| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 1 | /* | 
|  | 2 | *  Helper functions for the RSA module | 
|  | 3 | * | 
|  | 4 | *  Copyright (C) 2006-2017, ARM Limited, All Rights Reserved | 
|  | 5 | *  SPDX-License-Identifier: Apache-2.0 | 
|  | 6 | * | 
|  | 7 | *  Licensed under the Apache License, Version 2.0 (the "License"); you may | 
|  | 8 | *  not use this file except in compliance with the License. | 
|  | 9 | *  You may obtain a copy of the License at | 
|  | 10 | * | 
|  | 11 | *  http://www.apache.org/licenses/LICENSE-2.0 | 
|  | 12 | * | 
|  | 13 | *  Unless required by applicable law or agreed to in writing, software | 
|  | 14 | *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | 
|  | 15 | *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | 16 | *  See the License for the specific language governing permissions and | 
|  | 17 | *  limitations under the License. | 
|  | 18 | * | 
|  | 19 | *  This file is part of mbed TLS (https://tls.mbed.org) | 
|  | 20 | * | 
|  | 21 | */ | 
|  | 22 |  | 
|  | 23 | #if !defined(MBEDTLS_CONFIG_FILE) | 
|  | 24 | #include "mbedtls/config.h" | 
|  | 25 | #else | 
|  | 26 | #include MBEDTLS_CONFIG_FILE | 
|  | 27 | #endif | 
|  | 28 |  | 
|  | 29 | #if defined(MBEDTLS_RSA_C) | 
|  | 30 |  | 
|  | 31 | #include "mbedtls/rsa.h" | 
|  | 32 | #include "mbedtls/bignum.h" | 
|  | 33 | #include "mbedtls/rsa_internal.h" | 
|  | 34 |  | 
|  | 35 | /* | 
|  | 36 | * Compute RSA prime factors from public and private exponents | 
|  | 37 | * | 
|  | 38 | * Summary of algorithm: | 
|  | 39 | * Setting F := lcm(P-1,Q-1), the idea is as follows: | 
|  | 40 | * | 
|  | 41 | * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2) | 
|  | 42 | *     is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the | 
|  | 43 | *     square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four | 
|  | 44 | *     possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1) | 
|  | 45 | *     or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime | 
|  | 46 | *     factors of N. | 
|  | 47 | * | 
|  | 48 | * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same | 
|  | 49 | *     construction still applies since (-)^K is the identity on the set of | 
|  | 50 | *     roots of 1 in Z/NZ. | 
|  | 51 | * | 
|  | 52 | * The public and private key primitives (-)^E and (-)^D are mutually inverse | 
|  | 53 | * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e. | 
|  | 54 | * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L. | 
|  | 55 | * Splitting L = 2^t * K with K odd, we have | 
|  | 56 | * | 
|  | 57 | *   DE - 1 = FL = (F/2) * (2^(t+1)) * K, | 
|  | 58 | * | 
|  | 59 | * so (F / 2) * K is among the numbers | 
|  | 60 | * | 
|  | 61 | *   (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord | 
|  | 62 | * | 
|  | 63 | * where ord is the order of 2 in (DE - 1). | 
|  | 64 | * We can therefore iterate through these numbers apply the construction | 
|  | 65 | * of (a) and (b) above to attempt to factor N. | 
|  | 66 | * | 
|  | 67 | */ | 
|  | 68 | int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, | 
| Hanno Becker | c36aab6 | 2017-10-17 09:15:06 +0100 | [diff] [blame] | 69 | mbedtls_mpi const *E, mbedtls_mpi const *D, | 
| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 70 | mbedtls_mpi *P, mbedtls_mpi *Q ) | 
|  | 71 | { | 
|  | 72 | int ret = 0; | 
|  | 73 |  | 
|  | 74 | uint16_t attempt;  /* Number of current attempt  */ | 
|  | 75 | uint16_t iter;     /* Number of squares computed in the current attempt */ | 
|  | 76 |  | 
|  | 77 | uint16_t order;    /* Order of 2 in DE - 1 */ | 
|  | 78 |  | 
|  | 79 | mbedtls_mpi T;  /* Holds largest odd divisor of DE - 1     */ | 
|  | 80 | mbedtls_mpi K;  /* Temporary holding the current candidate */ | 
|  | 81 |  | 
| Hanno Becker | 4055a3a | 2017-10-17 09:15:26 +0100 | [diff] [blame] | 82 | const unsigned char primes[] = { 2, | 
| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 83 | 3,    5,    7,   11,   13,   17,   19,   23, | 
|  | 84 | 29,   31,   37,   41,   43,   47,   53,   59, | 
|  | 85 | 61,   67,   71,   73,   79,   83,   89,   97, | 
|  | 86 | 101,  103,  107,  109,  113,  127,  131,  137, | 
|  | 87 | 139,  149,  151,  157,  163,  167,  173,  179, | 
|  | 88 | 181,  191,  193,  197,  199,  211,  223,  227, | 
| Hanno Becker | 4055a3a | 2017-10-17 09:15:26 +0100 | [diff] [blame] | 89 | 229,  233,  239,  241,  251 | 
| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 90 | }; | 
|  | 91 |  | 
|  | 92 | const size_t num_primes = sizeof( primes ) / sizeof( *primes ); | 
|  | 93 |  | 
|  | 94 | if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL ) | 
|  | 95 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | 
|  | 96 |  | 
|  | 97 | if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || | 
|  | 98 | mbedtls_mpi_cmp_int( D, 1 ) <= 0 || | 
|  | 99 | mbedtls_mpi_cmp_mpi( D, N ) >= 0 || | 
|  | 100 | mbedtls_mpi_cmp_int( E, 1 ) <= 0 || | 
|  | 101 | mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) | 
|  | 102 | { | 
|  | 103 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | 
|  | 104 | } | 
|  | 105 |  | 
|  | 106 | /* | 
|  | 107 | * Initializations and temporary changes | 
|  | 108 | */ | 
|  | 109 |  | 
|  | 110 | mbedtls_mpi_init( &K ); | 
|  | 111 | mbedtls_mpi_init( &T ); | 
|  | 112 |  | 
|  | 113 | /* T := DE - 1 */ | 
|  | 114 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D,  E ) ); | 
|  | 115 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) ); | 
|  | 116 |  | 
| Hanno Becker | 4952e7a | 2018-01-03 09:27:40 +0000 | [diff] [blame] | 117 | if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 ) | 
| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 118 | { | 
|  | 119 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | 120 | goto cleanup; | 
|  | 121 | } | 
|  | 122 |  | 
|  | 123 | /* After this operation, T holds the largest odd divisor of DE - 1. */ | 
|  | 124 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) ); | 
|  | 125 |  | 
|  | 126 | /* | 
|  | 127 | * Actual work | 
|  | 128 | */ | 
|  | 129 |  | 
|  | 130 | /* Skip trying 2 if N == 1 mod 8 */ | 
|  | 131 | attempt = 0; | 
|  | 132 | if( N->p[0] % 8 == 1 ) | 
|  | 133 | attempt = 1; | 
|  | 134 |  | 
|  | 135 | for( ; attempt < num_primes; ++attempt ) | 
|  | 136 | { | 
|  | 137 | mbedtls_mpi_lset( &K, primes[attempt] ); | 
|  | 138 |  | 
|  | 139 | /* Check if gcd(K,N) = 1 */ | 
|  | 140 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); | 
|  | 141 | if( mbedtls_mpi_cmp_int( P, 1 ) != 0 ) | 
|  | 142 | continue; | 
|  | 143 |  | 
|  | 144 | /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ... | 
|  | 145 | * and check whether they have nontrivial GCD with N. */ | 
|  | 146 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N, | 
|  | 147 | Q /* temporarily use Q for storing Montgomery | 
|  | 148 | * multiplication helper values */ ) ); | 
|  | 149 |  | 
| Hanno Becker | 7643d4e | 2017-10-11 15:53:02 +0100 | [diff] [blame] | 150 | for( iter = 1; iter <= order; ++iter ) | 
| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 151 | { | 
| Hanno Becker | 5d42b53 | 2017-10-11 15:58:00 +0100 | [diff] [blame] | 152 | /* If we reach 1 prematurely, there's no point | 
|  | 153 | * in continuing to square K */ | 
|  | 154 | if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 ) | 
|  | 155 | break; | 
|  | 156 |  | 
| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 157 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) ); | 
|  | 158 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); | 
|  | 159 |  | 
|  | 160 | if( mbedtls_mpi_cmp_int( P, 1 ) ==  1 && | 
|  | 161 | mbedtls_mpi_cmp_mpi( P, N ) == -1 ) | 
|  | 162 | { | 
|  | 163 | /* | 
|  | 164 | * Have found a nontrivial divisor P of N. | 
|  | 165 | * Set Q := N / P. | 
|  | 166 | */ | 
|  | 167 |  | 
|  | 168 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) ); | 
|  | 169 | goto cleanup; | 
|  | 170 | } | 
|  | 171 |  | 
|  | 172 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | 
|  | 173 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) ); | 
|  | 174 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) ); | 
|  | 175 | } | 
| Hanno Becker | 14a00c0 | 2017-10-11 12:58:23 +0100 | [diff] [blame] | 176 |  | 
| Hanno Becker | 5d42b53 | 2017-10-11 15:58:00 +0100 | [diff] [blame] | 177 | /* | 
|  | 178 | * If we get here, then either we prematurely aborted the loop because | 
|  | 179 | * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must | 
|  | 180 | * be 1 if D,E,N were consistent. | 
|  | 181 | * Check if that's the case and abort if not, to avoid very long, | 
|  | 182 | * yet eventually failing, computations if N,D,E were not sane. | 
|  | 183 | */ | 
| Hanno Becker | 14a00c0 | 2017-10-11 12:58:23 +0100 | [diff] [blame] | 184 | if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 ) | 
|  | 185 | { | 
|  | 186 | break; | 
|  | 187 | } | 
| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 188 | } | 
|  | 189 |  | 
|  | 190 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | 191 |  | 
|  | 192 | cleanup: | 
|  | 193 |  | 
|  | 194 | mbedtls_mpi_free( &K ); | 
|  | 195 | mbedtls_mpi_free( &T ); | 
|  | 196 | return( ret ); | 
|  | 197 | } | 
|  | 198 |  | 
|  | 199 | /* | 
|  | 200 | * Given P, Q and the public exponent E, deduce D. | 
|  | 201 | * This is essentially a modular inversion. | 
|  | 202 | */ | 
|  | 203 | int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P, | 
|  | 204 | mbedtls_mpi const *Q, | 
|  | 205 | mbedtls_mpi const *E, | 
|  | 206 | mbedtls_mpi *D ) | 
|  | 207 | { | 
|  | 208 | int ret = 0; | 
|  | 209 | mbedtls_mpi K, L; | 
|  | 210 |  | 
|  | 211 | if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 ) | 
|  | 212 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | 
|  | 213 |  | 
|  | 214 | if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || | 
|  | 215 | mbedtls_mpi_cmp_int( Q, 1 ) <= 0 || | 
|  | 216 | mbedtls_mpi_cmp_int( E, 0 ) == 0 ) | 
|  | 217 | { | 
|  | 218 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | 
|  | 219 | } | 
|  | 220 |  | 
|  | 221 | mbedtls_mpi_init( &K ); | 
|  | 222 | mbedtls_mpi_init( &L ); | 
|  | 223 |  | 
|  | 224 | /* Temporarily put K := P-1 and L := Q-1 */ | 
|  | 225 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); | 
|  | 226 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); | 
|  | 227 |  | 
|  | 228 | /* Temporarily put D := gcd(P-1, Q-1) */ | 
|  | 229 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) ); | 
|  | 230 |  | 
|  | 231 | /* K := LCM(P-1, Q-1) */ | 
|  | 232 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) ); | 
|  | 233 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) ); | 
|  | 234 |  | 
|  | 235 | /* Compute modular inverse of E in LCM(P-1, Q-1) */ | 
|  | 236 | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) ); | 
|  | 237 |  | 
|  | 238 | cleanup: | 
|  | 239 |  | 
|  | 240 | mbedtls_mpi_free( &K ); | 
|  | 241 | mbedtls_mpi_free( &L ); | 
|  | 242 |  | 
|  | 243 | return( ret ); | 
|  | 244 | } | 
|  | 245 |  | 
|  | 246 | /* | 
|  | 247 | * Check that RSA CRT parameters are in accordance with core parameters. | 
|  | 248 | */ | 
|  | 249 | int mbedtls_rsa_validate_crt( const mbedtls_mpi *P,  const mbedtls_mpi *Q, | 
|  | 250 | const mbedtls_mpi *D,  const mbedtls_mpi *DP, | 
|  | 251 | const mbedtls_mpi *DQ, const mbedtls_mpi *QP ) | 
|  | 252 | { | 
|  | 253 | int ret = 0; | 
|  | 254 |  | 
|  | 255 | mbedtls_mpi K, L; | 
|  | 256 | mbedtls_mpi_init( &K ); | 
|  | 257 | mbedtls_mpi_init( &L ); | 
|  | 258 |  | 
|  | 259 | /* Check that DP - D == 0 mod P - 1 */ | 
|  | 260 | if( DP != NULL ) | 
|  | 261 | { | 
|  | 262 | if( P == NULL ) | 
|  | 263 | { | 
|  | 264 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | 265 | goto cleanup; | 
|  | 266 | } | 
|  | 267 |  | 
|  | 268 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); | 
|  | 269 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) ); | 
|  | 270 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); | 
|  | 271 |  | 
|  | 272 | if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) | 
|  | 273 | { | 
|  | 274 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 275 | goto cleanup; | 
|  | 276 | } | 
|  | 277 | } | 
|  | 278 |  | 
|  | 279 | /* Check that DQ - D == 0 mod Q - 1 */ | 
|  | 280 | if( DQ != NULL ) | 
|  | 281 | { | 
|  | 282 | if( Q == NULL ) | 
|  | 283 | { | 
|  | 284 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | 285 | goto cleanup; | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); | 
|  | 289 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) ); | 
|  | 290 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); | 
|  | 291 |  | 
|  | 292 | if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) | 
|  | 293 | { | 
|  | 294 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 295 | goto cleanup; | 
|  | 296 | } | 
|  | 297 | } | 
|  | 298 |  | 
|  | 299 | /* Check that QP * Q - 1 == 0 mod P */ | 
|  | 300 | if( QP != NULL ) | 
|  | 301 | { | 
|  | 302 | if( P == NULL || Q == NULL ) | 
|  | 303 | { | 
|  | 304 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | 305 | goto cleanup; | 
|  | 306 | } | 
|  | 307 |  | 
|  | 308 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) ); | 
|  | 309 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | 
|  | 310 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) ); | 
|  | 311 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) | 
|  | 312 | { | 
|  | 313 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 314 | goto cleanup; | 
|  | 315 | } | 
|  | 316 | } | 
|  | 317 |  | 
|  | 318 | cleanup: | 
|  | 319 |  | 
|  | 320 | /* Wrap MPI error codes by RSA check failure error code */ | 
|  | 321 | if( ret != 0 && | 
|  | 322 | ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED && | 
|  | 323 | ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA ) | 
|  | 324 | { | 
|  | 325 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 326 | } | 
|  | 327 |  | 
|  | 328 | mbedtls_mpi_free( &K ); | 
|  | 329 | mbedtls_mpi_free( &L ); | 
|  | 330 |  | 
|  | 331 | return( ret ); | 
|  | 332 | } | 
|  | 333 |  | 
|  | 334 | /* | 
|  | 335 | * Check that core RSA parameters are sane. | 
|  | 336 | */ | 
|  | 337 | int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, | 
|  | 338 | const mbedtls_mpi *Q, const mbedtls_mpi *D, | 
|  | 339 | const mbedtls_mpi *E, | 
|  | 340 | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | 341 | void *p_rng ) | 
|  | 342 | { | 
|  | 343 | int ret = 0; | 
|  | 344 | mbedtls_mpi K, L; | 
|  | 345 |  | 
|  | 346 | mbedtls_mpi_init( &K ); | 
|  | 347 | mbedtls_mpi_init( &L ); | 
|  | 348 |  | 
|  | 349 | /* | 
|  | 350 | * Step 1: If PRNG provided, check that P and Q are prime | 
|  | 351 | */ | 
|  | 352 |  | 
|  | 353 | #if defined(MBEDTLS_GENPRIME) | 
| Janos Follath | a0b67c2 | 2018-09-18 14:48:23 +0100 | [diff] [blame] | 354 | /* | 
|  | 355 | * When generating keys, the strongest security we support aims for an error | 
|  | 356 | * rate of at most 2^-100 and we are aiming for the same certainty here as | 
|  | 357 | * well. | 
|  | 358 | */ | 
| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 359 | if( f_rng != NULL && P != NULL && | 
| Janos Follath | a0b67c2 | 2018-09-18 14:48:23 +0100 | [diff] [blame] | 360 | ( ret = mbedtls_mpi_is_prime_ext( P, 50, f_rng, p_rng ) ) != 0 ) | 
| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 361 | { | 
|  | 362 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 363 | goto cleanup; | 
|  | 364 | } | 
|  | 365 |  | 
|  | 366 | if( f_rng != NULL && Q != NULL && | 
| Janos Follath | a0b67c2 | 2018-09-18 14:48:23 +0100 | [diff] [blame] | 367 | ( ret = mbedtls_mpi_is_prime_ext( Q, 50, f_rng, p_rng ) ) != 0 ) | 
| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 368 | { | 
|  | 369 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 370 | goto cleanup; | 
|  | 371 | } | 
|  | 372 | #else | 
|  | 373 | ((void) f_rng); | 
|  | 374 | ((void) p_rng); | 
|  | 375 | #endif /* MBEDTLS_GENPRIME */ | 
|  | 376 |  | 
|  | 377 | /* | 
| Hanno Becker | f8c028a | 2017-10-17 09:20:57 +0100 | [diff] [blame] | 378 | * Step 2: Check that 1 < N = P * Q | 
| Hanno Becker | a565f54 | 2017-10-11 11:00:19 +0100 | [diff] [blame] | 379 | */ | 
|  | 380 |  | 
|  | 381 | if( P != NULL && Q != NULL && N != NULL ) | 
|  | 382 | { | 
|  | 383 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) ); | 
|  | 384 | if( mbedtls_mpi_cmp_int( N, 1 )  <= 0 || | 
|  | 385 | mbedtls_mpi_cmp_mpi( &K, N ) != 0 ) | 
|  | 386 | { | 
|  | 387 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 388 | goto cleanup; | 
|  | 389 | } | 
|  | 390 | } | 
|  | 391 |  | 
|  | 392 | /* | 
|  | 393 | * Step 3: Check and 1 < D, E < N if present. | 
|  | 394 | */ | 
|  | 395 |  | 
|  | 396 | if( N != NULL && D != NULL && E != NULL ) | 
|  | 397 | { | 
|  | 398 | if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 || | 
|  | 399 | mbedtls_mpi_cmp_int( E, 1 ) <= 0 || | 
|  | 400 | mbedtls_mpi_cmp_mpi( D, N ) >= 0 || | 
|  | 401 | mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) | 
|  | 402 | { | 
|  | 403 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 404 | goto cleanup; | 
|  | 405 | } | 
|  | 406 | } | 
|  | 407 |  | 
|  | 408 | /* | 
|  | 409 | * Step 4: Check that D, E are inverse modulo P-1 and Q-1 | 
|  | 410 | */ | 
|  | 411 |  | 
|  | 412 | if( P != NULL && Q != NULL && D != NULL && E != NULL ) | 
|  | 413 | { | 
|  | 414 | if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || | 
|  | 415 | mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ) | 
|  | 416 | { | 
|  | 417 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 418 | goto cleanup; | 
|  | 419 | } | 
|  | 420 |  | 
|  | 421 | /* Compute DE-1 mod P-1 */ | 
|  | 422 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); | 
|  | 423 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | 
|  | 424 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) ); | 
|  | 425 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); | 
|  | 426 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) | 
|  | 427 | { | 
|  | 428 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 429 | goto cleanup; | 
|  | 430 | } | 
|  | 431 |  | 
|  | 432 | /* Compute DE-1 mod Q-1 */ | 
|  | 433 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); | 
|  | 434 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | 
|  | 435 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); | 
|  | 436 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); | 
|  | 437 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) | 
|  | 438 | { | 
|  | 439 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 440 | goto cleanup; | 
|  | 441 | } | 
|  | 442 | } | 
|  | 443 |  | 
|  | 444 | cleanup: | 
|  | 445 |  | 
|  | 446 | mbedtls_mpi_free( &K ); | 
|  | 447 | mbedtls_mpi_free( &L ); | 
|  | 448 |  | 
|  | 449 | /* Wrap MPI error codes by RSA check failure error code */ | 
|  | 450 | if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ) | 
|  | 451 | { | 
|  | 452 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | 453 | } | 
|  | 454 |  | 
|  | 455 | return( ret ); | 
|  | 456 | } | 
|  | 457 |  | 
|  | 458 | int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, | 
|  | 459 | const mbedtls_mpi *D, mbedtls_mpi *DP, | 
|  | 460 | mbedtls_mpi *DQ, mbedtls_mpi *QP ) | 
|  | 461 | { | 
|  | 462 | int ret = 0; | 
|  | 463 | mbedtls_mpi K; | 
|  | 464 | mbedtls_mpi_init( &K ); | 
|  | 465 |  | 
|  | 466 | /* DP = D mod P-1 */ | 
|  | 467 | if( DP != NULL ) | 
|  | 468 | { | 
|  | 469 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1  ) ); | 
|  | 470 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) ); | 
|  | 471 | } | 
|  | 472 |  | 
|  | 473 | /* DQ = D mod Q-1 */ | 
|  | 474 | if( DQ != NULL ) | 
|  | 475 | { | 
|  | 476 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1  ) ); | 
|  | 477 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) ); | 
|  | 478 | } | 
|  | 479 |  | 
|  | 480 | /* QP = Q^{-1} mod P */ | 
|  | 481 | if( QP != NULL ) | 
|  | 482 | { | 
|  | 483 | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) ); | 
|  | 484 | } | 
|  | 485 |  | 
|  | 486 | cleanup: | 
|  | 487 | mbedtls_mpi_free( &K ); | 
|  | 488 |  | 
|  | 489 | return( ret ); | 
|  | 490 | } | 
|  | 491 |  | 
|  | 492 | #endif /* MBEDTLS_RSA_C */ |