blob: ede754448bdad80547a6f029f8ea545ca4162a7c [file] [log] [blame]
Jarno Lamsa18987a42019-04-24 15:40:43 +03001/* ecc.h - TinyCrypt interface to common ECC functions */
2
3/* Copyright (c) 2014, Kenneth MacKay
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are met:
8 *
9 * * Redistributions of source code must retain the above copyright notice, this
10 * list of conditions and the following disclaimer.
11 *
12 * * Redistributions in binary form must reproduce the above copyright notice,
13 * this list of conditions and the following disclaimer in the documentation
14 * and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions are met:
34 *
35 * - Redistributions of source code must retain the above copyright notice,
36 * this list of conditions and the following disclaimer.
37 *
38 * - Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * - Neither the name of Intel Corporation nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59/**
60 * @file
61 * @brief -- Interface to common ECC functions.
62 *
63 * Overview: This software is an implementation of common functions
64 * necessary to elliptic curve cryptography. This implementation uses
65 * curve NIST p-256.
66 *
67 * Security: The curve NIST p-256 provides approximately 128 bits of security.
68 *
69 */
70
Jarno Lamsa55427962019-04-29 10:25:23 +030071#if defined(MBEDTLS_USE_UECC)
Jarno Lamsa18987a42019-04-24 15:40:43 +030072#ifndef __TC_UECC_H__
73#define __TC_UECC_H__
74
75#include <stdint.h>
76
77#ifdef __cplusplus
78extern "C" {
79#endif
80
81/* Word size (4 bytes considering 32-bits architectures) */
82#define uECC_WORD_SIZE 4
83
84/* setting max number of calls to prng: */
85#ifndef uECC_RNG_MAX_TRIES
86#define uECC_RNG_MAX_TRIES 64
87#endif
88
89/* defining data types to store word and bit counts: */
90typedef int8_t wordcount_t;
91typedef int16_t bitcount_t;
92/* defining data type for comparison result: */
93typedef int8_t cmpresult_t;
94/* defining data type to store ECC coordinate/point in 32bits words: */
95typedef unsigned int uECC_word_t;
96/* defining data type to store an ECC coordinate/point in 64bits words: */
97typedef uint64_t uECC_dword_t;
98
99/* defining masks useful for ecc computations: */
100#define HIGH_BIT_SET 0x80000000
101#define uECC_WORD_BITS 32
102#define uECC_WORD_BITS_SHIFT 5
103#define uECC_WORD_BITS_MASK 0x01F
104
105/* Number of words of 32 bits to represent an element of the the curve p-256: */
106#define NUM_ECC_WORDS 8
107/* Number of bytes to represent an element of the the curve p-256: */
108#define NUM_ECC_BYTES (uECC_WORD_SIZE*NUM_ECC_WORDS)
109
110/* structure that represents an elliptic curve (e.g. p256):*/
111struct uECC_Curve_t;
112typedef const struct uECC_Curve_t * uECC_Curve;
113struct uECC_Curve_t {
114 wordcount_t num_words;
115 wordcount_t num_bytes;
116 bitcount_t num_n_bits;
117 uECC_word_t p[NUM_ECC_WORDS];
118 uECC_word_t n[NUM_ECC_WORDS];
119 uECC_word_t G[NUM_ECC_WORDS * 2];
120 uECC_word_t b[NUM_ECC_WORDS];
121 void (*double_jacobian)(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * Z1,
122 uECC_Curve curve);
123 void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve);
124 void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product);
125};
126
127/*
128 * @brief computes doubling of point ion jacobian coordinates, in place.
129 * @param X1 IN/OUT -- x coordinate
130 * @param Y1 IN/OUT -- y coordinate
131 * @param Z1 IN/OUT -- z coordinate
132 * @param curve IN -- elliptic curve
133 */
134void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
135 uECC_word_t * Z1, uECC_Curve curve);
136
137/*
138 * @brief Computes x^3 + ax + b. result must not overlap x.
139 * @param result OUT -- x^3 + ax + b
140 * @param x IN -- value of x
141 * @param curve IN -- elliptic curve
142 */
143void x_side_default(uECC_word_t *result, const uECC_word_t *x,
144 uECC_Curve curve);
145
146/*
147 * @brief Computes result = product % curve_p
148 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
149 * @param result OUT -- product % curve_p
150 * @param product IN -- value to be reduced mod curve_p
151 */
152void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int *product);
153
154/* Bytes to words ordering: */
155#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e
156#define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a
157#define BITS_TO_WORDS(num_bits) \
158 ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8))
159#define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)
160
161/* definition of curve NIST p-256: */
162static const struct uECC_Curve_t curve_secp256r1 = {
163 NUM_ECC_WORDS,
164 NUM_ECC_BYTES,
165 256, /* num_n_bits */ {
166 BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
167 BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00),
168 BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
169 BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF)
170 }, {
171 BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3),
172 BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC),
173 BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
174 BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF)
175 }, {
176 BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4),
177 BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77),
178 BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8),
179 BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B),
180
181 BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB),
182 BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B),
183 BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E),
184 BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F)
185 }, {
186 BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B),
187 BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65),
188 BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3),
189 BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A)
190 },
191 &double_jacobian_default,
192 &x_side_default,
193 &vli_mmod_fast_secp256r1
194};
195
196uECC_Curve uECC_secp256r1(void);
197
198/*
199 * @brief Generates a random integer in the range 0 < random < top.
200 * Both random and top have num_words words.
201 * @param random OUT -- random integer in the range 0 < random < top
202 * @param top IN -- upper limit
203 * @param num_words IN -- number of words
204 * @return a random integer in the range 0 < random < top
205 */
206int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
207 wordcount_t num_words);
208
209
210/* uECC_RNG_Function type
211 * The RNG function should fill 'size' random bytes into 'dest'. It should
212 * return 1 if 'dest' was filled with random data, or 0 if the random data could
213 * not be generated. The filled-in values should be either truly random, or from
214 * a cryptographically-secure PRNG.
215 *
216 * A correctly functioning RNG function must be set (using uECC_set_rng())
217 * before calling uECC_make_key() or uECC_sign().
218 *
219 * Setting a correctly functioning RNG function improves the resistance to
220 * side-channel attacks for uECC_shared_secret().
221 *
222 * A correct RNG function is set by default. If you are building on another
223 * POSIX-compliant system that supports /dev/random or /dev/urandom, you can
224 * define uECC_POSIX to use the predefined RNG.
225 */
226typedef int(*uECC_RNG_Function)(uint8_t *dest, unsigned int size);
227
228/*
229 * @brief Set the function that will be used to generate random bytes. The RNG
230 * function should return 1 if the random data was generated, or 0 if the random
231 * data could not be generated.
232 *
233 * @note On platforms where there is no predefined RNG function, this must be
234 * called before uECC_make_key() or uECC_sign() are used.
235 *
236 * @param rng_function IN -- function that will be used to generate random bytes
237 */
238void uECC_set_rng(uECC_RNG_Function rng_function);
239
240/*
241 * @brief provides current uECC_RNG_Function.
242 * @return Returns the function that will be used to generate random bytes.
243 */
244uECC_RNG_Function uECC_get_rng(void);
245
246/*
247 * @brief computes the size of a private key for the curve in bytes.
248 * @param curve IN -- elliptic curve
249 * @return size of a private key for the curve in bytes.
250 */
251int uECC_curve_private_key_size(uECC_Curve curve);
252
253/*
254 * @brief computes the size of a public key for the curve in bytes.
255 * @param curve IN -- elliptic curve
256 * @return the size of a public key for the curve in bytes.
257 */
258int uECC_curve_public_key_size(uECC_Curve curve);
259
260/*
261 * @brief Compute the corresponding public key for a private key.
262 * @param private_key IN -- The private key to compute the public key for
263 * @param public_key OUT -- Will be filled in with the corresponding public key
264 * @param curve
265 * @return Returns 1 if key was computed successfully, 0 if an error occurred.
266 */
267int uECC_compute_public_key(const uint8_t *private_key,
268 uint8_t *public_key, uECC_Curve curve);
269
270/*
271 * @brief Compute public-key.
272 * @return corresponding public-key.
273 * @param result OUT -- public-key
274 * @param private_key IN -- private-key
275 * @param curve IN -- elliptic curve
276 */
277uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
278 uECC_word_t *private_key, uECC_Curve curve);
279
280/*
281 * @brief Regularize the bitcount for the private key so that attackers cannot
282 * use a side channel attack to learn the number of leading zeros.
283 * @return Regularized k
284 * @param k IN -- private-key
285 * @param k0 IN/OUT -- regularized k
286 * @param k1 IN/OUT -- regularized k
287 * @param curve IN -- elliptic curve
288 */
289uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0,
290 uECC_word_t *k1, uECC_Curve curve);
291
292/*
293 * @brief Point multiplication algorithm using Montgomery's ladder with co-Z
294 * coordinates. See http://eprint.iacr.org/2011/338.pdf.
295 * @note Result may overlap point.
296 * @param result OUT -- returns scalar*point
297 * @param point IN -- elliptic curve point
298 * @param scalar IN -- scalar
299 * @param initial_Z IN -- initial value for z
300 * @param num_bits IN -- number of bits in scalar
301 * @param curve IN -- elliptic curve
302 */
303void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point,
304 const uECC_word_t * scalar, const uECC_word_t * initial_Z,
305 bitcount_t num_bits, uECC_Curve curve);
306
307/*
308 * @brief Constant-time comparison to zero - secure way to compare long integers
309 * @param vli IN -- very long integer
310 * @param num_words IN -- number of words in the vli
311 * @return 1 if vli == 0, 0 otherwise.
312 */
313uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words);
314
315/*
316 * @brief Check if 'point' is the point at infinity
317 * @param point IN -- elliptic curve point
318 * @param curve IN -- elliptic curve
319 * @return if 'point' is the point at infinity, 0 otherwise.
320 */
321uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve);
322
323/*
324 * @brief computes the sign of left - right, in constant time.
325 * @param left IN -- left term to be compared
326 * @param right IN -- right term to be compared
327 * @param num_words IN -- number of words
328 * @return the sign of left - right
329 */
330cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
331 wordcount_t num_words);
332
333/*
334 * @brief computes sign of left - right, not in constant time.
335 * @note should not be used if inputs are part of a secret
336 * @param left IN -- left term to be compared
337 * @param right IN -- right term to be compared
338 * @param num_words IN -- number of words
339 * @return the sign of left - right
340 */
341cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right,
342 wordcount_t num_words);
343
344/*
345 * @brief Computes result = (left - right) % mod.
346 * @note Assumes that (left < mod) and (right < mod), and that result does not
347 * overlap mod.
348 * @param result OUT -- (left - right) % mod
349 * @param left IN -- leftright term in modular subtraction
350 * @param right IN -- right term in modular subtraction
351 * @param mod IN -- mod
352 * @param num_words IN -- number of words
353 */
354void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
355 const uECC_word_t *right, const uECC_word_t *mod,
356 wordcount_t num_words);
357
358/*
359 * @brief Computes P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or
360 * P => P', Q => P + Q
361 * @note assumes Input P = (x1, y1, Z), Q = (x2, y2, Z)
362 * @param X1 IN -- x coordinate of P
363 * @param Y1 IN -- y coordinate of P
364 * @param X2 IN -- x coordinate of Q
365 * @param Y2 IN -- y coordinate of Q
366 * @param curve IN -- elliptic curve
367 */
368void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * X2,
369 uECC_word_t * Y2, uECC_Curve curve);
370
371/*
372 * @brief Computes (x1 * z^2, y1 * z^3)
373 * @param X1 IN -- previous x1 coordinate
374 * @param Y1 IN -- previous y1 coordinate
375 * @param Z IN -- z value
376 * @param curve IN -- elliptic curve
377 */
378void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z,
379 uECC_Curve curve);
380
381/*
382 * @brief Check if bit is set.
383 * @return Returns nonzero if bit 'bit' of vli is set.
384 * @warning It is assumed that the value provided in 'bit' is within the
385 * boundaries of the word-array 'vli'.
386 * @note The bit ordering layout assumed for vli is: {31, 30, ..., 0},
387 * {63, 62, ..., 32}, {95, 94, ..., 64}, {127, 126,..., 96} for a vli consisting
388 * of 4 uECC_word_t elements.
389 */
390uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
391
392/*
393 * @brief Computes result = product % mod, where product is 2N words long.
394 * @param result OUT -- product % mod
395 * @param mod IN -- module
396 * @param num_words IN -- number of words
397 * @warning Currently only designed to work for curve_p or curve_n.
398 */
399void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
400 const uECC_word_t *mod, wordcount_t num_words);
401
402/*
403 * @brief Computes modular product (using curve->mmod_fast)
404 * @param result OUT -- (left * right) mod % curve_p
405 * @param left IN -- left term in product
406 * @param right IN -- right term in product
407 * @param curve IN -- elliptic curve
408 */
409void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
410 const uECC_word_t *right, uECC_Curve curve);
411
412/*
413 * @brief Computes result = left - right.
414 * @note Can modify in place.
415 * @param result OUT -- left - right
416 * @param left IN -- left term in subtraction
417 * @param right IN -- right term in subtraction
418 * @param num_words IN -- number of words
419 * @return borrow
420 */
421uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
422 const uECC_word_t *right, wordcount_t num_words);
423
424/*
425 * @brief Constant-time comparison function(secure way to compare long ints)
426 * @param left IN -- left term in comparison
427 * @param right IN -- right term in comparison
428 * @param num_words IN -- number of words
429 * @return Returns 0 if left == right, 1 otherwise.
430 */
431uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
432 wordcount_t num_words);
433
434/*
435 * @brief Computes (left * right) % mod
436 * @param result OUT -- (left * right) % mod
437 * @param left IN -- left term in product
438 * @param right IN -- right term in product
439 * @param mod IN -- mod
440 * @param num_words IN -- number of words
441 */
442void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
443 const uECC_word_t *right, const uECC_word_t *mod,
444 wordcount_t num_words);
445
446/*
447 * @brief Computes (1 / input) % mod
448 * @note All VLIs are the same size.
449 * @note See "Euclid's GCD to Montgomery Multiplication to the Great Divide"
450 * @param result OUT -- (1 / input) % mod
451 * @param input IN -- value to be modular inverted
452 * @param mod IN -- mod
453 * @param num_words -- number of words
454 */
455void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
456 const uECC_word_t *mod, wordcount_t num_words);
457
458/*
459 * @brief Sets dest = src.
460 * @param dest OUT -- destination buffer
461 * @param src IN -- origin buffer
462 * @param num_words IN -- number of words
463 */
464void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
465 wordcount_t num_words);
466
467/*
468 * @brief Computes (left + right) % mod.
469 * @note Assumes that (left < mod) and right < mod), and that result does not
470 * overlap mod.
471 * @param result OUT -- (left + right) % mod.
472 * @param left IN -- left term in addition
473 * @param right IN -- right term in addition
474 * @param mod IN -- mod
475 * @param num_words IN -- number of words
476 */
477void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
478 const uECC_word_t *right, const uECC_word_t *mod,
479 wordcount_t num_words);
480
481/*
482 * @brief Counts the number of bits required to represent vli.
483 * @param vli IN -- very long integer
484 * @param max_words IN -- number of words
485 * @return number of bits in given vli
486 */
487bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
488 const wordcount_t max_words);
489
490/*
491 * @brief Erases (set to 0) vli
492 * @param vli IN -- very long integer
493 * @param num_words IN -- number of words
494 */
495void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words);
496
497/*
498 * @brief check if it is a valid point in the curve
499 * @param point IN -- point to be checked
500 * @param curve IN -- elliptic curve
501 * @return 0 if point is valid
502 * @exception returns -1 if it is a point at infinity
503 * @exception returns -2 if x or y is smaller than p,
504 * @exception returns -3 if y^2 != x^3 + ax + b.
505 */
506int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve);
507
508/*
509 * @brief Check if a public key is valid.
510 * @param public_key IN -- The public key to be checked.
511 * @return returns 0 if the public key is valid
512 * @exception returns -1 if it is a point at infinity
513 * @exception returns -2 if x or y is smaller than p,
514 * @exception returns -3 if y^2 != x^3 + ax + b.
515 * @exception returns -4 if public key is the group generator.
516 *
517 * @note Note that you are not required to check for a valid public key before
518 * using any other uECC functions. However, you may wish to avoid spending CPU
519 * time computing a shared secret or verifying a signature using an invalid
520 * public key.
521 */
522int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve);
523
524 /*
525 * @brief Converts an integer in uECC native format to big-endian bytes.
526 * @param bytes OUT -- bytes representation
527 * @param num_bytes IN -- number of bytes
528 * @param native IN -- uECC native representation
529 */
530void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
531 const unsigned int *native);
532
533/*
534 * @brief Converts big-endian bytes to an integer in uECC native format.
535 * @param native OUT -- uECC native representation
536 * @param bytes IN -- bytes representation
537 * @param num_bytes IN -- number of bytes
538 */
539void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
540 int num_bytes);
541
542#ifdef __cplusplus
543}
544#endif
545
546#endif /* __TC_UECC_H__ */
Jarno Lamsa55427962019-04-29 10:25:23 +0300547#endif /* MBEDTLS_USE_UECC */