| /* |
| * Core bignum functions |
| * |
| * Copyright The Mbed TLS Contributors |
| * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later |
| */ |
| |
| #include "common.h" |
| |
| #if defined(MBEDTLS_BIGNUM_C) |
| |
| #include <string.h> |
| |
| #include "mbedtls/error.h" |
| #include "mbedtls/platform_util.h" |
| #include "constant_time_internal.h" |
| |
| #include "mbedtls/platform.h" |
| |
| #include "bignum_core.h" |
| #include "bignum_core_invasive.h" |
| #include "bn_mul.h" |
| #include "constant_time_internal.h" |
| |
| size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a) |
| { |
| #if defined(__has_builtin) |
| #if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_clz) |
| #define core_clz __builtin_clz |
| #elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_clzl) |
| #define core_clz __builtin_clzl |
| #elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_clzll) |
| #define core_clz __builtin_clzll |
| #endif |
| #endif |
| #if defined(core_clz) |
| return (size_t) core_clz(a); |
| #else |
| size_t j; |
| mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1); |
| |
| for (j = 0; j < biL; j++) { |
| if (a & mask) { |
| break; |
| } |
| |
| mask >>= 1; |
| } |
| |
| return j; |
| #endif |
| } |
| |
| size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs) |
| { |
| int i; |
| size_t j; |
| |
| for (i = ((int) A_limbs) - 1; i >= 0; i--) { |
| if (A[i] != 0) { |
| j = biL - mbedtls_mpi_core_clz(A[i]); |
| return (i * biL) + j; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a) |
| { |
| if (MBEDTLS_IS_BIG_ENDIAN) { |
| /* Nothing to do on bigendian systems. */ |
| return a; |
| } else { |
| #if defined(MBEDTLS_HAVE_INT32) |
| return (mbedtls_mpi_uint) MBEDTLS_BSWAP32(a); |
| #elif defined(MBEDTLS_HAVE_INT64) |
| return (mbedtls_mpi_uint) MBEDTLS_BSWAP64(a); |
| #endif |
| } |
| } |
| |
| void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A, |
| size_t A_limbs) |
| { |
| mbedtls_mpi_uint *cur_limb_left; |
| mbedtls_mpi_uint *cur_limb_right; |
| if (A_limbs == 0) { |
| return; |
| } |
| |
| /* |
| * Traverse limbs and |
| * - adapt byte-order in each limb |
| * - swap the limbs themselves. |
| * For that, simultaneously traverse the limbs from left to right |
| * and from right to left, as long as the left index is not bigger |
| * than the right index (it's not a problem if limbs is odd and the |
| * indices coincide in the last iteration). |
| */ |
| for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1); |
| cur_limb_left <= cur_limb_right; |
| cur_limb_left++, cur_limb_right--) { |
| mbedtls_mpi_uint tmp; |
| /* Note that if cur_limb_left == cur_limb_right, |
| * this code effectively swaps the bytes only once. */ |
| tmp = mpi_bigendian_to_host(*cur_limb_left); |
| *cur_limb_left = mpi_bigendian_to_host(*cur_limb_right); |
| *cur_limb_right = tmp; |
| } |
| } |
| |
| /* Whether min <= A, in constant time. |
| * A_limbs must be at least 1. */ |
| mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min, |
| const mbedtls_mpi_uint *A, |
| size_t A_limbs) |
| { |
| /* min <= least significant limb? */ |
| mbedtls_ct_condition_t min_le_lsl = mbedtls_ct_uint_ge(A[0], min); |
| |
| /* limbs other than the least significant one are all zero? */ |
| mbedtls_ct_condition_t msll_mask = MBEDTLS_CT_FALSE; |
| for (size_t i = 1; i < A_limbs; i++) { |
| msll_mask = mbedtls_ct_bool_or(msll_mask, mbedtls_ct_bool(A[i])); |
| } |
| |
| /* min <= A iff the lowest limb of A is >= min or the other limbs |
| * are not all zero. */ |
| return mbedtls_ct_bool_or(msll_mask, min_le_lsl); |
| } |
| |
| mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *B, |
| size_t limbs) |
| { |
| mbedtls_ct_condition_t ret = MBEDTLS_CT_FALSE, cond = MBEDTLS_CT_FALSE, done = MBEDTLS_CT_FALSE; |
| |
| for (size_t i = limbs; i > 0; i--) { |
| /* |
| * If B[i - 1] < A[i - 1] then A < B is false and the result must |
| * remain 0. |
| * |
| * Again even if we can make a decision, we just mark the result and |
| * the fact that we are done and continue looping. |
| */ |
| cond = mbedtls_ct_uint_lt(B[i - 1], A[i - 1]); |
| done = mbedtls_ct_bool_or(done, cond); |
| |
| /* |
| * If A[i - 1] < B[i - 1] then A < B is true. |
| * |
| * Again even if we can make a decision, we just mark the result and |
| * the fact that we are done and continue looping. |
| */ |
| cond = mbedtls_ct_uint_lt(A[i - 1], B[i - 1]); |
| ret = mbedtls_ct_bool_or(ret, mbedtls_ct_bool_and(cond, mbedtls_ct_bool_not(done))); |
| done = mbedtls_ct_bool_or(done, cond); |
| } |
| |
| /* |
| * If all the limbs were equal, then the numbers are equal, A < B is false |
| * and leaving the result 0 is correct. |
| */ |
| |
| return ret; |
| } |
| |
| void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| size_t limbs, |
| mbedtls_ct_condition_t assign) |
| { |
| if (X == A) { |
| return; |
| } |
| |
| /* This function is very performance-sensitive for RSA. For this reason |
| * we have the loop below, instead of calling mbedtls_ct_memcpy_if |
| * (this is more optimal since here we don't have to handle the case where |
| * we copy awkwardly sized data). |
| */ |
| for (size_t i = 0; i < limbs; i++) { |
| X[i] = mbedtls_ct_mpi_uint_if(assign, A[i], X[i]); |
| } |
| } |
| |
| void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X, |
| mbedtls_mpi_uint *Y, |
| size_t limbs, |
| mbedtls_ct_condition_t swap) |
| { |
| if (X == Y) { |
| return; |
| } |
| |
| for (size_t i = 0; i < limbs; i++) { |
| mbedtls_mpi_uint tmp = X[i]; |
| X[i] = mbedtls_ct_mpi_uint_if(swap, Y[i], X[i]); |
| Y[i] = mbedtls_ct_mpi_uint_if(swap, tmp, Y[i]); |
| } |
| } |
| |
| int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X, |
| size_t X_limbs, |
| const unsigned char *input, |
| size_t input_length) |
| { |
| const size_t limbs = CHARS_TO_LIMBS(input_length); |
| |
| if (X_limbs < limbs) { |
| return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
| } |
| |
| if (X != NULL) { |
| memset(X, 0, X_limbs * ciL); |
| |
| for (size_t i = 0; i < input_length; i++) { |
| size_t offset = ((i % ciL) << 3); |
| X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X, |
| size_t X_limbs, |
| const unsigned char *input, |
| size_t input_length) |
| { |
| const size_t limbs = CHARS_TO_LIMBS(input_length); |
| |
| if (X_limbs < limbs) { |
| return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
| } |
| |
| /* If X_limbs is 0, input_length must also be 0 (from previous test). |
| * Nothing to do. */ |
| if (X_limbs == 0) { |
| return 0; |
| } |
| |
| memset(X, 0, X_limbs * ciL); |
| |
| /* memcpy() with (NULL, 0) is undefined behaviour */ |
| if (input_length != 0) { |
| size_t overhead = (X_limbs * ciL) - input_length; |
| unsigned char *Xp = (unsigned char *) X; |
| memcpy(Xp + overhead, input, input_length); |
| } |
| |
| mbedtls_mpi_core_bigendian_to_host(X, X_limbs); |
| |
| return 0; |
| } |
| |
| int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A, |
| size_t A_limbs, |
| unsigned char *output, |
| size_t output_length) |
| { |
| size_t stored_bytes = A_limbs * ciL; |
| size_t bytes_to_copy; |
| |
| if (stored_bytes < output_length) { |
| bytes_to_copy = stored_bytes; |
| } else { |
| bytes_to_copy = output_length; |
| |
| /* The output buffer is smaller than the allocated size of A. |
| * However A may fit if its leading bytes are zero. */ |
| for (size_t i = bytes_to_copy; i < stored_bytes; i++) { |
| if (GET_BYTE(A, i) != 0) { |
| return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
| } |
| } |
| } |
| |
| for (size_t i = 0; i < bytes_to_copy; i++) { |
| output[i] = GET_BYTE(A, i); |
| } |
| |
| if (stored_bytes < output_length) { |
| /* Write trailing 0 bytes */ |
| memset(output + stored_bytes, 0, output_length - stored_bytes); |
| } |
| |
| return 0; |
| } |
| |
| int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X, |
| size_t X_limbs, |
| unsigned char *output, |
| size_t output_length) |
| { |
| size_t stored_bytes; |
| size_t bytes_to_copy; |
| unsigned char *p; |
| |
| stored_bytes = X_limbs * ciL; |
| |
| if (stored_bytes < output_length) { |
| /* There is enough space in the output buffer. Write initial |
| * null bytes and record the position at which to start |
| * writing the significant bytes. In this case, the execution |
| * trace of this function does not depend on the value of the |
| * number. */ |
| bytes_to_copy = stored_bytes; |
| p = output + output_length - stored_bytes; |
| memset(output, 0, output_length - stored_bytes); |
| } else { |
| /* The output buffer is smaller than the allocated size of X. |
| * However X may fit if its leading bytes are zero. */ |
| bytes_to_copy = output_length; |
| p = output; |
| for (size_t i = bytes_to_copy; i < stored_bytes; i++) { |
| if (GET_BYTE(X, i) != 0) { |
| return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
| } |
| } |
| } |
| |
| for (size_t i = 0; i < bytes_to_copy; i++) { |
| p[bytes_to_copy - i - 1] = GET_BYTE(X, i); |
| } |
| |
| return 0; |
| } |
| |
| void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs, |
| size_t count) |
| { |
| size_t i, v0, v1; |
| mbedtls_mpi_uint r0 = 0, r1; |
| |
| v0 = count / biL; |
| v1 = count & (biL - 1); |
| |
| if (v0 > limbs || (v0 == limbs && v1 > 0)) { |
| memset(X, 0, limbs * ciL); |
| return; |
| } |
| |
| /* |
| * shift by count / limb_size |
| */ |
| if (v0 > 0) { |
| for (i = 0; i < limbs - v0; i++) { |
| X[i] = X[i + v0]; |
| } |
| |
| for (; i < limbs; i++) { |
| X[i] = 0; |
| } |
| } |
| |
| /* |
| * shift by count % limb_size |
| */ |
| if (v1 > 0) { |
| for (i = limbs; i > 0; i--) { |
| r1 = X[i - 1] << (biL - v1); |
| X[i - 1] >>= v1; |
| X[i - 1] |= r0; |
| r0 = r1; |
| } |
| } |
| } |
| |
| void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs, |
| size_t count) |
| { |
| size_t i, v0, v1; |
| mbedtls_mpi_uint r0 = 0, r1; |
| |
| v0 = count / (biL); |
| v1 = count & (biL - 1); |
| |
| /* |
| * shift by count / limb_size |
| */ |
| if (v0 > 0) { |
| for (i = limbs; i > v0; i--) { |
| X[i - 1] = X[i - v0 - 1]; |
| } |
| |
| for (; i > 0; i--) { |
| X[i - 1] = 0; |
| } |
| } |
| |
| /* |
| * shift by count % limb_size |
| */ |
| if (v1 > 0) { |
| for (i = v0; i < limbs; i++) { |
| r1 = X[i] >> (biL - v1); |
| X[i] <<= v1; |
| X[i] |= r0; |
| r0 = r1; |
| } |
| } |
| } |
| |
| mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *B, |
| size_t limbs) |
| { |
| mbedtls_mpi_uint c = 0; |
| |
| for (size_t i = 0; i < limbs; i++) { |
| mbedtls_mpi_uint t = c + A[i]; |
| c = (t < A[i]); |
| t += B[i]; |
| c += (t < B[i]); |
| X[i] = t; |
| } |
| |
| return c; |
| } |
| |
| mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| size_t limbs, |
| unsigned cond) |
| { |
| mbedtls_mpi_uint c = 0; |
| |
| mbedtls_ct_condition_t do_add = mbedtls_ct_bool(cond); |
| |
| for (size_t i = 0; i < limbs; i++) { |
| mbedtls_mpi_uint add = mbedtls_ct_mpi_uint_if_else_0(do_add, A[i]); |
| mbedtls_mpi_uint t = c + X[i]; |
| c = (t < X[i]); |
| t += add; |
| c += (t < add); |
| X[i] = t; |
| } |
| |
| return c; |
| } |
| |
| mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *B, |
| size_t limbs) |
| { |
| mbedtls_mpi_uint c = 0; |
| |
| for (size_t i = 0; i < limbs; i++) { |
| mbedtls_mpi_uint z = (A[i] < c); |
| mbedtls_mpi_uint t = A[i] - c; |
| c = (t < B[i]) + z; |
| X[i] = t - B[i]; |
| } |
| |
| return c; |
| } |
| |
| mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len, |
| const mbedtls_mpi_uint *s, size_t s_len, |
| mbedtls_mpi_uint b) |
| { |
| mbedtls_mpi_uint c = 0; /* carry */ |
| /* |
| * It is a documented precondition of this function that d_len >= s_len. |
| * If that's not the case, we swap these round: this turns what would be |
| * a buffer overflow into an incorrect result. |
| */ |
| if (d_len < s_len) { |
| s_len = d_len; |
| } |
| size_t excess_len = d_len - s_len; |
| size_t steps_x8 = s_len / 8; |
| size_t steps_x1 = s_len & 7; |
| |
| while (steps_x8--) { |
| MULADDC_X8_INIT |
| MULADDC_X8_CORE |
| MULADDC_X8_STOP |
| } |
| |
| while (steps_x1--) { |
| MULADDC_X1_INIT |
| MULADDC_X1_CORE |
| MULADDC_X1_STOP |
| } |
| |
| while (excess_len--) { |
| *d += c; |
| c = (*d < c); |
| d++; |
| } |
| |
| return c; |
| } |
| |
| void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, size_t A_limbs, |
| const mbedtls_mpi_uint *B, size_t B_limbs) |
| { |
| memset(X, 0, (A_limbs + B_limbs) * ciL); |
| |
| for (size_t i = 0; i < B_limbs; i++) { |
| (void) mbedtls_mpi_core_mla(X + i, A_limbs + 1, A, A_limbs, B[i]); |
| } |
| } |
| |
| /* |
| * Fast Montgomery initialization (thanks to Tom St Denis). |
| */ |
| mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N) |
| { |
| mbedtls_mpi_uint x = N[0]; |
| |
| x += ((N[0] + 2) & 4) << 1; |
| |
| for (unsigned int i = biL; i >= 8; i /= 2) { |
| x *= (2 - (N[0] * x)); |
| } |
| |
| return ~x + 1; |
| } |
| |
| void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *B, |
| size_t B_limbs, |
| const mbedtls_mpi_uint *N, |
| size_t AN_limbs, |
| mbedtls_mpi_uint mm, |
| mbedtls_mpi_uint *T) |
| { |
| memset(T, 0, (2 * AN_limbs + 1) * ciL); |
| |
| for (size_t i = 0; i < AN_limbs; i++) { |
| /* T = (T + u0*B + u1*N) / 2^biL */ |
| mbedtls_mpi_uint u0 = A[i]; |
| mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm; |
| |
| (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0); |
| (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1); |
| |
| T++; |
| } |
| |
| /* |
| * The result we want is (T >= N) ? T - N : T. |
| * |
| * For better constant-time properties in this function, we always do the |
| * subtraction, with the result in X. |
| * |
| * We also look to see if there was any carry in the final additions in the |
| * loop above. |
| */ |
| |
| mbedtls_mpi_uint carry = T[AN_limbs]; |
| mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs); |
| |
| /* |
| * Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs): |
| * |
| * T can be in one of 3 ranges: |
| * |
| * 1) T < N : (carry, borrow) = (0, 1): we want T |
| * 2) N <= T < R : (carry, borrow) = (0, 0): we want X |
| * 3) T >= R : (carry, borrow) = (1, 1): we want X |
| * |
| * and (carry, borrow) = (1, 0) can't happen. |
| * |
| * So the correct return value is already in X if (carry ^ borrow) = 0, |
| * but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1. |
| */ |
| mbedtls_ct_memcpy_if(mbedtls_ct_bool(carry ^ borrow), |
| (unsigned char *) X, |
| (unsigned char *) T, |
| NULL, |
| AN_limbs * sizeof(mbedtls_mpi_uint)); |
| } |
| |
| int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X, |
| const mbedtls_mpi *N) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n)); |
| |
| cleanup: |
| return ret; |
| } |
| |
| MBEDTLS_STATIC_TESTABLE |
| void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest, |
| const mbedtls_mpi_uint *table, |
| size_t limbs, |
| size_t count, |
| size_t index) |
| { |
| for (size_t i = 0; i < count; i++, table += limbs) { |
| mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq(i, index); |
| mbedtls_mpi_core_cond_assign(dest, table, limbs, assign); |
| } |
| } |
| |
| /* Fill X with n_bytes random bytes. |
| * X must already have room for those bytes. |
| * The ordering of the bytes returned from the RNG is suitable for |
| * deterministic ECDSA (see RFC 6979 §3.3 and the specification of |
| * mbedtls_mpi_core_random()). |
| */ |
| int mbedtls_mpi_core_fill_random( |
| mbedtls_mpi_uint *X, size_t X_limbs, |
| size_t n_bytes, |
| int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| const size_t limbs = CHARS_TO_LIMBS(n_bytes); |
| const size_t overhead = (limbs * ciL) - n_bytes; |
| |
| if (X_limbs < limbs) { |
| return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| } |
| |
| memset(X, 0, overhead); |
| memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL); |
| MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes)); |
| mbedtls_mpi_core_bigendian_to_host(X, limbs); |
| |
| cleanup: |
| return ret; |
| } |
| |
| int mbedtls_mpi_core_random(mbedtls_mpi_uint *X, |
| mbedtls_mpi_uint min, |
| const mbedtls_mpi_uint *N, |
| size_t limbs, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng) |
| { |
| mbedtls_ct_condition_t ge_lower = MBEDTLS_CT_TRUE, lt_upper = MBEDTLS_CT_FALSE; |
| size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs); |
| size_t n_bytes = (n_bits + 7) / 8; |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| |
| /* |
| * When min == 0, each try has at worst a probability 1/2 of failing |
| * (the msb has a probability 1/2 of being 0, and then the result will |
| * be < N), so after 30 tries failure probability is a most 2**(-30). |
| * |
| * When N is just below a power of 2, as is the case when generating |
| * a random scalar on most elliptic curves, 1 try is enough with |
| * overwhelming probability. When N is just above a power of 2, |
| * as when generating a random scalar on secp224k1, each try has |
| * a probability of failing that is almost 1/2. |
| * |
| * The probabilities are almost the same if min is nonzero but negligible |
| * compared to N. This is always the case when N is crypto-sized, but |
| * it's convenient to support small N for testing purposes. When N |
| * is small, use a higher repeat count, otherwise the probability of |
| * failure is macroscopic. |
| */ |
| int count = (n_bytes > 4 ? 30 : 250); |
| |
| /* |
| * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA) |
| * when f_rng is a suitably parametrized instance of HMAC_DRBG: |
| * - use the same byte ordering; |
| * - keep the leftmost n_bits bits of the generated octet string; |
| * - try until result is in the desired range. |
| * This also avoids any bias, which is especially important for ECDSA. |
| */ |
| do { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs, |
| n_bytes, |
| f_rng, p_rng)); |
| mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits); |
| |
| if (--count == 0) { |
| ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
| goto cleanup; |
| } |
| |
| ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs); |
| lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs); |
| } while (mbedtls_ct_bool_and(ge_lower, lt_upper) == MBEDTLS_CT_FALSE); |
| |
| cleanup: |
| return ret; |
| } |
| |
| static size_t exp_mod_get_window_size(size_t Ebits) |
| { |
| #if MBEDTLS_MPI_WINDOW_SIZE >= 6 |
| return (Ebits > 671) ? 6 : (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1; |
| #elif MBEDTLS_MPI_WINDOW_SIZE == 5 |
| return (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1; |
| #elif MBEDTLS_MPI_WINDOW_SIZE > 1 |
| return (Ebits > 79) ? MBEDTLS_MPI_WINDOW_SIZE : 1; |
| #else |
| (void) Ebits; |
| return 1; |
| #endif |
| } |
| |
| size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs) |
| { |
| const size_t wsize = exp_mod_get_window_size(E_limbs * biL); |
| const size_t welem = ((size_t) 1) << wsize; |
| |
| /* How big does each part of the working memory pool need to be? */ |
| const size_t table_limbs = welem * AN_limbs; |
| const size_t select_limbs = AN_limbs; |
| const size_t temp_limbs = 2 * AN_limbs + 1; |
| |
| return table_limbs + select_limbs + temp_limbs; |
| } |
| |
| static void exp_mod_precompute_window(const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *N, |
| size_t AN_limbs, |
| mbedtls_mpi_uint mm, |
| const mbedtls_mpi_uint *RR, |
| size_t welem, |
| mbedtls_mpi_uint *Wtable, |
| mbedtls_mpi_uint *temp) |
| { |
| /* W[0] = 1 (in Montgomery presentation) */ |
| memset(Wtable, 0, AN_limbs * ciL); |
| Wtable[0] = 1; |
| mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp); |
| |
| /* W[1] = A (already in Montgomery presentation) */ |
| mbedtls_mpi_uint *W1 = Wtable + AN_limbs; |
| memcpy(W1, A, AN_limbs * ciL); |
| |
| /* W[i+1] = W[i] * W[1], i >= 2 */ |
| mbedtls_mpi_uint *Wprev = W1; |
| for (size_t i = 2; i < welem; i++) { |
| mbedtls_mpi_uint *Wcur = Wprev + AN_limbs; |
| mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp); |
| Wprev = Wcur; |
| } |
| } |
| |
| #if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C) |
| void (*mbedtls_safe_codepath_hook)(void) = NULL; |
| void (*mbedtls_unsafe_codepath_hook)(void) = NULL; |
| #endif |
| |
| /* |
| * This function calculates the indices of the exponent where the exponentiation algorithm should |
| * start processing. |
| * |
| * Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value, |
| * this function is not constant time with respect to the exponent (parameter E). |
| */ |
| static inline void exp_mod_calc_first_bit_optionally_safe(const mbedtls_mpi_uint *E, |
| size_t E_limbs, |
| int E_public, |
| size_t *E_limb_index, |
| size_t *E_bit_index) |
| { |
| if (E_public == MBEDTLS_MPI_IS_PUBLIC) { |
| /* |
| * Skip leading zero bits. |
| */ |
| size_t E_bits = mbedtls_mpi_core_bitlen(E, E_limbs); |
| if (E_bits == 0) { |
| /* |
| * If E is 0 mbedtls_mpi_core_bitlen() returns 0. Even if that is the case, we will want |
| * to represent it as a single 0 bit and as such the bitlength will be 1. |
| */ |
| E_bits = 1; |
| } |
| |
| *E_limb_index = E_bits / biL; |
| *E_bit_index = E_bits % biL; |
| |
| #if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C) |
| if (mbedtls_unsafe_codepath_hook != NULL) { |
| mbedtls_unsafe_codepath_hook(); |
| } |
| #endif |
| } else { |
| /* |
| * Here we need to be constant time with respect to E and can't do anything better than |
| * start at the first allocated bit. |
| */ |
| *E_limb_index = E_limbs; |
| *E_bit_index = 0; |
| #if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C) |
| if (mbedtls_safe_codepath_hook != NULL) { |
| mbedtls_safe_codepath_hook(); |
| } |
| #endif |
| } |
| } |
| |
| /* |
| * Warning! If the parameter window_public has MBEDTLS_MPI_IS_PUBLIC as its value, this function is |
| * not constant time with respect to the window parameter and consequently the exponent of the |
| * exponentiation (parameter E of mbedtls_mpi_core_exp_mod_optionally_safe). |
| */ |
| static inline void exp_mod_table_lookup_optionally_safe(mbedtls_mpi_uint *Wselect, |
| mbedtls_mpi_uint *Wtable, |
| size_t AN_limbs, size_t welem, |
| mbedtls_mpi_uint window, |
| int window_public) |
| { |
| if (window_public == MBEDTLS_MPI_IS_PUBLIC) { |
| memcpy(Wselect, Wtable + window * AN_limbs, AN_limbs * ciL); |
| #if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C) |
| if (mbedtls_unsafe_codepath_hook != NULL) { |
| mbedtls_unsafe_codepath_hook(); |
| } |
| #endif |
| } else { |
| /* Select Wtable[window] without leaking window through |
| * memory access patterns. */ |
| mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable, |
| AN_limbs, welem, window); |
| #if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C) |
| if (mbedtls_safe_codepath_hook != NULL) { |
| mbedtls_safe_codepath_hook(); |
| } |
| #endif |
| } |
| } |
| |
| /* Exponentiation: X := A^E mod N. |
| * |
| * Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value, |
| * this function is not constant time with respect to the exponent (parameter E). |
| * |
| * A must already be in Montgomery form. |
| * |
| * As in other bignum functions, assume that AN_limbs and E_limbs are nonzero. |
| * |
| * RR must contain 2^{2*biL} mod N. |
| * |
| * The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82 |
| * (The difference is that the body in our loop processes a single bit instead |
| * of a full window.) |
| */ |
| static void mbedtls_mpi_core_exp_mod_optionally_safe(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *N, |
| size_t AN_limbs, |
| const mbedtls_mpi_uint *E, |
| size_t E_limbs, |
| int E_public, |
| const mbedtls_mpi_uint *RR, |
| mbedtls_mpi_uint *T) |
| { |
| /* We'll process the bits of E from most significant |
| * (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant |
| * (limb_index=0, E_bit_index=0). */ |
| size_t E_limb_index = E_limbs; |
| size_t E_bit_index = 0; |
| exp_mod_calc_first_bit_optionally_safe(E, E_limbs, E_public, |
| &E_limb_index, &E_bit_index); |
| |
| const size_t wsize = exp_mod_get_window_size(E_limb_index * biL); |
| const size_t welem = ((size_t) 1) << wsize; |
| |
| /* This is how we will use the temporary storage T, which must have space |
| * for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */ |
| const size_t table_limbs = welem * AN_limbs; |
| const size_t select_limbs = AN_limbs; |
| |
| /* Pointers to specific parts of the temporary working memory pool */ |
| mbedtls_mpi_uint *const Wtable = T; |
| mbedtls_mpi_uint *const Wselect = Wtable + table_limbs; |
| mbedtls_mpi_uint *const temp = Wselect + select_limbs; |
| |
| /* |
| * Window precomputation |
| */ |
| |
| const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N); |
| |
| /* Set Wtable[i] = A^i (in Montgomery representation) */ |
| exp_mod_precompute_window(A, N, AN_limbs, |
| mm, RR, |
| welem, Wtable, temp); |
| |
| /* |
| * Fixed window exponentiation |
| */ |
| |
| /* X = 1 (in Montgomery presentation) initially */ |
| memcpy(X, Wtable, AN_limbs * ciL); |
| |
| /* At any given time, window contains window_bits bits from E. |
| * window_bits can go up to wsize. */ |
| size_t window_bits = 0; |
| mbedtls_mpi_uint window = 0; |
| |
| do { |
| /* Square */ |
| mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp); |
| |
| /* Move to the next bit of the exponent */ |
| if (E_bit_index == 0) { |
| --E_limb_index; |
| E_bit_index = biL - 1; |
| } else { |
| --E_bit_index; |
| } |
| /* Insert next exponent bit into window */ |
| ++window_bits; |
| window <<= 1; |
| window |= (E[E_limb_index] >> E_bit_index) & 1; |
| |
| /* Clear window if it's full. Also clear the window at the end, |
| * when we've finished processing the exponent. */ |
| if (window_bits == wsize || |
| (E_bit_index == 0 && E_limb_index == 0)) { |
| |
| exp_mod_table_lookup_optionally_safe(Wselect, Wtable, AN_limbs, welem, |
| window, E_public); |
| /* Multiply X by the selected element. */ |
| mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm, |
| temp); |
| window = 0; |
| window_bits = 0; |
| } |
| } while (!(E_bit_index == 0 && E_limb_index == 0)); |
| } |
| |
| void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *N, size_t AN_limbs, |
| const mbedtls_mpi_uint *E, size_t E_limbs, |
| const mbedtls_mpi_uint *RR, |
| mbedtls_mpi_uint *T) |
| { |
| mbedtls_mpi_core_exp_mod_optionally_safe(X, |
| A, |
| N, |
| AN_limbs, |
| E, |
| E_limbs, |
| MBEDTLS_MPI_IS_SECRET, |
| RR, |
| T); |
| } |
| |
| void mbedtls_mpi_core_exp_mod_unsafe(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *N, size_t AN_limbs, |
| const mbedtls_mpi_uint *E, size_t E_limbs, |
| const mbedtls_mpi_uint *RR, |
| mbedtls_mpi_uint *T) |
| { |
| mbedtls_mpi_core_exp_mod_optionally_safe(X, |
| A, |
| N, |
| AN_limbs, |
| E, |
| E_limbs, |
| MBEDTLS_MPI_IS_PUBLIC, |
| RR, |
| T); |
| } |
| |
| mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| mbedtls_mpi_uint c, /* doubles as carry */ |
| size_t limbs) |
| { |
| for (size_t i = 0; i < limbs; i++) { |
| mbedtls_mpi_uint s = A[i]; |
| mbedtls_mpi_uint t = s - c; |
| c = (t > s); |
| X[i] = t; |
| } |
| |
| return c; |
| } |
| |
| mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A, |
| size_t limbs) |
| { |
| volatile const mbedtls_mpi_uint *force_read_A = A; |
| mbedtls_mpi_uint bits = 0; |
| |
| for (size_t i = 0; i < limbs; i++) { |
| bits |= force_read_A[i]; |
| } |
| |
| return mbedtls_ct_bool(bits); |
| } |
| |
| void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *N, |
| size_t AN_limbs, |
| mbedtls_mpi_uint mm, |
| const mbedtls_mpi_uint *rr, |
| mbedtls_mpi_uint *T) |
| { |
| mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T); |
| } |
| |
| void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *N, |
| size_t AN_limbs, |
| mbedtls_mpi_uint mm, |
| mbedtls_mpi_uint *T) |
| { |
| const mbedtls_mpi_uint Rinv = 1; /* 1/R in Mont. rep => 1 */ |
| |
| mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T); |
| } |
| |
| /* |
| * Compute X = A - B mod N. |
| * Both A and B must be in [0, N) and so will the output. |
| */ |
| static void mpi_core_sub_mod(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *B, |
| const mbedtls_mpi_uint *N, |
| size_t limbs) |
| { |
| mbedtls_mpi_uint c = mbedtls_mpi_core_sub(X, A, B, limbs); |
| (void) mbedtls_mpi_core_add_if(X, N, limbs, (unsigned) c); |
| } |
| |
| /* |
| * Divide X by 2 mod N in place, assuming N is odd. |
| * The input must be in [0, N) and so will the output. |
| */ |
| MBEDTLS_STATIC_TESTABLE |
| void mbedtls_mpi_core_div2_mod_odd(mbedtls_mpi_uint *X, |
| const mbedtls_mpi_uint *N, |
| size_t limbs) |
| { |
| /* If X is odd, add N to make it even before shifting. */ |
| unsigned odd = (unsigned) X[0] & 1; |
| mbedtls_mpi_uint c = mbedtls_mpi_core_add_if(X, N, limbs, odd); |
| mbedtls_mpi_core_shift_r(X, limbs, 1); |
| X[limbs - 1] |= c << (biL - 1); |
| } |
| |
| /* |
| * Constant-time GCD and modular inversion - odd modulus. |
| * |
| * Pre-conditions: see public documentation. |
| * |
| * See https://www.jstage.jst.go.jp/article/transinf/E106.D/9/E106.D_2022ICP0009/_pdf |
| * |
| * The paper gives two computationally equivalent algorithms: Alg 7 (readable) |
| * and Alg 8 (constant-time). We use a third version that's hopefully both: |
| * |
| * u, v = A, N # N is called p in the paper but doesn't have to be prime |
| * q, r = 0, 1 |
| * repeat bits(A_limbs + N_limbs) times: |
| * d = v - u # t1 in Alg 7 |
| * t1 = (u and v both odd) ? u : d # t1 in Alg 8 |
| * t2 = (u and v both odd) ? d : (u odd) ? v : u # t2 in Alg 8 |
| * t2 >>= 1 |
| * swap = t1 > t2 # similar to s, z in Alg 8 |
| * u, v = (swap) ? t2, t1 : t1, t2 |
| * |
| * d = r - q mod N # t2 in Alg 7 |
| * t1 = (u and v both odd) ? q : d # t3 in Alg 8 |
| * t2 = (u and v both odd) ? d : (u odd) ? r : q # t4 Alg 8 |
| * t2 /= 2 mod N # see below (pre_com) |
| * q, r = (swap) ? t2, t1 : t1, t2 |
| * return v, q # v: GCD, see Alg 6; q: no mult by pre_com, see below |
| * |
| * The ternary operators in the above pseudo-code need to be realised in a |
| * constant-time fashion. We use conditional assign for t1, t2 and conditional |
| * swap for the final update. (Note: the similarity between branches of Alg 7 |
| * are highlighted in tables 2 and 3 and the surrounding text.) |
| * |
| * Also, we re-order operations, grouping things related to the inverse, which |
| * facilitates making its computation optional, and requires fewer temporaries. |
| * |
| * The only actual change from the paper is dropping the trick with pre_com, |
| * which I think complicates things for no benefit. |
| * See the comment on the big I != NULL block below for details. |
| */ |
| void mbedtls_mpi_core_gcd_modinv_odd(mbedtls_mpi_uint *G, |
| mbedtls_mpi_uint *I, |
| const mbedtls_mpi_uint *A, |
| size_t A_limbs, |
| const mbedtls_mpi_uint *N, |
| size_t N_limbs, |
| mbedtls_mpi_uint *T) |
| { |
| /* GCD and modinv, names common to Alg 7 and Alg 8 */ |
| mbedtls_mpi_uint *u = T + 0 * N_limbs; |
| mbedtls_mpi_uint *v = G; |
| |
| /* GCD and modinv, my name (t1, t2 from Alg 7) */ |
| mbedtls_mpi_uint *d = T + 1 * N_limbs; |
| |
| /* GCD and modinv, names from Alg 8 (note: t1, t2 from Alg 7 are d above) */ |
| mbedtls_mpi_uint *t1 = T + 2 * N_limbs; |
| mbedtls_mpi_uint *t2 = T + 3 * N_limbs; |
| |
| /* modinv only, names common to Alg 7 and Alg 8 */ |
| mbedtls_mpi_uint *q = I; |
| mbedtls_mpi_uint *r = I != NULL ? T + 4 * N_limbs : NULL; |
| |
| /* |
| * Initial values: |
| * u, v = A, N |
| * q, r = 0, 1 |
| * |
| * We only write to G (aka v) after reading from inputs (A and N), which |
| * allows aliasing, except with N when I != NULL, as then we'll be operating |
| * mod N on q and r later - see the public documentation. |
| */ |
| if (A_limbs > N_limbs) { |
| /* Violating this precondition should not result in memory errors. */ |
| A_limbs = N_limbs; |
| } |
| memcpy(u, A, A_limbs * ciL); |
| memset((char *) u + A_limbs * ciL, 0, (N_limbs - A_limbs) * ciL); |
| |
| /* Avoid possible UB with memcpy when src == dst. */ |
| if (v != N) { |
| memcpy(v, N, N_limbs * ciL); |
| } |
| |
| if (I != NULL) { |
| memset(q, 0, N_limbs * ciL); |
| |
| memset(r, 0, N_limbs * ciL); |
| r[0] = 1; |
| } |
| |
| /* |
| * At each step, out of u, v, v - u we keep one, shift another, and discard |
| * the third, then update (u, v) with the ordered result. |
| * Then we mirror those actions with q, r, r - q mod N. |
| * |
| * Loop invariants: |
| * u <= v (on entry: A <= N) |
| * GCD(u, v) == GCD(A, N) (on entry: trivial) |
| * v = A * q mod N (on entry: N = A * 0 mod N) |
| * u = A * r mod N (on entry: A = A * 1 mod N) |
| * q, r in [0, N) (on entry: 0, 1) |
| * |
| * On exit: |
| * u = 0 |
| * v = GCD(A, N) = A * q mod N |
| * if v == 1 then 1 = A * q mod N ie q is A's inverse mod N |
| * r = 0 |
| * |
| * The exit state is a fixed point of the loop's body. |
| * Alg 7 and Alg 8 use 2 * bitlen(N) iterations but Theorem 2 (above in the |
| * paper) says bitlen(A) + bitlen(N) is actually enough. |
| */ |
| for (size_t i = 0; i < (A_limbs + N_limbs) * biL; i++) { |
| /* s, z in Alg 8 - use meaningful names instead */ |
| mbedtls_ct_condition_t u_odd = mbedtls_ct_bool(u[0] & 1); |
| mbedtls_ct_condition_t v_odd = mbedtls_ct_bool(v[0] & 1); |
| |
| /* Other conditions that will be useful below */ |
| mbedtls_ct_condition_t u_odd_v_odd = mbedtls_ct_bool_and(u_odd, v_odd); |
| mbedtls_ct_condition_t v_even = mbedtls_ct_bool_not(v_odd); |
| mbedtls_ct_condition_t u_odd_v_even = mbedtls_ct_bool_and(u_odd, v_even); |
| |
| /* This is called t1 in Alg 7 (no name in Alg 8). |
| * We know that u <= v so there is no carry */ |
| (void) mbedtls_mpi_core_sub(d, v, u, N_limbs); |
| |
| /* t1 (the thing that's kept) can be d (default) or u (if t2 is d) */ |
| memcpy(t1, d, N_limbs * ciL); |
| mbedtls_mpi_core_cond_assign(t1, u, N_limbs, u_odd_v_odd); |
| |
| /* t2 (the thing that's shifted) can be u (if even), or v (if even), |
| * or d (which is even if both u and v were odd) */ |
| memcpy(t2, u, N_limbs * ciL); |
| mbedtls_mpi_core_cond_assign(t2, v, N_limbs, u_odd_v_even); |
| mbedtls_mpi_core_cond_assign(t2, d, N_limbs, u_odd_v_odd); |
| |
| mbedtls_mpi_core_shift_r(t2, N_limbs, 1); // t2 is even |
| |
| /* Update u, v and re-order them if needed */ |
| memcpy(u, t1, N_limbs * ciL); |
| memcpy(v, t2, N_limbs * ciL); |
| mbedtls_ct_condition_t swap = mbedtls_mpi_core_lt_ct(v, u, N_limbs); |
| mbedtls_mpi_core_cond_swap(u, v, N_limbs, swap); |
| |
| /* Now, if modinv was requested, do the same with q, r, but: |
| * - decisions still based on u and v (their initial values); |
| * - operations are now mod N; |
| * - we re-use t1, t2 for what the paper calls t3, t4 in Alg 8. |
| * |
| * Here we slightly diverge from the paper and instead do the obvious |
| * thing that preserves the invariants involving q and r: mirror |
| * operations on u and v, ie also divide by 2 here (mod N). |
| * |
| * The paper uses a trick where it replaces division by 2 with |
| * multiplication by 2 here, and compensates in the end by multiplying |
| * by pre_com, which is probably intended as an optimisation. |
| * |
| * However I believe it's not actually an optimisation, since |
| * constant-time modular multiplication by 2 (left-shift + conditional |
| * subtract) is just as costly as constant-time modular division by 2 |
| * (conditional add + right-shift). So, skip it and keep things simple. |
| */ |
| if (I != NULL) { |
| /* This is called t2 in Alg 7 (no name in Alg 8). */ |
| mpi_core_sub_mod(d, q, r, N, N_limbs); |
| |
| /* t3 (the thing that's kept) */ |
| memcpy(t1, d, N_limbs * ciL); |
| mbedtls_mpi_core_cond_assign(t1, r, N_limbs, u_odd_v_odd); |
| |
| /* t4 (the thing that's shifted) */ |
| memcpy(t2, r, N_limbs * ciL); |
| mbedtls_mpi_core_cond_assign(t2, q, N_limbs, u_odd_v_even); |
| mbedtls_mpi_core_cond_assign(t2, d, N_limbs, u_odd_v_odd); |
| |
| mbedtls_mpi_core_div2_mod_odd(t2, N, N_limbs); |
| |
| /* Update and possibly swap */ |
| memcpy(r, t1, N_limbs * ciL); |
| memcpy(q, t2, N_limbs * ciL); |
| mbedtls_mpi_core_cond_swap(r, q, N_limbs, swap); |
| } |
| } |
| |
| /* G and I already hold the correct values by virtue of being aliased */ |
| } |
| |
| #endif /* MBEDTLS_BIGNUM_C */ |