| /** |
| * Constant-time functions |
| * |
| * Copyright The Mbed TLS Contributors |
| * SPDX-License-Identifier: Apache-2.0 |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| * not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * The following functions are implemented without using comparison operators, as those |
| * might be translated to branches by some compilers on some platforms. |
| */ |
| |
| #include "common.h" |
| #include "constant_time_internal.h" |
| #include "mbedtls/constant_time.h" |
| #include "mbedtls/error.h" |
| #include "mbedtls/platform_util.h" |
| |
| #if defined(MBEDTLS_BIGNUM_C) |
| #include "mbedtls/bignum.h" |
| #include "bignum_core.h" |
| #endif |
| |
| #if defined(MBEDTLS_SSL_TLS_C) |
| #include "ssl_misc.h" |
| #endif |
| |
| #if defined(MBEDTLS_RSA_C) |
| #include "mbedtls/rsa.h" |
| #endif |
| |
| #if defined(MBEDTLS_BASE64_C) |
| #include "constant_time_invasive.h" |
| #endif |
| |
| #include <string.h> |
| #if defined(MBEDTLS_USE_PSA_CRYPTO) |
| #define PSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status, \ |
| psa_to_ssl_errors, \ |
| psa_generic_status_to_mbedtls) |
| #endif |
| |
| /* |
| * Define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS where assembly is present to |
| * perform fast unaligned access to volatile data. |
| * |
| * This is needed because mbedtls_get_unaligned_uintXX etc don't support volatile |
| * memory accesses. |
| * |
| * Some of these definitions could be moved into alignment.h but for now they are |
| * only used here. |
| */ |
| #if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS) && defined(MBEDTLS_HAVE_ASM) |
| #if defined(__arm__) || defined(__thumb__) || defined(__thumb2__) || defined(__aarch64__) |
| #define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS |
| #endif |
| #endif |
| |
| #if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS) |
| static inline uint32_t mbedtls_get_unaligned_volatile_uint32(volatile const unsigned char *p) |
| { |
| /* This is UB, even where it's safe: |
| * return *((volatile uint32_t*)p); |
| * so instead the same thing is expressed in assembly below. |
| */ |
| uint32_t r; |
| #if defined(__arm__) || defined(__thumb__) || defined(__thumb2__) |
| asm volatile ("ldr %0, [%1]" : "=r" (r) : "r" (p) :); |
| #elif defined(__aarch64__) |
| asm volatile ("ldr %w0, [%1]" : "=r" (r) : "r" (p) :); |
| #endif |
| return r; |
| } |
| #endif /* MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS */ |
| |
| int mbedtls_ct_memcmp(const void *a, |
| const void *b, |
| size_t n) |
| { |
| size_t i = 0; |
| /* |
| * `A` and `B` are cast to volatile to ensure that the compiler |
| * generates code that always fully reads both buffers. |
| * Otherwise it could generate a test to exit early if `diff` has all |
| * bits set early in the loop. |
| */ |
| volatile const unsigned char *A = (volatile const unsigned char *) a; |
| volatile const unsigned char *B = (volatile const unsigned char *) b; |
| uint32_t diff = 0; |
| |
| #if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS) |
| for (; (i + 4) <= n; i += 4) { |
| uint32_t x = mbedtls_get_unaligned_volatile_uint32(A + i); |
| uint32_t y = mbedtls_get_unaligned_volatile_uint32(B + i); |
| diff |= x ^ y; |
| } |
| #endif |
| |
| for (; i < n; i++) { |
| /* Read volatile data in order before computing diff. |
| * This avoids IAR compiler warning: |
| * 'the order of volatile accesses is undefined ..' */ |
| unsigned char x = A[i], y = B[i]; |
| diff |= x ^ y; |
| } |
| |
| return (int) diff; |
| } |
| |
| unsigned mbedtls_ct_uint_mask(unsigned value) |
| { |
| /* MSVC has a warning about unary minus on unsigned, but this is |
| * well-defined and precisely what we want to do here */ |
| #if defined(_MSC_VER) |
| #pragma warning( push ) |
| #pragma warning( disable : 4146 ) |
| #endif |
| return -((value | -value) >> (sizeof(value) * 8 - 1)); |
| #if defined(_MSC_VER) |
| #pragma warning( pop ) |
| #endif |
| } |
| |
| #if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC) |
| |
| size_t mbedtls_ct_size_mask(size_t value) |
| { |
| /* MSVC has a warning about unary minus on unsigned integer types, |
| * but this is well-defined and precisely what we want to do here. */ |
| #if defined(_MSC_VER) |
| #pragma warning( push ) |
| #pragma warning( disable : 4146 ) |
| #endif |
| return -((value | -value) >> (sizeof(value) * 8 - 1)); |
| #if defined(_MSC_VER) |
| #pragma warning( pop ) |
| #endif |
| } |
| |
| #endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */ |
| |
| #if defined(MBEDTLS_BIGNUM_C) |
| |
| mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value) |
| { |
| /* MSVC has a warning about unary minus on unsigned, but this is |
| * well-defined and precisely what we want to do here */ |
| #if defined(_MSC_VER) |
| #pragma warning( push ) |
| #pragma warning( disable : 4146 ) |
| #endif |
| return -((value | -value) >> (sizeof(value) * 8 - 1)); |
| #if defined(_MSC_VER) |
| #pragma warning( pop ) |
| #endif |
| } |
| |
| #endif /* MBEDTLS_BIGNUM_C */ |
| |
| #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC) |
| |
| /** Constant-flow mask generation for "less than" comparison: |
| * - if \p x < \p y, return all-bits 1, that is (size_t) -1 |
| * - otherwise, return all bits 0, that is 0 |
| * |
| * This function can be used to write constant-time code by replacing branches |
| * with bit operations using masks. |
| * |
| * \param x The first value to analyze. |
| * \param y The second value to analyze. |
| * |
| * \return All-bits-one if \p x is less than \p y, otherwise zero. |
| */ |
| static size_t mbedtls_ct_size_mask_lt(size_t x, |
| size_t y) |
| { |
| /* This has the most significant bit set if and only if x < y */ |
| const size_t sub = x - y; |
| |
| /* sub1 = (x < y) ? 1 : 0 */ |
| const size_t sub1 = sub >> (sizeof(sub) * 8 - 1); |
| |
| /* mask = (x < y) ? 0xff... : 0x00... */ |
| const size_t mask = mbedtls_ct_size_mask(sub1); |
| |
| return mask; |
| } |
| |
| size_t mbedtls_ct_size_mask_ge(size_t x, |
| size_t y) |
| { |
| return ~mbedtls_ct_size_mask_lt(x, y); |
| } |
| |
| #endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */ |
| |
| #if defined(MBEDTLS_BASE64_C) |
| |
| /* Return 0xff if low <= c <= high, 0 otherwise. |
| * |
| * Constant flow with respect to c. |
| */ |
| unsigned char mbedtls_ct_uchar_mask_of_range(unsigned char low, |
| unsigned char high, |
| unsigned char c) |
| { |
| /* low_mask is: 0 if low <= c, 0x...ff if low > c */ |
| unsigned low_mask = ((unsigned) c - low) >> 8; |
| /* high_mask is: 0 if c <= high, 0x...ff if c > high */ |
| unsigned high_mask = ((unsigned) high - c) >> 8; |
| return ~(low_mask | high_mask) & 0xff; |
| } |
| |
| #endif /* MBEDTLS_BASE64_C */ |
| |
| unsigned mbedtls_ct_size_bool_eq(size_t x, |
| size_t y) |
| { |
| /* diff = 0 if x == y, non-zero otherwise */ |
| const size_t diff = x ^ y; |
| |
| /* MSVC has a warning about unary minus on unsigned integer types, |
| * but this is well-defined and precisely what we want to do here. */ |
| #if defined(_MSC_VER) |
| #pragma warning( push ) |
| #pragma warning( disable : 4146 ) |
| #endif |
| |
| /* diff_msb's most significant bit is equal to x != y */ |
| const size_t diff_msb = (diff | (size_t) -diff); |
| |
| #if defined(_MSC_VER) |
| #pragma warning( pop ) |
| #endif |
| |
| /* diff1 = (x != y) ? 1 : 0 */ |
| const unsigned diff1 = diff_msb >> (sizeof(diff_msb) * 8 - 1); |
| |
| return 1 ^ diff1; |
| } |
| |
| #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT) |
| |
| unsigned mbedtls_ct_size_gt(size_t x, size_t y) |
| { |
| /* Return the sign bit (1 for negative) of (y - x). */ |
| return (y - x) >> (sizeof(size_t) * 8 - 1); |
| } |
| |
| #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */ |
| |
| #if defined(MBEDTLS_BIGNUM_C) |
| |
| unsigned mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x, |
| const mbedtls_mpi_uint y) |
| { |
| mbedtls_mpi_uint ret; |
| mbedtls_mpi_uint cond; |
| |
| /* |
| * Check if the most significant bits (MSB) of the operands are different. |
| */ |
| cond = (x ^ y); |
| /* |
| * If the MSB are the same then the difference x-y will be negative (and |
| * have its MSB set to 1 during conversion to unsigned) if and only if x<y. |
| */ |
| ret = (x - y) & ~cond; |
| /* |
| * If the MSB are different, then the operand with the MSB of 1 is the |
| * bigger. (That is if y has MSB of 1, then x<y is true and it is false if |
| * the MSB of y is 0.) |
| */ |
| ret |= y & cond; |
| |
| |
| ret = ret >> (sizeof(mbedtls_mpi_uint) * 8 - 1); |
| |
| return (unsigned) ret; |
| } |
| |
| #endif /* MBEDTLS_BIGNUM_C */ |
| |
| unsigned mbedtls_ct_uint_if(unsigned condition, |
| unsigned if1, |
| unsigned if0) |
| { |
| unsigned mask = mbedtls_ct_uint_mask(condition); |
| return (mask & if1) | (~mask & if0); |
| } |
| |
| #if defined(MBEDTLS_BIGNUM_C) |
| |
| void mbedtls_ct_mpi_uint_cond_assign(size_t n, |
| mbedtls_mpi_uint *dest, |
| const mbedtls_mpi_uint *src, |
| unsigned char condition) |
| { |
| size_t i; |
| |
| /* MSVC has a warning about unary minus on unsigned integer types, |
| * but this is well-defined and precisely what we want to do here. */ |
| #if defined(_MSC_VER) |
| #pragma warning( push ) |
| #pragma warning( disable : 4146 ) |
| #endif |
| |
| /* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */ |
| const mbedtls_mpi_uint mask = -condition; |
| |
| #if defined(_MSC_VER) |
| #pragma warning( pop ) |
| #endif |
| |
| for (i = 0; i < n; i++) { |
| dest[i] = (src[i] & mask) | (dest[i] & ~mask); |
| } |
| } |
| |
| #endif /* MBEDTLS_BIGNUM_C */ |
| |
| #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT) |
| |
| void mbedtls_ct_mem_move_to_left(void *start, |
| size_t total, |
| size_t offset) |
| { |
| volatile unsigned char *buf = start; |
| size_t i, n; |
| if (total == 0) { |
| return; |
| } |
| for (i = 0; i < total; i++) { |
| unsigned no_op = mbedtls_ct_size_gt(total - offset, i); |
| /* The first `total - offset` passes are a no-op. The last |
| * `offset` passes shift the data one byte to the left and |
| * zero out the last byte. */ |
| for (n = 0; n < total - 1; n++) { |
| unsigned char current = buf[n]; |
| unsigned char next = buf[n+1]; |
| buf[n] = mbedtls_ct_uint_if(no_op, current, next); |
| } |
| buf[total-1] = mbedtls_ct_uint_if(no_op, buf[total-1], 0); |
| } |
| } |
| |
| #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */ |
| |
| #if defined(MBEDTLS_SSL_SOME_SUITES_USE_MAC) |
| |
| void mbedtls_ct_memcpy_if_eq(unsigned char *dest, |
| const unsigned char *src, |
| size_t len, |
| size_t c1, |
| size_t c2) |
| { |
| /* mask = c1 == c2 ? 0xff : 0x00 */ |
| const size_t equal = mbedtls_ct_size_bool_eq(c1, c2); |
| |
| /* dest[i] = c1 == c2 ? src[i] : dest[i] */ |
| size_t i = 0; |
| #if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS) |
| const uint32_t mask32 = (uint32_t) mbedtls_ct_size_mask(equal); |
| const unsigned char mask = (unsigned char) mask32 & 0xff; |
| |
| for (; (i + 4) <= len; i += 4) { |
| uint32_t a = mbedtls_get_unaligned_uint32(src + i) & mask32; |
| uint32_t b = mbedtls_get_unaligned_uint32(dest + i) & ~mask32; |
| mbedtls_put_unaligned_uint32(dest + i, a | b); |
| } |
| #else |
| const unsigned char mask = (unsigned char) mbedtls_ct_size_mask(equal); |
| #endif /* MBEDTLS_EFFICIENT_UNALIGNED_ACCESS */ |
| for (; i < len; i++) { |
| dest[i] = (src[i] & mask) | (dest[i] & ~mask); |
| } |
| } |
| |
| void mbedtls_ct_memcpy_offset(unsigned char *dest, |
| const unsigned char *src, |
| size_t offset, |
| size_t offset_min, |
| size_t offset_max, |
| size_t len) |
| { |
| size_t offsetval; |
| |
| for (offsetval = offset_min; offsetval <= offset_max; offsetval++) { |
| mbedtls_ct_memcpy_if_eq(dest, src + offsetval, len, |
| offsetval, offset); |
| } |
| } |
| |
| #endif /* MBEDTLS_SSL_SOME_SUITES_USE_MAC */ |
| |
| #if defined(MBEDTLS_BIGNUM_C) |
| |
| #define MPI_VALIDATE_RET(cond) \ |
| MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA) |
| |
| /* |
| * Conditionally assign X = Y, without leaking information |
| * about whether the assignment was made or not. |
| * (Leaking information about the respective sizes of X and Y is ok however.) |
| */ |
| #if defined(_MSC_VER) && defined(_M_ARM64) && (_MSC_FULL_VER < 193131103) |
| /* |
| * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See: |
| * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989 |
| */ |
| __declspec(noinline) |
| #endif |
| int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X, |
| const mbedtls_mpi *Y, |
| unsigned char assign) |
| { |
| int ret = 0; |
| MPI_VALIDATE_RET(X != NULL); |
| MPI_VALIDATE_RET(Y != NULL); |
| |
| /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */ |
| mbedtls_mpi_uint limb_mask = mbedtls_ct_mpi_uint_mask(assign); |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n)); |
| |
| X->s = (int) mbedtls_ct_uint_if(assign, Y->s, X->s); |
| |
| mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, assign); |
| |
| for (size_t i = Y->n; i < X->n; i++) { |
| X->p[i] &= ~limb_mask; |
| } |
| |
| cleanup: |
| return ret; |
| } |
| |
| /* |
| * Conditionally swap X and Y, without leaking information |
| * about whether the swap was made or not. |
| * Here it is not ok to simply swap the pointers, which would lead to |
| * different memory access patterns when X and Y are used afterwards. |
| */ |
| int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X, |
| mbedtls_mpi *Y, |
| unsigned char swap) |
| { |
| int ret = 0; |
| int s; |
| MPI_VALIDATE_RET(X != NULL); |
| MPI_VALIDATE_RET(Y != NULL); |
| |
| if (X == Y) { |
| return 0; |
| } |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n)); |
| |
| s = X->s; |
| X->s = (int) mbedtls_ct_uint_if(swap, Y->s, X->s); |
| Y->s = (int) mbedtls_ct_uint_if(swap, s, Y->s); |
| |
| mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, swap); |
| |
| cleanup: |
| return ret; |
| } |
| |
| /* |
| * Compare unsigned values in constant time |
| */ |
| unsigned mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A, |
| const mbedtls_mpi_uint *B, |
| size_t limbs) |
| { |
| unsigned ret, cond, done; |
| |
| /* The value of any of these variables is either 0 or 1 for the rest of |
| * their scope. */ |
| ret = cond = done = 0; |
| |
| for (size_t i = limbs; i > 0; i--) { |
| /* |
| * If B[i - 1] < A[i - 1] then A < B is false and the result must |
| * remain 0. |
| * |
| * Again even if we can make a decision, we just mark the result and |
| * the fact that we are done and continue looping. |
| */ |
| cond = mbedtls_ct_mpi_uint_lt(B[i - 1], A[i - 1]); |
| done |= cond; |
| |
| /* |
| * If A[i - 1] < B[i - 1] then A < B is true. |
| * |
| * Again even if we can make a decision, we just mark the result and |
| * the fact that we are done and continue looping. |
| */ |
| cond = mbedtls_ct_mpi_uint_lt(A[i - 1], B[i - 1]); |
| ret |= cond & (1 - done); |
| done |= cond; |
| } |
| |
| /* |
| * If all the limbs were equal, then the numbers are equal, A < B is false |
| * and leaving the result 0 is correct. |
| */ |
| |
| return ret; |
| } |
| |
| /* |
| * Compare signed values in constant time |
| */ |
| int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X, |
| const mbedtls_mpi *Y, |
| unsigned *ret) |
| { |
| size_t i; |
| /* The value of any of these variables is either 0 or 1 at all times. */ |
| unsigned cond, done, X_is_negative, Y_is_negative; |
| |
| MPI_VALIDATE_RET(X != NULL); |
| MPI_VALIDATE_RET(Y != NULL); |
| MPI_VALIDATE_RET(ret != NULL); |
| |
| if (X->n != Y->n) { |
| return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| } |
| |
| /* |
| * Set sign_N to 1 if N >= 0, 0 if N < 0. |
| * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0. |
| */ |
| X_is_negative = (X->s & 2) >> 1; |
| Y_is_negative = (Y->s & 2) >> 1; |
| |
| /* |
| * If the signs are different, then the positive operand is the bigger. |
| * That is if X is negative (X_is_negative == 1), then X < Y is true and it |
| * is false if X is positive (X_is_negative == 0). |
| */ |
| cond = (X_is_negative ^ Y_is_negative); |
| *ret = cond & X_is_negative; |
| |
| /* |
| * This is a constant-time function. We might have the result, but we still |
| * need to go through the loop. Record if we have the result already. |
| */ |
| done = cond; |
| |
| for (i = X->n; i > 0; i--) { |
| /* |
| * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both |
| * X and Y are negative. |
| * |
| * Again even if we can make a decision, we just mark the result and |
| * the fact that we are done and continue looping. |
| */ |
| cond = mbedtls_ct_mpi_uint_lt(Y->p[i - 1], X->p[i - 1]); |
| *ret |= cond & (1 - done) & X_is_negative; |
| done |= cond; |
| |
| /* |
| * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both |
| * X and Y are positive. |
| * |
| * Again even if we can make a decision, we just mark the result and |
| * the fact that we are done and continue looping. |
| */ |
| cond = mbedtls_ct_mpi_uint_lt(X->p[i - 1], Y->p[i - 1]); |
| *ret |= cond & (1 - done) & (1 - X_is_negative); |
| done |= cond; |
| } |
| |
| return 0; |
| } |
| |
| #endif /* MBEDTLS_BIGNUM_C */ |