|  | /* | 
|  | *  Helper functions for the RSA module | 
|  | * | 
|  | *  Copyright The Mbed TLS Contributors | 
|  | *  SPDX-License-Identifier: Apache-2.0 | 
|  | * | 
|  | *  Licensed under the Apache License, Version 2.0 (the "License"); you may | 
|  | *  not use this file except in compliance with the License. | 
|  | *  You may obtain a copy of the License at | 
|  | * | 
|  | *  http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | *  Unless required by applicable law or agreed to in writing, software | 
|  | *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | 
|  | *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | *  See the License for the specific language governing permissions and | 
|  | *  limitations under the License. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | #if defined(MBEDTLS_RSA_C) | 
|  |  | 
|  | #include "mbedtls/rsa.h" | 
|  | #include "mbedtls/bignum.h" | 
|  | #include "mbedtls/rsa_internal.h" | 
|  |  | 
|  | /* | 
|  | * Compute RSA prime factors from public and private exponents | 
|  | * | 
|  | * Summary of algorithm: | 
|  | * Setting F := lcm(P-1,Q-1), the idea is as follows: | 
|  | * | 
|  | * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2) | 
|  | *     is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the | 
|  | *     square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four | 
|  | *     possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1) | 
|  | *     or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime | 
|  | *     factors of N. | 
|  | * | 
|  | * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same | 
|  | *     construction still applies since (-)^K is the identity on the set of | 
|  | *     roots of 1 in Z/NZ. | 
|  | * | 
|  | * The public and private key primitives (-)^E and (-)^D are mutually inverse | 
|  | * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e. | 
|  | * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L. | 
|  | * Splitting L = 2^t * K with K odd, we have | 
|  | * | 
|  | *   DE - 1 = FL = (F/2) * (2^(t+1)) * K, | 
|  | * | 
|  | * so (F / 2) * K is among the numbers | 
|  | * | 
|  | *   (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord | 
|  | * | 
|  | * where ord is the order of 2 in (DE - 1). | 
|  | * We can therefore iterate through these numbers apply the construction | 
|  | * of (a) and (b) above to attempt to factor N. | 
|  | * | 
|  | */ | 
|  | int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, | 
|  | mbedtls_mpi const *E, mbedtls_mpi const *D, | 
|  | mbedtls_mpi *P, mbedtls_mpi *Q ) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | uint16_t attempt;  /* Number of current attempt  */ | 
|  | uint16_t iter;     /* Number of squares computed in the current attempt */ | 
|  |  | 
|  | uint16_t order;    /* Order of 2 in DE - 1 */ | 
|  |  | 
|  | mbedtls_mpi T;  /* Holds largest odd divisor of DE - 1     */ | 
|  | mbedtls_mpi K;  /* Temporary holding the current candidate */ | 
|  |  | 
|  | const unsigned char primes[] = { 2, | 
|  | 3,    5,    7,   11,   13,   17,   19,   23, | 
|  | 29,   31,   37,   41,   43,   47,   53,   59, | 
|  | 61,   67,   71,   73,   79,   83,   89,   97, | 
|  | 101,  103,  107,  109,  113,  127,  131,  137, | 
|  | 139,  149,  151,  157,  163,  167,  173,  179, | 
|  | 181,  191,  193,  197,  199,  211,  223,  227, | 
|  | 229,  233,  239,  241,  251 | 
|  | }; | 
|  |  | 
|  | const size_t num_primes = sizeof( primes ) / sizeof( *primes ); | 
|  |  | 
|  | if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL ) | 
|  | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | 
|  |  | 
|  | if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || | 
|  | mbedtls_mpi_cmp_int( D, 1 ) <= 0 || | 
|  | mbedtls_mpi_cmp_mpi( D, N ) >= 0 || | 
|  | mbedtls_mpi_cmp_int( E, 1 ) <= 0 || | 
|  | mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) | 
|  | { | 
|  | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initializations and temporary changes | 
|  | */ | 
|  |  | 
|  | mbedtls_mpi_init( &K ); | 
|  | mbedtls_mpi_init( &T ); | 
|  |  | 
|  | /* T := DE - 1 */ | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D,  E ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) ); | 
|  |  | 
|  | if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* After this operation, T holds the largest odd divisor of DE - 1. */ | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) ); | 
|  |  | 
|  | /* | 
|  | * Actual work | 
|  | */ | 
|  |  | 
|  | /* Skip trying 2 if N == 1 mod 8 */ | 
|  | attempt = 0; | 
|  | if( N->p[0] % 8 == 1 ) | 
|  | attempt = 1; | 
|  |  | 
|  | for( ; attempt < num_primes; ++attempt ) | 
|  | { | 
|  | mbedtls_mpi_lset( &K, primes[attempt] ); | 
|  |  | 
|  | /* Check if gcd(K,N) = 1 */ | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); | 
|  | if( mbedtls_mpi_cmp_int( P, 1 ) != 0 ) | 
|  | continue; | 
|  |  | 
|  | /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ... | 
|  | * and check whether they have nontrivial GCD with N. */ | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N, | 
|  | Q /* temporarily use Q for storing Montgomery | 
|  | * multiplication helper values */ ) ); | 
|  |  | 
|  | for( iter = 1; iter <= order; ++iter ) | 
|  | { | 
|  | /* If we reach 1 prematurely, there's no point | 
|  | * in continuing to square K */ | 
|  | if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 ) | 
|  | break; | 
|  |  | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); | 
|  |  | 
|  | if( mbedtls_mpi_cmp_int( P, 1 ) ==  1 && | 
|  | mbedtls_mpi_cmp_mpi( P, N ) == -1 ) | 
|  | { | 
|  | /* | 
|  | * Have found a nontrivial divisor P of N. | 
|  | * Set Q := N / P. | 
|  | */ | 
|  |  | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) ); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we get here, then either we prematurely aborted the loop because | 
|  | * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must | 
|  | * be 1 if D,E,N were consistent. | 
|  | * Check if that's the case and abort if not, to avoid very long, | 
|  | * yet eventually failing, computations if N,D,E were not sane. | 
|  | */ | 
|  | if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 ) | 
|  | { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mbedtls_mpi_free( &K ); | 
|  | mbedtls_mpi_free( &T ); | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given P, Q and the public exponent E, deduce D. | 
|  | * This is essentially a modular inversion. | 
|  | */ | 
|  | int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P, | 
|  | mbedtls_mpi const *Q, | 
|  | mbedtls_mpi const *E, | 
|  | mbedtls_mpi *D ) | 
|  | { | 
|  | int ret = 0; | 
|  | mbedtls_mpi K, L; | 
|  |  | 
|  | if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 ) | 
|  | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | 
|  |  | 
|  | if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || | 
|  | mbedtls_mpi_cmp_int( Q, 1 ) <= 0 || | 
|  | mbedtls_mpi_cmp_int( E, 0 ) == 0 ) | 
|  | { | 
|  | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | 
|  | } | 
|  |  | 
|  | mbedtls_mpi_init( &K ); | 
|  | mbedtls_mpi_init( &L ); | 
|  |  | 
|  | /* Temporarily put K := P-1 and L := Q-1 */ | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); | 
|  |  | 
|  | /* Temporarily put D := gcd(P-1, Q-1) */ | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) ); | 
|  |  | 
|  | /* K := LCM(P-1, Q-1) */ | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) ); | 
|  |  | 
|  | /* Compute modular inverse of E in LCM(P-1, Q-1) */ | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) ); | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mbedtls_mpi_free( &K ); | 
|  | mbedtls_mpi_free( &L ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that RSA CRT parameters are in accordance with core parameters. | 
|  | */ | 
|  | int mbedtls_rsa_validate_crt( const mbedtls_mpi *P,  const mbedtls_mpi *Q, | 
|  | const mbedtls_mpi *D,  const mbedtls_mpi *DP, | 
|  | const mbedtls_mpi *DQ, const mbedtls_mpi *QP ) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | mbedtls_mpi K, L; | 
|  | mbedtls_mpi_init( &K ); | 
|  | mbedtls_mpi_init( &L ); | 
|  |  | 
|  | /* Check that DP - D == 0 mod P - 1 */ | 
|  | if( DP != NULL ) | 
|  | { | 
|  | if( P == NULL ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); | 
|  |  | 
|  | if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check that DQ - D == 0 mod Q - 1 */ | 
|  | if( DQ != NULL ) | 
|  | { | 
|  | if( Q == NULL ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); | 
|  |  | 
|  | if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check that QP * Q - 1 == 0 mod P */ | 
|  | if( QP != NULL ) | 
|  | { | 
|  | if( P == NULL || Q == NULL ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) ); | 
|  | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | /* Wrap MPI error codes by RSA check failure error code */ | 
|  | if( ret != 0 && | 
|  | ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED && | 
|  | ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA ) | 
|  | { | 
|  | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | } | 
|  |  | 
|  | mbedtls_mpi_free( &K ); | 
|  | mbedtls_mpi_free( &L ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that core RSA parameters are sane. | 
|  | */ | 
|  | int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, | 
|  | const mbedtls_mpi *Q, const mbedtls_mpi *D, | 
|  | const mbedtls_mpi *E, | 
|  | int (*f_rng)(void *, unsigned char *, size_t), | 
|  | void *p_rng ) | 
|  | { | 
|  | int ret = 0; | 
|  | mbedtls_mpi K, L; | 
|  |  | 
|  | mbedtls_mpi_init( &K ); | 
|  | mbedtls_mpi_init( &L ); | 
|  |  | 
|  | /* | 
|  | * Step 1: If PRNG provided, check that P and Q are prime | 
|  | */ | 
|  |  | 
|  | #if defined(MBEDTLS_GENPRIME) | 
|  | /* | 
|  | * When generating keys, the strongest security we support aims for an error | 
|  | * rate of at most 2^-100 and we are aiming for the same certainty here as | 
|  | * well. | 
|  | */ | 
|  | if( f_rng != NULL && P != NULL && | 
|  | ( ret = mbedtls_mpi_is_prime_ext( P, 50, f_rng, p_rng ) ) != 0 ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if( f_rng != NULL && Q != NULL && | 
|  | ( ret = mbedtls_mpi_is_prime_ext( Q, 50, f_rng, p_rng ) ) != 0 ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  | #else | 
|  | ((void) f_rng); | 
|  | ((void) p_rng); | 
|  | #endif /* MBEDTLS_GENPRIME */ | 
|  |  | 
|  | /* | 
|  | * Step 2: Check that 1 < N = P * Q | 
|  | */ | 
|  |  | 
|  | if( P != NULL && Q != NULL && N != NULL ) | 
|  | { | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) ); | 
|  | if( mbedtls_mpi_cmp_int( N, 1 )  <= 0 || | 
|  | mbedtls_mpi_cmp_mpi( &K, N ) != 0 ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 3: Check and 1 < D, E < N if present. | 
|  | */ | 
|  |  | 
|  | if( N != NULL && D != NULL && E != NULL ) | 
|  | { | 
|  | if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 || | 
|  | mbedtls_mpi_cmp_int( E, 1 ) <= 0 || | 
|  | mbedtls_mpi_cmp_mpi( D, N ) >= 0 || | 
|  | mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 4: Check that D, E are inverse modulo P-1 and Q-1 | 
|  | */ | 
|  |  | 
|  | if( P != NULL && Q != NULL && D != NULL && E != NULL ) | 
|  | { | 
|  | if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || | 
|  | mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* Compute DE-1 mod P-1 */ | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); | 
|  | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* Compute DE-1 mod Q-1 */ | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); | 
|  | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) | 
|  | { | 
|  | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | mbedtls_mpi_free( &K ); | 
|  | mbedtls_mpi_free( &L ); | 
|  |  | 
|  | /* Wrap MPI error codes by RSA check failure error code */ | 
|  | if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ) | 
|  | { | 
|  | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | 
|  | } | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, | 
|  | const mbedtls_mpi *D, mbedtls_mpi *DP, | 
|  | mbedtls_mpi *DQ, mbedtls_mpi *QP ) | 
|  | { | 
|  | int ret = 0; | 
|  | mbedtls_mpi K; | 
|  | mbedtls_mpi_init( &K ); | 
|  |  | 
|  | /* DP = D mod P-1 */ | 
|  | if( DP != NULL ) | 
|  | { | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1  ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) ); | 
|  | } | 
|  |  | 
|  | /* DQ = D mod Q-1 */ | 
|  | if( DQ != NULL ) | 
|  | { | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1  ) ); | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) ); | 
|  | } | 
|  |  | 
|  | /* QP = Q^{-1} mod P */ | 
|  | if( QP != NULL ) | 
|  | { | 
|  | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) ); | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | mbedtls_mpi_free( &K ); | 
|  |  | 
|  | return( ret ); | 
|  | } | 
|  |  | 
|  | #endif /* MBEDTLS_RSA_C */ |