|  | /* | 
|  | *  Multi-precision integer library | 
|  | * | 
|  | *  Copyright The Mbed TLS Contributors | 
|  | *  SPDX-License-Identifier: Apache-2.0 | 
|  | * | 
|  | *  Licensed under the Apache License, Version 2.0 (the "License"); you may | 
|  | *  not use this file except in compliance with the License. | 
|  | *  You may obtain a copy of the License at | 
|  | * | 
|  | *  http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | *  Unless required by applicable law or agreed to in writing, software | 
|  | *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | 
|  | *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | *  See the License for the specific language governing permissions and | 
|  | *  limitations under the License. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  The following sources were referenced in the design of this Multi-precision | 
|  | *  Integer library: | 
|  | * | 
|  | *  [1] Handbook of Applied Cryptography - 1997 | 
|  | *      Menezes, van Oorschot and Vanstone | 
|  | * | 
|  | *  [2] Multi-Precision Math | 
|  | *      Tom St Denis | 
|  | *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf | 
|  | * | 
|  | *  [3] GNU Multi-Precision Arithmetic Library | 
|  | *      https://gmplib.org/manual/index.html | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | #if defined(MBEDTLS_BIGNUM_C) | 
|  |  | 
|  | #include "mbedtls/bignum.h" | 
|  | #include "bignum_core.h" | 
|  | #include "bn_mul.h" | 
|  | #include "mbedtls/platform_util.h" | 
|  | #include "mbedtls/error.h" | 
|  | #include "constant_time_internal.h" | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "mbedtls/platform.h" | 
|  |  | 
|  | #define MPI_VALIDATE_RET(cond)                                       \ | 
|  | MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA) | 
|  | #define MPI_VALIDATE(cond)                                           \ | 
|  | MBEDTLS_INTERNAL_VALIDATE(cond) | 
|  |  | 
|  | /* Implementation that should never be optimized out by the compiler */ | 
|  | static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n) | 
|  | { | 
|  | mbedtls_platform_zeroize(v, ciL * n); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize one MPI | 
|  | */ | 
|  | void mbedtls_mpi_init(mbedtls_mpi *X) | 
|  | { | 
|  | MPI_VALIDATE(X != NULL); | 
|  |  | 
|  | X->s = 1; | 
|  | X->n = 0; | 
|  | X->p = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unallocate one MPI | 
|  | */ | 
|  | void mbedtls_mpi_free(mbedtls_mpi *X) | 
|  | { | 
|  | if (X == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (X->p != NULL) { | 
|  | mbedtls_mpi_zeroize(X->p, X->n); | 
|  | mbedtls_free(X->p); | 
|  | } | 
|  |  | 
|  | X->s = 1; | 
|  | X->n = 0; | 
|  | X->p = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enlarge to the specified number of limbs | 
|  | */ | 
|  | int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs) | 
|  | { | 
|  | mbedtls_mpi_uint *p; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  |  | 
|  | if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) { | 
|  | return MBEDTLS_ERR_MPI_ALLOC_FAILED; | 
|  | } | 
|  |  | 
|  | if (X->n < nblimbs) { | 
|  | if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) { | 
|  | return MBEDTLS_ERR_MPI_ALLOC_FAILED; | 
|  | } | 
|  |  | 
|  | if (X->p != NULL) { | 
|  | memcpy(p, X->p, X->n * ciL); | 
|  | mbedtls_mpi_zeroize(X->p, X->n); | 
|  | mbedtls_free(X->p); | 
|  | } | 
|  |  | 
|  | X->n = nblimbs; | 
|  | X->p = p; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Resize down as much as possible, | 
|  | * while keeping at least the specified number of limbs | 
|  | */ | 
|  | int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs) | 
|  | { | 
|  | mbedtls_mpi_uint *p; | 
|  | size_t i; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  |  | 
|  | if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) { | 
|  | return MBEDTLS_ERR_MPI_ALLOC_FAILED; | 
|  | } | 
|  |  | 
|  | /* Actually resize up if there are currently fewer than nblimbs limbs. */ | 
|  | if (X->n <= nblimbs) { | 
|  | return mbedtls_mpi_grow(X, nblimbs); | 
|  | } | 
|  | /* After this point, then X->n > nblimbs and in particular X->n > 0. */ | 
|  |  | 
|  | for (i = X->n - 1; i > 0; i--) { | 
|  | if (X->p[i] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | i++; | 
|  |  | 
|  | if (i < nblimbs) { | 
|  | i = nblimbs; | 
|  | } | 
|  |  | 
|  | if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) { | 
|  | return MBEDTLS_ERR_MPI_ALLOC_FAILED; | 
|  | } | 
|  |  | 
|  | if (X->p != NULL) { | 
|  | memcpy(p, X->p, i * ciL); | 
|  | mbedtls_mpi_zeroize(X->p, X->n); | 
|  | mbedtls_free(X->p); | 
|  | } | 
|  |  | 
|  | X->n = i; | 
|  | X->p = p; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Resize X to have exactly n limbs and set it to 0. */ | 
|  | static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs) | 
|  | { | 
|  | if (limbs == 0) { | 
|  | mbedtls_mpi_free(X); | 
|  | return 0; | 
|  | } else if (X->n == limbs) { | 
|  | memset(X->p, 0, limbs * ciL); | 
|  | X->s = 1; | 
|  | return 0; | 
|  | } else { | 
|  | mbedtls_mpi_free(X); | 
|  | return mbedtls_mpi_grow(X, limbs); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the contents of Y into X. | 
|  | * | 
|  | * This function is not constant-time. Leading zeros in Y may be removed. | 
|  | * | 
|  | * Ensure that X does not shrink. This is not guaranteed by the public API, | 
|  | * but some code in the bignum module relies on this property, for example | 
|  | * in mbedtls_mpi_exp_mod(). | 
|  | */ | 
|  | int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y) | 
|  | { | 
|  | int ret = 0; | 
|  | size_t i; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(Y != NULL); | 
|  |  | 
|  | if (X == Y) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (Y->n == 0) { | 
|  | if (X->n != 0) { | 
|  | X->s = 1; | 
|  | memset(X->p, 0, X->n * ciL); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (i = Y->n - 1; i > 0; i--) { | 
|  | if (Y->p[i] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | i++; | 
|  |  | 
|  | X->s = Y->s; | 
|  |  | 
|  | if (X->n < i) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i)); | 
|  | } else { | 
|  | memset(X->p + i, 0, (X->n - i) * ciL); | 
|  | } | 
|  |  | 
|  | memcpy(X->p, Y->p, i * ciL); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Swap the contents of X and Y | 
|  | */ | 
|  | void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y) | 
|  | { | 
|  | mbedtls_mpi T; | 
|  | MPI_VALIDATE(X != NULL); | 
|  | MPI_VALIDATE(Y != NULL); | 
|  |  | 
|  | memcpy(&T,  X, sizeof(mbedtls_mpi)); | 
|  | memcpy(X,  Y, sizeof(mbedtls_mpi)); | 
|  | memcpy(Y, &T, sizeof(mbedtls_mpi)); | 
|  | } | 
|  |  | 
|  | static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z) | 
|  | { | 
|  | if (z >= 0) { | 
|  | return z; | 
|  | } | 
|  | /* Take care to handle the most negative value (-2^(biL-1)) correctly. | 
|  | * A naive -z would have undefined behavior. | 
|  | * Write this in a way that makes popular compilers happy (GCC, Clang, | 
|  | * MSVC). */ | 
|  | return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set value from integer | 
|  | */ | 
|  | int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1)); | 
|  | memset(X->p, 0, X->n * ciL); | 
|  |  | 
|  | X->p[0] = mpi_sint_abs(z); | 
|  | X->s    = (z < 0) ? -1 : 1; | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a specific bit | 
|  | */ | 
|  | int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos) | 
|  | { | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  |  | 
|  | if (X->n * biL <= pos) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return (X->p[pos / biL] >> (pos % biL)) & 0x01; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set a bit to a specific value of 0 or 1 | 
|  | */ | 
|  | int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val) | 
|  | { | 
|  | int ret = 0; | 
|  | size_t off = pos / biL; | 
|  | size_t idx = pos % biL; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  |  | 
|  | if (val != 0 && val != 1) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (X->n * biL <= pos) { | 
|  | if (val == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1)); | 
|  | } | 
|  |  | 
|  | X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx); | 
|  | X->p[off] |= (mbedtls_mpi_uint) val << idx; | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of less significant zero-bits | 
|  | */ | 
|  | size_t mbedtls_mpi_lsb(const mbedtls_mpi *X) | 
|  | { | 
|  | size_t i, j, count = 0; | 
|  | MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0); | 
|  |  | 
|  | for (i = 0; i < X->n; i++) { | 
|  | for (j = 0; j < biL; j++, count++) { | 
|  | if (((X->p[i] >> j) & 1) != 0) { | 
|  | return count; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of bits | 
|  | */ | 
|  | size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X) | 
|  | { | 
|  | return mbedtls_mpi_core_bitlen(X->p, X->n); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the total size in bytes | 
|  | */ | 
|  | size_t mbedtls_mpi_size(const mbedtls_mpi *X) | 
|  | { | 
|  | return (mbedtls_mpi_bitlen(X) + 7) >> 3; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert an ASCII character to digit value | 
|  | */ | 
|  | static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c) | 
|  | { | 
|  | *d = 255; | 
|  |  | 
|  | if (c >= 0x30 && c <= 0x39) { | 
|  | *d = c - 0x30; | 
|  | } | 
|  | if (c >= 0x41 && c <= 0x46) { | 
|  | *d = c - 0x37; | 
|  | } | 
|  | if (c >= 0x61 && c <= 0x66) { | 
|  | *d = c - 0x57; | 
|  | } | 
|  |  | 
|  | if (*d >= (mbedtls_mpi_uint) radix) { | 
|  | return MBEDTLS_ERR_MPI_INVALID_CHARACTER; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Import from an ASCII string | 
|  | */ | 
|  | int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t i, j, slen, n; | 
|  | int sign = 1; | 
|  | mbedtls_mpi_uint d; | 
|  | mbedtls_mpi T; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(s != NULL); | 
|  |  | 
|  | if (radix < 2 || radix > 16) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | mbedtls_mpi_init(&T); | 
|  |  | 
|  | if (s[0] == 0) { | 
|  | mbedtls_mpi_free(X); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (s[0] == '-') { | 
|  | ++s; | 
|  | sign = -1; | 
|  | } | 
|  |  | 
|  | slen = strlen(s); | 
|  |  | 
|  | if (radix == 16) { | 
|  | if (slen > SIZE_MAX >> 2) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | n = BITS_TO_LIMBS(slen << 2); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0)); | 
|  |  | 
|  | for (i = slen, j = 0; i > 0; i--, j++) { | 
|  | MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1])); | 
|  | X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2); | 
|  | } | 
|  | } else { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0)); | 
|  |  | 
|  | for (i = 0; i < slen; i++) { | 
|  | MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i])); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) { | 
|  | X->s = -1; | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mbedtls_mpi_free(&T); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper to write the digits high-order first. | 
|  | */ | 
|  | static int mpi_write_hlp(mbedtls_mpi *X, int radix, | 
|  | char **p, const size_t buflen) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | mbedtls_mpi_uint r; | 
|  | size_t length = 0; | 
|  | char *p_end = *p + buflen; | 
|  |  | 
|  | do { | 
|  | if (length >= buflen) { | 
|  | return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix)); | 
|  | /* | 
|  | * Write the residue in the current position, as an ASCII character. | 
|  | */ | 
|  | if (r < 0xA) { | 
|  | *(--p_end) = (char) ('0' + r); | 
|  | } else { | 
|  | *(--p_end) = (char) ('A' + (r - 0xA)); | 
|  | } | 
|  |  | 
|  | length++; | 
|  | } while (mbedtls_mpi_cmp_int(X, 0) != 0); | 
|  |  | 
|  | memmove(*p, p_end, length); | 
|  | *p += length; | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Export into an ASCII string | 
|  | */ | 
|  | int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix, | 
|  | char *buf, size_t buflen, size_t *olen) | 
|  | { | 
|  | int ret = 0; | 
|  | size_t n; | 
|  | char *p; | 
|  | mbedtls_mpi T; | 
|  | MPI_VALIDATE_RET(X    != NULL); | 
|  | MPI_VALIDATE_RET(olen != NULL); | 
|  | MPI_VALIDATE_RET(buflen == 0 || buf != NULL); | 
|  |  | 
|  | if (radix < 2 || radix > 16) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | n = mbedtls_mpi_bitlen(X);   /* Number of bits necessary to present `n`. */ | 
|  | if (radix >=  4) { | 
|  | n >>= 1;                 /* Number of 4-adic digits necessary to present | 
|  | * `n`. If radix > 4, this might be a strict | 
|  | * overapproximation of the number of | 
|  | * radix-adic digits needed to present `n`. */ | 
|  | } | 
|  | if (radix >= 16) { | 
|  | n >>= 1;                 /* Number of hexadecimal digits necessary to | 
|  | * present `n`. */ | 
|  |  | 
|  | } | 
|  | n += 1; /* Terminating null byte */ | 
|  | n += 1; /* Compensate for the divisions above, which round down `n` | 
|  | * in case it's not even. */ | 
|  | n += 1; /* Potential '-'-sign. */ | 
|  | n += (n & 1);   /* Make n even to have enough space for hexadecimal writing, | 
|  | * which always uses an even number of hex-digits. */ | 
|  |  | 
|  | if (buflen < n) { | 
|  | *olen = n; | 
|  | return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; | 
|  | } | 
|  |  | 
|  | p = buf; | 
|  | mbedtls_mpi_init(&T); | 
|  |  | 
|  | if (X->s == -1) { | 
|  | *p++ = '-'; | 
|  | buflen--; | 
|  | } | 
|  |  | 
|  | if (radix == 16) { | 
|  | int c; | 
|  | size_t i, j, k; | 
|  |  | 
|  | for (i = X->n, k = 0; i > 0; i--) { | 
|  | for (j = ciL; j > 0; j--) { | 
|  | c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF; | 
|  |  | 
|  | if (c == 0 && k == 0 && (i + j) != 2) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | *(p++) = "0123456789ABCDEF" [c / 16]; | 
|  | *(p++) = "0123456789ABCDEF" [c % 16]; | 
|  | k = 1; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X)); | 
|  |  | 
|  | if (T.s == -1) { | 
|  | T.s = 1; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen)); | 
|  | } | 
|  |  | 
|  | *p++ = '\0'; | 
|  | *olen = p - buf; | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mbedtls_mpi_free(&T); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_FS_IO) | 
|  | /* | 
|  | * Read X from an opened file | 
|  | */ | 
|  | int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin) | 
|  | { | 
|  | mbedtls_mpi_uint d; | 
|  | size_t slen; | 
|  | char *p; | 
|  | /* | 
|  | * Buffer should have space for (short) label and decimal formatted MPI, | 
|  | * newline characters and '\0' | 
|  | */ | 
|  | char s[MBEDTLS_MPI_RW_BUFFER_SIZE]; | 
|  |  | 
|  | MPI_VALIDATE_RET(X   != NULL); | 
|  | MPI_VALIDATE_RET(fin != NULL); | 
|  |  | 
|  | if (radix < 2 || radix > 16) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | memset(s, 0, sizeof(s)); | 
|  | if (fgets(s, sizeof(s) - 1, fin) == NULL) { | 
|  | return MBEDTLS_ERR_MPI_FILE_IO_ERROR; | 
|  | } | 
|  |  | 
|  | slen = strlen(s); | 
|  | if (slen == sizeof(s) - 2) { | 
|  | return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; | 
|  | } | 
|  |  | 
|  | if (slen > 0 && s[slen - 1] == '\n') { | 
|  | slen--; s[slen] = '\0'; | 
|  | } | 
|  | if (slen > 0 && s[slen - 1] == '\r') { | 
|  | slen--; s[slen] = '\0'; | 
|  | } | 
|  |  | 
|  | p = s + slen; | 
|  | while (p-- > s) { | 
|  | if (mpi_get_digit(&d, radix, *p) != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return mbedtls_mpi_read_string(X, radix, p + 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write X into an opened file (or stdout if fout == NULL) | 
|  | */ | 
|  | int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t n, slen, plen; | 
|  | /* | 
|  | * Buffer should have space for (short) label and decimal formatted MPI, | 
|  | * newline characters and '\0' | 
|  | */ | 
|  | char s[MBEDTLS_MPI_RW_BUFFER_SIZE]; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  |  | 
|  | if (radix < 2 || radix > 16) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | memset(s, 0, sizeof(s)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n)); | 
|  |  | 
|  | if (p == NULL) { | 
|  | p = ""; | 
|  | } | 
|  |  | 
|  | plen = strlen(p); | 
|  | slen = strlen(s); | 
|  | s[slen++] = '\r'; | 
|  | s[slen++] = '\n'; | 
|  |  | 
|  | if (fout != NULL) { | 
|  | if (fwrite(p, 1, plen, fout) != plen || | 
|  | fwrite(s, 1, slen, fout) != slen) { | 
|  | return MBEDTLS_ERR_MPI_FILE_IO_ERROR; | 
|  | } | 
|  | } else { | 
|  | mbedtls_printf("%s%s", p, s); | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif /* MBEDTLS_FS_IO */ | 
|  |  | 
|  | /* | 
|  | * Import X from unsigned binary data, little endian | 
|  | * | 
|  | * This function is guaranteed to return an MPI with exactly the necessary | 
|  | * number of limbs (in particular, it does not skip 0s in the input). | 
|  | */ | 
|  | int mbedtls_mpi_read_binary_le(mbedtls_mpi *X, | 
|  | const unsigned char *buf, size_t buflen) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | const size_t limbs = CHARS_TO_LIMBS(buflen); | 
|  |  | 
|  | /* Ensure that target MPI has exactly the necessary number of limbs */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen)); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | /* | 
|  | * This function is also used to import keys. However, wiping the buffers | 
|  | * upon failure is not necessary because failure only can happen before any | 
|  | * input is copied. | 
|  | */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Import X from unsigned binary data, big endian | 
|  | * | 
|  | * This function is guaranteed to return an MPI with exactly the necessary | 
|  | * number of limbs (in particular, it does not skip 0s in the input). | 
|  | */ | 
|  | int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | const size_t limbs = CHARS_TO_LIMBS(buflen); | 
|  |  | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(buflen == 0 || buf != NULL); | 
|  |  | 
|  | /* Ensure that target MPI has exactly the necessary number of limbs */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen)); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | /* | 
|  | * This function is also used to import keys. However, wiping the buffers | 
|  | * upon failure is not necessary because failure only can happen before any | 
|  | * input is copied. | 
|  | */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Export X into unsigned binary data, little endian | 
|  | */ | 
|  | int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X, | 
|  | unsigned char *buf, size_t buflen) | 
|  | { | 
|  | return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Export X into unsigned binary data, big endian | 
|  | */ | 
|  | int mbedtls_mpi_write_binary(const mbedtls_mpi *X, | 
|  | unsigned char *buf, size_t buflen) | 
|  | { | 
|  | return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Left-shift: X <<= count | 
|  | */ | 
|  | int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t i; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  |  | 
|  | i = mbedtls_mpi_bitlen(X) + count; | 
|  |  | 
|  | if (X->n * biL < i) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i))); | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | mbedtls_mpi_core_shift_l(X->p, X->n, count); | 
|  | cleanup: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Right-shift: X >>= count | 
|  | */ | 
|  | int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count) | 
|  | { | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | if (X->n != 0) { | 
|  | mbedtls_mpi_core_shift_r(X->p, X->n, count); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare unsigned values | 
|  | */ | 
|  | int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y) | 
|  | { | 
|  | size_t i, j; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(Y != NULL); | 
|  |  | 
|  | for (i = X->n; i > 0; i--) { | 
|  | if (X->p[i - 1] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (j = Y->n; j > 0; j--) { | 
|  | if (Y->p[j - 1] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == 0 && j == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (i > j) { | 
|  | return 1; | 
|  | } | 
|  | if (j > i) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | for (; i > 0; i--) { | 
|  | if (X->p[i - 1] > Y->p[i - 1]) { | 
|  | return 1; | 
|  | } | 
|  | if (X->p[i - 1] < Y->p[i - 1]) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare signed values | 
|  | */ | 
|  | int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y) | 
|  | { | 
|  | size_t i, j; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(Y != NULL); | 
|  |  | 
|  | for (i = X->n; i > 0; i--) { | 
|  | if (X->p[i - 1] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (j = Y->n; j > 0; j--) { | 
|  | if (Y->p[j - 1] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == 0 && j == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (i > j) { | 
|  | return X->s; | 
|  | } | 
|  | if (j > i) { | 
|  | return -Y->s; | 
|  | } | 
|  |  | 
|  | if (X->s > 0 && Y->s < 0) { | 
|  | return 1; | 
|  | } | 
|  | if (Y->s > 0 && X->s < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | for (; i > 0; i--) { | 
|  | if (X->p[i - 1] > Y->p[i - 1]) { | 
|  | return X->s; | 
|  | } | 
|  | if (X->p[i - 1] < Y->p[i - 1]) { | 
|  | return -X->s; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare signed values | 
|  | */ | 
|  | int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z) | 
|  | { | 
|  | mbedtls_mpi Y; | 
|  | mbedtls_mpi_uint p[1]; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  |  | 
|  | *p  = mpi_sint_abs(z); | 
|  | Y.s = (z < 0) ? -1 : 1; | 
|  | Y.n = 1; | 
|  | Y.p = p; | 
|  |  | 
|  | return mbedtls_mpi_cmp_mpi(X, &Y); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unsigned addition: X = |A| + |B|  (HAC 14.7) | 
|  | */ | 
|  | int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t j; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  | MPI_VALIDATE_RET(B != NULL); | 
|  |  | 
|  | if (X == B) { | 
|  | const mbedtls_mpi *T = A; A = X; B = T; | 
|  | } | 
|  |  | 
|  | if (X != A) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * X must always be positive as a result of unsigned additions. | 
|  | */ | 
|  | X->s = 1; | 
|  |  | 
|  | for (j = B->n; j > 0; j--) { | 
|  | if (B->p[j - 1] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0 | 
|  | * and B is 0 (of any size). */ | 
|  | if (j == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j)); | 
|  |  | 
|  | /* j is the number of non-zero limbs of B. Add those to X. */ | 
|  |  | 
|  | mbedtls_mpi_uint *p = X->p; | 
|  |  | 
|  | mbedtls_mpi_uint c = mbedtls_mpi_core_add(p, p, B->p, j); | 
|  |  | 
|  | p += j; | 
|  |  | 
|  | /* Now propagate any carry */ | 
|  |  | 
|  | while (c != 0) { | 
|  | if (j >= X->n) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1)); | 
|  | p = X->p + j; | 
|  | } | 
|  |  | 
|  | *p += c; c = (*p < c); j++; p++; | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10) | 
|  | */ | 
|  | int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t n; | 
|  | mbedtls_mpi_uint carry; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  | MPI_VALIDATE_RET(B != NULL); | 
|  |  | 
|  | for (n = B->n; n > 0; n--) { | 
|  | if (B->p[n - 1] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (n > A->n) { | 
|  | /* B >= (2^ciL)^n > A */ | 
|  | ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n)); | 
|  |  | 
|  | /* Set the high limbs of X to match A. Don't touch the lower limbs | 
|  | * because X might be aliased to B, and we must not overwrite the | 
|  | * significant digits of B. */ | 
|  | if (A->n > n && A != X) { | 
|  | memcpy(X->p + n, A->p + n, (A->n - n) * ciL); | 
|  | } | 
|  | if (X->n > A->n) { | 
|  | memset(X->p + A->n, 0, (X->n - A->n) * ciL); | 
|  | } | 
|  |  | 
|  | carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n); | 
|  | if (carry != 0) { | 
|  | /* Propagate the carry through the rest of X. */ | 
|  | carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n); | 
|  |  | 
|  | /* If we have further carry/borrow, the result is negative. */ | 
|  | if (carry != 0) { | 
|  | ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* X should always be positive as a result of unsigned subtractions. */ | 
|  | X->s = 1; | 
|  |  | 
|  | cleanup: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Common function for signed addition and subtraction. | 
|  | * Calculate A + B * flip_B where flip_B is 1 or -1. | 
|  | */ | 
|  | static int add_sub_mpi(mbedtls_mpi *X, | 
|  | const mbedtls_mpi *A, const mbedtls_mpi *B, | 
|  | int flip_B) | 
|  | { | 
|  | int ret, s; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  | MPI_VALIDATE_RET(B != NULL); | 
|  |  | 
|  | s = A->s; | 
|  | if (A->s * B->s * flip_B < 0) { | 
|  | int cmp = mbedtls_mpi_cmp_abs(A, B); | 
|  | if (cmp >= 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B)); | 
|  | /* If |A| = |B|, the result is 0 and we must set the sign bit | 
|  | * to +1 regardless of which of A or B was negative. Otherwise, | 
|  | * since |A| > |B|, the sign is the sign of A. */ | 
|  | X->s = cmp == 0 ? 1 : s; | 
|  | } else { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A)); | 
|  | /* Since |A| < |B|, the sign is the opposite of A. */ | 
|  | X->s = -s; | 
|  | } | 
|  | } else { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B)); | 
|  | X->s = s; | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Signed addition: X = A + B | 
|  | */ | 
|  | int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) | 
|  | { | 
|  | return add_sub_mpi(X, A, B, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Signed subtraction: X = A - B | 
|  | */ | 
|  | int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) | 
|  | { | 
|  | return add_sub_mpi(X, A, B, -1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Signed addition: X = A + b | 
|  | */ | 
|  | int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b) | 
|  | { | 
|  | mbedtls_mpi B; | 
|  | mbedtls_mpi_uint p[1]; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  |  | 
|  | p[0] = mpi_sint_abs(b); | 
|  | B.s = (b < 0) ? -1 : 1; | 
|  | B.n = 1; | 
|  | B.p = p; | 
|  |  | 
|  | return mbedtls_mpi_add_mpi(X, A, &B); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Signed subtraction: X = A - b | 
|  | */ | 
|  | int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b) | 
|  | { | 
|  | mbedtls_mpi B; | 
|  | mbedtls_mpi_uint p[1]; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  |  | 
|  | p[0] = mpi_sint_abs(b); | 
|  | B.s = (b < 0) ? -1 : 1; | 
|  | B.n = 1; | 
|  | B.p = p; | 
|  |  | 
|  | return mbedtls_mpi_sub_mpi(X, A, &B); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Baseline multiplication: X = A * B  (HAC 14.12) | 
|  | */ | 
|  | int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t i, j; | 
|  | mbedtls_mpi TA, TB; | 
|  | int result_is_zero = 0; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  | MPI_VALIDATE_RET(B != NULL); | 
|  |  | 
|  | mbedtls_mpi_init(&TA); | 
|  | mbedtls_mpi_init(&TB); | 
|  |  | 
|  | if (X == A) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA; | 
|  | } | 
|  | if (X == B) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB; | 
|  | } | 
|  |  | 
|  | for (i = A->n; i > 0; i--) { | 
|  | if (A->p[i - 1] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == 0) { | 
|  | result_is_zero = 1; | 
|  | } | 
|  |  | 
|  | for (j = B->n; j > 0; j--) { | 
|  | if (B->p[j - 1] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (j == 0) { | 
|  | result_is_zero = 1; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0)); | 
|  |  | 
|  | mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j); | 
|  |  | 
|  | /* If the result is 0, we don't shortcut the operation, which reduces | 
|  | * but does not eliminate side channels leaking the zero-ness. We do | 
|  | * need to take care to set the sign bit properly since the library does | 
|  | * not fully support an MPI object with a value of 0 and s == -1. */ | 
|  | if (result_is_zero) { | 
|  | X->s = 1; | 
|  | } else { | 
|  | X->s = A->s * B->s; | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Baseline multiplication: X = A * b | 
|  | */ | 
|  | int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b) | 
|  | { | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  |  | 
|  | size_t n = A->n; | 
|  | while (n > 0 && A->p[n - 1] == 0) { | 
|  | --n; | 
|  | } | 
|  |  | 
|  | /* The general method below doesn't work if b==0. */ | 
|  | if (b == 0 || n == 0) { | 
|  | return mbedtls_mpi_lset(X, 0); | 
|  | } | 
|  |  | 
|  | /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */ | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | /* In general, A * b requires 1 limb more than b. If | 
|  | * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same | 
|  | * number of limbs as A and the call to grow() is not required since | 
|  | * copy() will take care of the growth if needed. However, experimentally, | 
|  | * making the call to grow() unconditional causes slightly fewer | 
|  | * calls to calloc() in ECP code, presumably because it reuses the | 
|  | * same mpi for a while and this way the mpi is more likely to directly | 
|  | * grow to its final size. | 
|  | * | 
|  | * Note that calculating A*b as 0 + A*b doesn't work as-is because | 
|  | * A,X can be the same. */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A)); | 
|  | mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1); | 
|  |  | 
|  | cleanup: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and | 
|  | * mbedtls_mpi_uint divisor, d | 
|  | */ | 
|  | static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1, | 
|  | mbedtls_mpi_uint u0, | 
|  | mbedtls_mpi_uint d, | 
|  | mbedtls_mpi_uint *r) | 
|  | { | 
|  | #if defined(MBEDTLS_HAVE_UDBL) | 
|  | mbedtls_t_udbl dividend, quotient; | 
|  | #else | 
|  | const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH; | 
|  | const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1; | 
|  | mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient; | 
|  | mbedtls_mpi_uint u0_msw, u0_lsw; | 
|  | size_t s; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Check for overflow | 
|  | */ | 
|  | if (0 == d || u1 >= d) { | 
|  | if (r != NULL) { | 
|  | *r = ~(mbedtls_mpi_uint) 0u; | 
|  | } | 
|  |  | 
|  | return ~(mbedtls_mpi_uint) 0u; | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_HAVE_UDBL) | 
|  | dividend  = (mbedtls_t_udbl) u1 << biL; | 
|  | dividend |= (mbedtls_t_udbl) u0; | 
|  | quotient = dividend / d; | 
|  | if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) { | 
|  | quotient = ((mbedtls_t_udbl) 1 << biL) - 1; | 
|  | } | 
|  |  | 
|  | if (r != NULL) { | 
|  | *r = (mbedtls_mpi_uint) (dividend - (quotient * d)); | 
|  | } | 
|  |  | 
|  | return (mbedtls_mpi_uint) quotient; | 
|  | #else | 
|  |  | 
|  | /* | 
|  | * Algorithm D, Section 4.3.1 - The Art of Computer Programming | 
|  | *   Vol. 2 - Seminumerical Algorithms, Knuth | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Normalize the divisor, d, and dividend, u0, u1 | 
|  | */ | 
|  | s = mbedtls_mpi_core_clz(d); | 
|  | d = d << s; | 
|  |  | 
|  | u1 = u1 << s; | 
|  | u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1)); | 
|  | u0 =  u0 << s; | 
|  |  | 
|  | d1 = d >> biH; | 
|  | d0 = d & uint_halfword_mask; | 
|  |  | 
|  | u0_msw = u0 >> biH; | 
|  | u0_lsw = u0 & uint_halfword_mask; | 
|  |  | 
|  | /* | 
|  | * Find the first quotient and remainder | 
|  | */ | 
|  | q1 = u1 / d1; | 
|  | r0 = u1 - d1 * q1; | 
|  |  | 
|  | while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) { | 
|  | q1 -= 1; | 
|  | r0 += d1; | 
|  |  | 
|  | if (r0 >= radix) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | rAX = (u1 * radix) + (u0_msw - q1 * d); | 
|  | q0 = rAX / d1; | 
|  | r0 = rAX - q0 * d1; | 
|  |  | 
|  | while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) { | 
|  | q0 -= 1; | 
|  | r0 += d1; | 
|  |  | 
|  | if (r0 >= radix) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (r != NULL) { | 
|  | *r = (rAX * radix + u0_lsw - q0 * d) >> s; | 
|  | } | 
|  |  | 
|  | quotient = q1 * radix + q0; | 
|  |  | 
|  | return quotient; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20) | 
|  | */ | 
|  | int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, | 
|  | const mbedtls_mpi *B) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t i, n, t, k; | 
|  | mbedtls_mpi X, Y, Z, T1, T2; | 
|  | mbedtls_mpi_uint TP2[3]; | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  | MPI_VALIDATE_RET(B != NULL); | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(B, 0) == 0) { | 
|  | return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO; | 
|  | } | 
|  |  | 
|  | mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z); | 
|  | mbedtls_mpi_init(&T1); | 
|  | /* | 
|  | * Avoid dynamic memory allocations for constant-size T2. | 
|  | * | 
|  | * T2 is used for comparison only and the 3 limbs are assigned explicitly, | 
|  | * so nobody increase the size of the MPI and we're safe to use an on-stack | 
|  | * buffer. | 
|  | */ | 
|  | T2.s = 1; | 
|  | T2.n = sizeof(TP2) / sizeof(*TP2); | 
|  | T2.p = TP2; | 
|  |  | 
|  | if (mbedtls_mpi_cmp_abs(A, B) < 0) { | 
|  | if (Q != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0)); | 
|  | } | 
|  | if (R != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B)); | 
|  | X.s = Y.s = 1; | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z,  0)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2)); | 
|  |  | 
|  | k = mbedtls_mpi_bitlen(&Y) % biL; | 
|  | if (k < biL - 1) { | 
|  | k = biL - 1 - k; | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k)); | 
|  | } else { | 
|  | k = 0; | 
|  | } | 
|  |  | 
|  | n = X.n - 1; | 
|  | t = Y.n - 1; | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t))); | 
|  |  | 
|  | while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) { | 
|  | Z.p[n - t]++; | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y)); | 
|  | } | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t))); | 
|  |  | 
|  | for (i = n; i > t; i--) { | 
|  | if (X.p[i] >= Y.p[t]) { | 
|  | Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u; | 
|  | } else { | 
|  | Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1], | 
|  | Y.p[t], NULL); | 
|  | } | 
|  |  | 
|  | T2.p[0] = (i < 2) ? 0 : X.p[i - 2]; | 
|  | T2.p[1] = (i < 1) ? 0 : X.p[i - 1]; | 
|  | T2.p[2] = X.p[i]; | 
|  |  | 
|  | Z.p[i - t - 1]++; | 
|  | do { | 
|  | Z.p[i - t - 1]--; | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0)); | 
|  | T1.p[0] = (t < 1) ? 0 : Y.p[t - 1]; | 
|  | T1.p[1] = Y.p[t]; | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1])); | 
|  | } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1])); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1,  biL * (i - t - 1))); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1)); | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(&X, 0) < 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1))); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1)); | 
|  | Z.p[i - t - 1]--; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Q != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z)); | 
|  | Q->s = A->s * B->s; | 
|  | } | 
|  |  | 
|  | if (R != NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k)); | 
|  | X.s = A->s; | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X)); | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(R, 0) == 0) { | 
|  | R->s = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z); | 
|  | mbedtls_mpi_free(&T1); | 
|  | mbedtls_platform_zeroize(TP2, sizeof(TP2)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Division by int: A = Q * b + R | 
|  | */ | 
|  | int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R, | 
|  | const mbedtls_mpi *A, | 
|  | mbedtls_mpi_sint b) | 
|  | { | 
|  | mbedtls_mpi B; | 
|  | mbedtls_mpi_uint p[1]; | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  |  | 
|  | p[0] = mpi_sint_abs(b); | 
|  | B.s = (b < 0) ? -1 : 1; | 
|  | B.n = 1; | 
|  | B.p = p; | 
|  |  | 
|  | return mbedtls_mpi_div_mpi(Q, R, A, &B); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Modulo: R = A mod B | 
|  | */ | 
|  | int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | MPI_VALIDATE_RET(R != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  | MPI_VALIDATE_RET(B != NULL); | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(B, 0) < 0) { | 
|  | return MBEDTLS_ERR_MPI_NEGATIVE_VALUE; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B)); | 
|  |  | 
|  | while (mbedtls_mpi_cmp_int(R, 0) < 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B)); | 
|  | } | 
|  |  | 
|  | while (mbedtls_mpi_cmp_mpi(R, B) >= 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B)); | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Modulo: r = A mod b | 
|  | */ | 
|  | int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b) | 
|  | { | 
|  | size_t i; | 
|  | mbedtls_mpi_uint x, y, z; | 
|  | MPI_VALIDATE_RET(r != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  |  | 
|  | if (b == 0) { | 
|  | return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO; | 
|  | } | 
|  |  | 
|  | if (b < 0) { | 
|  | return MBEDTLS_ERR_MPI_NEGATIVE_VALUE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * handle trivial cases | 
|  | */ | 
|  | if (b == 1 || A->n == 0) { | 
|  | *r = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (b == 2) { | 
|  | *r = A->p[0] & 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * general case | 
|  | */ | 
|  | for (i = A->n, y = 0; i > 0; i--) { | 
|  | x  = A->p[i - 1]; | 
|  | y  = (y << biH) | (x >> biH); | 
|  | z  = y / b; | 
|  | y -= z * b; | 
|  |  | 
|  | x <<= biH; | 
|  | y  = (y << biH) | (x >> biH); | 
|  | z  = y / b; | 
|  | y -= z * b; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If A is negative, then the current y represents a negative value. | 
|  | * Flipping it to the positive side. | 
|  | */ | 
|  | if (A->s < 0 && y != 0) { | 
|  | y = b - y; | 
|  | } | 
|  |  | 
|  | *r = y; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N) | 
|  | { | 
|  | *mm = mbedtls_mpi_core_montmul_init(N->p); | 
|  | } | 
|  |  | 
|  | /** Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36) | 
|  | * | 
|  | * \param[in,out]   A   One of the numbers to multiply. | 
|  | *                      It must have at least as many limbs as N | 
|  | *                      (A->n >= N->n), and any limbs beyond n are ignored. | 
|  | *                      On successful completion, A contains the result of | 
|  | *                      the multiplication A * B * R^-1 mod N where | 
|  | *                      R = (2^ciL)^n. | 
|  | * \param[in]       B   One of the numbers to multiply. | 
|  | *                      It must be nonzero and must not have more limbs than N | 
|  | *                      (B->n <= N->n). | 
|  | * \param[in]       N   The modulus. \p N must be odd. | 
|  | * \param           mm  The value calculated by `mpi_montg_init(&mm, N)`. | 
|  | *                      This is -N^-1 mod 2^ciL. | 
|  | * \param[in,out]   T   A bignum for temporary storage. | 
|  | *                      It must be at least twice the limb size of N plus 1 | 
|  | *                      (T->n >= 2 * N->n + 1). | 
|  | *                      Its initial content is unused and | 
|  | *                      its final content is indeterminate. | 
|  | *                      It does not get reallocated. | 
|  | */ | 
|  | static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B, | 
|  | const mbedtls_mpi *N, mbedtls_mpi_uint mm, | 
|  | mbedtls_mpi *T) | 
|  | { | 
|  | mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Montgomery reduction: A = A * R^-1 mod N | 
|  | * | 
|  | * See mpi_montmul() regarding constraints and guarantees on the parameters. | 
|  | */ | 
|  | static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N, | 
|  | mbedtls_mpi_uint mm, mbedtls_mpi *T) | 
|  | { | 
|  | mbedtls_mpi_uint z = 1; | 
|  | mbedtls_mpi U; | 
|  |  | 
|  | U.n = U.s = (int) z; | 
|  | U.p = &z; | 
|  |  | 
|  | mpi_montmul(A, &U, N, mm, T); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Select an MPI from a table without leaking the index. | 
|  | * | 
|  | * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it | 
|  | * reads the entire table in order to avoid leaking the value of idx to an | 
|  | * attacker able to observe memory access patterns. | 
|  | * | 
|  | * \param[out] R        Where to write the selected MPI. | 
|  | * \param[in] T         The table to read from. | 
|  | * \param[in] T_size    The number of elements in the table. | 
|  | * \param[in] idx       The index of the element to select; | 
|  | *                      this must satisfy 0 <= idx < T_size. | 
|  | * | 
|  | * \return \c 0 on success, or a negative error code. | 
|  | */ | 
|  | static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  |  | 
|  | for (size_t i = 0; i < T_size; i++) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i], | 
|  | (unsigned char) mbedtls_ct_size_bool_eq(i, | 
|  | idx))); | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85) | 
|  | */ | 
|  | int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A, | 
|  | const mbedtls_mpi *E, const mbedtls_mpi *N, | 
|  | mbedtls_mpi *prec_RR) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t window_bitsize; | 
|  | size_t i, j, nblimbs; | 
|  | size_t bufsize, nbits; | 
|  | size_t exponent_bits_in_window = 0; | 
|  | mbedtls_mpi_uint ei, mm, state; | 
|  | mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos; | 
|  | int neg; | 
|  |  | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  | MPI_VALIDATE_RET(E != NULL); | 
|  | MPI_VALIDATE_RET(N != NULL); | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(E, 0) < 0) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS || | 
|  | mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Init temps and window size | 
|  | */ | 
|  | mpi_montg_init(&mm, N); | 
|  | mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T); | 
|  | mbedtls_mpi_init(&Apos); | 
|  | mbedtls_mpi_init(&WW); | 
|  | memset(W, 0, sizeof(W)); | 
|  |  | 
|  | i = mbedtls_mpi_bitlen(E); | 
|  |  | 
|  | window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 : | 
|  | (i >  79) ? 4 : (i >  23) ? 3 : 1; | 
|  |  | 
|  | #if (MBEDTLS_MPI_WINDOW_SIZE < 6) | 
|  | if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) { | 
|  | window_bitsize = MBEDTLS_MPI_WINDOW_SIZE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | const size_t w_table_used_size = (size_t) 1 << window_bitsize; | 
|  |  | 
|  | /* | 
|  | * This function is not constant-trace: its memory accesses depend on the | 
|  | * exponent value. To defend against timing attacks, callers (such as RSA | 
|  | * and DHM) should use exponent blinding. However this is not enough if the | 
|  | * adversary can find the exponent in a single trace, so this function | 
|  | * takes extra precautions against adversaries who can observe memory | 
|  | * access patterns. | 
|  | * | 
|  | * This function performs a series of multiplications by table elements and | 
|  | * squarings, and we want the prevent the adversary from finding out which | 
|  | * table element was used, and from distinguishing between multiplications | 
|  | * and squarings. Firstly, when multiplying by an element of the window | 
|  | * W[i], we do a constant-trace table lookup to obfuscate i. This leaves | 
|  | * squarings as having a different memory access patterns from other | 
|  | * multiplications. So secondly, we put the accumulator X in the table as | 
|  | * well, and also do a constant-trace table lookup to multiply by X. | 
|  | * | 
|  | * This way, all multiplications take the form of a lookup-and-multiply. | 
|  | * The number of lookup-and-multiply operations inside each iteration of | 
|  | * the main loop still depends on the bits of the exponent, but since the | 
|  | * other operations in the loop don't have an easily recognizable memory | 
|  | * trace, an adversary is unlikely to be able to observe the exact | 
|  | * patterns. | 
|  | * | 
|  | * An adversary may still be able to recover the exponent if they can | 
|  | * observe both memory accesses and branches. However, branch prediction | 
|  | * exploitation typically requires many traces of execution over the same | 
|  | * data, which is defeated by randomized blinding. | 
|  | * | 
|  | * To achieve this, we make a copy of X and we use the table entry in each | 
|  | * calculation from this point on. | 
|  | */ | 
|  | const size_t x_index = 0; | 
|  | mbedtls_mpi_init(&W[x_index]); | 
|  | mbedtls_mpi_copy(&W[x_index], X); | 
|  |  | 
|  | j = N->n + 1; | 
|  | /* All W[i] and X must have at least N->n limbs for the mpi_montmul() | 
|  | * and mpi_montred() calls later. Here we ensure that W[1] and X are | 
|  | * large enough, and later we'll grow other W[i] to the same length. | 
|  | * They must not be shrunk midway through this function! | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1],  j)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2)); | 
|  |  | 
|  | /* | 
|  | * Compensate for negative A (and correct at the end) | 
|  | */ | 
|  | neg = (A->s == -1); | 
|  | if (neg) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A)); | 
|  | Apos.s = 1; | 
|  | A = &Apos; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If 1st call, pre-compute R^2 mod N | 
|  | */ | 
|  | if (prec_RR == NULL || prec_RR->p == NULL) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N)); | 
|  |  | 
|  | if (prec_RR != NULL) { | 
|  | memcpy(prec_RR, &RR, sizeof(mbedtls_mpi)); | 
|  | } | 
|  | } else { | 
|  | memcpy(&RR, prec_RR, sizeof(mbedtls_mpi)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * W[1] = A * R^2 * R^-1 mod N = A * R mod N | 
|  | */ | 
|  | if (mbedtls_mpi_cmp_mpi(A, N) >= 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N)); | 
|  | /* This should be a no-op because W[1] is already that large before | 
|  | * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow | 
|  | * in mpi_montmul() below, so let's make sure. */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1)); | 
|  | } else { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A)); | 
|  | } | 
|  |  | 
|  | /* Note that this is safe because W[1] always has at least N->n limbs | 
|  | * (it grew above and was preserved by mbedtls_mpi_copy()). */ | 
|  | mpi_montmul(&W[1], &RR, N, mm, &T); | 
|  |  | 
|  | /* | 
|  | * W[x_index] = R^2 * R^-1 mod N = R mod N | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR)); | 
|  | mpi_montred(&W[x_index], N, mm, &T); | 
|  |  | 
|  |  | 
|  | if (window_bitsize > 1) { | 
|  | /* | 
|  | * W[i] = W[1] ^ i | 
|  | * | 
|  | * The first bit of the sliding window is always 1 and therefore we | 
|  | * only need to store the second half of the table. | 
|  | * | 
|  | * (There are two special elements in the table: W[0] for the | 
|  | * accumulator/result and W[1] for A in Montgomery form. Both of these | 
|  | * are already set at this point.) | 
|  | */ | 
|  | j = w_table_used_size / 2; | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1])); | 
|  |  | 
|  | for (i = 0; i < window_bitsize - 1; i++) { | 
|  | mpi_montmul(&W[j], &W[j], N, mm, &T); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * W[i] = W[i - 1] * W[1] | 
|  | */ | 
|  | for (i = j + 1; i < w_table_used_size; i++) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1])); | 
|  |  | 
|  | mpi_montmul(&W[i], &W[1], N, mm, &T); | 
|  | } | 
|  | } | 
|  |  | 
|  | nblimbs = E->n; | 
|  | bufsize = 0; | 
|  | nbits   = 0; | 
|  | state   = 0; | 
|  |  | 
|  | while (1) { | 
|  | if (bufsize == 0) { | 
|  | if (nblimbs == 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | nblimbs--; | 
|  |  | 
|  | bufsize = sizeof(mbedtls_mpi_uint) << 3; | 
|  | } | 
|  |  | 
|  | bufsize--; | 
|  |  | 
|  | ei = (E->p[nblimbs] >> bufsize) & 1; | 
|  |  | 
|  | /* | 
|  | * skip leading 0s | 
|  | */ | 
|  | if (ei == 0 && state == 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ei == 0 && state == 1) { | 
|  | /* | 
|  | * out of window, square W[x_index] | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index)); | 
|  | mpi_montmul(&W[x_index], &WW, N, mm, &T); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add ei to current window | 
|  | */ | 
|  | state = 2; | 
|  |  | 
|  | nbits++; | 
|  | exponent_bits_in_window |= (ei << (window_bitsize - nbits)); | 
|  |  | 
|  | if (nbits == window_bitsize) { | 
|  | /* | 
|  | * W[x_index] = W[x_index]^window_bitsize R^-1 mod N | 
|  | */ | 
|  | for (i = 0; i < window_bitsize; i++) { | 
|  | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, | 
|  | x_index)); | 
|  | mpi_montmul(&W[x_index], &WW, N, mm, &T); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, | 
|  | exponent_bits_in_window)); | 
|  | mpi_montmul(&W[x_index], &WW, N, mm, &T); | 
|  |  | 
|  | state--; | 
|  | nbits = 0; | 
|  | exponent_bits_in_window = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * process the remaining bits | 
|  | */ | 
|  | for (i = 0; i < nbits; i++) { | 
|  | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index)); | 
|  | mpi_montmul(&W[x_index], &WW, N, mm, &T); | 
|  |  | 
|  | exponent_bits_in_window <<= 1; | 
|  |  | 
|  | if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) { | 
|  | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1)); | 
|  | mpi_montmul(&W[x_index], &WW, N, mm, &T); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * W[x_index] = A^E * R * R^-1 mod N = A^E mod N | 
|  | */ | 
|  | mpi_montred(&W[x_index], N, mm, &T); | 
|  |  | 
|  | if (neg && E->n != 0 && (E->p[0] & 1) != 0) { | 
|  | W[x_index].s = -1; | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index])); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load the result in the output variable. | 
|  | */ | 
|  | mbedtls_mpi_copy(X, &W[x_index]); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | /* The first bit of the sliding window is always 1 and therefore the first | 
|  | * half of the table was unused. */ | 
|  | for (i = w_table_used_size/2; i < w_table_used_size; i++) { | 
|  | mbedtls_mpi_free(&W[i]); | 
|  | } | 
|  |  | 
|  | mbedtls_mpi_free(&W[x_index]); | 
|  | mbedtls_mpi_free(&W[1]); | 
|  | mbedtls_mpi_free(&T); | 
|  | mbedtls_mpi_free(&Apos); | 
|  | mbedtls_mpi_free(&WW); | 
|  |  | 
|  | if (prec_RR == NULL || prec_RR->p == NULL) { | 
|  | mbedtls_mpi_free(&RR); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Greatest common divisor: G = gcd(A, B)  (HAC 14.54) | 
|  | */ | 
|  | int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | size_t lz, lzt; | 
|  | mbedtls_mpi TA, TB; | 
|  |  | 
|  | MPI_VALIDATE_RET(G != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  | MPI_VALIDATE_RET(B != NULL); | 
|  |  | 
|  | mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); | 
|  |  | 
|  | lz = mbedtls_mpi_lsb(&TA); | 
|  | lzt = mbedtls_mpi_lsb(&TB); | 
|  |  | 
|  | /* The loop below gives the correct result when A==0 but not when B==0. | 
|  | * So have a special case for B==0. Leverage the fact that we just | 
|  | * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test | 
|  | * slightly more efficient than cmp_int(). */ | 
|  | if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) { | 
|  | ret = mbedtls_mpi_copy(G, A); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (lzt < lz) { | 
|  | lz = lzt; | 
|  | } | 
|  |  | 
|  | TA.s = TB.s = 1; | 
|  |  | 
|  | /* We mostly follow the procedure described in HAC 14.54, but with some | 
|  | * minor differences: | 
|  | * - Sequences of multiplications or divisions by 2 are grouped into a | 
|  | *   single shift operation. | 
|  | * - The procedure in HAC assumes that 0 < TB <= TA. | 
|  | *     - The condition TB <= TA is not actually necessary for correctness. | 
|  | *       TA and TB have symmetric roles except for the loop termination | 
|  | *       condition, and the shifts at the beginning of the loop body | 
|  | *       remove any significance from the ordering of TA vs TB before | 
|  | *       the shifts. | 
|  | *     - If TA = 0, the loop goes through 0 iterations and the result is | 
|  | *       correctly TB. | 
|  | *     - The case TB = 0 was short-circuited above. | 
|  | * | 
|  | * For the correctness proof below, decompose the original values of | 
|  | * A and B as | 
|  | *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1 | 
|  | *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1 | 
|  | * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'), | 
|  | * and gcd(A',B') is odd or 0. | 
|  | * | 
|  | * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB). | 
|  | * The code maintains the following invariant: | 
|  | *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I) | 
|  | */ | 
|  |  | 
|  | /* Proof that the loop terminates: | 
|  | * At each iteration, either the right-shift by 1 is made on a nonzero | 
|  | * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases | 
|  | * by at least 1, or the right-shift by 1 is made on zero and then | 
|  | * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted | 
|  | * since in that case TB is calculated from TB-TA with the condition TB>TA). | 
|  | */ | 
|  | while (mbedtls_mpi_cmp_int(&TA, 0) != 0) { | 
|  | /* Divisions by 2 preserve the invariant (I). */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA))); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB))); | 
|  |  | 
|  | /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd, | 
|  | * TA-TB is even so the division by 2 has an integer result. | 
|  | * Invariant (I) is preserved since any odd divisor of both TA and TB | 
|  | * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2 | 
|  | * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also | 
|  | * divides TA. | 
|  | */ | 
|  | if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1)); | 
|  | } else { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1)); | 
|  | } | 
|  | /* Note that one of TA or TB is still odd. */ | 
|  | } | 
|  |  | 
|  | /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k. | 
|  | * At the loop exit, TA = 0, so gcd(TA,TB) = TB. | 
|  | * - If there was at least one loop iteration, then one of TA or TB is odd, | 
|  | *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case, | 
|  | *   lz = min(a,b) so gcd(A,B) = 2^lz * TB. | 
|  | * - If there was no loop iteration, then A was 0, and gcd(A,B) = B. | 
|  | *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well. | 
|  | */ | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB)); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill X with size bytes of random. | 
|  | * The bytes returned from the RNG are used in a specific order which | 
|  | * is suitable for deterministic ECDSA (see the specification of | 
|  | * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()). | 
|  | */ | 
|  | int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | const size_t limbs = CHARS_TO_LIMBS(size); | 
|  |  | 
|  | MPI_VALIDATE_RET(X     != NULL); | 
|  | MPI_VALIDATE_RET(f_rng != NULL); | 
|  |  | 
|  | /* Ensure that target MPI has exactly the necessary number of limbs */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs)); | 
|  | if (size == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng); | 
|  |  | 
|  | cleanup: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int mbedtls_mpi_random(mbedtls_mpi *X, | 
|  | mbedtls_mpi_sint min, | 
|  | const mbedtls_mpi *N, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng) | 
|  | { | 
|  | if (min < 0) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  | if (mbedtls_mpi_cmp_int(N, min) <= 0) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | /* Ensure that target MPI has exactly the same number of limbs | 
|  | * as the upper bound, even if the upper bound has leading zeros. | 
|  | * This is necessary for mbedtls_mpi_core_random. */ | 
|  | int ret = mbedtls_mpi_resize_clear(X, N->n); | 
|  | if (ret != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64) | 
|  | */ | 
|  | int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2; | 
|  | MPI_VALIDATE_RET(X != NULL); | 
|  | MPI_VALIDATE_RET(A != NULL); | 
|  | MPI_VALIDATE_RET(N != NULL); | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(N, 1) <= 0) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2); | 
|  | mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV); | 
|  | mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N)); | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(&G, 1) != 0) { | 
|  | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1)); | 
|  |  | 
|  | do { | 
|  | while ((TU.p[0] & 1) == 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1)); | 
|  |  | 
|  | if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA)); | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1)); | 
|  | } | 
|  |  | 
|  | while ((TV.p[0] & 1) == 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1)); | 
|  |  | 
|  | if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA)); | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1)); | 
|  | } | 
|  |  | 
|  | if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2)); | 
|  | } else { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2)); | 
|  | } | 
|  | } while (mbedtls_mpi_cmp_int(&TU, 0) != 0); | 
|  |  | 
|  | while (mbedtls_mpi_cmp_int(&V1, 0) < 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N)); | 
|  | } | 
|  |  | 
|  | while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N)); | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1)); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2); | 
|  | mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV); | 
|  | mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_GENPRIME) | 
|  |  | 
|  | static const int small_prime[] = | 
|  | { | 
|  | 3,    5,    7,   11,   13,   17,   19,   23, | 
|  | 29,   31,   37,   41,   43,   47,   53,   59, | 
|  | 61,   67,   71,   73,   79,   83,   89,   97, | 
|  | 101,  103,  107,  109,  113,  127,  131,  137, | 
|  | 139,  149,  151,  157,  163,  167,  173,  179, | 
|  | 181,  191,  193,  197,  199,  211,  223,  227, | 
|  | 229,  233,  239,  241,  251,  257,  263,  269, | 
|  | 271,  277,  281,  283,  293,  307,  311,  313, | 
|  | 317,  331,  337,  347,  349,  353,  359,  367, | 
|  | 373,  379,  383,  389,  397,  401,  409,  419, | 
|  | 421,  431,  433,  439,  443,  449,  457,  461, | 
|  | 463,  467,  479,  487,  491,  499,  503,  509, | 
|  | 521,  523,  541,  547,  557,  563,  569,  571, | 
|  | 577,  587,  593,  599,  601,  607,  613,  617, | 
|  | 619,  631,  641,  643,  647,  653,  659,  661, | 
|  | 673,  677,  683,  691,  701,  709,  719,  727, | 
|  | 733,  739,  743,  751,  757,  761,  769,  773, | 
|  | 787,  797,  809,  811,  821,  823,  827,  829, | 
|  | 839,  853,  857,  859,  863,  877,  881,  883, | 
|  | 887,  907,  911,  919,  929,  937,  941,  947, | 
|  | 953,  967,  971,  977,  983,  991,  997, -103 | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Small divisors test (X must be positive) | 
|  | * | 
|  | * Return values: | 
|  | * 0: no small factor (possible prime, more tests needed) | 
|  | * 1: certain prime | 
|  | * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime | 
|  | * other negative: error | 
|  | */ | 
|  | static int mpi_check_small_factors(const mbedtls_mpi *X) | 
|  | { | 
|  | int ret = 0; | 
|  | size_t i; | 
|  | mbedtls_mpi_uint r; | 
|  |  | 
|  | if ((X->p[0] & 1) == 0) { | 
|  | return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | 
|  | } | 
|  |  | 
|  | for (i = 0; small_prime[i] > 0; i++) { | 
|  | if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i])); | 
|  |  | 
|  | if (r == 0) { | 
|  | return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Miller-Rabin pseudo-primality test  (HAC 4.24) | 
|  | */ | 
|  | static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng) | 
|  | { | 
|  | int ret, count; | 
|  | size_t i, j, k, s; | 
|  | mbedtls_mpi W, R, T, A, RR; | 
|  |  | 
|  | MPI_VALIDATE_RET(X     != NULL); | 
|  | MPI_VALIDATE_RET(f_rng != NULL); | 
|  |  | 
|  | mbedtls_mpi_init(&W); mbedtls_mpi_init(&R); | 
|  | mbedtls_mpi_init(&T); mbedtls_mpi_init(&A); | 
|  | mbedtls_mpi_init(&RR); | 
|  |  | 
|  | /* | 
|  | * W = |X| - 1 | 
|  | * R = W >> lsb( W ) | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1)); | 
|  | s = mbedtls_mpi_lsb(&W); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s)); | 
|  |  | 
|  | for (i = 0; i < rounds; i++) { | 
|  | /* | 
|  | * pick a random A, 1 < A < |X| - 1 | 
|  | */ | 
|  | count = 0; | 
|  | do { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng)); | 
|  |  | 
|  | j = mbedtls_mpi_bitlen(&A); | 
|  | k = mbedtls_mpi_bitlen(&W); | 
|  | if (j > k) { | 
|  | A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1; | 
|  | } | 
|  |  | 
|  | if (count++ > 30) { | 
|  | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 || | 
|  | mbedtls_mpi_cmp_int(&A, 1)  <= 0); | 
|  |  | 
|  | /* | 
|  | * A = A^R mod |X| | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR)); | 
|  |  | 
|  | if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 || | 
|  | mbedtls_mpi_cmp_int(&A,  1) == 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | j = 1; | 
|  | while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) { | 
|  | /* | 
|  | * A = A * A mod |X| | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X)); | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(&A, 1) == 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | j++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * not prime if A != |X| - 1 or A == 1 | 
|  | */ | 
|  | if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 || | 
|  | mbedtls_mpi_cmp_int(&A,  1) == 0) { | 
|  | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | mbedtls_mpi_free(&W); mbedtls_mpi_free(&R); | 
|  | mbedtls_mpi_free(&T); mbedtls_mpi_free(&A); | 
|  | mbedtls_mpi_free(&RR); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pseudo-primality test: small factors, then Miller-Rabin | 
|  | */ | 
|  | int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng) | 
|  | { | 
|  | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; | 
|  | mbedtls_mpi XX; | 
|  | MPI_VALIDATE_RET(X     != NULL); | 
|  | MPI_VALIDATE_RET(f_rng != NULL); | 
|  |  | 
|  | XX.s = 1; | 
|  | XX.n = X->n; | 
|  | XX.p = X->p; | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(&XX, 0) == 0 || | 
|  | mbedtls_mpi_cmp_int(&XX, 1) == 0) { | 
|  | return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | 
|  | } | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(&XX, 2) == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((ret = mpi_check_small_factors(&XX)) != 0) { | 
|  | if (ret == 1) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return mpi_miller_rabin(&XX, rounds, f_rng, p_rng); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prime number generation | 
|  | * | 
|  | * To generate an RSA key in a way recommended by FIPS 186-4, both primes must | 
|  | * be either 1024 bits or 1536 bits long, and flags must contain | 
|  | * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR. | 
|  | */ | 
|  | int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng) | 
|  | { | 
|  | #ifdef MBEDTLS_HAVE_INT64 | 
|  | // ceil(2^63.5) | 
|  | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL | 
|  | #else | 
|  | // ceil(2^31.5) | 
|  | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U | 
|  | #endif | 
|  | int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; | 
|  | size_t k, n; | 
|  | int rounds; | 
|  | mbedtls_mpi_uint r; | 
|  | mbedtls_mpi Y; | 
|  |  | 
|  | MPI_VALIDATE_RET(X     != NULL); | 
|  | MPI_VALIDATE_RET(f_rng != NULL); | 
|  |  | 
|  | if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) { | 
|  | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | } | 
|  |  | 
|  | mbedtls_mpi_init(&Y); | 
|  |  | 
|  | n = BITS_TO_LIMBS(nbits); | 
|  |  | 
|  | if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) { | 
|  | /* | 
|  | * 2^-80 error probability, number of rounds chosen per HAC, table 4.4 | 
|  | */ | 
|  | rounds = ((nbits >= 1300) ?  2 : (nbits >=  850) ?  3 : | 
|  | (nbits >=  650) ?  4 : (nbits >=  350) ?  8 : | 
|  | (nbits >=  250) ? 12 : (nbits >=  150) ? 18 : 27); | 
|  | } else { | 
|  | /* | 
|  | * 2^-100 error probability, number of rounds computed based on HAC, | 
|  | * fact 4.48 | 
|  | */ | 
|  | rounds = ((nbits >= 1450) ?  4 : (nbits >=  1150) ?  5 : | 
|  | (nbits >= 1000) ?  6 : (nbits >=   850) ?  7 : | 
|  | (nbits >=  750) ?  8 : (nbits >=   500) ? 13 : | 
|  | (nbits >=  250) ? 28 : (nbits >=   150) ? 40 : 51); | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng)); | 
|  | /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */ | 
|  | if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | k = n * biL; | 
|  | if (k > nbits) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits)); | 
|  | } | 
|  | X->p[0] |= 1; | 
|  |  | 
|  | if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) { | 
|  | ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng); | 
|  |  | 
|  | if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { | 
|  | goto cleanup; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * A necessary condition for Y and X = 2Y + 1 to be prime | 
|  | * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3). | 
|  | * Make sure it is satisfied, while keeping X = 3 mod 4 | 
|  | */ | 
|  |  | 
|  | X->p[0] |= 2; | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3)); | 
|  | if (r == 0) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8)); | 
|  | } else if (r == 1) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4)); | 
|  | } | 
|  |  | 
|  | /* Set Y = (X-1) / 2, which is X / 2 because X is odd */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1)); | 
|  |  | 
|  | while (1) { | 
|  | /* | 
|  | * First, check small factors for X and Y | 
|  | * before doing Miller-Rabin on any of them | 
|  | */ | 
|  | if ((ret = mpi_check_small_factors(X)) == 0 && | 
|  | (ret = mpi_check_small_factors(&Y)) == 0 && | 
|  | (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng)) | 
|  | == 0 && | 
|  | (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng)) | 
|  | == 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Next candidates. We want to preserve Y = (X-1) / 2 and | 
|  | * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3) | 
|  | * so up Y by 6 and X by 12. | 
|  | */ | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X,  X, 12)); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mbedtls_mpi_free(&Y); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif /* MBEDTLS_GENPRIME */ | 
|  |  | 
|  | #if defined(MBEDTLS_SELF_TEST) | 
|  |  | 
|  | #define GCD_PAIR_COUNT  3 | 
|  |  | 
|  | static const int gcd_pairs[GCD_PAIR_COUNT][3] = | 
|  | { | 
|  | { 693, 609, 21 }, | 
|  | { 1764, 868, 28 }, | 
|  | { 768454923, 542167814, 1 } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Checkup routine | 
|  | */ | 
|  | int mbedtls_mpi_self_test(int verbose) | 
|  | { | 
|  | int ret, i; | 
|  | mbedtls_mpi A, E, N, X, Y, U, V; | 
|  |  | 
|  | mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X); | 
|  | mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16, | 
|  | "EFE021C2645FD1DC586E69184AF4A31E" \ | 
|  | "D5F53E93B5F123FA41680867BA110131" \ | 
|  | "944FE7952E2517337780CB0DB80E61AA" \ | 
|  | "E7C8DDC6C5C6AADEB34EB38A2F40D5E6")); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16, | 
|  | "B2E7EFD37075B9F03FF989C7C5051C20" \ | 
|  | "34D2A323810251127E7BF8625A4F49A5" \ | 
|  | "F3E27F4DA8BD59C47D6DAABA4C8127BD" \ | 
|  | "5B5C25763222FEFCCFC38B832366C29E")); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16, | 
|  | "0066A198186C18C10B2F5ED9B522752A" \ | 
|  | "9830B69916E535C8F047518A889A43A5" \ | 
|  | "94B6BED27A168D31D4A52F88925AA8F5")); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, | 
|  | "602AB7ECA597A3D6B56FF9829A5E8B85" \ | 
|  | "9E857EA95A03512E2BAE7391688D264A" \ | 
|  | "A5663B0341DB9CCFD2C4C5F421FEC814" \ | 
|  | "8001B72E848A38CAE1C65F78E56ABDEF" \ | 
|  | "E12D3C039B8A02D6BE593F0BBBDA56F1" \ | 
|  | "ECF677152EF804370C1A305CAF3B5BF1" \ | 
|  | "30879B56C61DE584A0F53A2447A51E")); | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("  MPI test #1 (mul_mpi): "); | 
|  | } | 
|  |  | 
|  | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed\n"); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("passed\n"); | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, | 
|  | "256567336059E52CAE22925474705F39A94")); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16, | 
|  | "6613F26162223DF488E9CD48CC132C7A" \ | 
|  | "0AC93C701B001B092E4E5B9F73BCD27B" \ | 
|  | "9EE50D0657C77F374E903CDFA4C642")); | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("  MPI test #2 (div_mpi): "); | 
|  | } | 
|  |  | 
|  | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 || | 
|  | mbedtls_mpi_cmp_mpi(&Y, &V) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed\n"); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("passed\n"); | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, | 
|  | "36E139AEA55215609D2816998ED020BB" \ | 
|  | "BD96C37890F65171D948E9BC7CBAA4D9" \ | 
|  | "325D24D6A3C12710F10A09FA08AB87")); | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("  MPI test #3 (exp_mod): "); | 
|  | } | 
|  |  | 
|  | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed\n"); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("passed\n"); | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N)); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, | 
|  | "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \ | 
|  | "C3DBA76456363A10869622EAC2DD84EC" \ | 
|  | "C5B8A74DAC4D09E03B5E0BE779F2DF61")); | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("  MPI test #4 (inv_mod): "); | 
|  | } | 
|  |  | 
|  | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed\n"); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("passed\n"); | 
|  | } | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("  MPI test #5 (simple gcd): "); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < GCD_PAIR_COUNT; i++) { | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0])); | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1])); | 
|  |  | 
|  | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y)); | 
|  |  | 
|  | if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) { | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("failed at %d\n", i); | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("passed\n"); | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | if (ret != 0 && verbose != 0) { | 
|  | mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret); | 
|  | } | 
|  |  | 
|  | mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X); | 
|  | mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V); | 
|  |  | 
|  | if (verbose != 0) { | 
|  | mbedtls_printf("\n"); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif /* MBEDTLS_SELF_TEST */ | 
|  |  | 
|  | #endif /* MBEDTLS_BIGNUM_C */ |