static void uECC_vli_mult(uECC_word_t *result, const uECC_word_t *left,
271 const uECC_word_t *right, wordcount_t num_words)
272{
273
274 uECC_word_t r0 = 0;
275 uECC_word_t r1 = 0;
276 uECC_word_t r2 = 0;
277 wordcount_t i, k;
278
279 /* Compute each digit of result in sequence, maintaining the carries. */
280 for (k = 0; k < num_words; ++k) {
281
282 for (i = 0; i <= k; ++i) {
283 muladd(left[i], right[k - i], &r0, &r1, &r2);
284 }
285
286 result[k] = r0;
287 r0 = r1;
288 r1 = r2;
289 r2 = 0;
290 }
291
292 for (k = num_words; k < num_words * 2 - 1; ++k) {
293
294 for (i = (k + 1) - num_words; i < num_words; ++i) {
295 muladd(left[i], right[k - i], &r0, &r1, &r2);
296 }
297 result[k] = r0;
298 r0 = r1;
299 r1 = r2;
300 r2 = 0;
301 }
302 result[num_words * 2 - 1] = r0;
303}
304
305void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
306 const uECC_word_t *right, const uECC_word_t *mod,
307 wordcount_t num_words)
308{
309 uECC_word_t carry = uECC_vli_add(result, left, right, num_words);
310 if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) {
311 /* result > mod (result = mod + remainder), so subtract mod to get
312 * remainder. */
313 uECC_vli_sub(result, result, mod, num_words);
314 }
315}
316
317void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
318 const uECC_word_t *right, const uECC_word_t *mod,
319 wordcount_t num_words)
320{
321 uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words);
322 if (l_borrow) {
323 /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
324 * we can get the correct result from result + mod (with overflow). */
325 uECC_vli_add(result, result, mod, num_words);
326 }
327}
328
329/* Computes result = product % mod, where product is 2N words long. */
330/* Currently only designed to work for curve_p or curve_n. */
331void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
332 const uECC_word_t *mod, wordcount_t num_words)
333{
334 uECC_word_t mod_multiple[2 * NUM_ECC_WORDS];
335 uECC_word_t tmp[2 * NUM_ECC_WORDS];
336 uECC_word_t *v[2] = {tmp, product};
337 uECC_word_t index;
338
339 /* Shift mod so its highest set bit is at the maximum position. */
340 bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) -
341 uECC_vli_numBits(mod, num_words);
342 wordcount_t word_shift = shift / uECC_WORD_BITS;
343 wordcount_t bit_shift = shift % uECC_WORD_BITS;
344 uECC_word_t carry = 0;
345 uECC_vli_clear(mod_multiple, word_shift);
346 if (bit_shift > 0) {
347 for(index = 0; index < (uECC_word_t)num_words; ++index) {
348 mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry;
349 carry = mod[index] >> (uECC_WORD_BITS - bit_shift);
350 }
351 } else {
352 uECC_vli_set(mod_multiple + word_shift, mod, num_words);
353 }
354
355 for (index = 1; shift >= 0; --shift) {
356 uECC_word_t borrow = 0;
357 wordcount_t i;
358 for (i = 0; i < num_words * 2; ++i) {
359 uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow;
360 if (diff != v[index][i]) {
361 borrow = (diff > v[index][i]);
362 }
363 v[1 - index][i] = diff;
364 }
365 /* Swap the index if there was no borrow */
366 index = !(index ^ borrow);
367 uECC_vli_rshift1(mod_multiple, num_words);
368 mod_multiple[num_words - 1] |= mod_multiple[num_words] <<
369 (uECC_WORD_BITS - 1);
370 uECC_vli_rshift1(mod_multiple + num_words, num_words);
371 }
372 uECC_vli_set(result, v[index], num_words);
373}
374
375void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
376 const uECC_word_t *right, const uECC_word_t *mod,
377 wordcount_t num_words)
378{
379 uECC_word_t product[2 * NUM_ECC_WORDS];
380 uECC_vli_mult(product, left, right, num_words);
381 uECC_vli_mmod(result, product, mod, num_words);
382}
383
384void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
385 const uECC_word_t *right, uECC_Curve curve)
386{
387 uECC_word_t product[2 * NUM_ECC_WORDS];
388 uECC_vli_mult(product, left, right, curve->num_words);
389
390 curve->mmod_fast(result, product);
391}
392
393static void uECC_vli_modSquare_fast(uECC_word_t *result,
394 const uECC_word_t *left,
395 uECC_Curve curve)
396{
397 uECC_vli_modMult_fast(result, left, left, curve);
398}
399
400
401#define EVEN(vli) (!(vli[0] & 1))
402
403static void vli_modInv_update(uECC_word_t *uv,
404 const uECC_word_t *mod,
405 wordcount_t num_words)
406{
407
408 uECC_word_t carry = 0;
409
410 if (!EVEN(uv)) {
411 carry = uECC_vli_add(uv, uv, mod, num_words);
412 }
413 uECC_vli_rshift1(uv, num_words);
414 if (carry) {
415 uv[num_words - 1] |= HIGH_BIT_SET;
416 }
417}
418
419void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
420 const uECC_word_t *mod, wordcount_t num_words)
421{
422 uECC_word_t a[NUM_ECC_WORDS], b[NUM_ECC_WORDS];
423 uECC_word_t u[NUM_ECC_WORDS], v[NUM_ECC_WORDS];
424 cmpresult_t cmpResult;
425
426 if (uECC_vli_isZero(input, num_words)) {
427 uECC_vli_clear(result, num_words);
428 return;
429 }
430
431 uECC_vli_set(a, input, num_words);
432 uECC_vli_set(b, mod, num_words);
433 uECC_vli_clear(u, num_words);
434 u[0] = 1;
435 uECC_vli_clear(v, num_words);
436 while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) {
437 if (EVEN(a)) {
438 uECC_vli_rshift1(a, num_words);
439 vli_modInv_update(u, mod, num_words);
440 } else if (EVEN(b)) {
441 uECC_vli_rshift1(b, num_words);
442 vli_modInv_update(v, mod, num_words);
443 } else if (cmpResult > 0) {
444 uECC_vli_sub(a, a, b, num_words);
445 uECC_vli_rshift1(a, num_words);
446 if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) {
447 uECC_vli_add(u, u, mod, num_words);
448 }
449 uECC_vli_sub(u, u, v, num_words);
450 vli_modInv_update(u, mod, num_words);
451 } else {
452 uECC_vli_sub(b, b, a, num_words);
453 uECC_vli_rshift1(b, num_words);
454 if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) {
455 uECC_vli_add(v, v, mod, num_words);
456 }
457 uECC_vli_sub(v, v, u, num_words);
458 vli_modInv_update(v, mod, num_words);
459 }
460 }
461 uECC_vli_set(result, u, num_words);
462}
463
464/* ------ Point operations ------ */
465
466void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
467 uECC_word_t * Z1, uECC_Curve curve)
468{
469 /* t1 = X, t2 = Y, t3 = Z */
470 uECC_word_t t4[NUM_ECC_WORDS];
471 uECC_word_t t5[NUM_ECC_WORDS];
472 wordcount_t num_words = curve->num_words;
473
474 if (uECC_vli_isZero(Z1, num_words)) {
475 return;
476 }
477
478 uECC_vli_modSquare_fast(t4, Y1, curve); /* t4 = y1^2 */
479 uECC_vli_modMult_fast(t5, X1, t4, curve); /* t5 = x1*y1^2 = A */
480 uECC_vli_modSquare_fast(t4, t4, curve); /* t4 = y1^4 */
481 uECC_vli_modMult_fast(Y1, Y1, Z1, curve); /* t2 = y1*z1 = z3 */
482 uECC_vli_modSquare_fast(Z1, Z1, curve); /* t3 = z1^2 */
483
484 uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = x1 + z1^2 */
485 uECC_vli_modAdd(Z1, Z1, Z1, curve->p, num_words); /* t3 = 2*z1^2 */
486 uECC_vli_modSub(Z1, X1, Z1, curve->p, num_words); /* t3 = x1 - z1^2 */
487 uECC_vli_modMult_fast(X1, X1, Z1, curve); /* t1 = x1^2 - z1^4 */
488
489 uECC_vli_modAdd(Z1, X1, X1, curve->p, num_words); /* t3 = 2*(x1^2 - z1^4) */
490 uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = 3*(x1^2 - z1^4) */
491 if (uECC_vli_testBit(X1, 0)) {
492 uECC_word_t l_carry = uECC_vli_add(X1, X1, curve->p, num_words);
493 uECC_vli_rshift1(X1, num_words);
494 X1[num_words - 1] |= l_carry << (uECC_WORD_BITS - 1);
495 } else {
496 uECC_vli_rshift1(X1, num_words);
497 }
498
499 /* t1 = 3/2*(x1^2 - z1^4) = B */
500 uECC_vli_modSquare_fast(Z1, X1, curve); /* t3 = B^2 */
501 uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - A */
502 uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - 2A = x3 */
503 uECC_vli_modSub(t5, t5, Z1, curve->p, num_words); /* t5 = A - x3 */
504 uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = B * (A - x3) */
505 /* t4 = B * (A - x3) - y1^4 = y3: */
506 uECC_vli_modSub(t4, X1, t4, curve->p, num_words);
507
508 uECC_vli_set(X1, Z1, num_words);
509 uECC_vli_set(Z1, Y1, num_words);
510 uECC_vli_set(Y1, t4, num_words);
511}
512
513void x_side_default(uECC_word_t *result,
514 const uECC_word_t *x,
515 uECC_Curve curve)
516{
517 uECC_word_t _3[NUM_ECC_WORDS] = {3}; /* -a = 3 */
518 wordcount_t num_words = curve->num_words;
519
520 uECC_vli_modSquare_fast(result, x, curve); /* r = x^2 */
521 uECC_vli_modSub(result, result, _3, curve->p, num_words); /* r = x^2 - 3 */
522 uECC_vli_modMult_fast(result, result, x, curve); /* r = x^3 - 3x */
523 /* r = x^3 - 3x + b: */
524 uECC_vli_modAdd(result, result, curve->b, curve->p, num_words);
525}
526
527uECC_Curve uECC_secp256r1(void)
528{
529 return &curve_secp256r1;
530}
531
532void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int*product)
533{
534 unsigned int tmp[NUM_ECC_WORDS];
535 int carry;
536
537 /* t */
538 uECC_vli_set(result, product, NUM_ECC_WORDS);
539
540 /* s1 */
541 tmp[0] = tmp[1] = tmp[2] = 0;
542 tmp[3] = product[11];
543 tmp[4] = product[12];
544 tmp[5] = product[13];
545 tmp[6] = product[14];
546 tmp[7] = product[15];
547 carry = uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
548 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
549
550 /* s2 */
551 tmp[3] = product[12];
552 tmp[4] = product[13];
553 tmp[5] = product[14];
554 tmp[6] = product[15];
555 tmp[7] = 0;
556 carry += uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
557 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
558
559 /* s3 */
560 tmp[0] = product[8];
561 tmp[1] = product[9];
562 tmp[2] = product[10];
563 tmp[3] = tmp[4] = tmp[5] = 0;
564 tmp[6] = product[14];
565 tmp[7] = product[15];
566 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
567
568 /* s4 */
569 tmp[0] = product[9];
570 tmp[1] = product[10];
571 tmp[2] = product[11];
572 tmp[3] = product[13];
573 tmp[4] = product[14];
574 tmp[5] = product[15];
575 tmp[6] = product[13];
576 tmp[7] = product[8];
577 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
578
579 /* d1 */
580 tmp[0] = product[11];
581 tmp[1] = product[12];
582 tmp[2] = product[13];
583 tmp[3] = tmp[4] = tmp[5] = 0;
584 tmp[6] = product[8];
585 tmp[7] = product[10];
586 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
587
588 /* d2 */
589 tmp[0] = product[12];
590 tmp[1] = product[13];
591 tmp[2] = product[14];
592 tmp[3] = product[15];
593 tmp[4] = tmp[5] = 0;
594 tmp[6] = product[9];
595 tmp[7] = product[11];
596 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
597
598 /* d3 */
599 tmp[0] = product[13];
600 tmp[1] = product[14];
601 tmp[2] = product[15];
602 tmp[3] = product[8];
603 tmp[4] = product[9];
604 tmp[5] = product[10];
605 tmp[6] = 0;
606 tmp[7] = product[12];
607 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
608
609 /* d4 */
610 tmp[0] = product[14];
611 tmp[1] = product[15];
612 tmp[2] = 0;
613 tmp[3] = product[9];
614 tmp[4] = product[10];
615 tmp[5] = product[11];
616 tmp[6] = 0;
617 tmp[7] = product[13];
618 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
619
620 if (carry < 0) {
621 do {
622 carry += uECC_vli_add(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
623 }
624 while (carry < 0);
625 } else {
626 while (carry ||
627 uECC_vli_cmp_unsafe(curve_secp256r1.p, result, NUM_ECC_WORDS) != 1) {
628 carry -= uECC_vli_sub(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
629 }
630 }
631}
632
633uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve)
634{
635 return uECC_vli_isZero(point, curve->num_words * 2);
636}
637
638void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z,
639 uECC_Curve curve)
640{
641 uECC_word_t t1[NUM_ECC_WORDS];
642
643 uECC_vli_modSquare_fast(t1, Z, curve); /* z^2 */
644 uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */
645 uECC_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */
646 uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */
647}
648
649/* P = (x1, y1) => 2P, (x2, y2) => P' */
650static void XYcZ_initial_double(uECC_word_t * X1, uECC_word_t * Y1,
651 uECC_word_t * X2, uECC_word_t * Y2,
652 const uECC_word_t * const initial_Z,
653 uECC_Curve curve)
654{
655 uECC_word_t z[NUM_ECC_WORDS];
656 wordcount_t num_words = curve->num_words;
657 if (initial_Z) {
658 uECC_vli_set(z, initial_Z, num_words);
659 } else {
660 uECC_vli_clear(z, num_words);
661 z[0] = 1;
662 }
663
664 uECC_vli_set(X2, X1, num_words);
665 uECC_vli_set(Y2, Y1, num_words);
666
667 apply_z(X1, Y1, z, curve);
668 curve->double_jacobian(X1, Y1, z, curve);
669 apply_z(X2, Y2, z, curve);
670}
671
672void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1,
673 uECC_word_t * X2, uECC_word_t * Y2,
674 uECC_Curve curve)
675{
676 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
677 uECC_word_t t5[NUM_ECC_WORDS];
678 wordcount_t num_words = curve->num_words;
679
680 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
681 uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
682 uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
683 uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
684 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
685 uECC_vli_modSquare_fast(t5, Y2, curve); /* t5 = (y2 - y1)^2 = D */
686
687 uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */
688 uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */
689 uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */
690 uECC_vli_modMult_fast(Y1, Y1, X2, curve); /* t2 = y1*(C - B) */
691 uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */
692 uECC_vli_modMult_fast(Y2, Y2, X2, curve); /* t4 = (y2 - y1)*(B - x3) */
693 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */
694
695 uECC_vli_set(X2, t5, num_words);
696}
697
698/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
699 Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
700 or P => P - Q, Q => P + Q
701 */
702static void XYcZ_addC(uECC_word_t * X1, uECC_word_t * Y1,
703 uECC_word_t * X2, uECC_word_t * Y2,
704 uECC_Curve curve)
705{
706 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
707 uECC_word_t t5[NUM_ECC_WORDS];
708 uECC_word_t t6[NUM_ECC_WORDS];
709 uECC_word_t t7[NUM_ECC_WORDS];
710 wordcount_t num_words = curve->num_words;
711
712 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
713 uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
714 uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
715 uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
716 uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */
717 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
718
719 uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */
720 uECC_vli_modMult_fast(Y1, Y1, t6, curve); /* t2 = y1 * (C - B) = E */
721 uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */
722 uECC_vli_modSquare_fast(X2, Y2, curve); /* t3 = (y2 - y1)^2 = D */
723 uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */
724
725 uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */
726 uECC_vli_modMult_fast(Y2, Y2, t7, curve); /* t4 = (y2 - y1)*(B - x3) */
727 /* t4 = (y2 - y1)*(B - x3) - E = y3: */
728 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words);
729
730 uECC_vli_modSquare_fast(t7, t5, curve); /* t7 = (y2 + y1)^2 = F */
731 uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */
732 uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */
733 uECC_vli_modMult_fast(t6, t6, t5, curve); /* t6 = (y2+y1)*(x3' - B) */
734 /* t2 = (y2+y1)*(x3' - B) - E = y3': */
735 uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words);
736
737 uECC_vli_set(X1, t7, num_words);
738}
739
740void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point,
741 const uECC_word_t * scalar,
742 const uECC_word_t * initial_Z,
743 bitcount_t num_bits, uECC_Curve curve)
744{
745 /* R0 and R1 */
746 uECC_word_t Rx[2][NUM_ECC_WORDS];
747 uECC_word_t Ry[2][NUM_ECC_WORDS];
748 uECC_word_t z[NUM_ECC_WORDS];
749 bitcount_t i;
750 uECC_word_t nb;
751 wordcount_t num_words = curve->num_words;
752
753 uECC_vli_set(Rx[1], point, num_words);
754 uECC_vli_set(Ry[1], point + num_words, num_words);
755
756 XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve);
757
758 for (i = num_bits - 2; i > 0; --i) {
759 nb = !uECC_vli_testBit(scalar, i);
760 XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
761 XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
762 }
763
764 nb = !uECC_vli_testBit(scalar, 0);
765 XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
766
767 /* Find final 1/Z value. */
768 uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */
769 uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */
770 uECC_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */
771 uECC_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0))*/
772 /* yP / (xP * Yb * (X1 - X0)) */
773 uECC_vli_modMult_fast(z, z, point + num_words, curve);
774 /* Xb * yP / (xP * Yb * (X1 - X0)) */
775 uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve);
776 /* End 1/Z calculation */
777
778 XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
779 apply_z(Rx[0], Ry[0], z, curve);
780
781 uECC_vli_set(result, Rx[0], num_words);
782 uECC_vli_set(result + num_words, Ry[0], num_words);
783}
784
785uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0,
786 uECC_word_t *k1, uECC_Curve curve)
787{
788
789 wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
790
791 bitcount_t num_n_bits = curve->num_n_bits;
792
793 uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) ||
794 (num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) &&
795 uECC_vli_testBit(k0, num_n_bits));
796
797 uECC_vli_add(k1, k0, curve->n, num_n_words);
798
799 return carry;
800}
801
802uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
803 uECC_word_t *private_key,
804 uECC_Curve curve)
805{
806
807 uECC_word_t tmp1[NUM_ECC_WORDS];
808 uECC_word_t tmp2[NUM_ECC_WORDS];
809 uECC_word_t *p2[2] = {tmp1, tmp2};
810 uECC_word_t carry;
811
812 /* Regularize the bitcount for the private key so that attackers cannot
813 * use a side channel attack to learn the number of leading zeros. */
814 carry = regularize_k(private_key, tmp1, tmp2, curve);
815
816 EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve);
817
818 if (EccPoint_isZero(result, curve)) {
819 return 0;
820 }
821 return 1;
822}
823
824/* Converts an integer in uECC native format to big-endian bytes. */
825void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
826 const unsigned int *native)
827{
828 wordcount_t i;
829 for (i = 0; i < num_bytes; ++i) {
830 unsigned b = num_bytes - 1 - i;
831 bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE));
832 }
833}
834
835/* Converts big-endian bytes to an integer in uECC native format. */
836void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
837 int num_bytes)
838{
839 wordcount_t i;
840 uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE);
841 for (i = 0; i < num_bytes; ++i) {
842 unsigned b = num_bytes - 1 - i;
843 native[b / uECC_WORD_SIZE] |=
844 (uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE));
845 }
846}
847
848int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
849 wordcount_t num_words)
850{
851 uECC_word_t mask = (uECC_word_t)-1;
852 uECC_word_t tries;
853 bitcount_t num_bits = uECC_vli_numBits(top, num_words);
854
855 if (!g_rng_function) {
856 return 0;
857 }
858
859 for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
860 if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) {
861 return 0;
862 }
863 random[num_words - 1] &=
864 mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits));
865 if (!uECC_vli_isZero(random, num_words) &&
866 uECC_vli_cmp(top, random, num_words) == 1) {
867 return 1;
868 }
869 }
870 return 0;
871}
872
873
874int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve)
875{
876 uECC_word_t tmp1[NUM_ECC_WORDS];
877 uECC_word_t tmp2[NUM_ECC_WORDS];
878 wordcount_t num_words = curve->num_words;
879
880 /* The point at infinity is invalid. */
881 if (EccPoint_isZero(point, curve)) {
882 return -1;
883 }
884
885 /* x and y must be smaller than p. */
886 if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 ||
887 uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) {
888 return -2;
889 }
890
891 uECC_vli_modSquare_fast(tmp1, point + num_words, curve);
892 curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */
893
894 /* Make sure that y^2 == x^3 + ax + b */
895 if (uECC_vli_equal(tmp1, tmp2, num_words) != 0)
896 return -3;
897
898 return 0;
899}
900
901int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve)
902{
903
904 uECC_word_t _public[NUM_ECC_WORDS * 2];
905
906 uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
907 uECC_vli_bytesToNative(
908 _public + curve->num_words,
909 public_key + curve->num_bytes,
910 curve->num_bytes);
911
912 if (uECC_vli_cmp_unsafe(_public, curve->G, NUM_ECC_WORDS * 2) == 0) {
913 return -4;
914 }
915
916 return uECC_valid_point(_public, curve);
917}
918
919int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key,
920 uECC_Curve curve)
921{
922
923 uECC_word_t _private[NUM_ECC_WORDS];
924 uECC_word_t _public[NUM_ECC_WORDS * 2];
925
926 uECC_vli_bytesToNative(
927 _private,
928 private_key,
929 BITS_TO_BYTES(curve->num_n_bits));
930
931 /* Make sure the private key is in the range [1, n-1]. */
932 if (uECC_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) {
933 return 0;
934 }
935
936 if (uECC_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) != 1) {
937 return 0;
938 }
939
940 /* Compute public key. */
941 if (!EccPoint_compute_public_key(_public, _private, curve)) {
942 return 0;
943 }
944
945 uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public);
946 uECC_vli_nativeToBytes(
947 public_key +
948 curve->num_bytes, curve->num_bytes, _public + curve->num_words);
949 return 1;
950}
Jarno Lamsa46132202019-04-29 14:29:52 +0300951#else
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +0200952typedef int mbedtls_dummy_tinycrypt_def;
953#endif /* MBEDTLS_USE_TINYCRYPT */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300954