|  | /* | 
|  | *  AES-NI support functions | 
|  | * | 
|  | *  Copyright The Mbed TLS Contributors | 
|  | *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html | 
|  | * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html | 
|  | */ | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | #if defined(MBEDTLS_AESNI_C) | 
|  |  | 
|  | #include "aesni.h" | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #if defined(MBEDTLS_AESNI_HAVE_CODE) | 
|  |  | 
|  | #if MBEDTLS_AESNI_HAVE_CODE == 2 | 
|  | #if defined(__GNUC__) | 
|  | #include <cpuid.h> | 
|  | #elif defined(_MSC_VER) | 
|  | #include <intrin.h> | 
|  | #else | 
|  | #error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler" | 
|  | #endif | 
|  | #include <immintrin.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(MBEDTLS_ARCH_IS_X86) | 
|  | #if defined(MBEDTLS_COMPILER_IS_GCC) | 
|  | #pragma GCC push_options | 
|  | #pragma GCC target ("pclmul,sse2,aes") | 
|  | #define MBEDTLS_POP_TARGET_PRAGMA | 
|  | #elif defined(__clang__) | 
|  | #pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function) | 
|  | #define MBEDTLS_POP_TARGET_PRAGMA | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) | 
|  | /* | 
|  | * AES-NI support detection routine | 
|  | */ | 
|  | int mbedtls_aesni_has_support(unsigned int what) | 
|  | { | 
|  | static int done = 0; | 
|  | static unsigned int c = 0; | 
|  |  | 
|  | if (!done) { | 
|  | #if MBEDTLS_AESNI_HAVE_CODE == 2 | 
|  | static int info[4] = { 0, 0, 0, 0 }; | 
|  | #if defined(_MSC_VER) | 
|  | __cpuid(info, 1); | 
|  | #else | 
|  | __cpuid(1, info[0], info[1], info[2], info[3]); | 
|  | #endif | 
|  | c = info[2]; | 
|  | #else /* AESNI using asm */ | 
|  | asm ("movl  $1, %%eax   \n\t" | 
|  | "cpuid             \n\t" | 
|  | : "=c" (c) | 
|  | : | 
|  | : "eax", "ebx", "edx"); | 
|  | #endif /* MBEDTLS_AESNI_HAVE_CODE */ | 
|  | done = 1; | 
|  | } | 
|  |  | 
|  | return (c & what) != 0; | 
|  | } | 
|  | #endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */ | 
|  |  | 
|  | #if MBEDTLS_AESNI_HAVE_CODE == 2 | 
|  |  | 
|  | /* | 
|  | * AES-NI AES-ECB block en(de)cryption | 
|  | */ | 
|  | int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, | 
|  | int mode, | 
|  | const unsigned char input[16], | 
|  | unsigned char output[16]) | 
|  | { | 
|  | const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset); | 
|  | unsigned nr = ctx->nr; // Number of remaining rounds | 
|  |  | 
|  | // Load round key 0 | 
|  | __m128i state; | 
|  | memcpy(&state, input, 16); | 
|  | state = _mm_xor_si128(state, rk[0]);  // state ^= *rk; | 
|  | ++rk; | 
|  | --nr; | 
|  |  | 
|  | if (mode == 0) { | 
|  | while (nr != 0) { | 
|  | state = _mm_aesdec_si128(state, *rk); | 
|  | ++rk; | 
|  | --nr; | 
|  | } | 
|  | state = _mm_aesdeclast_si128(state, *rk); | 
|  | } else { | 
|  | while (nr != 0) { | 
|  | state = _mm_aesenc_si128(state, *rk); | 
|  | ++rk; | 
|  | --nr; | 
|  | } | 
|  | state = _mm_aesenclast_si128(state, *rk); | 
|  | } | 
|  |  | 
|  | memcpy(output, &state, 16); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * GCM multiplication: c = a times b in GF(2^128) | 
|  | * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. | 
|  | */ | 
|  |  | 
|  | static void gcm_clmul(const __m128i aa, const __m128i bb, | 
|  | __m128i *cc, __m128i *dd) | 
|  | { | 
|  | /* | 
|  | * Caryless multiplication dd:cc = aa * bb | 
|  | * using [CLMUL-WP] algorithm 1 (p. 12). | 
|  | */ | 
|  | *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0 | 
|  | *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0 | 
|  | __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0 | 
|  | __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0 | 
|  | ff = _mm_xor_si128(ff, ee);                      // e1+f1:e0+f0 | 
|  | ee = ff;                                         // e1+f1:e0+f0 | 
|  | ff = _mm_srli_si128(ff, 8);                      // 0:e1+f1 | 
|  | ee = _mm_slli_si128(ee, 8);                      // e0+f0:0 | 
|  | *dd = _mm_xor_si128(*dd, ff);                    // d1:d0+e1+f1 | 
|  | *cc = _mm_xor_si128(*cc, ee);                    // c1+e0+f0:c0 | 
|  | } | 
|  |  | 
|  | static void gcm_shift(__m128i *cc, __m128i *dd) | 
|  | { | 
|  | /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left, | 
|  | * taking advantage of [CLMUL-WP] eq 27 (p. 18). */ | 
|  | //                                        // *cc = r1:r0 | 
|  | //                                        // *dd = r3:r2 | 
|  | __m128i cc_lo = _mm_slli_epi64(*cc, 1);   // r1<<1:r0<<1 | 
|  | __m128i dd_lo = _mm_slli_epi64(*dd, 1);   // r3<<1:r2<<1 | 
|  | __m128i cc_hi = _mm_srli_epi64(*cc, 63);  // r1>>63:r0>>63 | 
|  | __m128i dd_hi = _mm_srli_epi64(*dd, 63);  // r3>>63:r2>>63 | 
|  | __m128i xmm5 = _mm_srli_si128(cc_hi, 8);  // 0:r1>>63 | 
|  | cc_hi = _mm_slli_si128(cc_hi, 8);         // r0>>63:0 | 
|  | dd_hi = _mm_slli_si128(dd_hi, 8);         // 0:r1>>63 | 
|  |  | 
|  | *cc = _mm_or_si128(cc_lo, cc_hi);         // r1<<1|r0>>63:r0<<1 | 
|  | *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63 | 
|  | } | 
|  |  | 
|  | static __m128i gcm_reduce(__m128i xx) | 
|  | { | 
|  | //                                            // xx = x1:x0 | 
|  | /* [CLMUL-WP] Algorithm 5 Step 2 */ | 
|  | __m128i aa = _mm_slli_epi64(xx, 63);          // x1<<63:x0<<63 = stuff:a | 
|  | __m128i bb = _mm_slli_epi64(xx, 62);          // x1<<62:x0<<62 = stuff:b | 
|  | __m128i cc = _mm_slli_epi64(xx, 57);          // x1<<57:x0<<57 = stuff:c | 
|  | __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0 | 
|  | return _mm_xor_si128(dd, xx);                 // x1+a+b+c:x0 = d:x0 | 
|  | } | 
|  |  | 
|  | static __m128i gcm_mix(__m128i dx) | 
|  | { | 
|  | /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */ | 
|  | __m128i ee = _mm_srli_epi64(dx, 1);           // e1:x0>>1 = e1:e0' | 
|  | __m128i ff = _mm_srli_epi64(dx, 2);           // f1:x0>>2 = f1:f0' | 
|  | __m128i gg = _mm_srli_epi64(dx, 7);           // g1:x0>>7 = g1:g0' | 
|  |  | 
|  | // e0'+f0'+g0' is almost e0+f0+g0, except for some missing | 
|  | // bits carried from d. Now get those bits back in. | 
|  | __m128i eh = _mm_slli_epi64(dx, 63);          // d<<63:stuff | 
|  | __m128i fh = _mm_slli_epi64(dx, 62);          // d<<62:stuff | 
|  | __m128i gh = _mm_slli_epi64(dx, 57);          // d<<57:stuff | 
|  | __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d | 
|  |  | 
|  | return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx); | 
|  | } | 
|  |  | 
|  | void mbedtls_aesni_gcm_mult(unsigned char c[16], | 
|  | const unsigned char a[16], | 
|  | const unsigned char b[16]) | 
|  | { | 
|  | __m128i aa = { 0 }, bb = { 0 }, cc, dd; | 
|  |  | 
|  | /* The inputs are in big-endian order, so byte-reverse them */ | 
|  | for (size_t i = 0; i < 16; i++) { | 
|  | ((uint8_t *) &aa)[i] = a[15 - i]; | 
|  | ((uint8_t *) &bb)[i] = b[15 - i]; | 
|  | } | 
|  |  | 
|  | gcm_clmul(aa, bb, &cc, &dd); | 
|  | gcm_shift(&cc, &dd); | 
|  | /* | 
|  | * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 | 
|  | * using [CLMUL-WP] algorithm 5 (p. 18). | 
|  | * Currently dd:cc holds x3:x2:x1:x0 (already shifted). | 
|  | */ | 
|  | __m128i dx = gcm_reduce(cc); | 
|  | __m128i xh = gcm_mix(dx); | 
|  | cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0 | 
|  |  | 
|  | /* Now byte-reverse the outputs */ | 
|  | for (size_t i = 0; i < 16; i++) { | 
|  | c[i] = ((uint8_t *) &cc)[15 - i]; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute decryption round keys from encryption round keys | 
|  | */ | 
|  | void mbedtls_aesni_inverse_key(unsigned char *invkey, | 
|  | const unsigned char *fwdkey, int nr) | 
|  | { | 
|  | __m128i *ik = (__m128i *) invkey; | 
|  | const __m128i *fk = (const __m128i *) fwdkey + nr; | 
|  |  | 
|  | *ik = *fk; | 
|  | for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) { | 
|  | *ik = _mm_aesimc_si128(*fk); | 
|  | } | 
|  | *ik = *fk; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Key expansion, 128-bit case | 
|  | */ | 
|  | static __m128i aesni_set_rk_128(__m128i state, __m128i xword) | 
|  | { | 
|  | /* | 
|  | * Finish generating the next round key. | 
|  | * | 
|  | * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff | 
|  | * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST). | 
|  | * | 
|  | * On exit, xword is r7:r6:r5:r4 | 
|  | * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 | 
|  | * and this is returned, to be written to the round key buffer. | 
|  | */ | 
|  | xword = _mm_shuffle_epi32(xword, 0xff);   // X:X:X:X | 
|  | xword = _mm_xor_si128(xword, state);      // X+r3:X+r2:X+r1:r4 | 
|  | state = _mm_slli_si128(state, 4);         // r2:r1:r0:0 | 
|  | xword = _mm_xor_si128(xword, state);      // X+r3+r2:X+r2+r1:r5:r4 | 
|  | state = _mm_slli_si128(state, 4);         // r1:r0:0:0 | 
|  | xword = _mm_xor_si128(xword, state);      // X+r3+r2+r1:r6:r5:r4 | 
|  | state = _mm_slli_si128(state, 4);         // r0:0:0:0 | 
|  | state = _mm_xor_si128(xword, state);      // r7:r6:r5:r4 | 
|  | return state; | 
|  | } | 
|  |  | 
|  | static void aesni_setkey_enc_128(unsigned char *rk_bytes, | 
|  | const unsigned char *key) | 
|  | { | 
|  | __m128i *rk = (__m128i *) rk_bytes; | 
|  |  | 
|  | memcpy(&rk[0], key, 16); | 
|  | rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01)); | 
|  | rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02)); | 
|  | rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04)); | 
|  | rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08)); | 
|  | rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10)); | 
|  | rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20)); | 
|  | rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40)); | 
|  | rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80)); | 
|  | rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B)); | 
|  | rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Key expansion, 192-bit case | 
|  | */ | 
|  | #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) | 
|  | static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword, | 
|  | unsigned char *rk) | 
|  | { | 
|  | /* | 
|  | * Finish generating the next 6 quarter-keys. | 
|  | * | 
|  | * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4 | 
|  | * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON | 
|  | * (obtained with AESKEYGENASSIST). | 
|  | * | 
|  | * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10 | 
|  | * and those are written to the round key buffer. | 
|  | */ | 
|  | xword = _mm_shuffle_epi32(xword, 0x55);   // X:X:X:X | 
|  | xword = _mm_xor_si128(xword, *state0);    // X+r3:X+r2:X+r1:X+r0 | 
|  | *state0 = _mm_slli_si128(*state0, 4);     // r2:r1:r0:0 | 
|  | xword = _mm_xor_si128(xword, *state0);    // X+r3+r2:X+r2+r1:X+r1+r0:X+r0 | 
|  | *state0 = _mm_slli_si128(*state0, 4);     // r1:r0:0:0 | 
|  | xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0 | 
|  | *state0 = _mm_slli_si128(*state0, 4);     // r0:0:0:0 | 
|  | xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0 | 
|  | *state0 = xword;                          // = r9:r8:r7:r6 | 
|  |  | 
|  | xword = _mm_shuffle_epi32(xword, 0xff);   // r9:r9:r9:r9 | 
|  | xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5:r9+r4 | 
|  | *state1 = _mm_slli_si128(*state1, 4);     // stuff:stuff:r4:0 | 
|  | xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5+r4:r9+r4 | 
|  | *state1 = xword;                          // = stuff:stuff:r11:r10 | 
|  |  | 
|  | /* Store state0 and the low half of state1 into rk, which is conceptually | 
|  | * an array of 24-byte elements. Since 24 is not a multiple of 16, | 
|  | * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */ | 
|  | memcpy(rk, state0, 16); | 
|  | memcpy(rk + 16, state1, 8); | 
|  | } | 
|  |  | 
|  | static void aesni_setkey_enc_192(unsigned char *rk, | 
|  | const unsigned char *key) | 
|  | { | 
|  | /* First round: use original key */ | 
|  | memcpy(rk, key, 24); | 
|  | /* aes.c guarantees that rk is aligned on a 16-byte boundary. */ | 
|  | __m128i state0 = ((__m128i *) rk)[0]; | 
|  | __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1); | 
|  |  | 
|  | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1); | 
|  | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2); | 
|  | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3); | 
|  | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4); | 
|  | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5); | 
|  | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6); | 
|  | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7); | 
|  | aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8); | 
|  | } | 
|  | #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ | 
|  |  | 
|  | /* | 
|  | * Key expansion, 256-bit case | 
|  | */ | 
|  | #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) | 
|  | static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword, | 
|  | __m128i *rk0, __m128i *rk1) | 
|  | { | 
|  | /* | 
|  | * Finish generating the next two round keys. | 
|  | * | 
|  | * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and | 
|  | * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON | 
|  | * (obtained with AESKEYGENASSIST). | 
|  | * | 
|  | * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12 | 
|  | */ | 
|  | xword = _mm_shuffle_epi32(xword, 0xff); | 
|  | xword = _mm_xor_si128(xword, state0); | 
|  | state0 = _mm_slli_si128(state0, 4); | 
|  | xword = _mm_xor_si128(xword, state0); | 
|  | state0 = _mm_slli_si128(state0, 4); | 
|  | xword = _mm_xor_si128(xword, state0); | 
|  | state0 = _mm_slli_si128(state0, 4); | 
|  | state0 = _mm_xor_si128(state0, xword); | 
|  | *rk0 = state0; | 
|  |  | 
|  | /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 ) | 
|  | * and proceed to generate next round key from there */ | 
|  | xword = _mm_aeskeygenassist_si128(state0, 0x00); | 
|  | xword = _mm_shuffle_epi32(xword, 0xaa); | 
|  | xword = _mm_xor_si128(xword, state1); | 
|  | state1 = _mm_slli_si128(state1, 4); | 
|  | xword = _mm_xor_si128(xword, state1); | 
|  | state1 = _mm_slli_si128(state1, 4); | 
|  | xword = _mm_xor_si128(xword, state1); | 
|  | state1 = _mm_slli_si128(state1, 4); | 
|  | state1 = _mm_xor_si128(state1, xword); | 
|  | *rk1 = state1; | 
|  | } | 
|  |  | 
|  | static void aesni_setkey_enc_256(unsigned char *rk_bytes, | 
|  | const unsigned char *key) | 
|  | { | 
|  | __m128i *rk = (__m128i *) rk_bytes; | 
|  |  | 
|  | memcpy(&rk[0], key, 16); | 
|  | memcpy(&rk[1], key + 16, 16); | 
|  |  | 
|  | /* | 
|  | * Main "loop" - Generating one more key than necessary, | 
|  | * see definition of mbedtls_aes_context.buf | 
|  | */ | 
|  | aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]); | 
|  | aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]); | 
|  | aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]); | 
|  | aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]); | 
|  | aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]); | 
|  | aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]); | 
|  | aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]); | 
|  | } | 
|  | #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ | 
|  |  | 
|  | #if defined(MBEDTLS_POP_TARGET_PRAGMA) | 
|  | #if defined(__clang__) | 
|  | #pragma clang attribute pop | 
|  | #elif defined(__GNUC__) | 
|  | #pragma GCC pop_options | 
|  | #endif | 
|  | #undef MBEDTLS_POP_TARGET_PRAGMA | 
|  | #endif | 
|  |  | 
|  | #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */ | 
|  |  | 
|  | #if defined(__has_feature) | 
|  | #if __has_feature(memory_sanitizer) | 
|  | #warning \ | 
|  | "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code." | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Binutils needs to be at least 2.19 to support AES-NI instructions. | 
|  | * Unfortunately, a lot of users have a lower version now (2014-04). | 
|  | * Emit bytecode directly in order to support "old" version of gas. | 
|  | * | 
|  | * Opcodes from the Intel architecture reference manual, vol. 3. | 
|  | * We always use registers, so we don't need prefixes for memory operands. | 
|  | * Operand macros are in gas order (src, dst) as opposed to Intel order | 
|  | * (dst, src) in order to blend better into the surrounding assembly code. | 
|  | */ | 
|  | #define AESDEC(regs)      ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t" | 
|  | #define AESDECLAST(regs)  ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t" | 
|  | #define AESENC(regs)      ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t" | 
|  | #define AESENCLAST(regs)  ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t" | 
|  | #define AESIMC(regs)      ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t" | 
|  | #define AESKEYGENA(regs, imm)  ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t" | 
|  | #define PCLMULQDQ(regs, imm)   ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t" | 
|  |  | 
|  | #define xmm0_xmm0   "0xC0" | 
|  | #define xmm0_xmm1   "0xC8" | 
|  | #define xmm0_xmm2   "0xD0" | 
|  | #define xmm0_xmm3   "0xD8" | 
|  | #define xmm0_xmm4   "0xE0" | 
|  | #define xmm1_xmm0   "0xC1" | 
|  | #define xmm1_xmm2   "0xD1" | 
|  |  | 
|  | /* | 
|  | * AES-NI AES-ECB block en(de)cryption | 
|  | */ | 
|  | int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, | 
|  | int mode, | 
|  | const unsigned char input[16], | 
|  | unsigned char output[16]) | 
|  | { | 
|  | asm ("movdqu    (%3), %%xmm0    \n\t" // load input | 
|  | "movdqu    (%1), %%xmm1    \n\t" // load round key 0 | 
|  | "pxor      %%xmm1, %%xmm0  \n\t" // round 0 | 
|  | "add       $16, %1         \n\t" // point to next round key | 
|  | "subl      $1, %0          \n\t" // normal rounds = nr - 1 | 
|  | "test      %2, %2          \n\t" // mode? | 
|  | "jz        2f              \n\t" // 0 = decrypt | 
|  |  | 
|  | "1:                        \n\t" // encryption loop | 
|  | "movdqu    (%1), %%xmm1    \n\t" // load round key | 
|  | AESENC(xmm1_xmm0)                // do round | 
|  | "add       $16, %1         \n\t" // point to next round key | 
|  | "subl      $1, %0          \n\t" // loop | 
|  | "jnz       1b              \n\t" | 
|  | "movdqu    (%1), %%xmm1    \n\t" // load round key | 
|  | AESENCLAST(xmm1_xmm0)            // last round | 
|  | "jmp       3f              \n\t" | 
|  |  | 
|  | "2:                        \n\t" // decryption loop | 
|  | "movdqu    (%1), %%xmm1    \n\t" | 
|  | AESDEC(xmm1_xmm0)                // do round | 
|  | "add       $16, %1         \n\t" | 
|  | "subl      $1, %0          \n\t" | 
|  | "jnz       2b              \n\t" | 
|  | "movdqu    (%1), %%xmm1    \n\t" // load round key | 
|  | AESDECLAST(xmm1_xmm0)            // last round | 
|  |  | 
|  | "3:                        \n\t" | 
|  | "movdqu    %%xmm0, (%4)    \n\t" // export output | 
|  | : | 
|  | : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output) | 
|  | : "memory", "cc", "xmm0", "xmm1"); | 
|  |  | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * GCM multiplication: c = a times b in GF(2^128) | 
|  | * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. | 
|  | */ | 
|  | void mbedtls_aesni_gcm_mult(unsigned char c[16], | 
|  | const unsigned char a[16], | 
|  | const unsigned char b[16]) | 
|  | { | 
|  | unsigned char aa[16], bb[16], cc[16]; | 
|  | size_t i; | 
|  |  | 
|  | /* The inputs are in big-endian order, so byte-reverse them */ | 
|  | for (i = 0; i < 16; i++) { | 
|  | aa[i] = a[15 - i]; | 
|  | bb[i] = b[15 - i]; | 
|  | } | 
|  |  | 
|  | asm ("movdqu (%0), %%xmm0               \n\t" // a1:a0 | 
|  | "movdqu (%1), %%xmm1               \n\t" // b1:b0 | 
|  |  | 
|  | /* | 
|  | * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1 | 
|  | * using [CLMUL-WP] algorithm 1 (p. 12). | 
|  | */ | 
|  | "movdqa %%xmm1, %%xmm2             \n\t" // copy of b1:b0 | 
|  | "movdqa %%xmm1, %%xmm3             \n\t" // same | 
|  | "movdqa %%xmm1, %%xmm4             \n\t" // same | 
|  | PCLMULQDQ(xmm0_xmm1, "0x00")             // a0*b0 = c1:c0 | 
|  | PCLMULQDQ(xmm0_xmm2, "0x11")             // a1*b1 = d1:d0 | 
|  | PCLMULQDQ(xmm0_xmm3, "0x10")             // a0*b1 = e1:e0 | 
|  | PCLMULQDQ(xmm0_xmm4, "0x01")             // a1*b0 = f1:f0 | 
|  | "pxor %%xmm3, %%xmm4               \n\t" // e1+f1:e0+f0 | 
|  | "movdqa %%xmm4, %%xmm3             \n\t" // same | 
|  | "psrldq $8, %%xmm4                 \n\t" // 0:e1+f1 | 
|  | "pslldq $8, %%xmm3                 \n\t" // e0+f0:0 | 
|  | "pxor %%xmm4, %%xmm2               \n\t" // d1:d0+e1+f1 | 
|  | "pxor %%xmm3, %%xmm1               \n\t" // c1+e0+f1:c0 | 
|  |  | 
|  | /* | 
|  | * Now shift the result one bit to the left, | 
|  | * taking advantage of [CLMUL-WP] eq 27 (p. 18) | 
|  | */ | 
|  | "movdqa %%xmm1, %%xmm3             \n\t" // r1:r0 | 
|  | "movdqa %%xmm2, %%xmm4             \n\t" // r3:r2 | 
|  | "psllq $1, %%xmm1                  \n\t" // r1<<1:r0<<1 | 
|  | "psllq $1, %%xmm2                  \n\t" // r3<<1:r2<<1 | 
|  | "psrlq $63, %%xmm3                 \n\t" // r1>>63:r0>>63 | 
|  | "psrlq $63, %%xmm4                 \n\t" // r3>>63:r2>>63 | 
|  | "movdqa %%xmm3, %%xmm5             \n\t" // r1>>63:r0>>63 | 
|  | "pslldq $8, %%xmm3                 \n\t" // r0>>63:0 | 
|  | "pslldq $8, %%xmm4                 \n\t" // r2>>63:0 | 
|  | "psrldq $8, %%xmm5                 \n\t" // 0:r1>>63 | 
|  | "por %%xmm3, %%xmm1                \n\t" // r1<<1|r0>>63:r0<<1 | 
|  | "por %%xmm4, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1 | 
|  | "por %%xmm5, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1|r1>>63 | 
|  |  | 
|  | /* | 
|  | * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1 | 
|  | * using [CLMUL-WP] algorithm 5 (p. 18). | 
|  | * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted). | 
|  | */ | 
|  | /* Step 2 (1) */ | 
|  | "movdqa %%xmm1, %%xmm3             \n\t" // x1:x0 | 
|  | "movdqa %%xmm1, %%xmm4             \n\t" // same | 
|  | "movdqa %%xmm1, %%xmm5             \n\t" // same | 
|  | "psllq $63, %%xmm3                 \n\t" // x1<<63:x0<<63 = stuff:a | 
|  | "psllq $62, %%xmm4                 \n\t" // x1<<62:x0<<62 = stuff:b | 
|  | "psllq $57, %%xmm5                 \n\t" // x1<<57:x0<<57 = stuff:c | 
|  |  | 
|  | /* Step 2 (2) */ | 
|  | "pxor %%xmm4, %%xmm3               \n\t" // stuff:a+b | 
|  | "pxor %%xmm5, %%xmm3               \n\t" // stuff:a+b+c | 
|  | "pslldq $8, %%xmm3                 \n\t" // a+b+c:0 | 
|  | "pxor %%xmm3, %%xmm1               \n\t" // x1+a+b+c:x0 = d:x0 | 
|  |  | 
|  | /* Steps 3 and 4 */ | 
|  | "movdqa %%xmm1,%%xmm0              \n\t" // d:x0 | 
|  | "movdqa %%xmm1,%%xmm4              \n\t" // same | 
|  | "movdqa %%xmm1,%%xmm5              \n\t" // same | 
|  | "psrlq $1, %%xmm0                  \n\t" // e1:x0>>1 = e1:e0' | 
|  | "psrlq $2, %%xmm4                  \n\t" // f1:x0>>2 = f1:f0' | 
|  | "psrlq $7, %%xmm5                  \n\t" // g1:x0>>7 = g1:g0' | 
|  | "pxor %%xmm4, %%xmm0               \n\t" // e1+f1:e0'+f0' | 
|  | "pxor %%xmm5, %%xmm0               \n\t" // e1+f1+g1:e0'+f0'+g0' | 
|  | // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing | 
|  | // bits carried from d. Now get those\t bits back in. | 
|  | "movdqa %%xmm1,%%xmm3              \n\t" // d:x0 | 
|  | "movdqa %%xmm1,%%xmm4              \n\t" // same | 
|  | "movdqa %%xmm1,%%xmm5              \n\t" // same | 
|  | "psllq $63, %%xmm3                 \n\t" // d<<63:stuff | 
|  | "psllq $62, %%xmm4                 \n\t" // d<<62:stuff | 
|  | "psllq $57, %%xmm5                 \n\t" // d<<57:stuff | 
|  | "pxor %%xmm4, %%xmm3               \n\t" // d<<63+d<<62:stuff | 
|  | "pxor %%xmm5, %%xmm3               \n\t" // missing bits of d:stuff | 
|  | "psrldq $8, %%xmm3                 \n\t" // 0:missing bits of d | 
|  | "pxor %%xmm3, %%xmm0               \n\t" // e1+f1+g1:e0+f0+g0 | 
|  | "pxor %%xmm1, %%xmm0               \n\t" // h1:h0 | 
|  | "pxor %%xmm2, %%xmm0               \n\t" // x3+h1:x2+h0 | 
|  |  | 
|  | "movdqu %%xmm0, (%2)               \n\t" // done | 
|  | : | 
|  | : "r" (aa), "r" (bb), "r" (cc) | 
|  | : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5"); | 
|  |  | 
|  | /* Now byte-reverse the outputs */ | 
|  | for (i = 0; i < 16; i++) { | 
|  | c[i] = cc[15 - i]; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute decryption round keys from encryption round keys | 
|  | */ | 
|  | void mbedtls_aesni_inverse_key(unsigned char *invkey, | 
|  | const unsigned char *fwdkey, int nr) | 
|  | { | 
|  | unsigned char *ik = invkey; | 
|  | const unsigned char *fk = fwdkey + 16 * nr; | 
|  |  | 
|  | memcpy(ik, fk, 16); | 
|  |  | 
|  | for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) { | 
|  | asm ("movdqu (%0), %%xmm0       \n\t" | 
|  | AESIMC(xmm0_xmm0) | 
|  | "movdqu %%xmm0, (%1)       \n\t" | 
|  | : | 
|  | : "r" (fk), "r" (ik) | 
|  | : "memory", "xmm0"); | 
|  | } | 
|  |  | 
|  | memcpy(ik, fk, 16); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Key expansion, 128-bit case | 
|  | */ | 
|  | static void aesni_setkey_enc_128(unsigned char *rk, | 
|  | const unsigned char *key) | 
|  | { | 
|  | asm ("movdqu (%1), %%xmm0               \n\t" // copy the original key | 
|  | "movdqu %%xmm0, (%0)               \n\t" // as round key 0 | 
|  | "jmp 2f                            \n\t" // skip auxiliary routine | 
|  |  | 
|  | /* | 
|  | * Finish generating the next round key. | 
|  | * | 
|  | * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff | 
|  | * with X = rot( sub( r3 ) ) ^ RCON. | 
|  | * | 
|  | * On exit, xmm0 is r7:r6:r5:r4 | 
|  | * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3 | 
|  | * and those are written to the round key buffer. | 
|  | */ | 
|  | "1:                                \n\t" | 
|  | "pshufd $0xff, %%xmm1, %%xmm1      \n\t" // X:X:X:X | 
|  | "pxor %%xmm0, %%xmm1               \n\t" // X+r3:X+r2:X+r1:r4 | 
|  | "pslldq $4, %%xmm0                 \n\t" // r2:r1:r0:0 | 
|  | "pxor %%xmm0, %%xmm1               \n\t" // X+r3+r2:X+r2+r1:r5:r4 | 
|  | "pslldq $4, %%xmm0                 \n\t" // etc | 
|  | "pxor %%xmm0, %%xmm1               \n\t" | 
|  | "pslldq $4, %%xmm0                 \n\t" | 
|  | "pxor %%xmm1, %%xmm0               \n\t" // update xmm0 for next time! | 
|  | "add $16, %0                       \n\t" // point to next round key | 
|  | "movdqu %%xmm0, (%0)               \n\t" // write it | 
|  | "ret                               \n\t" | 
|  |  | 
|  | /* Main "loop" */ | 
|  | "2:                                \n\t" | 
|  | AESKEYGENA(xmm0_xmm1, "0x01")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm0_xmm1, "0x02")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm0_xmm1, "0x04")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm0_xmm1, "0x08")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm0_xmm1, "0x10")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm0_xmm1, "0x20")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm0_xmm1, "0x40")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm0_xmm1, "0x80")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm0_xmm1, "0x1B")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm0_xmm1, "0x36")      "call 1b \n\t" | 
|  | : | 
|  | : "r" (rk), "r" (key) | 
|  | : "memory", "cc", "0"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Key expansion, 192-bit case | 
|  | */ | 
|  | #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) | 
|  | static void aesni_setkey_enc_192(unsigned char *rk, | 
|  | const unsigned char *key) | 
|  | { | 
|  | asm ("movdqu (%1), %%xmm0   \n\t" // copy original round key | 
|  | "movdqu %%xmm0, (%0)   \n\t" | 
|  | "add $16, %0           \n\t" | 
|  | "movq 16(%1), %%xmm1   \n\t" | 
|  | "movq %%xmm1, (%0)     \n\t" | 
|  | "add $8, %0            \n\t" | 
|  | "jmp 2f                \n\t" // skip auxiliary routine | 
|  |  | 
|  | /* | 
|  | * Finish generating the next 6 quarter-keys. | 
|  | * | 
|  | * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4 | 
|  | * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON. | 
|  | * | 
|  | * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10 | 
|  | * and those are written to the round key buffer. | 
|  | */ | 
|  | "1:                            \n\t" | 
|  | "pshufd $0x55, %%xmm2, %%xmm2  \n\t" // X:X:X:X | 
|  | "pxor %%xmm0, %%xmm2           \n\t" // X+r3:X+r2:X+r1:r4 | 
|  | "pslldq $4, %%xmm0             \n\t" // etc | 
|  | "pxor %%xmm0, %%xmm2           \n\t" | 
|  | "pslldq $4, %%xmm0             \n\t" | 
|  | "pxor %%xmm0, %%xmm2           \n\t" | 
|  | "pslldq $4, %%xmm0             \n\t" | 
|  | "pxor %%xmm2, %%xmm0           \n\t" // update xmm0 = r9:r8:r7:r6 | 
|  | "movdqu %%xmm0, (%0)           \n\t" | 
|  | "add $16, %0                   \n\t" | 
|  | "pshufd $0xff, %%xmm0, %%xmm2  \n\t" // r9:r9:r9:r9 | 
|  | "pxor %%xmm1, %%xmm2           \n\t" // stuff:stuff:r9+r5:r10 | 
|  | "pslldq $4, %%xmm1             \n\t" // r2:r1:r0:0 | 
|  | "pxor %%xmm2, %%xmm1           \n\t" // xmm1 = stuff:stuff:r11:r10 | 
|  | "movq %%xmm1, (%0)             \n\t" | 
|  | "add $8, %0                    \n\t" | 
|  | "ret                           \n\t" | 
|  |  | 
|  | "2:                            \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x01")  "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x02")  "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x04")  "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x08")  "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x10")  "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x20")  "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x40")  "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x80")  "call 1b \n\t" | 
|  |  | 
|  | : | 
|  | : "r" (rk), "r" (key) | 
|  | : "memory", "cc", "0"); | 
|  | } | 
|  | #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ | 
|  |  | 
|  | /* | 
|  | * Key expansion, 256-bit case | 
|  | */ | 
|  | #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) | 
|  | static void aesni_setkey_enc_256(unsigned char *rk, | 
|  | const unsigned char *key) | 
|  | { | 
|  | asm ("movdqu (%1), %%xmm0           \n\t" | 
|  | "movdqu %%xmm0, (%0)           \n\t" | 
|  | "add $16, %0                   \n\t" | 
|  | "movdqu 16(%1), %%xmm1         \n\t" | 
|  | "movdqu %%xmm1, (%0)           \n\t" | 
|  | "jmp 2f                        \n\t" // skip auxiliary routine | 
|  |  | 
|  | /* | 
|  | * Finish generating the next two round keys. | 
|  | * | 
|  | * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and | 
|  | * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON | 
|  | * | 
|  | * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12 | 
|  | * and those have been written to the output buffer. | 
|  | */ | 
|  | "1:                                \n\t" | 
|  | "pshufd $0xff, %%xmm2, %%xmm2      \n\t" | 
|  | "pxor %%xmm0, %%xmm2               \n\t" | 
|  | "pslldq $4, %%xmm0                 \n\t" | 
|  | "pxor %%xmm0, %%xmm2               \n\t" | 
|  | "pslldq $4, %%xmm0                 \n\t" | 
|  | "pxor %%xmm0, %%xmm2               \n\t" | 
|  | "pslldq $4, %%xmm0                 \n\t" | 
|  | "pxor %%xmm2, %%xmm0               \n\t" | 
|  | "add $16, %0                       \n\t" | 
|  | "movdqu %%xmm0, (%0)               \n\t" | 
|  |  | 
|  | /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 ) | 
|  | * and proceed to generate next round key from there */ | 
|  | AESKEYGENA(xmm0_xmm2, "0x00") | 
|  | "pshufd $0xaa, %%xmm2, %%xmm2      \n\t" | 
|  | "pxor %%xmm1, %%xmm2               \n\t" | 
|  | "pslldq $4, %%xmm1                 \n\t" | 
|  | "pxor %%xmm1, %%xmm2               \n\t" | 
|  | "pslldq $4, %%xmm1                 \n\t" | 
|  | "pxor %%xmm1, %%xmm2               \n\t" | 
|  | "pslldq $4, %%xmm1                 \n\t" | 
|  | "pxor %%xmm2, %%xmm1               \n\t" | 
|  | "add $16, %0                       \n\t" | 
|  | "movdqu %%xmm1, (%0)               \n\t" | 
|  | "ret                               \n\t" | 
|  |  | 
|  | /* | 
|  | * Main "loop" - Generating one more key than necessary, | 
|  | * see definition of mbedtls_aes_context.buf | 
|  | */ | 
|  | "2:                                \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x01")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x02")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x04")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x08")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x10")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x20")      "call 1b \n\t" | 
|  | AESKEYGENA(xmm1_xmm2, "0x40")      "call 1b \n\t" | 
|  | : | 
|  | : "r" (rk), "r" (key) | 
|  | : "memory", "cc", "0"); | 
|  | } | 
|  | #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ | 
|  |  | 
|  | #endif  /* MBEDTLS_AESNI_HAVE_CODE */ | 
|  |  | 
|  | /* | 
|  | * Key expansion, wrapper | 
|  | */ | 
|  | int mbedtls_aesni_setkey_enc(unsigned char *rk, | 
|  | const unsigned char *key, | 
|  | size_t bits) | 
|  | { | 
|  | switch (bits) { | 
|  | case 128: aesni_setkey_enc_128(rk, key); break; | 
|  | #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) | 
|  | case 192: aesni_setkey_enc_192(rk, key); break; | 
|  | case 256: aesni_setkey_enc_256(rk, key); break; | 
|  | #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ | 
|  | default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* MBEDTLS_AESNI_HAVE_CODE */ | 
|  |  | 
|  | #endif /* MBEDTLS_AESNI_C */ |