|  | /* | 
|  | *  The RSA public-key cryptosystem | 
|  | * | 
|  | *  Copyright The Mbed TLS Contributors | 
|  | *  SPDX-License-Identifier: Apache-2.0 | 
|  | * | 
|  | *  Licensed under the Apache License, Version 2.0 (the "License"); you may | 
|  | *  not use this file except in compliance with the License. | 
|  | *  You may obtain a copy of the License at | 
|  | * | 
|  | *  http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | *  Unless required by applicable law or agreed to in writing, software | 
|  | *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | 
|  | *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | *  See the License for the specific language governing permissions and | 
|  | *  limitations under the License. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  The following sources were referenced in the design of this implementation | 
|  | *  of the RSA algorithm: | 
|  | * | 
|  | *  [1] A method for obtaining digital signatures and public-key cryptosystems | 
|  | *      R Rivest, A Shamir, and L Adleman | 
|  | *      http://people.csail.mit.edu/rivest/pubs.html#RSA78 | 
|  | * | 
|  | *  [2] Handbook of Applied Cryptography - 1997, Chapter 8 | 
|  | *      Menezes, van Oorschot and Vanstone | 
|  | * | 
|  | *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks | 
|  | *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and | 
|  | *      Stefan Mangard | 
|  | *      https://arxiv.org/abs/1702.08719v2 | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | #if defined(MBEDTLS_RSA_C) | 
|  |  | 
|  | #include "mbedtls/rsa.h" | 
|  | #include "rsa_alt_helpers.h" | 
|  | #include "mbedtls/oid.h" | 
|  | #include "mbedtls/platform_util.h" | 
|  | #include "mbedtls/error.h" | 
|  | #include "constant_time_internal.h" | 
|  | #include "mbedtls/constant_time.h" | 
|  | #include "md_psa.h" | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__) | 
|  | #include <stdlib.h> | 
|  | #endif | 
|  |  | 
|  | #include "mbedtls/platform.h" | 
|  |  | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT) | 
|  |  | 
|  | /** This function performs the unpadding part of a PKCS#1 v1.5 decryption | 
|  | *  operation (EME-PKCS1-v1_5 decoding). | 
|  | * | 
|  | * \note The return value from this function is a sensitive value | 
|  | *       (this is unusual). #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE shouldn't happen | 
|  | *       in a well-written application, but 0 vs #MBEDTLS_ERR_RSA_INVALID_PADDING | 
|  | *       is often a situation that an attacker can provoke and leaking which | 
|  | *       one is the result is precisely the information the attacker wants. | 
|  | * | 
|  | * \param input          The input buffer which is the payload inside PKCS#1v1.5 | 
|  | *                       encryption padding, called the "encoded message EM" | 
|  | *                       by the terminology. | 
|  | * \param ilen           The length of the payload in the \p input buffer. | 
|  | * \param output         The buffer for the payload, called "message M" by the | 
|  | *                       PKCS#1 terminology. This must be a writable buffer of | 
|  | *                       length \p output_max_len bytes. | 
|  | * \param olen           The address at which to store the length of | 
|  | *                       the payload. This must not be \c NULL. | 
|  | * \param output_max_len The length in bytes of the output buffer \p output. | 
|  | * | 
|  | * \return      \c 0 on success. | 
|  | * \return      #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE | 
|  | *              The output buffer is too small for the unpadded payload. | 
|  | * \return      #MBEDTLS_ERR_RSA_INVALID_PADDING | 
|  | *              The input doesn't contain properly formatted padding. | 
|  | */ | 
|  | static int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input, | 
|  | size_t ilen, | 
|  | unsigned char *output, | 
|  | size_t output_max_len, | 
|  | size_t *olen) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t i, plaintext_max_size; | 
|  |  | 
|  | /* The following variables take sensitive values: their value must | 
|  | * not leak into the observable behavior of the function other than | 
|  | * the designated outputs (output, olen, return value). Otherwise | 
|  | * this would open the execution of the function to | 
|  | * side-channel-based variants of the Bleichenbacher padding oracle | 
|  | * attack. Potential side channels include overall timing, memory | 
|  | * access patterns (especially visible to an adversary who has access | 
|  | * to a shared memory cache), and branches (especially visible to | 
|  | * an adversary who has access to a shared code cache or to a shared | 
|  | * branch predictor). */ | 
|  | size_t pad_count = 0; | 
|  | mbedtls_ct_condition_t bad; | 
|  | mbedtls_ct_condition_t pad_done; | 
|  | size_t plaintext_size = 0; | 
|  | mbedtls_ct_condition_t output_too_large; | 
|  |  | 
|  | plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11 | 
|  | : output_max_len; | 
|  |  | 
|  | /* Check and get padding length in constant time and constant | 
|  | * memory trace. The first byte must be 0. */ | 
|  | bad = mbedtls_ct_bool(input[0]); | 
|  |  | 
|  |  | 
|  | /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00 | 
|  | * where PS must be at least 8 nonzero bytes. */ | 
|  | bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(input[1], MBEDTLS_RSA_CRYPT)); | 
|  |  | 
|  | /* Read the whole buffer. Set pad_done to nonzero if we find | 
|  | * the 0x00 byte and remember the padding length in pad_count. */ | 
|  | pad_done = MBEDTLS_CT_FALSE; | 
|  | for (i = 2; i < ilen; i++) { | 
|  | mbedtls_ct_condition_t found = mbedtls_ct_uint_eq(input[i], 0); | 
|  | pad_done   = mbedtls_ct_bool_or(pad_done, found); | 
|  | pad_count += mbedtls_ct_uint_if_else_0(mbedtls_ct_bool_not(pad_done), 1); | 
|  | } | 
|  |  | 
|  | /* If pad_done is still zero, there's no data, only unfinished padding. */ | 
|  | bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool_not(pad_done)); | 
|  |  | 
|  | /* There must be at least 8 bytes of padding. */ | 
|  | bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_gt(8, pad_count)); | 
|  |  | 
|  | /* If the padding is valid, set plaintext_size to the number of | 
|  | * remaining bytes after stripping the padding. If the padding | 
|  | * is invalid, avoid leaking this fact through the size of the | 
|  | * output: use the maximum message size that fits in the output | 
|  | * buffer. Do it without branches to avoid leaking the padding | 
|  | * validity through timing. RSA keys are small enough that all the | 
|  | * size_t values involved fit in unsigned int. */ | 
|  | plaintext_size = mbedtls_ct_uint_if( | 
|  | bad, (unsigned) plaintext_max_size, | 
|  | (unsigned) (ilen - pad_count - 3)); | 
|  |  | 
|  | /* Set output_too_large to 0 if the plaintext fits in the output | 
|  | * buffer and to 1 otherwise. */ | 
|  | output_too_large = mbedtls_ct_uint_gt(plaintext_size, | 
|  | plaintext_max_size); | 
|  |  | 
|  | /* Set ret without branches to avoid timing attacks. Return: | 
|  | * - INVALID_PADDING if the padding is bad (bad != 0). | 
|  | * - OUTPUT_TOO_LARGE if the padding is good but the decrypted | 
|  | *   plaintext does not fit in the output buffer. | 
|  | * - 0 if the padding is correct. */ | 
|  | ret = -(int) mbedtls_ct_uint_if( | 
|  | bad, | 
|  | (unsigned) (-(MBEDTLS_ERR_RSA_INVALID_PADDING)), | 
|  | mbedtls_ct_uint_if_else_0( | 
|  | output_too_large, | 
|  | (unsigned) (-(MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE))) | 
|  | ); | 
|  |  | 
|  | /* If the padding is bad or the plaintext is too large, zero the | 
|  | * data that we're about to copy to the output buffer. | 
|  | * We need to copy the same amount of data | 
|  | * from the same buffer whether the padding is good or not to | 
|  | * avoid leaking the padding validity through overall timing or | 
|  | * through memory or cache access patterns. */ | 
|  | mbedtls_ct_zeroize_if(mbedtls_ct_bool_or(bad, output_too_large), input + 11, ilen - 11); | 
|  |  | 
|  | /* If the plaintext is too large, truncate it to the buffer size. | 
|  | * Copy anyway to avoid revealing the length through timing, because | 
|  | * revealing the length is as bad as revealing the padding validity | 
|  | * for a Bleichenbacher attack. */ | 
|  | plaintext_size = mbedtls_ct_uint_if(output_too_large, | 
|  | (unsigned) plaintext_max_size, | 
|  | (unsigned) plaintext_size); | 
|  |  | 
|  | /* Move the plaintext to the leftmost position where it can start in | 
|  | * the working buffer, i.e. make it start plaintext_max_size from | 
|  | * the end of the buffer. Do this with a memory access trace that | 
|  | * does not depend on the plaintext size. After this move, the | 
|  | * starting location of the plaintext is no longer sensitive | 
|  | * information. */ | 
|  | mbedtls_ct_memmove_left(input + ilen - plaintext_max_size, | 
|  | plaintext_max_size, | 
|  | plaintext_max_size - plaintext_size); | 
|  |  | 
|  | /* Finally copy the decrypted plaintext plus trailing zeros into the output | 
|  | * buffer. If output_max_len is 0, then output may be an invalid pointer | 
|  | * and the result of memcpy() would be undefined; prevent undefined | 
|  | * behavior making sure to depend only on output_max_len (the size of the | 
|  | * user-provided output buffer), which is independent from plaintext | 
|  | * length, validity of padding, success of the decryption, and other | 
|  | * secrets. */ | 
|  | if (output_max_len != 0) { | 
|  | memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size); | 
|  | } | 
|  |  | 
|  | /* Report the amount of data we copied to the output buffer. In case | 
|  | * of errors (bad padding or output too large), the value of *olen | 
|  | * when this function returns is not specified. Making it equivalent | 
|  | * to the good case limits the risks of leaking the padding validity. */ | 
|  | *olen = plaintext_size; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */ | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_ALT) | 
|  |  | 
|  | int mbedtls_rsa_import(mbedtls_rsa_context *ctx, | 
|  | const mbedtls_mpi *N, | 
|  | const mbedtls_mpi *P, const mbedtls_mpi *Q, | 
|  | const mbedtls_mpi *D, const mbedtls_mpi *E) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  |  | 
|  | if ((N != NULL && (ret = mbedtls_mpi_copy(&ctx->N, N)) != 0) || | 
|  | (P != NULL && (ret = mbedtls_mpi_copy(&ctx->P, P)) != 0) || | 
|  | (Q != NULL && (ret = mbedtls_mpi_copy(&ctx->Q, Q)) != 0) || | 
|  | (D != NULL && (ret = mbedtls_mpi_copy(&ctx->D, D)) != 0) || | 
|  | (E != NULL && (ret = mbedtls_mpi_copy(&ctx->E, E)) != 0)) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); | 
|  | } | 
|  |  | 
|  | if (N != NULL) { | 
|  | ctx->len = mbedtls_mpi_size(&ctx->N); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int mbedtls_rsa_import_raw(mbedtls_rsa_context *ctx, | 
|  | unsigned char const *N, size_t N_len, | 
|  | unsigned char const *P, size_t P_len, | 
|  | unsigned char const *Q, size_t Q_len, | 
|  | unsigned char const *D, size_t D_len, | 
|  | unsigned char const *E, size_t E_len) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (N != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->N, N, N_len)); | 
|  | ctx->len = mbedtls_mpi_size(&ctx->N); | 
|  | } | 
|  |  | 
|  | if (P != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->P, P, P_len)); | 
|  | } | 
|  |  | 
|  | if (Q != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->Q, Q, Q_len)); | 
|  | } | 
|  |  | 
|  | if (D != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->D, D, D_len)); | 
|  | } | 
|  |  | 
|  | if (E != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->E, E, E_len)); | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | if (ret != 0) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks whether the context fields are set in such a way | 
|  | * that the RSA primitives will be able to execute without error. | 
|  | * It does *not* make guarantees for consistency of the parameters. | 
|  | */ | 
|  | static int rsa_check_context(mbedtls_rsa_context const *ctx, int is_priv, | 
|  | int blinding_needed) | 
|  | { | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | /* blinding_needed is only used for NO_CRT to decide whether | 
|  | * P,Q need to be present or not. */ | 
|  | ((void) blinding_needed); | 
|  | #endif | 
|  |  | 
|  | if (ctx->len != mbedtls_mpi_size(&ctx->N) || | 
|  | ctx->len > MBEDTLS_MPI_MAX_SIZE) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 1. Modular exponentiation needs positive, odd moduli. | 
|  | */ | 
|  |  | 
|  | /* Modular exponentiation wrt. N is always used for | 
|  | * RSA public key operations. */ | 
|  | if (mbedtls_mpi_cmp_int(&ctx->N, 0) <= 0 || | 
|  | mbedtls_mpi_get_bit(&ctx->N, 0) == 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | /* Modular exponentiation for P and Q is only | 
|  | * used for private key operations and if CRT | 
|  | * is used. */ | 
|  | if (is_priv && | 
|  | (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 || | 
|  | mbedtls_mpi_get_bit(&ctx->P, 0) == 0 || | 
|  | mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0 || | 
|  | mbedtls_mpi_get_bit(&ctx->Q, 0) == 0)) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  | #endif /* !MBEDTLS_RSA_NO_CRT */ | 
|  |  | 
|  | /* | 
|  | * 2. Exponents must be positive | 
|  | */ | 
|  |  | 
|  | /* Always need E for public key operations */ | 
|  | if (mbedtls_mpi_cmp_int(&ctx->E, 0) <= 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_RSA_NO_CRT) | 
|  | /* For private key operations, use D or DP & DQ | 
|  | * as (unblinded) exponents. */ | 
|  | if (is_priv && mbedtls_mpi_cmp_int(&ctx->D, 0) <= 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  | #else | 
|  | if (is_priv && | 
|  | (mbedtls_mpi_cmp_int(&ctx->DP, 0) <= 0 || | 
|  | mbedtls_mpi_cmp_int(&ctx->DQ, 0) <= 0)) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  | #endif /* MBEDTLS_RSA_NO_CRT */ | 
|  |  | 
|  | /* Blinding shouldn't make exponents negative either, | 
|  | * so check that P, Q >= 1 if that hasn't yet been | 
|  | * done as part of 1. */ | 
|  | #if defined(MBEDTLS_RSA_NO_CRT) | 
|  | if (is_priv && blinding_needed && | 
|  | (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 || | 
|  | mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0)) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* It wouldn't lead to an error if it wasn't satisfied, | 
|  | * but check for QP >= 1 nonetheless. */ | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | if (is_priv && | 
|  | mbedtls_mpi_cmp_int(&ctx->QP, 0) <= 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int mbedtls_rsa_complete(mbedtls_rsa_context *ctx) | 
|  | { | 
|  | int ret = 0; | 
|  | int have_N, have_P, have_Q, have_D, have_E; | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | int have_DP, have_DQ, have_QP; | 
|  | #endif | 
|  | int n_missing, pq_missing, d_missing, is_pub, is_priv; | 
|  |  | 
|  | have_N = (mbedtls_mpi_cmp_int(&ctx->N, 0) != 0); | 
|  | have_P = (mbedtls_mpi_cmp_int(&ctx->P, 0) != 0); | 
|  | have_Q = (mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0); | 
|  | have_D = (mbedtls_mpi_cmp_int(&ctx->D, 0) != 0); | 
|  | have_E = (mbedtls_mpi_cmp_int(&ctx->E, 0) != 0); | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | have_DP = (mbedtls_mpi_cmp_int(&ctx->DP, 0) != 0); | 
|  | have_DQ = (mbedtls_mpi_cmp_int(&ctx->DQ, 0) != 0); | 
|  | have_QP = (mbedtls_mpi_cmp_int(&ctx->QP, 0) != 0); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Check whether provided parameters are enough | 
|  | * to deduce all others. The following incomplete | 
|  | * parameter sets for private keys are supported: | 
|  | * | 
|  | * (1) P, Q missing. | 
|  | * (2) D and potentially N missing. | 
|  | * | 
|  | */ | 
|  |  | 
|  | n_missing  =              have_P &&  have_Q &&  have_D && have_E; | 
|  | pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E; | 
|  | d_missing  =              have_P &&  have_Q && !have_D && have_E; | 
|  | is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E; | 
|  |  | 
|  | /* These three alternatives are mutually exclusive */ | 
|  | is_priv = n_missing || pq_missing || d_missing; | 
|  |  | 
|  | if (!is_priv && !is_pub) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 1: Deduce N if P, Q are provided. | 
|  | */ | 
|  |  | 
|  | if (!have_N && have_P && have_Q) { | 
|  | if ((ret = mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P, | 
|  | &ctx->Q)) != 0) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); | 
|  | } | 
|  |  | 
|  | ctx->len = mbedtls_mpi_size(&ctx->N); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 2: Deduce and verify all remaining core parameters. | 
|  | */ | 
|  |  | 
|  | if (pq_missing) { | 
|  | ret = mbedtls_rsa_deduce_primes(&ctx->N, &ctx->E, &ctx->D, | 
|  | &ctx->P, &ctx->Q); | 
|  | if (ret != 0) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); | 
|  | } | 
|  |  | 
|  | } else if (d_missing) { | 
|  | if ((ret = mbedtls_rsa_deduce_private_exponent(&ctx->P, | 
|  | &ctx->Q, | 
|  | &ctx->E, | 
|  | &ctx->D)) != 0) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 3: Deduce all additional parameters specific | 
|  | *         to our current RSA implementation. | 
|  | */ | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | if (is_priv && !(have_DP && have_DQ && have_QP)) { | 
|  | ret = mbedtls_rsa_deduce_crt(&ctx->P,  &ctx->Q,  &ctx->D, | 
|  | &ctx->DP, &ctx->DQ, &ctx->QP); | 
|  | if (ret != 0) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); | 
|  | } | 
|  | } | 
|  | #endif /* MBEDTLS_RSA_NO_CRT */ | 
|  |  | 
|  | /* | 
|  | * Step 3: Basic sanity checks | 
|  | */ | 
|  |  | 
|  | return rsa_check_context(ctx, is_priv, 1); | 
|  | } | 
|  |  | 
|  | int mbedtls_rsa_export_raw(const mbedtls_rsa_context *ctx, | 
|  | unsigned char *N, size_t N_len, | 
|  | unsigned char *P, size_t P_len, | 
|  | unsigned char *Q, size_t Q_len, | 
|  | unsigned char *D, size_t D_len, | 
|  | unsigned char *E, size_t E_len) | 
|  | { | 
|  | int ret = 0; | 
|  | int is_priv; | 
|  |  | 
|  | /* Check if key is private or public */ | 
|  | is_priv = | 
|  | mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->E, 0) != 0; | 
|  |  | 
|  | if (!is_priv) { | 
|  | /* If we're trying to export private parameters for a public key, | 
|  | * something must be wrong. */ | 
|  | if (P != NULL || Q != NULL || D != NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | if (N != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->N, N, N_len)); | 
|  | } | 
|  |  | 
|  | if (P != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->P, P, P_len)); | 
|  | } | 
|  |  | 
|  | if (Q != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->Q, Q, Q_len)); | 
|  | } | 
|  |  | 
|  | if (D != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->D, D, D_len)); | 
|  | } | 
|  |  | 
|  | if (E != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->E, E, E_len)); | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int mbedtls_rsa_export(const mbedtls_rsa_context *ctx, | 
|  | mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q, | 
|  | mbedtls_mpi *D, mbedtls_mpi *E) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | int is_priv; | 
|  |  | 
|  | /* Check if key is private or public */ | 
|  | is_priv = | 
|  | mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->E, 0) != 0; | 
|  |  | 
|  | if (!is_priv) { | 
|  | /* If we're trying to export private parameters for a public key, | 
|  | * something must be wrong. */ | 
|  | if (P != NULL || Q != NULL || D != NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Export all requested core parameters. */ | 
|  |  | 
|  | if ((N != NULL && (ret = mbedtls_mpi_copy(N, &ctx->N)) != 0) || | 
|  | (P != NULL && (ret = mbedtls_mpi_copy(P, &ctx->P)) != 0) || | 
|  | (Q != NULL && (ret = mbedtls_mpi_copy(Q, &ctx->Q)) != 0) || | 
|  | (D != NULL && (ret = mbedtls_mpi_copy(D, &ctx->D)) != 0) || | 
|  | (E != NULL && (ret = mbedtls_mpi_copy(E, &ctx->E)) != 0)) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Export CRT parameters | 
|  | * This must also be implemented if CRT is not used, for being able to | 
|  | * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt | 
|  | * can be used in this case. | 
|  | */ | 
|  | int mbedtls_rsa_export_crt(const mbedtls_rsa_context *ctx, | 
|  | mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | int is_priv; | 
|  |  | 
|  | /* Check if key is private or public */ | 
|  | is_priv = | 
|  | mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 && | 
|  | mbedtls_mpi_cmp_int(&ctx->E, 0) != 0; | 
|  |  | 
|  | if (!is_priv) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | /* Export all requested blinding parameters. */ | 
|  | if ((DP != NULL && (ret = mbedtls_mpi_copy(DP, &ctx->DP)) != 0) || | 
|  | (DQ != NULL && (ret = mbedtls_mpi_copy(DQ, &ctx->DQ)) != 0) || | 
|  | (QP != NULL && (ret = mbedtls_mpi_copy(QP, &ctx->QP)) != 0)) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); | 
|  | } | 
|  | #else | 
|  | if ((ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D, | 
|  | DP, DQ, QP)) != 0) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize an RSA context | 
|  | */ | 
|  | void mbedtls_rsa_init(mbedtls_rsa_context *ctx) | 
|  | { | 
|  | memset(ctx, 0, sizeof(mbedtls_rsa_context)); | 
|  |  | 
|  | ctx->padding = MBEDTLS_RSA_PKCS_V15; | 
|  | ctx->hash_id = MBEDTLS_MD_NONE; | 
|  |  | 
|  | #if defined(MBEDTLS_THREADING_C) | 
|  | /* Set ctx->ver to nonzero to indicate that the mutex has been | 
|  | * initialized and will need to be freed. */ | 
|  | ctx->ver = 1; | 
|  | mbedtls_mutex_init(&ctx->mutex); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set padding for an existing RSA context | 
|  | */ | 
|  | int mbedtls_rsa_set_padding(mbedtls_rsa_context *ctx, int padding, | 
|  | mbedtls_md_type_t hash_id) | 
|  | { | 
|  | switch (padding) { | 
|  | #if defined(MBEDTLS_PKCS1_V15) | 
|  | case MBEDTLS_RSA_PKCS_V15: | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V21) | 
|  | case MBEDTLS_RSA_PKCS_V21: | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | return MBEDTLS_ERR_RSA_INVALID_PADDING; | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V21) | 
|  | if ((padding == MBEDTLS_RSA_PKCS_V21) && | 
|  | (hash_id != MBEDTLS_MD_NONE)) { | 
|  | /* Just make sure this hash is supported in this build. */ | 
|  | if (mbedtls_md_info_from_type(hash_id) == NULL) { | 
|  | return MBEDTLS_ERR_RSA_INVALID_PADDING; | 
|  | } | 
|  | } | 
|  | #endif /* MBEDTLS_PKCS1_V21 */ | 
|  |  | 
|  | ctx->padding = padding; | 
|  | ctx->hash_id = hash_id; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get padding mode of initialized RSA context | 
|  | */ | 
|  | int mbedtls_rsa_get_padding_mode(const mbedtls_rsa_context *ctx) | 
|  | { | 
|  | return ctx->padding; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get hash identifier of mbedtls_md_type_t type | 
|  | */ | 
|  | int mbedtls_rsa_get_md_alg(const mbedtls_rsa_context *ctx) | 
|  | { | 
|  | return ctx->hash_id; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get length in bytes of RSA modulus | 
|  | */ | 
|  | size_t mbedtls_rsa_get_len(const mbedtls_rsa_context *ctx) | 
|  | { | 
|  | return ctx->len; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if defined(MBEDTLS_GENPRIME) | 
|  |  | 
|  | /* | 
|  | * Generate an RSA keypair | 
|  | * | 
|  | * This generation method follows the RSA key pair generation procedure of | 
|  | * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072. | 
|  | */ | 
|  | int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | unsigned int nbits, int exponent) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | mbedtls_mpi H, G, L; | 
|  | int prime_quality = 0; | 
|  |  | 
|  | /* | 
|  | * If the modulus is 1024 bit long or shorter, then the security strength of | 
|  | * the RSA algorithm is less than or equal to 80 bits and therefore an error | 
|  | * rate of 2^-80 is sufficient. | 
|  | */ | 
|  | if (nbits > 1024) { | 
|  | prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR; | 
|  | } | 
|  |  | 
|  | mbedtls_mpi_init(&H); | 
|  | mbedtls_mpi_init(&G); | 
|  | mbedtls_mpi_init(&L); | 
|  |  | 
|  | if (exponent < 3 || nbits % 2 != 0) { | 
|  | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (nbits < MBEDTLS_RSA_GEN_KEY_MIN_BITS) { | 
|  | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find primes P and Q with Q < P so that: | 
|  | * 1.  |P-Q| > 2^( nbits / 2 - 100 ) | 
|  | * 2.  GCD( E, (P-1)*(Q-1) ) == 1 | 
|  | * 3.  E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 ) | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->E, exponent)); | 
|  |  | 
|  | do { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->P, nbits >> 1, | 
|  | prime_quality, f_rng, p_rng)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->Q, nbits >> 1, | 
|  | prime_quality, f_rng, p_rng)); | 
|  |  | 
|  | /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&H, &ctx->P, &ctx->Q)); | 
|  | if (mbedtls_mpi_bitlen(&H) <= ((nbits >= 200) ? ((nbits >> 1) - 99) : 0)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* not required by any standards, but some users rely on the fact that P > Q */ | 
|  | if (H.s < 0) { | 
|  | mbedtls_mpi_swap(&ctx->P, &ctx->Q); | 
|  | } | 
|  |  | 
|  | /* Temporarily replace P,Q by P-1, Q-1 */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->P, &ctx->P, 1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->Q, &ctx->Q, 1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&H, &ctx->P, &ctx->Q)); | 
|  |  | 
|  | /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->E, &H)); | 
|  | if (mbedtls_mpi_cmp_int(&G, 1) != 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->P, &ctx->Q)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&L, NULL, &H, &G)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->D, &ctx->E, &L)); | 
|  |  | 
|  | if (mbedtls_mpi_bitlen(&ctx->D) <= ((nbits + 1) / 2)) {      // (FIPS 186-4 §B.3.1 criterion 3(a)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } while (1); | 
|  |  | 
|  | /* Restore P,Q */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->P,  &ctx->P, 1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->Q,  &ctx->Q, 1)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P, &ctx->Q)); | 
|  |  | 
|  | ctx->len = mbedtls_mpi_size(&ctx->N); | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | /* | 
|  | * DP = D mod (P - 1) | 
|  | * DQ = D mod (Q - 1) | 
|  | * QP = Q^-1 mod P | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D, | 
|  | &ctx->DP, &ctx->DQ, &ctx->QP)); | 
|  | #endif /* MBEDTLS_RSA_NO_CRT */ | 
|  |  | 
|  | /* Double-check */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_rsa_check_privkey(ctx)); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mbedtls_mpi_free(&H); | 
|  | mbedtls_mpi_free(&G); | 
|  | mbedtls_mpi_free(&L); | 
|  |  | 
|  | if (ret != 0) { | 
|  | mbedtls_rsa_free(ctx); | 
|  |  | 
|  | if ((-ret & ~0x7f) == 0) { | 
|  | ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* MBEDTLS_GENPRIME */ | 
|  |  | 
|  | /* | 
|  | * Check a public RSA key | 
|  | */ | 
|  | int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx) | 
|  | { | 
|  | if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */) != 0) { | 
|  | return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | } | 
|  |  | 
|  | if (mbedtls_mpi_bitlen(&ctx->N) < 128) { | 
|  | return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | } | 
|  |  | 
|  | if (mbedtls_mpi_get_bit(&ctx->E, 0) == 0 || | 
|  | mbedtls_mpi_bitlen(&ctx->E)     < 2  || | 
|  | mbedtls_mpi_cmp_mpi(&ctx->E, &ctx->N) >= 0) { | 
|  | return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for the consistency of all fields in an RSA private key context | 
|  | */ | 
|  | int mbedtls_rsa_check_privkey(const mbedtls_rsa_context *ctx) | 
|  | { | 
|  | if (mbedtls_rsa_check_pubkey(ctx) != 0 || | 
|  | rsa_check_context(ctx, 1 /* private */, 1 /* blinding */) != 0) { | 
|  | return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | } | 
|  |  | 
|  | if (mbedtls_rsa_validate_params(&ctx->N, &ctx->P, &ctx->Q, | 
|  | &ctx->D, &ctx->E, NULL, NULL) != 0) { | 
|  | return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | } | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | else if (mbedtls_rsa_validate_crt(&ctx->P, &ctx->Q, &ctx->D, | 
|  | &ctx->DP, &ctx->DQ, &ctx->QP) != 0) { | 
|  | return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if contexts holding a public and private key match | 
|  | */ | 
|  | int mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context *pub, | 
|  | const mbedtls_rsa_context *prv) | 
|  | { | 
|  | if (mbedtls_rsa_check_pubkey(pub)  != 0 || | 
|  | mbedtls_rsa_check_privkey(prv) != 0) { | 
|  | return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | } | 
|  |  | 
|  | if (mbedtls_mpi_cmp_mpi(&pub->N, &prv->N) != 0 || | 
|  | mbedtls_mpi_cmp_mpi(&pub->E, &prv->E) != 0) { | 
|  | return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do an RSA public key operation | 
|  | */ | 
|  | int mbedtls_rsa_public(mbedtls_rsa_context *ctx, | 
|  | const unsigned char *input, | 
|  | unsigned char *output) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t olen; | 
|  | mbedtls_mpi T; | 
|  |  | 
|  | if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */)) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | mbedtls_mpi_init(&T); | 
|  |  | 
|  | #if defined(MBEDTLS_THREADING_C) | 
|  | if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) { | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len)); | 
|  |  | 
|  | if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) { | 
|  | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | olen = ctx->len; | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, &ctx->E, &ctx->N, &ctx->RN)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen)); | 
|  |  | 
|  | cleanup: | 
|  | #if defined(MBEDTLS_THREADING_C) | 
|  | if (mbedtls_mutex_unlock(&ctx->mutex) != 0) { | 
|  | return MBEDTLS_ERR_THREADING_MUTEX_ERROR; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | mbedtls_mpi_free(&T); | 
|  |  | 
|  | if (ret != 0) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate or update blinding values, see section 10 of: | 
|  | *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA, | 
|  | *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer | 
|  | *  Berlin Heidelberg, 1996. p. 104-113. | 
|  | */ | 
|  | static int rsa_prepare_blinding(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) | 
|  | { | 
|  | int ret, count = 0; | 
|  | mbedtls_mpi R; | 
|  |  | 
|  | mbedtls_mpi_init(&R); | 
|  |  | 
|  | if (ctx->Vf.p != NULL) { | 
|  | /* We already have blinding values, just update them by squaring */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->N)); | 
|  |  | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* Unblinding value: Vf = random number, invertible mod N */ | 
|  | do { | 
|  | if (count++ > 10) { | 
|  | ret = MBEDTLS_ERR_RSA_RNG_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&ctx->Vf, ctx->len - 1, f_rng, p_rng)); | 
|  |  | 
|  | /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, ctx->len - 1, f_rng, p_rng)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vf, &R)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N)); | 
|  |  | 
|  | /* At this point, Vi is invertible mod N if and only if both Vf and R | 
|  | * are invertible mod N. If one of them isn't, we don't need to know | 
|  | * which one, we just loop and choose new values for both of them. | 
|  | * (Each iteration succeeds with overwhelming probability.) */ | 
|  | ret = mbedtls_mpi_inv_mod(&ctx->Vi, &ctx->Vi, &ctx->N); | 
|  | if (ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | } while (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE); | 
|  |  | 
|  | /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &R)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N)); | 
|  |  | 
|  | /* Blinding value: Vi = Vf^(-e) mod N | 
|  | * (Vi already contains Vf^-1 at this point) */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN)); | 
|  |  | 
|  |  | 
|  | cleanup: | 
|  | mbedtls_mpi_free(&R); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Exponent blinding supposed to prevent side-channel attacks using multiple | 
|  | * traces of measurements to recover the RSA key. The more collisions are there, | 
|  | * the more bits of the key can be recovered. See [3]. | 
|  | * | 
|  | * Collecting n collisions with m bit long blinding value requires 2^(m-m/n) | 
|  | * observations on average. | 
|  | * | 
|  | * For example with 28 byte blinding to achieve 2 collisions the adversary has | 
|  | * to make 2^112 observations on average. | 
|  | * | 
|  | * (With the currently (as of 2017 April) known best algorithms breaking 2048 | 
|  | * bit RSA requires approximately as much time as trying out 2^112 random keys. | 
|  | * Thus in this sense with 28 byte blinding the security is not reduced by | 
|  | * side-channel attacks like the one in [3]) | 
|  | * | 
|  | * This countermeasure does not help if the key recovery is possible with a | 
|  | * single trace. | 
|  | */ | 
|  | #define RSA_EXPONENT_BLINDING 28 | 
|  |  | 
|  | /* | 
|  | * Do an RSA private key operation | 
|  | */ | 
|  | int mbedtls_rsa_private(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | const unsigned char *input, | 
|  | unsigned char *output) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t olen; | 
|  |  | 
|  | /* Temporary holding the result */ | 
|  | mbedtls_mpi T; | 
|  |  | 
|  | /* Temporaries holding P-1, Q-1 and the | 
|  | * exponent blinding factor, respectively. */ | 
|  | mbedtls_mpi P1, Q1, R; | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | /* Temporaries holding the results mod p resp. mod q. */ | 
|  | mbedtls_mpi TP, TQ; | 
|  |  | 
|  | /* Temporaries holding the blinded exponents for | 
|  | * the mod p resp. mod q computation (if used). */ | 
|  | mbedtls_mpi DP_blind, DQ_blind; | 
|  |  | 
|  | /* Pointers to actual exponents to be used - either the unblinded | 
|  | * or the blinded ones, depending on the presence of a PRNG. */ | 
|  | mbedtls_mpi *DP = &ctx->DP; | 
|  | mbedtls_mpi *DQ = &ctx->DQ; | 
|  | #else | 
|  | /* Temporary holding the blinded exponent (if used). */ | 
|  | mbedtls_mpi D_blind; | 
|  |  | 
|  | /* Pointer to actual exponent to be used - either the unblinded | 
|  | * or the blinded one, depending on the presence of a PRNG. */ | 
|  | mbedtls_mpi *D = &ctx->D; | 
|  | #endif /* MBEDTLS_RSA_NO_CRT */ | 
|  |  | 
|  | /* Temporaries holding the initial input and the double | 
|  | * checked result; should be the same in the end. */ | 
|  | mbedtls_mpi I, C; | 
|  |  | 
|  | if (f_rng == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (rsa_check_context(ctx, 1 /* private key checks */, | 
|  | 1 /* blinding on        */) != 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_THREADING_C) | 
|  | if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) { | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* MPI Initialization */ | 
|  | mbedtls_mpi_init(&T); | 
|  |  | 
|  | mbedtls_mpi_init(&P1); | 
|  | mbedtls_mpi_init(&Q1); | 
|  | mbedtls_mpi_init(&R); | 
|  |  | 
|  | #if defined(MBEDTLS_RSA_NO_CRT) | 
|  | mbedtls_mpi_init(&D_blind); | 
|  | #else | 
|  | mbedtls_mpi_init(&DP_blind); | 
|  | mbedtls_mpi_init(&DQ_blind); | 
|  | #endif | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | mbedtls_mpi_init(&TP); mbedtls_mpi_init(&TQ); | 
|  | #endif | 
|  |  | 
|  | mbedtls_mpi_init(&I); | 
|  | mbedtls_mpi_init(&C); | 
|  |  | 
|  | /* End of MPI initialization */ | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len)); | 
|  | if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) { | 
|  | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&I, &T)); | 
|  |  | 
|  | /* | 
|  | * Blinding | 
|  | * T = T * Vi mod N | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(rsa_prepare_blinding(ctx, f_rng, p_rng)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &T, &ctx->Vi)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &T, &ctx->N)); | 
|  |  | 
|  | /* | 
|  | * Exponent blinding | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&P1, &ctx->P, 1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&Q1, &ctx->Q, 1)); | 
|  |  | 
|  | #if defined(MBEDTLS_RSA_NO_CRT) | 
|  | /* | 
|  | * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING, | 
|  | f_rng, p_rng)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &P1, &Q1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &D_blind, &R)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&D_blind, &D_blind, &ctx->D)); | 
|  |  | 
|  | D = &D_blind; | 
|  | #else | 
|  | /* | 
|  | * DP_blind = ( P - 1 ) * R + DP | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING, | 
|  | f_rng, p_rng)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DP_blind, &P1, &R)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DP_blind, &DP_blind, | 
|  | &ctx->DP)); | 
|  |  | 
|  | DP = &DP_blind; | 
|  |  | 
|  | /* | 
|  | * DQ_blind = ( Q - 1 ) * R + DQ | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING, | 
|  | f_rng, p_rng)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DQ_blind, &Q1, &R)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DQ_blind, &DQ_blind, | 
|  | &ctx->DQ)); | 
|  |  | 
|  | DQ = &DQ_blind; | 
|  | #endif /* MBEDTLS_RSA_NO_CRT */ | 
|  |  | 
|  | #if defined(MBEDTLS_RSA_NO_CRT) | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, D, &ctx->N, &ctx->RN)); | 
|  | #else | 
|  | /* | 
|  | * Faster decryption using the CRT | 
|  | * | 
|  | * TP = input ^ dP mod P | 
|  | * TQ = input ^ dQ mod Q | 
|  | */ | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TP, &T, DP, &ctx->P, &ctx->RP)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TQ, &T, DQ, &ctx->Q, &ctx->RQ)); | 
|  |  | 
|  | /* | 
|  | * T = (TP - TQ) * (Q^-1 mod P) mod P | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&T, &TP, &TQ)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->QP)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &TP, &ctx->P)); | 
|  |  | 
|  | /* | 
|  | * T = TQ + T * Q | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->Q)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&T, &TQ, &TP)); | 
|  | #endif /* MBEDTLS_RSA_NO_CRT */ | 
|  |  | 
|  | /* | 
|  | * Unblind | 
|  | * T = T * Vf mod N | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &T, &ctx->Vf)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &T, &ctx->N)); | 
|  |  | 
|  | /* Verify the result to prevent glitching attacks. */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&C, &T, &ctx->E, | 
|  | &ctx->N, &ctx->RN)); | 
|  | if (mbedtls_mpi_cmp_mpi(&C, &I) != 0) { | 
|  | ret = MBEDTLS_ERR_RSA_VERIFY_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | olen = ctx->len; | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen)); | 
|  |  | 
|  | cleanup: | 
|  | #if defined(MBEDTLS_THREADING_C) | 
|  | if (mbedtls_mutex_unlock(&ctx->mutex) != 0) { | 
|  | return MBEDTLS_ERR_THREADING_MUTEX_ERROR; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | mbedtls_mpi_free(&P1); | 
|  | mbedtls_mpi_free(&Q1); | 
|  | mbedtls_mpi_free(&R); | 
|  |  | 
|  | #if defined(MBEDTLS_RSA_NO_CRT) | 
|  | mbedtls_mpi_free(&D_blind); | 
|  | #else | 
|  | mbedtls_mpi_free(&DP_blind); | 
|  | mbedtls_mpi_free(&DQ_blind); | 
|  | #endif | 
|  |  | 
|  | mbedtls_mpi_free(&T); | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | mbedtls_mpi_free(&TP); mbedtls_mpi_free(&TQ); | 
|  | #endif | 
|  |  | 
|  | mbedtls_mpi_free(&C); | 
|  | mbedtls_mpi_free(&I); | 
|  |  | 
|  | if (ret != 0 && ret >= -0x007f) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V21) | 
|  | /** | 
|  | * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer. | 
|  | * | 
|  | * \param dst       buffer to mask | 
|  | * \param dlen      length of destination buffer | 
|  | * \param src       source of the mask generation | 
|  | * \param slen      length of the source buffer | 
|  | * \param md_alg    message digest to use | 
|  | */ | 
|  | static int mgf_mask(unsigned char *dst, size_t dlen, unsigned char *src, | 
|  | size_t slen, mbedtls_md_type_t md_alg) | 
|  | { | 
|  | unsigned char counter[4]; | 
|  | unsigned char *p; | 
|  | unsigned int hlen; | 
|  | size_t i, use_len; | 
|  | unsigned char mask[MBEDTLS_MD_MAX_SIZE]; | 
|  | int ret = 0; | 
|  | const mbedtls_md_info_t *md_info; | 
|  | mbedtls_md_context_t md_ctx; | 
|  |  | 
|  | mbedtls_md_init(&md_ctx); | 
|  | md_info = mbedtls_md_info_from_type(md_alg); | 
|  | if (md_info == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | mbedtls_md_init(&md_ctx); | 
|  | if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) { | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | hlen = mbedtls_md_get_size(md_info); | 
|  |  | 
|  | memset(mask, 0, sizeof(mask)); | 
|  | memset(counter, 0, 4); | 
|  |  | 
|  | /* Generate and apply dbMask */ | 
|  | p = dst; | 
|  |  | 
|  | while (dlen > 0) { | 
|  | use_len = hlen; | 
|  | if (dlen < hlen) { | 
|  | use_len = dlen; | 
|  | } | 
|  |  | 
|  | if ((ret = mbedtls_md_starts(&md_ctx)) != 0) { | 
|  | goto exit; | 
|  | } | 
|  | if ((ret = mbedtls_md_update(&md_ctx, src, slen)) != 0) { | 
|  | goto exit; | 
|  | } | 
|  | if ((ret = mbedtls_md_update(&md_ctx, counter, 4)) != 0) { | 
|  | goto exit; | 
|  | } | 
|  | if ((ret = mbedtls_md_finish(&md_ctx, mask)) != 0) { | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < use_len; ++i) { | 
|  | *p++ ^= mask[i]; | 
|  | } | 
|  |  | 
|  | counter[3]++; | 
|  |  | 
|  | dlen -= use_len; | 
|  | } | 
|  |  | 
|  | exit: | 
|  | mbedtls_platform_zeroize(mask, sizeof(mask)); | 
|  | mbedtls_md_free(&md_ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Generate Hash(M') as in RFC 8017 page 43 points 5 and 6. | 
|  | * | 
|  | * \param hash      the input hash | 
|  | * \param hlen      length of the input hash | 
|  | * \param salt      the input salt | 
|  | * \param slen      length of the input salt | 
|  | * \param out       the output buffer - must be large enough for \p md_alg | 
|  | * \param md_alg    message digest to use | 
|  | */ | 
|  | static int hash_mprime(const unsigned char *hash, size_t hlen, | 
|  | const unsigned char *salt, size_t slen, | 
|  | unsigned char *out, mbedtls_md_type_t md_alg) | 
|  | { | 
|  | const unsigned char zeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; | 
|  |  | 
|  | mbedtls_md_context_t md_ctx; | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  |  | 
|  | const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(md_alg); | 
|  | if (md_info == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | mbedtls_md_init(&md_ctx); | 
|  | if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) { | 
|  | goto exit; | 
|  | } | 
|  | if ((ret = mbedtls_md_starts(&md_ctx)) != 0) { | 
|  | goto exit; | 
|  | } | 
|  | if ((ret = mbedtls_md_update(&md_ctx, zeros, sizeof(zeros))) != 0) { | 
|  | goto exit; | 
|  | } | 
|  | if ((ret = mbedtls_md_update(&md_ctx, hash, hlen)) != 0) { | 
|  | goto exit; | 
|  | } | 
|  | if ((ret = mbedtls_md_update(&md_ctx, salt, slen)) != 0) { | 
|  | goto exit; | 
|  | } | 
|  | if ((ret = mbedtls_md_finish(&md_ctx, out)) != 0) { | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | exit: | 
|  | mbedtls_md_free(&md_ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Compute a hash. | 
|  | * | 
|  | * \param md_alg    algorithm to use | 
|  | * \param input     input message to hash | 
|  | * \param ilen      input length | 
|  | * \param output    the output buffer - must be large enough for \p md_alg | 
|  | */ | 
|  | static int compute_hash(mbedtls_md_type_t md_alg, | 
|  | const unsigned char *input, size_t ilen, | 
|  | unsigned char *output) | 
|  | { | 
|  | const mbedtls_md_info_t *md_info; | 
|  |  | 
|  | md_info = mbedtls_md_info_from_type(md_alg); | 
|  | if (md_info == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | return mbedtls_md(md_info, input, ilen, output); | 
|  | } | 
|  | #endif /* MBEDTLS_PKCS1_V21 */ | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V21) | 
|  | /* | 
|  | * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function | 
|  | */ | 
|  | int mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | const unsigned char *label, size_t label_len, | 
|  | size_t ilen, | 
|  | const unsigned char *input, | 
|  | unsigned char *output) | 
|  | { | 
|  | size_t olen; | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | unsigned char *p = output; | 
|  | unsigned int hlen; | 
|  |  | 
|  | if (f_rng == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id); | 
|  | if (hlen == 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | olen = ctx->len; | 
|  |  | 
|  | /* first comparison checks for overflow */ | 
|  | if (ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | memset(output, 0, olen); | 
|  |  | 
|  | *p++ = 0; | 
|  |  | 
|  | /* Generate a random octet string seed */ | 
|  | if ((ret = f_rng(p_rng, p, hlen)) != 0) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret); | 
|  | } | 
|  |  | 
|  | p += hlen; | 
|  |  | 
|  | /* Construct DB */ | 
|  | ret = compute_hash((mbedtls_md_type_t) ctx->hash_id, label, label_len, p); | 
|  | if (ret != 0) { | 
|  | return ret; | 
|  | } | 
|  | p += hlen; | 
|  | p += olen - 2 * hlen - 2 - ilen; | 
|  | *p++ = 1; | 
|  | if (ilen != 0) { | 
|  | memcpy(p, input, ilen); | 
|  | } | 
|  |  | 
|  | /* maskedDB: Apply dbMask to DB */ | 
|  | if ((ret = mgf_mask(output + hlen + 1, olen - hlen - 1, output + 1, hlen, | 
|  | (mbedtls_md_type_t) ctx->hash_id)) != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* maskedSeed: Apply seedMask to seed */ | 
|  | if ((ret = mgf_mask(output + 1, hlen, output + hlen + 1, olen - hlen - 1, | 
|  | (mbedtls_md_type_t) ctx->hash_id)) != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return mbedtls_rsa_public(ctx, output, output); | 
|  | } | 
|  | #endif /* MBEDTLS_PKCS1_V21 */ | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V15) | 
|  | /* | 
|  | * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function | 
|  | */ | 
|  | int mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, size_t ilen, | 
|  | const unsigned char *input, | 
|  | unsigned char *output) | 
|  | { | 
|  | size_t nb_pad, olen; | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | unsigned char *p = output; | 
|  |  | 
|  | olen = ctx->len; | 
|  |  | 
|  | /* first comparison checks for overflow */ | 
|  | if (ilen + 11 < ilen || olen < ilen + 11) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | nb_pad = olen - 3 - ilen; | 
|  |  | 
|  | *p++ = 0; | 
|  |  | 
|  | if (f_rng == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | *p++ = MBEDTLS_RSA_CRYPT; | 
|  |  | 
|  | while (nb_pad-- > 0) { | 
|  | int rng_dl = 100; | 
|  |  | 
|  | do { | 
|  | ret = f_rng(p_rng, p, 1); | 
|  | } while (*p == 0 && --rng_dl && ret == 0); | 
|  |  | 
|  | /* Check if RNG failed to generate data */ | 
|  | if (rng_dl == 0 || ret != 0) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret); | 
|  | } | 
|  |  | 
|  | p++; | 
|  | } | 
|  |  | 
|  | *p++ = 0; | 
|  | if (ilen != 0) { | 
|  | memcpy(p, input, ilen); | 
|  | } | 
|  |  | 
|  | return mbedtls_rsa_public(ctx, output, output); | 
|  | } | 
|  | #endif /* MBEDTLS_PKCS1_V15 */ | 
|  |  | 
|  | /* | 
|  | * Add the message padding, then do an RSA operation | 
|  | */ | 
|  | int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | size_t ilen, | 
|  | const unsigned char *input, | 
|  | unsigned char *output) | 
|  | { | 
|  | switch (ctx->padding) { | 
|  | #if defined(MBEDTLS_PKCS1_V15) | 
|  | case MBEDTLS_RSA_PKCS_V15: | 
|  | return mbedtls_rsa_rsaes_pkcs1_v15_encrypt(ctx, f_rng, p_rng, | 
|  | ilen, input, output); | 
|  | #endif | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V21) | 
|  | case MBEDTLS_RSA_PKCS_V21: | 
|  | return mbedtls_rsa_rsaes_oaep_encrypt(ctx, f_rng, p_rng, NULL, 0, | 
|  | ilen, input, output); | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | return MBEDTLS_ERR_RSA_INVALID_PADDING; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V21) | 
|  | /* | 
|  | * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function | 
|  | */ | 
|  | int mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | const unsigned char *label, size_t label_len, | 
|  | size_t *olen, | 
|  | const unsigned char *input, | 
|  | unsigned char *output, | 
|  | size_t output_max_len) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t ilen, i, pad_len; | 
|  | unsigned char *p, bad, pad_done; | 
|  | unsigned char buf[MBEDTLS_MPI_MAX_SIZE]; | 
|  | unsigned char lhash[MBEDTLS_MD_MAX_SIZE]; | 
|  | unsigned int hlen; | 
|  |  | 
|  | /* | 
|  | * Parameters sanity checks | 
|  | */ | 
|  | if (ctx->padding != MBEDTLS_RSA_PKCS_V21) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | ilen = ctx->len; | 
|  |  | 
|  | if (ilen < 16 || ilen > sizeof(buf)) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id); | 
|  | if (hlen == 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | // checking for integer underflow | 
|  | if (2 * hlen + 2 > ilen) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RSA operation | 
|  | */ | 
|  | ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf); | 
|  |  | 
|  | if (ret != 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unmask data and generate lHash | 
|  | */ | 
|  | /* seed: Apply seedMask to maskedSeed */ | 
|  | if ((ret = mgf_mask(buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1, | 
|  | (mbedtls_md_type_t) ctx->hash_id)) != 0 || | 
|  | /* DB: Apply dbMask to maskedDB */ | 
|  | (ret = mgf_mask(buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen, | 
|  | (mbedtls_md_type_t) ctx->hash_id)) != 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* Generate lHash */ | 
|  | ret = compute_hash((mbedtls_md_type_t) ctx->hash_id, | 
|  | label, label_len, lhash); | 
|  | if (ret != 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check contents, in "constant-time" | 
|  | */ | 
|  | p = buf; | 
|  | bad = 0; | 
|  |  | 
|  | bad |= *p++; /* First byte must be 0 */ | 
|  |  | 
|  | p += hlen; /* Skip seed */ | 
|  |  | 
|  | /* Check lHash */ | 
|  | for (i = 0; i < hlen; i++) { | 
|  | bad |= lhash[i] ^ *p++; | 
|  | } | 
|  |  | 
|  | /* Get zero-padding len, but always read till end of buffer | 
|  | * (minus one, for the 01 byte) */ | 
|  | pad_len = 0; | 
|  | pad_done = 0; | 
|  | for (i = 0; i < ilen - 2 * hlen - 2; i++) { | 
|  | pad_done |= p[i]; | 
|  | pad_len += ((pad_done | (unsigned char) -pad_done) >> 7) ^ 1; | 
|  | } | 
|  |  | 
|  | p += pad_len; | 
|  | bad |= *p++ ^ 0x01; | 
|  |  | 
|  | /* | 
|  | * The only information "leaked" is whether the padding was correct or not | 
|  | * (eg, no data is copied if it was not correct). This meets the | 
|  | * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between | 
|  | * the different error conditions. | 
|  | */ | 
|  | if (bad != 0) { | 
|  | ret = MBEDTLS_ERR_RSA_INVALID_PADDING; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (ilen - (p - buf) > output_max_len) { | 
|  | ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | *olen = ilen - (p - buf); | 
|  | if (*olen != 0) { | 
|  | memcpy(output, p, *olen); | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | cleanup: | 
|  | mbedtls_platform_zeroize(buf, sizeof(buf)); | 
|  | mbedtls_platform_zeroize(lhash, sizeof(lhash)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif /* MBEDTLS_PKCS1_V21 */ | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V15) | 
|  | /* | 
|  | * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function | 
|  | */ | 
|  | int mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | size_t *olen, | 
|  | const unsigned char *input, | 
|  | unsigned char *output, | 
|  | size_t output_max_len) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t ilen; | 
|  | unsigned char buf[MBEDTLS_MPI_MAX_SIZE]; | 
|  |  | 
|  | ilen = ctx->len; | 
|  |  | 
|  | if (ctx->padding != MBEDTLS_RSA_PKCS_V15) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (ilen < 16 || ilen > sizeof(buf)) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf); | 
|  |  | 
|  | if (ret != 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding(buf, ilen, | 
|  | output, output_max_len, olen); | 
|  |  | 
|  | cleanup: | 
|  | mbedtls_platform_zeroize(buf, sizeof(buf)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif /* MBEDTLS_PKCS1_V15 */ | 
|  |  | 
|  | /* | 
|  | * Do an RSA operation, then remove the message padding | 
|  | */ | 
|  | int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | size_t *olen, | 
|  | const unsigned char *input, | 
|  | unsigned char *output, | 
|  | size_t output_max_len) | 
|  | { | 
|  | switch (ctx->padding) { | 
|  | #if defined(MBEDTLS_PKCS1_V15) | 
|  | case MBEDTLS_RSA_PKCS_V15: | 
|  | return mbedtls_rsa_rsaes_pkcs1_v15_decrypt(ctx, f_rng, p_rng, olen, | 
|  | input, output, output_max_len); | 
|  | #endif | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V21) | 
|  | case MBEDTLS_RSA_PKCS_V21: | 
|  | return mbedtls_rsa_rsaes_oaep_decrypt(ctx, f_rng, p_rng, NULL, 0, | 
|  | olen, input, output, | 
|  | output_max_len); | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | return MBEDTLS_ERR_RSA_INVALID_PADDING; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V21) | 
|  | static int rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | mbedtls_md_type_t md_alg, | 
|  | unsigned int hashlen, | 
|  | const unsigned char *hash, | 
|  | int saltlen, | 
|  | unsigned char *sig) | 
|  | { | 
|  | size_t olen; | 
|  | unsigned char *p = sig; | 
|  | unsigned char *salt = NULL; | 
|  | size_t slen, min_slen, hlen, offset = 0; | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t msb; | 
|  |  | 
|  | if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (ctx->padding != MBEDTLS_RSA_PKCS_V21) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (f_rng == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | olen = ctx->len; | 
|  |  | 
|  | if (md_alg != MBEDTLS_MD_NONE) { | 
|  | /* Gather length of hash to sign */ | 
|  | size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg); | 
|  | if (exp_hashlen == 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (hashlen != exp_hashlen) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  | } | 
|  |  | 
|  | hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id); | 
|  | if (hlen == 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY) { | 
|  | /* Calculate the largest possible salt length, up to the hash size. | 
|  | * Normally this is the hash length, which is the maximum salt length | 
|  | * according to FIPS 185-4 §5.5 (e) and common practice. If there is not | 
|  | * enough room, use the maximum salt length that fits. The constraint is | 
|  | * that the hash length plus the salt length plus 2 bytes must be at most | 
|  | * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017 | 
|  | * (PKCS#1 v2.2) §9.1.1 step 3. */ | 
|  | min_slen = hlen - 2; | 
|  | if (olen < hlen + min_slen + 2) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } else if (olen >= hlen + hlen + 2) { | 
|  | slen = hlen; | 
|  | } else { | 
|  | slen = olen - hlen - 2; | 
|  | } | 
|  | } else if ((saltlen < 0) || (saltlen + hlen + 2 > olen)) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } else { | 
|  | slen = (size_t) saltlen; | 
|  | } | 
|  |  | 
|  | memset(sig, 0, olen); | 
|  |  | 
|  | /* Note: EMSA-PSS encoding is over the length of N - 1 bits */ | 
|  | msb = mbedtls_mpi_bitlen(&ctx->N) - 1; | 
|  | p += olen - hlen - slen - 2; | 
|  | *p++ = 0x01; | 
|  |  | 
|  | /* Generate salt of length slen in place in the encoded message */ | 
|  | salt = p; | 
|  | if ((ret = f_rng(p_rng, salt, slen)) != 0) { | 
|  | return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret); | 
|  | } | 
|  |  | 
|  | p += slen; | 
|  |  | 
|  | /* Generate H = Hash( M' ) */ | 
|  | ret = hash_mprime(hash, hashlen, salt, slen, p, (mbedtls_md_type_t) ctx->hash_id); | 
|  | if (ret != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Compensate for boundary condition when applying mask */ | 
|  | if (msb % 8 == 0) { | 
|  | offset = 1; | 
|  | } | 
|  |  | 
|  | /* maskedDB: Apply dbMask to DB */ | 
|  | ret = mgf_mask(sig + offset, olen - hlen - 1 - offset, p, hlen, | 
|  | (mbedtls_md_type_t) ctx->hash_id); | 
|  | if (ret != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | msb = mbedtls_mpi_bitlen(&ctx->N) - 1; | 
|  | sig[0] &= 0xFF >> (olen * 8 - msb); | 
|  |  | 
|  | p += hlen; | 
|  | *p++ = 0xBC; | 
|  |  | 
|  | return mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with | 
|  | * the option to pass in the salt length. | 
|  | */ | 
|  | int mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | mbedtls_md_type_t md_alg, | 
|  | unsigned int hashlen, | 
|  | const unsigned char *hash, | 
|  | int saltlen, | 
|  | unsigned char *sig) | 
|  | { | 
|  | return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg, | 
|  | hashlen, hash, saltlen, sig); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function | 
|  | */ | 
|  | int mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | mbedtls_md_type_t md_alg, | 
|  | unsigned int hashlen, | 
|  | const unsigned char *hash, | 
|  | unsigned char *sig) | 
|  | { | 
|  | return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg, | 
|  | hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig); | 
|  | } | 
|  | #endif /* MBEDTLS_PKCS1_V21 */ | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V15) | 
|  | /* | 
|  | * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function | 
|  | */ | 
|  |  | 
|  | /* Construct a PKCS v1.5 encoding of a hashed message | 
|  | * | 
|  | * This is used both for signature generation and verification. | 
|  | * | 
|  | * Parameters: | 
|  | * - md_alg:  Identifies the hash algorithm used to generate the given hash; | 
|  | *            MBEDTLS_MD_NONE if raw data is signed. | 
|  | * - hashlen: Length of hash. Must match md_alg if that's not NONE. | 
|  | * - hash:    Buffer containing the hashed message or the raw data. | 
|  | * - dst_len: Length of the encoded message. | 
|  | * - dst:     Buffer to hold the encoded message. | 
|  | * | 
|  | * Assumptions: | 
|  | * - hash has size hashlen. | 
|  | * - dst points to a buffer of size at least dst_len. | 
|  | * | 
|  | */ | 
|  | static int rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg, | 
|  | unsigned int hashlen, | 
|  | const unsigned char *hash, | 
|  | size_t dst_len, | 
|  | unsigned char *dst) | 
|  | { | 
|  | size_t oid_size  = 0; | 
|  | size_t nb_pad    = dst_len; | 
|  | unsigned char *p = dst; | 
|  | const char *oid  = NULL; | 
|  |  | 
|  | /* Are we signing hashed or raw data? */ | 
|  | if (md_alg != MBEDTLS_MD_NONE) { | 
|  | unsigned char md_size = mbedtls_md_get_size_from_type(md_alg); | 
|  | if (md_size == 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (mbedtls_oid_get_oid_by_md(md_alg, &oid, &oid_size) != 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (hashlen != md_size) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | /* Double-check that 8 + hashlen + oid_size can be used as a | 
|  | * 1-byte ASN.1 length encoding and that there's no overflow. */ | 
|  | if (8 + hashlen + oid_size  >= 0x80         || | 
|  | 10 + hashlen            <  hashlen      || | 
|  | 10 + hashlen + oid_size <  10 + hashlen) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Static bounds check: | 
|  | * - Need 10 bytes for five tag-length pairs. | 
|  | *   (Insist on 1-byte length encodings to protect against variants of | 
|  | *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification) | 
|  | * - Need hashlen bytes for hash | 
|  | * - Need oid_size bytes for hash alg OID. | 
|  | */ | 
|  | if (nb_pad < 10 + hashlen + oid_size) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  | nb_pad -= 10 + hashlen + oid_size; | 
|  | } else { | 
|  | if (nb_pad < hashlen) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | nb_pad -= hashlen; | 
|  | } | 
|  |  | 
|  | /* Need space for signature header and padding delimiter (3 bytes), | 
|  | * and 8 bytes for the minimal padding */ | 
|  | if (nb_pad < 3 + 8) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  | nb_pad -= 3; | 
|  |  | 
|  | /* Now nb_pad is the amount of memory to be filled | 
|  | * with padding, and at least 8 bytes long. */ | 
|  |  | 
|  | /* Write signature header and padding */ | 
|  | *p++ = 0; | 
|  | *p++ = MBEDTLS_RSA_SIGN; | 
|  | memset(p, 0xFF, nb_pad); | 
|  | p += nb_pad; | 
|  | *p++ = 0; | 
|  |  | 
|  | /* Are we signing raw data? */ | 
|  | if (md_alg == MBEDTLS_MD_NONE) { | 
|  | memcpy(p, hash, hashlen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Signing hashed data, add corresponding ASN.1 structure | 
|  | * | 
|  | * DigestInfo ::= SEQUENCE { | 
|  | *   digestAlgorithm DigestAlgorithmIdentifier, | 
|  | *   digest Digest } | 
|  | * DigestAlgorithmIdentifier ::= AlgorithmIdentifier | 
|  | * Digest ::= OCTET STRING | 
|  | * | 
|  | * Schematic: | 
|  | * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ] | 
|  | *                                 TAG-NULL + LEN [ NULL ] ] | 
|  | *                 TAG-OCTET + LEN [ HASH ] ] | 
|  | */ | 
|  | *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED; | 
|  | *p++ = (unsigned char) (0x08 + oid_size + hashlen); | 
|  | *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED; | 
|  | *p++ = (unsigned char) (0x04 + oid_size); | 
|  | *p++ = MBEDTLS_ASN1_OID; | 
|  | *p++ = (unsigned char) oid_size; | 
|  | memcpy(p, oid, oid_size); | 
|  | p += oid_size; | 
|  | *p++ = MBEDTLS_ASN1_NULL; | 
|  | *p++ = 0x00; | 
|  | *p++ = MBEDTLS_ASN1_OCTET_STRING; | 
|  | *p++ = (unsigned char) hashlen; | 
|  | memcpy(p, hash, hashlen); | 
|  | p += hashlen; | 
|  |  | 
|  | /* Just a sanity-check, should be automatic | 
|  | * after the initial bounds check. */ | 
|  | if (p != dst + dst_len) { | 
|  | mbedtls_platform_zeroize(dst, dst_len); | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do an RSA operation to sign the message digest | 
|  | */ | 
|  | int mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | mbedtls_md_type_t md_alg, | 
|  | unsigned int hashlen, | 
|  | const unsigned char *hash, | 
|  | unsigned char *sig) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | unsigned char *sig_try = NULL, *verif = NULL; | 
|  |  | 
|  | if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (ctx->padding != MBEDTLS_RSA_PKCS_V15) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare PKCS1-v1.5 encoding (padding and hash identifier) | 
|  | */ | 
|  |  | 
|  | if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash, | 
|  | ctx->len, sig)) != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Private key operation | 
|  | * | 
|  | * In order to prevent Lenstra's attack, make the signature in a | 
|  | * temporary buffer and check it before returning it. | 
|  | */ | 
|  |  | 
|  | sig_try = mbedtls_calloc(1, ctx->len); | 
|  | if (sig_try == NULL) { | 
|  | return MBEDTLS_ERR_MPI_ALLOC_FAILED; | 
|  | } | 
|  |  | 
|  | verif = mbedtls_calloc(1, ctx->len); | 
|  | if (verif == NULL) { | 
|  | mbedtls_free(sig_try); | 
|  | return MBEDTLS_ERR_MPI_ALLOC_FAILED; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig_try)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_rsa_public(ctx, sig_try, verif)); | 
|  |  | 
|  | if (mbedtls_ct_memcmp(verif, sig, ctx->len) != 0) { | 
|  | ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | memcpy(sig, sig_try, ctx->len); | 
|  |  | 
|  | cleanup: | 
|  | mbedtls_zeroize_and_free(sig_try, ctx->len); | 
|  | mbedtls_zeroize_and_free(verif, ctx->len); | 
|  |  | 
|  | if (ret != 0) { | 
|  | memset(sig, '!', ctx->len); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #endif /* MBEDTLS_PKCS1_V15 */ | 
|  |  | 
|  | /* | 
|  | * Do an RSA operation to sign the message digest | 
|  | */ | 
|  | int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng, | 
|  | mbedtls_md_type_t md_alg, | 
|  | unsigned int hashlen, | 
|  | const unsigned char *hash, | 
|  | unsigned char *sig) | 
|  | { | 
|  | if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | switch (ctx->padding) { | 
|  | #if defined(MBEDTLS_PKCS1_V15) | 
|  | case MBEDTLS_RSA_PKCS_V15: | 
|  | return mbedtls_rsa_rsassa_pkcs1_v15_sign(ctx, f_rng, p_rng, | 
|  | md_alg, hashlen, hash, sig); | 
|  | #endif | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V21) | 
|  | case MBEDTLS_RSA_PKCS_V21: | 
|  | return mbedtls_rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg, | 
|  | hashlen, hash, sig); | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | return MBEDTLS_ERR_RSA_INVALID_PADDING; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V21) | 
|  | /* | 
|  | * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function | 
|  | */ | 
|  | int mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context *ctx, | 
|  | mbedtls_md_type_t md_alg, | 
|  | unsigned int hashlen, | 
|  | const unsigned char *hash, | 
|  | mbedtls_md_type_t mgf1_hash_id, | 
|  | int expected_salt_len, | 
|  | const unsigned char *sig) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t siglen; | 
|  | unsigned char *p; | 
|  | unsigned char *hash_start; | 
|  | unsigned char result[MBEDTLS_MD_MAX_SIZE]; | 
|  | unsigned int hlen; | 
|  | size_t observed_salt_len, msb; | 
|  | unsigned char buf[MBEDTLS_MPI_MAX_SIZE] = { 0 }; | 
|  |  | 
|  | if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | siglen = ctx->len; | 
|  |  | 
|  | if (siglen < 16 || siglen > sizeof(buf)) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | ret = mbedtls_rsa_public(ctx, sig, buf); | 
|  |  | 
|  | if (ret != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | p = buf; | 
|  |  | 
|  | if (buf[siglen - 1] != 0xBC) { | 
|  | return MBEDTLS_ERR_RSA_INVALID_PADDING; | 
|  | } | 
|  |  | 
|  | if (md_alg != MBEDTLS_MD_NONE) { | 
|  | /* Gather length of hash to sign */ | 
|  | size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg); | 
|  | if (exp_hashlen == 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (hashlen != exp_hashlen) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  | } | 
|  |  | 
|  | hlen = mbedtls_md_get_size_from_type(mgf1_hash_id); | 
|  | if (hlen == 0) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: EMSA-PSS verification is over the length of N - 1 bits | 
|  | */ | 
|  | msb = mbedtls_mpi_bitlen(&ctx->N) - 1; | 
|  |  | 
|  | if (buf[0] >> (8 - siglen * 8 + msb)) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | /* Compensate for boundary condition when applying mask */ | 
|  | if (msb % 8 == 0) { | 
|  | p++; | 
|  | siglen -= 1; | 
|  | } | 
|  |  | 
|  | if (siglen < hlen + 2) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  | hash_start = p + siglen - hlen - 1; | 
|  |  | 
|  | ret = mgf_mask(p, siglen - hlen - 1, hash_start, hlen, mgf1_hash_id); | 
|  | if (ret != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | buf[0] &= 0xFF >> (siglen * 8 - msb); | 
|  |  | 
|  | while (p < hash_start - 1 && *p == 0) { | 
|  | p++; | 
|  | } | 
|  |  | 
|  | if (*p++ != 0x01) { | 
|  | return MBEDTLS_ERR_RSA_INVALID_PADDING; | 
|  | } | 
|  |  | 
|  | observed_salt_len = hash_start - p; | 
|  |  | 
|  | if (expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY && | 
|  | observed_salt_len != (size_t) expected_salt_len) { | 
|  | return MBEDTLS_ERR_RSA_INVALID_PADDING; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate H = Hash( M' ) | 
|  | */ | 
|  | ret = hash_mprime(hash, hashlen, p, observed_salt_len, | 
|  | result, mgf1_hash_id); | 
|  | if (ret != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (memcmp(hash_start, result, hlen) != 0) { | 
|  | return MBEDTLS_ERR_RSA_VERIFY_FAILED; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function | 
|  | */ | 
|  | int mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context *ctx, | 
|  | mbedtls_md_type_t md_alg, | 
|  | unsigned int hashlen, | 
|  | const unsigned char *hash, | 
|  | const unsigned char *sig) | 
|  | { | 
|  | mbedtls_md_type_t mgf1_hash_id; | 
|  | if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | mgf1_hash_id = (ctx->hash_id != MBEDTLS_MD_NONE) | 
|  | ? (mbedtls_md_type_t) ctx->hash_id | 
|  | : md_alg; | 
|  |  | 
|  | return mbedtls_rsa_rsassa_pss_verify_ext(ctx, | 
|  | md_alg, hashlen, hash, | 
|  | mgf1_hash_id, | 
|  | MBEDTLS_RSA_SALT_LEN_ANY, | 
|  | sig); | 
|  |  | 
|  | } | 
|  | #endif /* MBEDTLS_PKCS1_V21 */ | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V15) | 
|  | /* | 
|  | * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function | 
|  | */ | 
|  | int mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context *ctx, | 
|  | mbedtls_md_type_t md_alg, | 
|  | unsigned int hashlen, | 
|  | const unsigned char *hash, | 
|  | const unsigned char *sig) | 
|  | { | 
|  | int ret = 0; | 
|  | size_t sig_len; | 
|  | unsigned char *encoded = NULL, *encoded_expected = NULL; | 
|  |  | 
|  | if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | sig_len = ctx->len; | 
|  |  | 
|  | /* | 
|  | * Prepare expected PKCS1 v1.5 encoding of hash. | 
|  | */ | 
|  |  | 
|  | if ((encoded          = mbedtls_calloc(1, sig_len)) == NULL || | 
|  | (encoded_expected = mbedtls_calloc(1, sig_len)) == NULL) { | 
|  | ret = MBEDTLS_ERR_MPI_ALLOC_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash, sig_len, | 
|  | encoded_expected)) != 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Apply RSA primitive to get what should be PKCS1 encoded hash. | 
|  | */ | 
|  |  | 
|  | ret = mbedtls_rsa_public(ctx, sig, encoded); | 
|  | if (ret != 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare | 
|  | */ | 
|  |  | 
|  | if ((ret = mbedtls_ct_memcmp(encoded, encoded_expected, | 
|  | sig_len)) != 0) { | 
|  | ret = MBEDTLS_ERR_RSA_VERIFY_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | if (encoded != NULL) { | 
|  | mbedtls_zeroize_and_free(encoded, sig_len); | 
|  | } | 
|  |  | 
|  | if (encoded_expected != NULL) { | 
|  | mbedtls_zeroize_and_free(encoded_expected, sig_len); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif /* MBEDTLS_PKCS1_V15 */ | 
|  |  | 
|  | /* | 
|  | * Do an RSA operation and check the message digest | 
|  | */ | 
|  | int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx, | 
|  | mbedtls_md_type_t md_alg, | 
|  | unsigned int hashlen, | 
|  | const unsigned char *hash, | 
|  | const unsigned char *sig) | 
|  | { | 
|  | if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { | 
|  | return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | switch (ctx->padding) { | 
|  | #if defined(MBEDTLS_PKCS1_V15) | 
|  | case MBEDTLS_RSA_PKCS_V15: | 
|  | return mbedtls_rsa_rsassa_pkcs1_v15_verify(ctx, md_alg, | 
|  | hashlen, hash, sig); | 
|  | #endif | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V21) | 
|  | case MBEDTLS_RSA_PKCS_V21: | 
|  | return mbedtls_rsa_rsassa_pss_verify(ctx, md_alg, | 
|  | hashlen, hash, sig); | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | return MBEDTLS_ERR_RSA_INVALID_PADDING; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the components of an RSA key | 
|  | */ | 
|  | int mbedtls_rsa_copy(mbedtls_rsa_context *dst, const mbedtls_rsa_context *src) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  |  | 
|  | dst->len = src->len; | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->N, &src->N)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->E, &src->E)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->D, &src->D)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->P, &src->P)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Q, &src->Q)); | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DP, &src->DP)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DQ, &src->DQ)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->QP, &src->QP)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RP, &src->RP)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RQ, &src->RQ)); | 
|  | #endif | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RN, &src->RN)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vi, &src->Vi)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vf, &src->Vf)); | 
|  |  | 
|  | dst->padding = src->padding; | 
|  | dst->hash_id = src->hash_id; | 
|  |  | 
|  | cleanup: | 
|  | if (ret != 0) { | 
|  | mbedtls_rsa_free(dst); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the components of an RSA key | 
|  | */ | 
|  | void mbedtls_rsa_free(mbedtls_rsa_context *ctx) | 
|  | { | 
|  | if (ctx == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mbedtls_mpi_free(&ctx->Vi); | 
|  | mbedtls_mpi_free(&ctx->Vf); | 
|  | mbedtls_mpi_free(&ctx->RN); | 
|  | mbedtls_mpi_free(&ctx->D); | 
|  | mbedtls_mpi_free(&ctx->Q); | 
|  | mbedtls_mpi_free(&ctx->P); | 
|  | mbedtls_mpi_free(&ctx->E); | 
|  | mbedtls_mpi_free(&ctx->N); | 
|  |  | 
|  | #if !defined(MBEDTLS_RSA_NO_CRT) | 
|  | mbedtls_mpi_free(&ctx->RQ); | 
|  | mbedtls_mpi_free(&ctx->RP); | 
|  | mbedtls_mpi_free(&ctx->QP); | 
|  | mbedtls_mpi_free(&ctx->DQ); | 
|  | mbedtls_mpi_free(&ctx->DP); | 
|  | #endif /* MBEDTLS_RSA_NO_CRT */ | 
|  |  | 
|  | #if defined(MBEDTLS_THREADING_C) | 
|  | /* Free the mutex, but only if it hasn't been freed already. */ | 
|  | if (ctx->ver != 0) { | 
|  | mbedtls_mutex_free(&ctx->mutex); | 
|  | ctx->ver = 0; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #endif /* !MBEDTLS_RSA_ALT */ | 
|  |  | 
|  | #if defined(MBEDTLS_SELF_TEST) | 
|  |  | 
|  | #include "mbedtls/md.h" | 
|  |  | 
|  | /* | 
|  | * Example RSA-1024 keypair, for test purposes | 
|  | */ | 
|  | #define KEY_LEN 128 | 
|  |  | 
|  | #define RSA_N   "9292758453063D803DD603D5E777D788" \ | 
|  | "8ED1D5BF35786190FA2F23EBC0848AEA" \ | 
|  | "DDA92CA6C3D80B32C4D109BE0F36D6AE" \ | 
|  | "7130B9CED7ACDF54CFC7555AC14EEBAB" \ | 
|  | "93A89813FBF3C4F8066D2D800F7C38A8" \ | 
|  | "1AE31942917403FF4946B0A83D3D3E05" \ | 
|  | "EE57C6F5F5606FB5D4BC6CD34EE0801A" \ | 
|  | "5E94BB77B07507233A0BC7BAC8F90F79" | 
|  |  | 
|  | #define RSA_E   "10001" | 
|  |  | 
|  | #define RSA_D   "24BF6185468786FDD303083D25E64EFC" \ | 
|  | "66CA472BC44D253102F8B4A9D3BFA750" \ | 
|  | "91386C0077937FE33FA3252D28855837" \ | 
|  | "AE1B484A8A9A45F7EE8C0C634F99E8CD" \ | 
|  | "DF79C5CE07EE72C7F123142198164234" \ | 
|  | "CABB724CF78B8173B9F880FC86322407" \ | 
|  | "AF1FEDFDDE2BEB674CA15F3E81A1521E" \ | 
|  | "071513A1E85B5DFA031F21ECAE91A34D" | 
|  |  | 
|  | #define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \ | 
|  | "2C01CAD19EA484A87EA4377637E75500" \ | 
|  | "FCB2005C5C7DD6EC4AC023CDA285D796" \ | 
|  | "C3D9E75E1EFC42488BB4F1D13AC30A57" | 
|  |  | 
|  | #define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \ | 
|  | "E211C2B9E5DB1ED0BF61D0D9899620F4" \ | 
|  | "910E4168387E3C30AA1E00C339A79508" \ | 
|  | "8452DD96A9A5EA5D9DCA68DA636032AF" | 
|  |  | 
|  | #define PT_LEN  24 | 
|  | #define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \ | 
|  | "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD" | 
|  |  | 
|  | #if defined(MBEDTLS_PKCS1_V15) | 
|  | static int myrand(void *rng_state, unsigned char *output, size_t len) | 
|  | { | 
|  | #if !defined(__OpenBSD__) && !defined(__NetBSD__) | 
|  | size_t i; | 
|  |  | 
|  | if (rng_state != NULL) { | 
|  | rng_state  = NULL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < len; ++i) { | 
|  | output[i] = rand(); | 
|  | } | 
|  | #else | 
|  | if (rng_state != NULL) { | 
|  | rng_state = NULL; | 
|  | } | 
|  |  | 
|  | arc4random_buf(output, len); | 
|  | #endif /* !OpenBSD && !NetBSD */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* MBEDTLS_PKCS1_V15 */ | 
|  |  | 
|  | /* | 
|  | * Checkup routine | 
|  | */ | 
|  | int mbedtls_rsa_self_test(int verbose) | 
|  | { | 
|  | int ret = 0; | 
|  | #if defined(MBEDTLS_PKCS1_V15) | 
|  | size_t len; | 
|  | mbedtls_rsa_context rsa; | 
|  | unsigned char rsa_plaintext[PT_LEN]; | 
|  | unsigned char rsa_decrypted[PT_LEN]; | 
|  | unsigned char rsa_ciphertext[KEY_LEN]; | 
|  | #if defined(MBEDTLS_MD_CAN_SHA1) | 
|  | unsigned char sha1sum[20]; | 
|  | #endif | 
|  |  | 
|  | mbedtls_mpi K; | 
|  |  | 
|  | mbedtls_mpi_init(&K); | 
|  | mbedtls_rsa_init(&rsa); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_N)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, &K, NULL, NULL, NULL, NULL)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_P)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, &K, NULL, NULL, NULL)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_Q)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, &K, NULL, NULL)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_D)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, &K, NULL)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_E)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, NULL, &K)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_rsa_complete(&rsa)); | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("  RSA key validation: "); | 
|  | } | 
|  |  | 
|  | if (mbedtls_rsa_check_pubkey(&rsa) != 0 || | 
|  | mbedtls_rsa_check_privkey(&rsa) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed\n"); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("passed\n  PKCS#1 encryption : "); | 
|  | } | 
|  |  | 
|  | memcpy(rsa_plaintext, RSA_PT, PT_LEN); | 
|  |  | 
|  | if (mbedtls_rsa_pkcs1_encrypt(&rsa, myrand, NULL, | 
|  | PT_LEN, rsa_plaintext, | 
|  | rsa_ciphertext) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed\n"); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("passed\n  PKCS#1 decryption : "); | 
|  | } | 
|  |  | 
|  | if (mbedtls_rsa_pkcs1_decrypt(&rsa, myrand, NULL, | 
|  | &len, rsa_ciphertext, rsa_decrypted, | 
|  | sizeof(rsa_decrypted)) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed\n"); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (memcmp(rsa_decrypted, rsa_plaintext, len) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed\n"); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("passed\n"); | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_MD_CAN_SHA1) | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("  PKCS#1 data sign  : "); | 
|  | } | 
|  |  | 
|  | if (mbedtls_md(mbedtls_md_info_from_type(MBEDTLS_MD_SHA1), | 
|  | rsa_plaintext, PT_LEN, sha1sum) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed\n"); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (mbedtls_rsa_pkcs1_sign(&rsa, myrand, NULL, | 
|  | MBEDTLS_MD_SHA1, 20, | 
|  | sha1sum, rsa_ciphertext) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed\n"); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("passed\n  PKCS#1 sig. verify: "); | 
|  | } | 
|  |  | 
|  | if (mbedtls_rsa_pkcs1_verify(&rsa, MBEDTLS_MD_SHA1, 20, | 
|  | sha1sum, rsa_ciphertext) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed\n"); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("passed\n"); | 
|  | } | 
|  | #endif /* MBEDTLS_MD_CAN_SHA1 */ | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("\n"); | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | mbedtls_mpi_free(&K); | 
|  | mbedtls_rsa_free(&rsa); | 
|  | #else /* MBEDTLS_PKCS1_V15 */ | 
|  | ((void) verbose); | 
|  | #endif /* MBEDTLS_PKCS1_V15 */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif /* MBEDTLS_SELF_TEST */ | 
|  |  | 
|  | #endif /* MBEDTLS_RSA_C */ |