| /* ec_dsa.c - TinyCrypt implementation of EC-DSA */ |
| |
| /* |
| * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved. |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| /* Copyright (c) 2014, Kenneth MacKay |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * * Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE.*/ |
| |
| /* |
| * Copyright (C) 2017 by Intel Corporation, All Rights Reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * - Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * - Neither the name of Intel Corporation nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #if !defined(MBEDTLS_CONFIG_FILE) |
| #include "mbedtls/config.h" |
| #else |
| #include MBEDTLS_CONFIG_FILE |
| #endif |
| |
| #include <tinycrypt/ecc.h> |
| #include <tinycrypt/ecc_dsa.h> |
| #include "mbedtls/platform_util.h" |
| |
| static void bits2int(uECC_word_t *native, const uint8_t *bits, |
| unsigned bits_size) |
| { |
| unsigned num_n_bytes = BITS_TO_BYTES(NUM_ECC_BITS); |
| |
| if (bits_size > num_n_bytes) { |
| bits_size = num_n_bytes; |
| } |
| |
| uECC_vli_clear(native); |
| uECC_vli_bytesToNative(native, bits, bits_size); |
| } |
| |
| int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash, |
| unsigned hash_size, uECC_word_t *k, uint8_t *signature) |
| { |
| |
| uECC_word_t tmp[NUM_ECC_WORDS]; |
| uECC_word_t s[NUM_ECC_WORDS]; |
| uECC_word_t p[NUM_ECC_WORDS * 2]; |
| wordcount_t num_n_words = BITS_TO_WORDS(NUM_ECC_BITS); |
| int r = UECC_FAILURE; |
| |
| |
| /* Make sure 0 < k < curve_n */ |
| if (uECC_vli_isZero(k) || |
| uECC_vli_cmp(curve_n, k) != 1) { |
| return UECC_FAILURE; |
| } |
| |
| r = EccPoint_mult_safer(p, curve_G, k); |
| if (r != UECC_SUCCESS) { |
| return r; |
| } |
| |
| /* If an RNG function was specified, get a random number |
| to prevent side channel analysis of k. */ |
| if (!uECC_get_rng()) { |
| uECC_vli_clear(tmp); |
| tmp[0] = 1; |
| } |
| else if (uECC_generate_random_int(tmp, curve_n, num_n_words) != UECC_SUCCESS) { |
| return UECC_FAILURE; |
| } |
| |
| /* Prevent side channel analysis of uECC_vli_modInv() to determine |
| bits of k / the private key by premultiplying by a random number */ |
| uECC_vli_modMult(k, k, tmp, curve_n); /* k' = rand * k */ |
| uECC_vli_modInv(k, k, curve_n); /* k = 1 / k' */ |
| uECC_vli_modMult(k, k, tmp, curve_n); /* k = 1 / k */ |
| |
| uECC_vli_nativeToBytes(signature, NUM_ECC_BYTES, p); /* store r */ |
| |
| /* tmp = d: */ |
| uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(NUM_ECC_BITS)); |
| |
| s[num_n_words - 1] = 0; |
| uECC_vli_set(s, p); |
| uECC_vli_modMult(s, tmp, s, curve_n); /* s = r*d */ |
| |
| bits2int(tmp, message_hash, hash_size); |
| uECC_vli_modAdd(s, tmp, s, curve_n); /* s = e + r*d */ |
| uECC_vli_modMult(s, s, k, curve_n); /* s = (e + r*d) / k */ |
| if (uECC_vli_numBits(s) > (bitcount_t)NUM_ECC_BYTES * 8) { |
| return UECC_FAILURE; |
| } |
| |
| uECC_vli_nativeToBytes(signature + NUM_ECC_BYTES, NUM_ECC_BYTES, s); |
| return r; |
| } |
| |
| int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash, |
| unsigned hash_size, uint8_t *signature) |
| { |
| int r; |
| uECC_word_t _random[2*NUM_ECC_WORDS]; |
| uECC_word_t k[NUM_ECC_WORDS]; |
| uECC_word_t tries; |
| volatile const uint8_t *private_key_dup = private_key; |
| volatile const uint8_t *message_hash_dup = message_hash; |
| volatile unsigned hash_size_dup = hash_size; |
| volatile uint8_t *signature_dup = signature; |
| |
| for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) { |
| /* Generating _random uniformly at random: */ |
| uECC_RNG_Function rng_function = uECC_get_rng(); |
| if (!rng_function || |
| rng_function((uint8_t *)_random, 2*NUM_ECC_WORDS*uECC_WORD_SIZE) != 2*NUM_ECC_WORDS*uECC_WORD_SIZE) { |
| return UECC_FAILURE; |
| } |
| |
| // computing k as modular reduction of _random (see FIPS 186.4 B.5.1): |
| uECC_vli_mmod(k, _random, curve_n); |
| |
| r = uECC_sign_with_k(private_key, message_hash, hash_size, k, signature); |
| /* don't keep trying if a fault was detected */ |
| if (r == UECC_FAULT_DETECTED) { |
| mbedtls_platform_memset(signature, 0, 2*NUM_ECC_BYTES); |
| return r; |
| } |
| if (r == UECC_SUCCESS) { |
| if (private_key_dup != private_key || message_hash_dup != message_hash || |
| hash_size_dup != hash_size || signature_dup != signature) { |
| mbedtls_platform_memset(signature, 0, 2*NUM_ECC_BYTES); |
| return UECC_FAULT_DETECTED; |
| } |
| return UECC_SUCCESS; |
| } |
| /* else keep trying */ |
| } |
| return UECC_FAILURE; |
| } |
| |
| static bitcount_t smax(bitcount_t a, bitcount_t b) |
| { |
| return (a > b ? a : b); |
| } |
| |
| int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash, |
| unsigned hash_size, const uint8_t *signature) |
| { |
| |
| uECC_word_t u1[NUM_ECC_WORDS], u2[NUM_ECC_WORDS]; |
| uECC_word_t z[NUM_ECC_WORDS]; |
| uECC_word_t sum[NUM_ECC_WORDS * 2]; |
| uECC_word_t rx[NUM_ECC_WORDS]; |
| uECC_word_t ry[NUM_ECC_WORDS]; |
| uECC_word_t tx[NUM_ECC_WORDS]; |
| uECC_word_t ty[NUM_ECC_WORDS]; |
| uECC_word_t tz[NUM_ECC_WORDS]; |
| const uECC_word_t *points[4]; |
| const uECC_word_t *point; |
| bitcount_t num_bits; |
| bitcount_t i; |
| bitcount_t flow_control; |
| volatile uECC_word_t diff; |
| |
| uECC_word_t _public[NUM_ECC_WORDS * 2]; |
| uECC_word_t r[NUM_ECC_WORDS], s[NUM_ECC_WORDS]; |
| wordcount_t num_words = NUM_ECC_WORDS; |
| wordcount_t num_n_words = BITS_TO_WORDS(NUM_ECC_BITS); |
| |
| rx[num_n_words - 1] = 0; |
| r[num_n_words - 1] = 0; |
| s[num_n_words - 1] = 0; |
| flow_control = 1; |
| |
| uECC_vli_bytesToNative(_public, public_key, NUM_ECC_BYTES); |
| uECC_vli_bytesToNative(_public + num_words, public_key + NUM_ECC_BYTES, |
| NUM_ECC_BYTES); |
| uECC_vli_bytesToNative(r, signature, NUM_ECC_BYTES); |
| uECC_vli_bytesToNative(s, signature + NUM_ECC_BYTES, NUM_ECC_BYTES); |
| |
| /* r, s must not be 0. */ |
| if (uECC_vli_isZero(r) || uECC_vli_isZero(s)) { |
| return UECC_FAILURE; |
| } |
| |
| /* r, s must be < n. */ |
| if (uECC_vli_cmp_unsafe(curve_n, r) != 1 || |
| uECC_vli_cmp_unsafe(curve_n, s) != 1) { |
| return UECC_FAILURE; |
| } |
| |
| flow_control++; |
| |
| /* Calculate u1 and u2. */ |
| uECC_vli_modInv(z, s, curve_n); /* z = 1/s */ |
| u1[num_n_words - 1] = 0; |
| bits2int(u1, message_hash, hash_size); |
| uECC_vli_modMult(u1, u1, z, curve_n); /* u1 = e/s */ |
| uECC_vli_modMult(u2, r, z, curve_n); /* u2 = r/s */ |
| |
| /* Calculate sum = G + Q. */ |
| uECC_vli_set(sum, _public); |
| uECC_vli_set(sum + num_words, _public + num_words); |
| uECC_vli_set(tx, curve_G); |
| uECC_vli_set(ty, curve_G + num_words); |
| uECC_vli_modSub(z, sum, tx, curve_p); /* z = x2 - x1 */ |
| XYcZ_add(tx, ty, sum, sum + num_words); |
| uECC_vli_modInv(z, z, curve_p); /* z = 1/z */ |
| apply_z(sum, sum + num_words, z); |
| |
| flow_control++; |
| |
| /* Use Shamir's trick to calculate u1*G + u2*Q */ |
| points[0] = 0; |
| points[1] = curve_G; |
| points[2] = _public; |
| points[3] = sum; |
| num_bits = smax(uECC_vli_numBits(u1), |
| uECC_vli_numBits(u2)); |
| |
| point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) | |
| ((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)]; |
| uECC_vli_set(rx, point); |
| uECC_vli_set(ry, point + num_words); |
| uECC_vli_clear(z); |
| z[0] = 1; |
| flow_control++; |
| |
| for (i = num_bits - 2; i >= 0; --i) { |
| uECC_word_t index; |
| double_jacobian_default(rx, ry, z); |
| |
| index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1); |
| point = points[index]; |
| if (point) { |
| uECC_vli_set(tx, point); |
| uECC_vli_set(ty, point + num_words); |
| apply_z(tx, ty, z); |
| uECC_vli_modSub(tz, rx, tx, curve_p); /* Z = x2 - x1 */ |
| XYcZ_add(tx, ty, rx, ry); |
| uECC_vli_modMult_fast(z, z, tz); |
| } |
| flow_control++; |
| } |
| |
| uECC_vli_modInv(z, z, curve_p); /* Z = 1/Z */ |
| apply_z(rx, ry, z); |
| flow_control++; |
| |
| /* v = x1 (mod n) */ |
| if (uECC_vli_cmp_unsafe(curve_n, rx) != 1) { |
| uECC_vli_sub(rx, rx, curve_n); |
| } |
| |
| /* Accept only if v == r. */ |
| diff = uECC_vli_equal(rx, r); |
| if (diff == 0) { |
| flow_control++; |
| mbedtls_platform_random_delay(); |
| |
| /* Re-check the condition and test if the control flow is as expected. |
| * 1 (base value) + num_bits - 1 (from the loop) + 5 incrementations. |
| */ |
| if (diff == 0 && flow_control == (num_bits + 5)) { |
| return UECC_SUCCESS; |
| } |
| else { |
| return UECC_FAULT_DETECTED; |
| } |
| } |
| |
| return UECC_FAILURE; |
| } |