|  | /* | 
|  | *  Armv8-A Cryptographic Extension support functions for Aarch64 | 
|  | * | 
|  | *  Copyright The Mbed TLS Contributors | 
|  | *  SPDX-License-Identifier: Apache-2.0 | 
|  | * | 
|  | *  Licensed under the Apache License, Version 2.0 (the "License"); you may | 
|  | *  not use this file except in compliance with the License. | 
|  | *  You may obtain a copy of the License at | 
|  | * | 
|  | *  http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | *  Unless required by applicable law or agreed to in writing, software | 
|  | *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | 
|  | *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | *  See the License for the specific language governing permissions and | 
|  | *  limitations under the License. | 
|  | */ | 
|  |  | 
|  | #if defined(__aarch64__) && !defined(__ARM_FEATURE_CRYPTO) && \ | 
|  | defined(__clang__) && __clang_major__ >= 4 | 
|  | /* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged. | 
|  | * | 
|  | * The intrinsic declaration are guarded by predefined ACLE macros in clang: | 
|  | * these are normally only enabled by the -march option on the command line. | 
|  | * By defining the macros ourselves we gain access to those declarations without | 
|  | * requiring -march on the command line. | 
|  | * | 
|  | * `arm_neon.h` could be included by any header file, so we put these defines | 
|  | * at the top of this file, before any includes. | 
|  | */ | 
|  | #define __ARM_FEATURE_CRYPTO 1 | 
|  | /* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions | 
|  | * | 
|  | * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it | 
|  | * for older compilers. | 
|  | */ | 
|  | #define __ARM_FEATURE_AES    1 | 
|  | #define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG | 
|  | #endif | 
|  |  | 
|  | #include <string.h> | 
|  | #include "common.h" | 
|  |  | 
|  | #if defined(MBEDTLS_AESCE_C) | 
|  |  | 
|  | #include "aesce.h" | 
|  |  | 
|  | #if defined(MBEDTLS_ARCH_IS_ARM64) | 
|  |  | 
|  | /* Compiler version checks. */ | 
|  | #if defined(__clang__) | 
|  | #   if __clang_major__ < 4 | 
|  | #       error "Minimum version of Clang for MBEDTLS_AESCE_C is 4.0." | 
|  | #   endif | 
|  | #elif defined(__GNUC__) | 
|  | #   if __GNUC__ < 6 | 
|  | #       error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0." | 
|  | #   endif | 
|  | #elif defined(_MSC_VER) | 
|  | /* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that, | 
|  | *       please update this and document of `MBEDTLS_AESCE_C` in | 
|  | *       `mbedtls_config.h`. */ | 
|  | #   if _MSC_VER < 1929 | 
|  | #       error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2." | 
|  | #   endif | 
|  | #endif | 
|  |  | 
|  | #ifdef __ARM_NEON | 
|  | #include <arm_neon.h> | 
|  | #else | 
|  | #error "Target does not support NEON instructions" | 
|  | #endif | 
|  |  | 
|  | #if !(defined(__ARM_FEATURE_CRYPTO) || defined(__ARM_FEATURE_AES)) || \ | 
|  | defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG) | 
|  | #   if defined(__ARMCOMPILER_VERSION) | 
|  | #       if __ARMCOMPILER_VERSION <= 6090000 | 
|  | #           error "Must use minimum -march=armv8-a+crypto for MBEDTLS_AESCE_C" | 
|  | #       else | 
|  | #           pragma clang attribute push (__attribute__((target("aes"))), apply_to=function) | 
|  | #           define MBEDTLS_POP_TARGET_PRAGMA | 
|  | #       endif | 
|  | #   elif defined(__clang__) | 
|  | #       pragma clang attribute push (__attribute__((target("aes"))), apply_to=function) | 
|  | #       define MBEDTLS_POP_TARGET_PRAGMA | 
|  | #   elif defined(__GNUC__) | 
|  | #       pragma GCC push_options | 
|  | #       pragma GCC target ("+crypto") | 
|  | #       define MBEDTLS_POP_TARGET_PRAGMA | 
|  | #   elif defined(_MSC_VER) | 
|  | #       error "Required feature(__ARM_FEATURE_AES) is not enabled." | 
|  | #   endif | 
|  | #endif /* !(__ARM_FEATURE_CRYPTO || __ARM_FEATURE_AES) || | 
|  | MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */ | 
|  |  | 
|  | #if defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) | 
|  |  | 
|  | #include <asm/hwcap.h> | 
|  | #include <sys/auxv.h> | 
|  |  | 
|  | signed char mbedtls_aesce_has_support_result = -1; | 
|  |  | 
|  | #if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) | 
|  | /* | 
|  | * AES instruction support detection routine | 
|  | */ | 
|  | int mbedtls_aesce_has_support_impl(void) | 
|  | { | 
|  | /* To avoid many calls to getauxval, cache the result. This is | 
|  | * thread-safe, because we store the result in a char so cannot | 
|  | * be vulnerable to non-atomic updates. | 
|  | * It is possible that we could end up setting result more than | 
|  | * once, but that is harmless. | 
|  | */ | 
|  | if (mbedtls_aesce_has_support_result == -1) { | 
|  | unsigned long auxval = getauxval(AT_HWCAP); | 
|  | if ((auxval & (HWCAP_ASIMD | HWCAP_AES)) == | 
|  | (HWCAP_ASIMD | HWCAP_AES)) { | 
|  | mbedtls_aesce_has_support_result = 1; | 
|  | } else { | 
|  | mbedtls_aesce_has_support_result = 0; | 
|  | } | 
|  | } | 
|  | return mbedtls_aesce_has_support_result; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif /* defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) */ | 
|  |  | 
|  | /* Single round of AESCE encryption */ | 
|  | #define AESCE_ENCRYPT_ROUND                   \ | 
|  | block = vaeseq_u8(block, vld1q_u8(keys)); \ | 
|  | block = vaesmcq_u8(block);                \ | 
|  | keys += 16 | 
|  | /* Two rounds of AESCE encryption */ | 
|  | #define AESCE_ENCRYPT_ROUND_X2        AESCE_ENCRYPT_ROUND; AESCE_ENCRYPT_ROUND | 
|  |  | 
|  | MBEDTLS_OPTIMIZE_FOR_PERFORMANCE | 
|  | static uint8x16_t aesce_encrypt_block(uint8x16_t block, | 
|  | unsigned char *keys, | 
|  | int rounds) | 
|  | { | 
|  | /* 10, 12 or 14 rounds. Unroll loop. */ | 
|  | if (rounds == 10) { | 
|  | goto rounds_10; | 
|  | } | 
|  | if (rounds == 12) { | 
|  | goto rounds_12; | 
|  | } | 
|  | AESCE_ENCRYPT_ROUND_X2; | 
|  | rounds_12: | 
|  | AESCE_ENCRYPT_ROUND_X2; | 
|  | rounds_10: | 
|  | AESCE_ENCRYPT_ROUND_X2; | 
|  | AESCE_ENCRYPT_ROUND_X2; | 
|  | AESCE_ENCRYPT_ROUND_X2; | 
|  | AESCE_ENCRYPT_ROUND_X2; | 
|  | AESCE_ENCRYPT_ROUND; | 
|  |  | 
|  | /* AES AddRoundKey for the previous round. | 
|  | * SubBytes, ShiftRows for the final round.  */ | 
|  | block = vaeseq_u8(block, vld1q_u8(keys)); | 
|  | keys += 16; | 
|  |  | 
|  | /* Final round: no MixColumns */ | 
|  |  | 
|  | /* Final AddRoundKey */ | 
|  | block = veorq_u8(block, vld1q_u8(keys)); | 
|  |  | 
|  | return block; | 
|  | } | 
|  |  | 
|  | /* Single round of AESCE decryption | 
|  | * | 
|  | * AES AddRoundKey, SubBytes, ShiftRows | 
|  | * | 
|  | *      block = vaesdq_u8(block, vld1q_u8(keys)); | 
|  | * | 
|  | * AES inverse MixColumns for the next round. | 
|  | * | 
|  | * This means that we switch the order of the inverse AddRoundKey and | 
|  | * inverse MixColumns operations. We have to do this as AddRoundKey is | 
|  | * done in an atomic instruction together with the inverses of SubBytes | 
|  | * and ShiftRows. | 
|  | * | 
|  | * It works because MixColumns is a linear operation over GF(2^8) and | 
|  | * AddRoundKey is an exclusive or, which is equivalent to addition over | 
|  | * GF(2^8). (The inverse of MixColumns needs to be applied to the | 
|  | * affected round keys separately which has been done when the | 
|  | * decryption round keys were calculated.) | 
|  | * | 
|  | *      block = vaesimcq_u8(block); | 
|  | */ | 
|  | #define AESCE_DECRYPT_ROUND                   \ | 
|  | block = vaesdq_u8(block, vld1q_u8(keys)); \ | 
|  | block = vaesimcq_u8(block);               \ | 
|  | keys += 16 | 
|  | /* Two rounds of AESCE decryption */ | 
|  | #define AESCE_DECRYPT_ROUND_X2        AESCE_DECRYPT_ROUND; AESCE_DECRYPT_ROUND | 
|  |  | 
|  | static uint8x16_t aesce_decrypt_block(uint8x16_t block, | 
|  | unsigned char *keys, | 
|  | int rounds) | 
|  | { | 
|  | /* 10, 12 or 14 rounds. Unroll loop. */ | 
|  | if (rounds == 10) { | 
|  | goto rounds_10; | 
|  | } | 
|  | if (rounds == 12) { | 
|  | goto rounds_12; | 
|  | } | 
|  | AESCE_DECRYPT_ROUND_X2; | 
|  | rounds_12: | 
|  | AESCE_DECRYPT_ROUND_X2; | 
|  | rounds_10: | 
|  | AESCE_DECRYPT_ROUND_X2; | 
|  | AESCE_DECRYPT_ROUND_X2; | 
|  | AESCE_DECRYPT_ROUND_X2; | 
|  | AESCE_DECRYPT_ROUND_X2; | 
|  | AESCE_DECRYPT_ROUND; | 
|  |  | 
|  | /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the | 
|  | * last full round. */ | 
|  | block = vaesdq_u8(block, vld1q_u8(keys)); | 
|  | keys += 16; | 
|  |  | 
|  | /* Inverse AddRoundKey for inverting the initial round key addition. */ | 
|  | block = veorq_u8(block, vld1q_u8(keys)); | 
|  |  | 
|  | return block; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * AES-ECB block en(de)cryption | 
|  | */ | 
|  | int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx, | 
|  | int mode, | 
|  | const unsigned char input[16], | 
|  | unsigned char output[16]) | 
|  | { | 
|  | uint8x16_t block = vld1q_u8(&input[0]); | 
|  | unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset); | 
|  |  | 
|  | if (mode == MBEDTLS_AES_ENCRYPT) { | 
|  | block = aesce_encrypt_block(block, keys, ctx->nr); | 
|  | } else { | 
|  | block = aesce_decrypt_block(block, keys, ctx->nr); | 
|  | } | 
|  | vst1q_u8(&output[0], block); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute decryption round keys from encryption round keys | 
|  | */ | 
|  | void mbedtls_aesce_inverse_key(unsigned char *invkey, | 
|  | const unsigned char *fwdkey, | 
|  | int nr) | 
|  | { | 
|  | int i, j; | 
|  | j = nr; | 
|  | vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16)); | 
|  | for (i = 1, j--; j > 0; i++, j--) { | 
|  | vst1q_u8(invkey + i * 16, | 
|  | vaesimcq_u8(vld1q_u8(fwdkey + j * 16))); | 
|  | } | 
|  | vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16)); | 
|  |  | 
|  | } | 
|  |  | 
|  | static inline uint32_t aes_rot_word(uint32_t word) | 
|  | { | 
|  | return (word << (32 - 8)) | (word >> 8); | 
|  | } | 
|  |  | 
|  | static inline uint32_t aes_sub_word(uint32_t in) | 
|  | { | 
|  | uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in)); | 
|  | uint8x16_t zero = vdupq_n_u8(0); | 
|  |  | 
|  | /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields | 
|  | * the correct result as ShiftRows doesn't change the first row. */ | 
|  | v = vaeseq_u8(zero, v); | 
|  | return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Key expansion function | 
|  | */ | 
|  | static void aesce_setkey_enc(unsigned char *rk, | 
|  | const unsigned char *key, | 
|  | const size_t key_bit_length) | 
|  | { | 
|  | static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10, | 
|  | 0x20, 0x40, 0x80, 0x1b, 0x36 }; | 
|  | /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf | 
|  | *   - Section 5, Nr = Nk + 6 | 
|  | *   - Section 5.2, the length of round keys is Nb*(Nr+1) | 
|  | */ | 
|  | const uint32_t key_len_in_words = key_bit_length / 32;  /* Nk */ | 
|  | const size_t round_key_len_in_words = 4;                /* Nb */ | 
|  | const size_t rounds_needed = key_len_in_words + 6;      /* Nr */ | 
|  | const size_t round_keys_len_in_words = | 
|  | round_key_len_in_words * (rounds_needed + 1);       /* Nb*(Nr+1) */ | 
|  | const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words; | 
|  |  | 
|  | memcpy(rk, key, key_len_in_words * 4); | 
|  |  | 
|  | for (uint32_t *rki = (uint32_t *) rk; | 
|  | rki + key_len_in_words < rko_end; | 
|  | rki += key_len_in_words) { | 
|  |  | 
|  | size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words; | 
|  | uint32_t *rko; | 
|  | rko = rki + key_len_in_words; | 
|  | rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1])); | 
|  | rko[0] ^= rcon[iteration] ^ rki[0]; | 
|  | rko[1] = rko[0] ^ rki[1]; | 
|  | rko[2] = rko[1] ^ rki[2]; | 
|  | rko[3] = rko[2] ^ rki[3]; | 
|  | if (rko + key_len_in_words > rko_end) { | 
|  | /* Do not write overflow words.*/ | 
|  | continue; | 
|  | } | 
|  | #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) | 
|  | switch (key_bit_length) { | 
|  | case 128: | 
|  | break; | 
|  | case 192: | 
|  | rko[4] = rko[3] ^ rki[4]; | 
|  | rko[5] = rko[4] ^ rki[5]; | 
|  | break; | 
|  | case 256: | 
|  | rko[4] = aes_sub_word(rko[3]) ^ rki[4]; | 
|  | rko[5] = rko[4] ^ rki[5]; | 
|  | rko[6] = rko[5] ^ rki[6]; | 
|  | rko[7] = rko[6] ^ rki[7]; | 
|  | break; | 
|  | } | 
|  | #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Key expansion, wrapper | 
|  | */ | 
|  | int mbedtls_aesce_setkey_enc(unsigned char *rk, | 
|  | const unsigned char *key, | 
|  | size_t bits) | 
|  | { | 
|  | switch (bits) { | 
|  | case 128: | 
|  | case 192: | 
|  | case 256: | 
|  | aesce_setkey_enc(rk, key, bits); | 
|  | break; | 
|  | default: | 
|  | return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(MBEDTLS_GCM_C) | 
|  |  | 
|  | #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 5 | 
|  | /* Some intrinsics are not available for GCC 5.X. */ | 
|  | #define vreinterpretq_p64_u8(a) ((poly64x2_t) a) | 
|  | #define vreinterpretq_u8_p128(a) ((uint8x16_t) a) | 
|  | static inline poly64_t vget_low_p64(poly64x2_t __a) | 
|  | { | 
|  | uint64x2_t tmp = (uint64x2_t) (__a); | 
|  | uint64x1_t lo = vcreate_u64(vgetq_lane_u64(tmp, 0)); | 
|  | return (poly64_t) (lo); | 
|  | } | 
|  | #endif /* !__clang__ && __GNUC__ && __GNUC__ == 5*/ | 
|  |  | 
|  | /* vmull_p64/vmull_high_p64 wrappers. | 
|  | * | 
|  | * Older compilers miss some intrinsic functions for `poly*_t`. We use | 
|  | * uint8x16_t and uint8x16x3_t as input/output parameters. | 
|  | */ | 
|  | #if defined(__GNUC__) && !defined(__clang__) | 
|  | /* GCC reports incompatible type error without cast. GCC think poly64_t and | 
|  | * poly64x1_t are different, that is different with MSVC and Clang. */ | 
|  | #define MBEDTLS_VMULL_P64(a, b) vmull_p64((poly64_t) a, (poly64_t) b) | 
|  | #else | 
|  | /* MSVC reports `error C2440: 'type cast'` with cast. Clang does not report | 
|  | * error with/without cast. And I think poly64_t and poly64x1_t are same, no | 
|  | * cast for clang also. */ | 
|  | #define MBEDTLS_VMULL_P64(a, b) vmull_p64(a, b) | 
|  | #endif | 
|  | static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b) | 
|  | { | 
|  |  | 
|  | return vreinterpretq_u8_p128( | 
|  | MBEDTLS_VMULL_P64( | 
|  | vget_low_p64(vreinterpretq_p64_u8(a)), | 
|  | vget_low_p64(vreinterpretq_p64_u8(b)) | 
|  | )); | 
|  | } | 
|  |  | 
|  | static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b) | 
|  | { | 
|  | return vreinterpretq_u8_p128( | 
|  | vmull_high_p64(vreinterpretq_p64_u8(a), | 
|  | vreinterpretq_p64_u8(b))); | 
|  | } | 
|  |  | 
|  | /* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by | 
|  | * `x^128 + x^7 + x^2 + x + 1`. | 
|  | * | 
|  | * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b | 
|  | * multiplies to generate a 128b. | 
|  | * | 
|  | * `poly_mult_128` executes polynomial multiplication and outputs 256b that | 
|  | * represented by 3 128b due to code size optimization. | 
|  | * | 
|  | * Output layout: | 
|  | * |            |             |             | | 
|  | * |------------|-------------|-------------| | 
|  | * | ret.val[0] | h3:h2:00:00 | high   128b | | 
|  | * | ret.val[1] |   :m2:m1:00 | middle 128b | | 
|  | * | ret.val[2] |   :  :l1:l0 | low    128b | | 
|  | */ | 
|  | static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b) | 
|  | { | 
|  | uint8x16x3_t ret; | 
|  | uint8x16_t h, m, l; /* retval high/middle/low */ | 
|  | uint8x16_t c, d, e; | 
|  |  | 
|  | h = pmull_high(a, b);                       /* h3:h2:00:00 = a1*b1 */ | 
|  | l = pmull_low(a, b);                        /*   :  :l1:l0 = a0*b0 */ | 
|  | c = vextq_u8(b, b, 8);                      /*      :c1:c0 = b0:b1 */ | 
|  | d = pmull_high(a, c);                       /*   :d2:d1:00 = a1*b0 */ | 
|  | e = pmull_low(a, c);                        /*   :e2:e1:00 = a0*b1 */ | 
|  | m = veorq_u8(d, e);                         /*   :m2:m1:00 = d + e */ | 
|  |  | 
|  | ret.val[0] = h; | 
|  | ret.val[1] = m; | 
|  | ret.val[2] = l; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Modulo reduction. | 
|  | * | 
|  | * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8 | 
|  | * | 
|  | * Section 4.3 | 
|  | * | 
|  | * Modular reduction is slightly more complex. Write the GCM modulus as f(z) = | 
|  | * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to | 
|  | * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit | 
|  | * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we | 
|  | * simply multiply the higher part of the operand by r(z) and add it to l(z). If | 
|  | * the result is still larger than 128 bits, we reduce again. | 
|  | */ | 
|  | static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input) | 
|  | { | 
|  | uint8x16_t const ZERO = vdupq_n_u8(0); | 
|  |  | 
|  | uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87)); | 
|  | #if defined(__GNUC__) | 
|  | /* use 'asm' as an optimisation barrier to prevent loading MODULO from | 
|  | * memory. It is for GNUC compatible compilers. | 
|  | */ | 
|  | asm ("" : "+w" (r)); | 
|  | #endif | 
|  | uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8)); | 
|  | uint8x16_t h, m, l; /* input high/middle/low 128b */ | 
|  | uint8x16_t c, d, e, f, g, n, o; | 
|  | h = input.val[0];            /* h3:h2:00:00                          */ | 
|  | m = input.val[1];            /*   :m2:m1:00                          */ | 
|  | l = input.val[2];            /*   :  :l1:l0                          */ | 
|  | c = pmull_high(h, MODULO);   /*   :c2:c1:00 = reduction of h3        */ | 
|  | d = pmull_low(h, MODULO);    /*   :  :d1:d0 = reduction of h2        */ | 
|  | e = veorq_u8(c, m);          /*   :e2:e1:00 = m2:m1:00 + c2:c1:00    */ | 
|  | f = pmull_high(e, MODULO);   /*   :  :f1:f0 = reduction of e2        */ | 
|  | g = vextq_u8(ZERO, e, 8);    /*   :  :g1:00 = e1:00                  */ | 
|  | n = veorq_u8(d, l);          /*   :  :n1:n0 = d1:d0 + l1:l0          */ | 
|  | o = veorq_u8(n, f);          /*       o1:o0 = f1:f0 + n1:n0          */ | 
|  | return veorq_u8(o, g);       /*             = o1:o0 + g1:00          */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * GCM multiplication: c = a times b in GF(2^128) | 
|  | */ | 
|  | void mbedtls_aesce_gcm_mult(unsigned char c[16], | 
|  | const unsigned char a[16], | 
|  | const unsigned char b[16]) | 
|  | { | 
|  | uint8x16_t va, vb, vc; | 
|  | va = vrbitq_u8(vld1q_u8(&a[0])); | 
|  | vb = vrbitq_u8(vld1q_u8(&b[0])); | 
|  | vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb))); | 
|  | vst1q_u8(&c[0], vc); | 
|  | } | 
|  |  | 
|  | #endif /* MBEDTLS_GCM_C */ | 
|  |  | 
|  | #if defined(MBEDTLS_POP_TARGET_PRAGMA) | 
|  | #if defined(__clang__) | 
|  | #pragma clang attribute pop | 
|  | #elif defined(__GNUC__) | 
|  | #pragma GCC pop_options | 
|  | #endif | 
|  | #undef MBEDTLS_POP_TARGET_PRAGMA | 
|  | #endif | 
|  |  | 
|  | #endif /* MBEDTLS_ARCH_IS_ARM64 */ | 
|  |  | 
|  | #endif /* MBEDTLS_AESCE_C */ |