blob: d29c4a27eebdb8de08a3aba20be313d805491ded [file] [log] [blame]
Jaeden Ameroe54e6932018-08-06 16:19:58 +01001/*
2 * Elliptic curves over GF(p): generic functions
3 *
4 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 * This file is part of Mbed Crypto (https://tls.mbed.org)
20 */
21
22/*
23 * References:
24 *
25 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
26 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
27 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
28 * RFC 4492 for the related TLS structures and constants
29 * RFC 7748 for the Curve448 and Curve25519 curve definitions
30 *
31 * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
32 *
33 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
34 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
35 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
36 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
37 *
38 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
39 * render ECC resistant against Side Channel Attacks. IACR Cryptology
40 * ePrint Archive, 2004, vol. 2004, p. 342.
41 * <http://eprint.iacr.org/2004/342.pdf>
42 */
43
44#if !defined(MBEDCRYPTO_CONFIG_FILE)
45#include "mbedcrypto/config.h"
46#else
47#include MBEDCRYPTO_CONFIG_FILE
48#endif
49
50#if defined(MBEDCRYPTO_ECP_C)
51
52#include "mbedcrypto/ecp.h"
53#include "mbedcrypto/threading.h"
54#include "mbedcrypto/platform_util.h"
55
56#include <string.h>
57
58#if !defined(MBEDCRYPTO_ECP_ALT)
59
60#if defined(MBEDCRYPTO_PLATFORM_C)
61#include "mbedcrypto/platform.h"
62#else
63#include <stdlib.h>
64#include <stdio.h>
65#define mbedcrypto_printf printf
66#define mbedcrypto_calloc calloc
67#define mbedcrypto_free free
68#endif
69
70#include "mbedcrypto/ecp_internal.h"
71
72#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
73 !defined(inline) && !defined(__cplusplus)
74#define inline __inline
75#endif
76
77#if defined(MBEDCRYPTO_SELF_TEST)
78/*
79 * Counts of point addition and doubling, and field multiplications.
80 * Used to test resistance of point multiplication to simple timing attacks.
81 */
82static unsigned long add_count, dbl_count, mul_count;
83#endif
84
85#if defined(MBEDCRYPTO_ECP_DP_SECP192R1_ENABLED) || \
86 defined(MBEDCRYPTO_ECP_DP_SECP224R1_ENABLED) || \
87 defined(MBEDCRYPTO_ECP_DP_SECP256R1_ENABLED) || \
88 defined(MBEDCRYPTO_ECP_DP_SECP384R1_ENABLED) || \
89 defined(MBEDCRYPTO_ECP_DP_SECP521R1_ENABLED) || \
90 defined(MBEDCRYPTO_ECP_DP_BP256R1_ENABLED) || \
91 defined(MBEDCRYPTO_ECP_DP_BP384R1_ENABLED) || \
92 defined(MBEDCRYPTO_ECP_DP_BP512R1_ENABLED) || \
93 defined(MBEDCRYPTO_ECP_DP_SECP192K1_ENABLED) || \
94 defined(MBEDCRYPTO_ECP_DP_SECP224K1_ENABLED) || \
95 defined(MBEDCRYPTO_ECP_DP_SECP256K1_ENABLED)
96#define ECP_SHORTWEIERSTRASS
97#endif
98
99#if defined(MBEDCRYPTO_ECP_DP_CURVE25519_ENABLED) || \
100 defined(MBEDCRYPTO_ECP_DP_CURVE448_ENABLED)
101#define ECP_MONTGOMERY
102#endif
103
104/*
105 * Curve types: internal for now, might be exposed later
106 */
107typedef enum
108{
109 ECP_TYPE_NONE = 0,
110 ECP_TYPE_SHORT_WEIERSTRASS, /* y^2 = x^3 + a x + b */
111 ECP_TYPE_MONTGOMERY, /* y^2 = x^3 + a x^2 + x */
112} ecp_curve_type;
113
114/*
115 * List of supported curves:
116 * - internal ID
117 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
118 * - size in bits
119 * - readable name
120 *
121 * Curves are listed in order: largest curves first, and for a given size,
122 * fastest curves first. This provides the default order for the SSL module.
123 *
124 * Reminder: update profiles in x509_crt.c when adding a new curves!
125 */
126static const mbedcrypto_ecp_curve_info ecp_supported_curves[] =
127{
128#if defined(MBEDCRYPTO_ECP_DP_SECP521R1_ENABLED)
129 { MBEDCRYPTO_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
130#endif
131#if defined(MBEDCRYPTO_ECP_DP_BP512R1_ENABLED)
132 { MBEDCRYPTO_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
133#endif
134#if defined(MBEDCRYPTO_ECP_DP_SECP384R1_ENABLED)
135 { MBEDCRYPTO_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
136#endif
137#if defined(MBEDCRYPTO_ECP_DP_BP384R1_ENABLED)
138 { MBEDCRYPTO_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
139#endif
140#if defined(MBEDCRYPTO_ECP_DP_SECP256R1_ENABLED)
141 { MBEDCRYPTO_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
142#endif
143#if defined(MBEDCRYPTO_ECP_DP_SECP256K1_ENABLED)
144 { MBEDCRYPTO_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
145#endif
146#if defined(MBEDCRYPTO_ECP_DP_BP256R1_ENABLED)
147 { MBEDCRYPTO_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
148#endif
149#if defined(MBEDCRYPTO_ECP_DP_SECP224R1_ENABLED)
150 { MBEDCRYPTO_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
151#endif
152#if defined(MBEDCRYPTO_ECP_DP_SECP224K1_ENABLED)
153 { MBEDCRYPTO_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
154#endif
155#if defined(MBEDCRYPTO_ECP_DP_SECP192R1_ENABLED)
156 { MBEDCRYPTO_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
157#endif
158#if defined(MBEDCRYPTO_ECP_DP_SECP192K1_ENABLED)
159 { MBEDCRYPTO_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
160#endif
161 { MBEDCRYPTO_ECP_DP_NONE, 0, 0, NULL },
162};
163
164#define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
165 sizeof( ecp_supported_curves[0] )
166
167static mbedcrypto_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
168
169/*
170 * List of supported curves and associated info
171 */
172const mbedcrypto_ecp_curve_info *mbedcrypto_ecp_curve_list( void )
173{
174 return( ecp_supported_curves );
175}
176
177/*
178 * List of supported curves, group ID only
179 */
180const mbedcrypto_ecp_group_id *mbedcrypto_ecp_grp_id_list( void )
181{
182 static int init_done = 0;
183
184 if( ! init_done )
185 {
186 size_t i = 0;
187 const mbedcrypto_ecp_curve_info *curve_info;
188
189 for( curve_info = mbedcrypto_ecp_curve_list();
190 curve_info->grp_id != MBEDCRYPTO_ECP_DP_NONE;
191 curve_info++ )
192 {
193 ecp_supported_grp_id[i++] = curve_info->grp_id;
194 }
195 ecp_supported_grp_id[i] = MBEDCRYPTO_ECP_DP_NONE;
196
197 init_done = 1;
198 }
199
200 return( ecp_supported_grp_id );
201}
202
203/*
204 * Get the curve info for the internal identifier
205 */
206const mbedcrypto_ecp_curve_info *mbedcrypto_ecp_curve_info_from_grp_id( mbedcrypto_ecp_group_id grp_id )
207{
208 const mbedcrypto_ecp_curve_info *curve_info;
209
210 for( curve_info = mbedcrypto_ecp_curve_list();
211 curve_info->grp_id != MBEDCRYPTO_ECP_DP_NONE;
212 curve_info++ )
213 {
214 if( curve_info->grp_id == grp_id )
215 return( curve_info );
216 }
217
218 return( NULL );
219}
220
221/*
222 * Get the curve info from the TLS identifier
223 */
224const mbedcrypto_ecp_curve_info *mbedcrypto_ecp_curve_info_from_tls_id( uint16_t tls_id )
225{
226 const mbedcrypto_ecp_curve_info *curve_info;
227
228 for( curve_info = mbedcrypto_ecp_curve_list();
229 curve_info->grp_id != MBEDCRYPTO_ECP_DP_NONE;
230 curve_info++ )
231 {
232 if( curve_info->tls_id == tls_id )
233 return( curve_info );
234 }
235
236 return( NULL );
237}
238
239/*
240 * Get the curve info from the name
241 */
242const mbedcrypto_ecp_curve_info *mbedcrypto_ecp_curve_info_from_name( const char *name )
243{
244 const mbedcrypto_ecp_curve_info *curve_info;
245
246 for( curve_info = mbedcrypto_ecp_curve_list();
247 curve_info->grp_id != MBEDCRYPTO_ECP_DP_NONE;
248 curve_info++ )
249 {
250 if( strcmp( curve_info->name, name ) == 0 )
251 return( curve_info );
252 }
253
254 return( NULL );
255}
256
257/*
258 * Get the type of a curve
259 */
260static inline ecp_curve_type ecp_get_type( const mbedcrypto_ecp_group *grp )
261{
262 if( grp->G.X.p == NULL )
263 return( ECP_TYPE_NONE );
264
265 if( grp->G.Y.p == NULL )
266 return( ECP_TYPE_MONTGOMERY );
267 else
268 return( ECP_TYPE_SHORT_WEIERSTRASS );
269}
270
271/*
272 * Initialize (the components of) a point
273 */
274void mbedcrypto_ecp_point_init( mbedcrypto_ecp_point *pt )
275{
276 if( pt == NULL )
277 return;
278
279 mbedcrypto_mpi_init( &pt->X );
280 mbedcrypto_mpi_init( &pt->Y );
281 mbedcrypto_mpi_init( &pt->Z );
282}
283
284/*
285 * Initialize (the components of) a group
286 */
287void mbedcrypto_ecp_group_init( mbedcrypto_ecp_group *grp )
288{
289 if( grp == NULL )
290 return;
291
292 memset( grp, 0, sizeof( mbedcrypto_ecp_group ) );
293}
294
295/*
296 * Initialize (the components of) a key pair
297 */
298void mbedcrypto_ecp_keypair_init( mbedcrypto_ecp_keypair *key )
299{
300 if( key == NULL )
301 return;
302
303 mbedcrypto_ecp_group_init( &key->grp );
304 mbedcrypto_mpi_init( &key->d );
305 mbedcrypto_ecp_point_init( &key->Q );
306}
307
308/*
309 * Unallocate (the components of) a point
310 */
311void mbedcrypto_ecp_point_free( mbedcrypto_ecp_point *pt )
312{
313 if( pt == NULL )
314 return;
315
316 mbedcrypto_mpi_free( &( pt->X ) );
317 mbedcrypto_mpi_free( &( pt->Y ) );
318 mbedcrypto_mpi_free( &( pt->Z ) );
319}
320
321/*
322 * Unallocate (the components of) a group
323 */
324void mbedcrypto_ecp_group_free( mbedcrypto_ecp_group *grp )
325{
326 size_t i;
327
328 if( grp == NULL )
329 return;
330
331 if( grp->h != 1 )
332 {
333 mbedcrypto_mpi_free( &grp->P );
334 mbedcrypto_mpi_free( &grp->A );
335 mbedcrypto_mpi_free( &grp->B );
336 mbedcrypto_ecp_point_free( &grp->G );
337 mbedcrypto_mpi_free( &grp->N );
338 }
339
340 if( grp->T != NULL )
341 {
342 for( i = 0; i < grp->T_size; i++ )
343 mbedcrypto_ecp_point_free( &grp->T[i] );
344 mbedcrypto_free( grp->T );
345 }
346
347 mbedcrypto_platform_zeroize( grp, sizeof( mbedcrypto_ecp_group ) );
348}
349
350/*
351 * Unallocate (the components of) a key pair
352 */
353void mbedcrypto_ecp_keypair_free( mbedcrypto_ecp_keypair *key )
354{
355 if( key == NULL )
356 return;
357
358 mbedcrypto_ecp_group_free( &key->grp );
359 mbedcrypto_mpi_free( &key->d );
360 mbedcrypto_ecp_point_free( &key->Q );
361}
362
363/*
364 * Copy the contents of a point
365 */
366int mbedcrypto_ecp_copy( mbedcrypto_ecp_point *P, const mbedcrypto_ecp_point *Q )
367{
368 int ret;
369
370 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &P->X, &Q->X ) );
371 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &P->Y, &Q->Y ) );
372 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &P->Z, &Q->Z ) );
373
374cleanup:
375 return( ret );
376}
377
378/*
379 * Copy the contents of a group object
380 */
381int mbedcrypto_ecp_group_copy( mbedcrypto_ecp_group *dst, const mbedcrypto_ecp_group *src )
382{
383 return mbedcrypto_ecp_group_load( dst, src->id );
384}
385
386/*
387 * Set point to zero
388 */
389int mbedcrypto_ecp_set_zero( mbedcrypto_ecp_point *pt )
390{
391 int ret;
392
393 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &pt->X , 1 ) );
394 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &pt->Y , 1 ) );
395 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &pt->Z , 0 ) );
396
397cleanup:
398 return( ret );
399}
400
401/*
402 * Tell if a point is zero
403 */
404int mbedcrypto_ecp_is_zero( mbedcrypto_ecp_point *pt )
405{
406 return( mbedcrypto_mpi_cmp_int( &pt->Z, 0 ) == 0 );
407}
408
409/*
410 * Compare two points lazyly
411 */
412int mbedcrypto_ecp_point_cmp( const mbedcrypto_ecp_point *P,
413 const mbedcrypto_ecp_point *Q )
414{
415 if( mbedcrypto_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
416 mbedcrypto_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
417 mbedcrypto_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
418 {
419 return( 0 );
420 }
421
422 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
423}
424
425/*
426 * Import a non-zero point from ASCII strings
427 */
428int mbedcrypto_ecp_point_read_string( mbedcrypto_ecp_point *P, int radix,
429 const char *x, const char *y )
430{
431 int ret;
432
433 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &P->X, radix, x ) );
434 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &P->Y, radix, y ) );
435 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &P->Z, 1 ) );
436
437cleanup:
438 return( ret );
439}
440
441/*
442 * Export a point into unsigned binary data (SEC1 2.3.3)
443 */
444int mbedcrypto_ecp_point_write_binary( const mbedcrypto_ecp_group *grp, const mbedcrypto_ecp_point *P,
445 int format, size_t *olen,
446 unsigned char *buf, size_t buflen )
447{
448 int ret = 0;
449 size_t plen;
450
451 if( format != MBEDCRYPTO_ECP_PF_UNCOMPRESSED &&
452 format != MBEDCRYPTO_ECP_PF_COMPRESSED )
453 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
454
455 /*
456 * Common case: P == 0
457 */
458 if( mbedcrypto_mpi_cmp_int( &P->Z, 0 ) == 0 )
459 {
460 if( buflen < 1 )
461 return( MBEDCRYPTO_ERR_ECP_BUFFER_TOO_SMALL );
462
463 buf[0] = 0x00;
464 *olen = 1;
465
466 return( 0 );
467 }
468
469 plen = mbedcrypto_mpi_size( &grp->P );
470
471 if( format == MBEDCRYPTO_ECP_PF_UNCOMPRESSED )
472 {
473 *olen = 2 * plen + 1;
474
475 if( buflen < *olen )
476 return( MBEDCRYPTO_ERR_ECP_BUFFER_TOO_SMALL );
477
478 buf[0] = 0x04;
479 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_write_binary( &P->X, buf + 1, plen ) );
480 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
481 }
482 else if( format == MBEDCRYPTO_ECP_PF_COMPRESSED )
483 {
484 *olen = plen + 1;
485
486 if( buflen < *olen )
487 return( MBEDCRYPTO_ERR_ECP_BUFFER_TOO_SMALL );
488
489 buf[0] = 0x02 + mbedcrypto_mpi_get_bit( &P->Y, 0 );
490 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_write_binary( &P->X, buf + 1, plen ) );
491 }
492
493cleanup:
494 return( ret );
495}
496
497/*
498 * Import a point from unsigned binary data (SEC1 2.3.4)
499 */
500int mbedcrypto_ecp_point_read_binary( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *pt,
501 const unsigned char *buf, size_t ilen )
502{
503 int ret;
504 size_t plen;
505
506 if( ilen < 1 )
507 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
508
509 if( buf[0] == 0x00 )
510 {
511 if( ilen == 1 )
512 return( mbedcrypto_ecp_set_zero( pt ) );
513 else
514 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
515 }
516
517 plen = mbedcrypto_mpi_size( &grp->P );
518
519 if( buf[0] != 0x04 )
520 return( MBEDCRYPTO_ERR_ECP_FEATURE_UNAVAILABLE );
521
522 if( ilen != 2 * plen + 1 )
523 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
524
525 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_binary( &pt->X, buf + 1, plen ) );
526 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
527 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &pt->Z, 1 ) );
528
529cleanup:
530 return( ret );
531}
532
533/*
534 * Import a point from a TLS ECPoint record (RFC 4492)
535 * struct {
536 * opaque point <1..2^8-1>;
537 * } ECPoint;
538 */
539int mbedcrypto_ecp_tls_read_point( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *pt,
540 const unsigned char **buf, size_t buf_len )
541{
542 unsigned char data_len;
543 const unsigned char *buf_start;
544
545 /*
546 * We must have at least two bytes (1 for length, at least one for data)
547 */
548 if( buf_len < 2 )
549 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
550
551 data_len = *(*buf)++;
552 if( data_len < 1 || data_len > buf_len - 1 )
553 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
554
555 /*
556 * Save buffer start for read_binary and update buf
557 */
558 buf_start = *buf;
559 *buf += data_len;
560
561 return mbedcrypto_ecp_point_read_binary( grp, pt, buf_start, data_len );
562}
563
564/*
565 * Export a point as a TLS ECPoint record (RFC 4492)
566 * struct {
567 * opaque point <1..2^8-1>;
568 * } ECPoint;
569 */
570int mbedcrypto_ecp_tls_write_point( const mbedcrypto_ecp_group *grp, const mbedcrypto_ecp_point *pt,
571 int format, size_t *olen,
572 unsigned char *buf, size_t blen )
573{
574 int ret;
575
576 /*
577 * buffer length must be at least one, for our length byte
578 */
579 if( blen < 1 )
580 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
581
582 if( ( ret = mbedcrypto_ecp_point_write_binary( grp, pt, format,
583 olen, buf + 1, blen - 1) ) != 0 )
584 return( ret );
585
586 /*
587 * write length to the first byte and update total length
588 */
589 buf[0] = (unsigned char) *olen;
590 ++*olen;
591
592 return( 0 );
593}
594
595/*
596 * Set a group from an ECParameters record (RFC 4492)
597 */
598int mbedcrypto_ecp_tls_read_group( mbedcrypto_ecp_group *grp, const unsigned char **buf, size_t len )
599{
600 uint16_t tls_id;
601 const mbedcrypto_ecp_curve_info *curve_info;
602
603 /*
604 * We expect at least three bytes (see below)
605 */
606 if( len < 3 )
607 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
608
609 /*
610 * First byte is curve_type; only named_curve is handled
611 */
612 if( *(*buf)++ != MBEDCRYPTO_ECP_TLS_NAMED_CURVE )
613 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
614
615 /*
616 * Next two bytes are the namedcurve value
617 */
618 tls_id = *(*buf)++;
619 tls_id <<= 8;
620 tls_id |= *(*buf)++;
621
622 if( ( curve_info = mbedcrypto_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
623 return( MBEDCRYPTO_ERR_ECP_FEATURE_UNAVAILABLE );
624
625 return mbedcrypto_ecp_group_load( grp, curve_info->grp_id );
626}
627
628/*
629 * Write the ECParameters record corresponding to a group (RFC 4492)
630 */
631int mbedcrypto_ecp_tls_write_group( const mbedcrypto_ecp_group *grp, size_t *olen,
632 unsigned char *buf, size_t blen )
633{
634 const mbedcrypto_ecp_curve_info *curve_info;
635
636 if( ( curve_info = mbedcrypto_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
637 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
638
639 /*
640 * We are going to write 3 bytes (see below)
641 */
642 *olen = 3;
643 if( blen < *olen )
644 return( MBEDCRYPTO_ERR_ECP_BUFFER_TOO_SMALL );
645
646 /*
647 * First byte is curve_type, always named_curve
648 */
649 *buf++ = MBEDCRYPTO_ECP_TLS_NAMED_CURVE;
650
651 /*
652 * Next two bytes are the namedcurve value
653 */
654 buf[0] = curve_info->tls_id >> 8;
655 buf[1] = curve_info->tls_id & 0xFF;
656
657 return( 0 );
658}
659
660/*
661 * Wrapper around fast quasi-modp functions, with fall-back to mbedcrypto_mpi_mod_mpi.
662 * See the documentation of struct mbedcrypto_ecp_group.
663 *
664 * This function is in the critial loop for mbedcrypto_ecp_mul, so pay attention to perf.
665 */
666static int ecp_modp( mbedcrypto_mpi *N, const mbedcrypto_ecp_group *grp )
667{
668 int ret;
669
670 if( grp->modp == NULL )
671 return( mbedcrypto_mpi_mod_mpi( N, N, &grp->P ) );
672
673 /* N->s < 0 is a much faster test, which fails only if N is 0 */
674 if( ( N->s < 0 && mbedcrypto_mpi_cmp_int( N, 0 ) != 0 ) ||
675 mbedcrypto_mpi_bitlen( N ) > 2 * grp->pbits )
676 {
677 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
678 }
679
680 MBEDCRYPTO_MPI_CHK( grp->modp( N ) );
681
682 /* N->s < 0 is a much faster test, which fails only if N is 0 */
683 while( N->s < 0 && mbedcrypto_mpi_cmp_int( N, 0 ) != 0 )
684 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( N, N, &grp->P ) );
685
686 while( mbedcrypto_mpi_cmp_mpi( N, &grp->P ) >= 0 )
687 /* we known P, N and the result are positive */
688 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_abs( N, N, &grp->P ) );
689
690cleanup:
691 return( ret );
692}
693
694/*
695 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
696 *
697 * In order to guarantee that, we need to ensure that operands of
698 * mbedcrypto_mpi_mul_mpi are in the 0..p range. So, after each operation we will
699 * bring the result back to this range.
700 *
701 * The following macros are shortcuts for doing that.
702 */
703
704/*
705 * Reduce a mbedcrypto_mpi mod p in-place, general case, to use after mbedcrypto_mpi_mul_mpi
706 */
707#if defined(MBEDCRYPTO_SELF_TEST)
708#define INC_MUL_COUNT mul_count++;
709#else
710#define INC_MUL_COUNT
711#endif
712
713#define MOD_MUL( N ) do { MBEDCRYPTO_MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \
714 while( 0 )
715
716/*
717 * Reduce a mbedcrypto_mpi mod p in-place, to use after mbedcrypto_mpi_sub_mpi
718 * N->s < 0 is a very fast test, which fails only if N is 0
719 */
720#define MOD_SUB( N ) \
721 while( N.s < 0 && mbedcrypto_mpi_cmp_int( &N, 0 ) != 0 ) \
722 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &N, &N, &grp->P ) )
723
724/*
725 * Reduce a mbedcrypto_mpi mod p in-place, to use after mbedcrypto_mpi_add_mpi and mbedcrypto_mpi_mul_int.
726 * We known P, N and the result are positive, so sub_abs is correct, and
727 * a bit faster.
728 */
729#define MOD_ADD( N ) \
730 while( mbedcrypto_mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \
731 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_abs( &N, &N, &grp->P ) )
732
733#if defined(ECP_SHORTWEIERSTRASS)
734/*
735 * For curves in short Weierstrass form, we do all the internal operations in
736 * Jacobian coordinates.
737 *
738 * For multiplication, we'll use a comb method with coutermeasueres against
739 * SPA, hence timing attacks.
740 */
741
742/*
743 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
744 * Cost: 1N := 1I + 3M + 1S
745 */
746static int ecp_normalize_jac( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *pt )
747{
748 int ret;
749 mbedcrypto_mpi Zi, ZZi;
750
751 if( mbedcrypto_mpi_cmp_int( &pt->Z, 0 ) == 0 )
752 return( 0 );
753
754#if defined(MBEDCRYPTO_ECP_NORMALIZE_JAC_ALT)
755 if ( mbedcrypto_internal_ecp_grp_capable( grp ) )
756 {
757 return mbedcrypto_internal_ecp_normalize_jac( grp, pt );
758 }
759#endif /* MBEDCRYPTO_ECP_NORMALIZE_JAC_ALT */
760 mbedcrypto_mpi_init( &Zi ); mbedcrypto_mpi_init( &ZZi );
761
762 /*
763 * X = X / Z^2 mod p
764 */
765 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_inv_mod( &Zi, &pt->Z, &grp->P ) );
766 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
767 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &pt->X, &pt->X, &ZZi ) ); MOD_MUL( pt->X );
768
769 /*
770 * Y = Y / Z^3 mod p
771 */
772 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &pt->Y, &pt->Y, &ZZi ) ); MOD_MUL( pt->Y );
773 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &pt->Y, &pt->Y, &Zi ) ); MOD_MUL( pt->Y );
774
775 /*
776 * Z = 1
777 */
778 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &pt->Z, 1 ) );
779
780cleanup:
781
782 mbedcrypto_mpi_free( &Zi ); mbedcrypto_mpi_free( &ZZi );
783
784 return( ret );
785}
786
787/*
788 * Normalize jacobian coordinates of an array of (pointers to) points,
789 * using Montgomery's trick to perform only one inversion mod P.
790 * (See for example Cohen's "A Course in Computational Algebraic Number
791 * Theory", Algorithm 10.3.4.)
792 *
793 * Warning: fails (returning an error) if one of the points is zero!
794 * This should never happen, see choice of w in ecp_mul_comb().
795 *
796 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
797 */
798static int ecp_normalize_jac_many( const mbedcrypto_ecp_group *grp,
799 mbedcrypto_ecp_point *T[], size_t t_len )
800{
801 int ret;
802 size_t i;
803 mbedcrypto_mpi *c, u, Zi, ZZi;
804
805 if( t_len < 2 )
806 return( ecp_normalize_jac( grp, *T ) );
807
808#if defined(MBEDCRYPTO_ECP_NORMALIZE_JAC_MANY_ALT)
809 if ( mbedcrypto_internal_ecp_grp_capable( grp ) )
810 {
811 return mbedcrypto_internal_ecp_normalize_jac_many(grp, T, t_len);
812 }
813#endif
814
815 if( ( c = mbedcrypto_calloc( t_len, sizeof( mbedcrypto_mpi ) ) ) == NULL )
816 return( MBEDCRYPTO_ERR_ECP_ALLOC_FAILED );
817
818 mbedcrypto_mpi_init( &u ); mbedcrypto_mpi_init( &Zi ); mbedcrypto_mpi_init( &ZZi );
819
820 /*
821 * c[i] = Z_0 * ... * Z_i
822 */
823 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &c[0], &T[0]->Z ) );
824 for( i = 1; i < t_len; i++ )
825 {
826 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
827 MOD_MUL( c[i] );
828 }
829
830 /*
831 * u = 1 / (Z_0 * ... * Z_n) mod P
832 */
833 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );
834
835 for( i = t_len - 1; ; i-- )
836 {
837 /*
838 * Zi = 1 / Z_i mod p
839 * u = 1 / (Z_0 * ... * Z_i) mod P
840 */
841 if( i == 0 ) {
842 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &Zi, &u ) );
843 }
844 else
845 {
846 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
847 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &u, &u, &T[i]->Z ) ); MOD_MUL( u );
848 }
849
850 /*
851 * proceed as in normalize()
852 */
853 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
854 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
855 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
856 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi ) ); MOD_MUL( T[i]->Y );
857
858 /*
859 * Post-precessing: reclaim some memory by shrinking coordinates
860 * - not storing Z (always 1)
861 * - shrinking other coordinates, but still keeping the same number of
862 * limbs as P, as otherwise it will too likely be regrown too fast.
863 */
864 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shrink( &T[i]->X, grp->P.n ) );
865 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shrink( &T[i]->Y, grp->P.n ) );
866 mbedcrypto_mpi_free( &T[i]->Z );
867
868 if( i == 0 )
869 break;
870 }
871
872cleanup:
873
874 mbedcrypto_mpi_free( &u ); mbedcrypto_mpi_free( &Zi ); mbedcrypto_mpi_free( &ZZi );
875 for( i = 0; i < t_len; i++ )
876 mbedcrypto_mpi_free( &c[i] );
877 mbedcrypto_free( c );
878
879 return( ret );
880}
881
882/*
883 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
884 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
885 */
886static int ecp_safe_invert_jac( const mbedcrypto_ecp_group *grp,
887 mbedcrypto_ecp_point *Q,
888 unsigned char inv )
889{
890 int ret;
891 unsigned char nonzero;
892 mbedcrypto_mpi mQY;
893
894 mbedcrypto_mpi_init( &mQY );
895
896 /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
897 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
898 nonzero = mbedcrypto_mpi_cmp_int( &Q->Y, 0 ) != 0;
899 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
900
901cleanup:
902 mbedcrypto_mpi_free( &mQY );
903
904 return( ret );
905}
906
907/*
908 * Point doubling R = 2 P, Jacobian coordinates
909 *
910 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
911 *
912 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
913 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
914 *
915 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
916 *
917 * Cost: 1D := 3M + 4S (A == 0)
918 * 4M + 4S (A == -3)
919 * 3M + 6S + 1a otherwise
920 */
921static int ecp_double_jac( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *R,
922 const mbedcrypto_ecp_point *P )
923{
924 int ret;
925 mbedcrypto_mpi M, S, T, U;
926
927#if defined(MBEDCRYPTO_SELF_TEST)
928 dbl_count++;
929#endif
930
931#if defined(MBEDCRYPTO_ECP_DOUBLE_JAC_ALT)
932 if ( mbedcrypto_internal_ecp_grp_capable( grp ) )
933 {
934 return mbedcrypto_internal_ecp_double_jac( grp, R, P );
935 }
936#endif /* MBEDCRYPTO_ECP_DOUBLE_JAC_ALT */
937
938 mbedcrypto_mpi_init( &M ); mbedcrypto_mpi_init( &S ); mbedcrypto_mpi_init( &T ); mbedcrypto_mpi_init( &U );
939
940 /* Special case for A = -3 */
941 if( grp->A.p == NULL )
942 {
943 /* M = 3(X + Z^2)(X - Z^2) */
944 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
945 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &T, &P->X, &S ) ); MOD_ADD( T );
946 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &U, &P->X, &S ) ); MOD_SUB( U );
947 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &S, &T, &U ) ); MOD_MUL( S );
948 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
949 }
950 else
951 {
952 /* M = 3.X^2 */
953 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &S, &P->X, &P->X ) ); MOD_MUL( S );
954 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
955
956 /* Optimize away for "koblitz" curves with A = 0 */
957 if( mbedcrypto_mpi_cmp_int( &grp->A, 0 ) != 0 )
958 {
959 /* M += A.Z^4 */
960 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
961 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T, &S, &S ) ); MOD_MUL( T );
962 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &S, &T, &grp->A ) ); MOD_MUL( S );
963 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &M, &M, &S ) ); MOD_ADD( M );
964 }
965 }
966
967 /* S = 4.X.Y^2 */
968 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T, &P->Y, &P->Y ) ); MOD_MUL( T );
969 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_l( &T, 1 ) ); MOD_ADD( T );
970 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &S, &P->X, &T ) ); MOD_MUL( S );
971 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_l( &S, 1 ) ); MOD_ADD( S );
972
973 /* U = 8.Y^4 */
974 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &U, &T, &T ) ); MOD_MUL( U );
975 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
976
977 /* T = M^2 - 2.S */
978 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T, &M, &M ) ); MOD_MUL( T );
979 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
980 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
981
982 /* S = M(S - T) - U */
983 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &S, &S, &T ) ); MOD_SUB( S );
984 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &S, &S, &M ) ); MOD_MUL( S );
985 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &S, &S, &U ) ); MOD_SUB( S );
986
987 /* U = 2.Y.Z */
988 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &U, &P->Y, &P->Z ) ); MOD_MUL( U );
989 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
990
991 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &R->X, &T ) );
992 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &R->Y, &S ) );
993 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &R->Z, &U ) );
994
995cleanup:
996 mbedcrypto_mpi_free( &M ); mbedcrypto_mpi_free( &S ); mbedcrypto_mpi_free( &T ); mbedcrypto_mpi_free( &U );
997
998 return( ret );
999}
1000
1001/*
1002 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1003 *
1004 * The coordinates of Q must be normalized (= affine),
1005 * but those of P don't need to. R is not normalized.
1006 *
1007 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1008 * None of these cases can happen as intermediate step in ecp_mul_comb():
1009 * - at each step, P, Q and R are multiples of the base point, the factor
1010 * being less than its order, so none of them is zero;
1011 * - Q is an odd multiple of the base point, P an even multiple,
1012 * due to the choice of precomputed points in the modified comb method.
1013 * So branches for these cases do not leak secret information.
1014 *
1015 * We accept Q->Z being unset (saving memory in tables) as meaning 1.
1016 *
1017 * Cost: 1A := 8M + 3S
1018 */
1019static int ecp_add_mixed( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *R,
1020 const mbedcrypto_ecp_point *P, const mbedcrypto_ecp_point *Q )
1021{
1022 int ret;
1023 mbedcrypto_mpi T1, T2, T3, T4, X, Y, Z;
1024
1025#if defined(MBEDCRYPTO_SELF_TEST)
1026 add_count++;
1027#endif
1028
1029#if defined(MBEDCRYPTO_ECP_ADD_MIXED_ALT)
1030 if ( mbedcrypto_internal_ecp_grp_capable( grp ) )
1031 {
1032 return mbedcrypto_internal_ecp_add_mixed( grp, R, P, Q );
1033 }
1034#endif /* MBEDCRYPTO_ECP_ADD_MIXED_ALT */
1035
1036 /*
1037 * Trivial cases: P == 0 or Q == 0 (case 1)
1038 */
1039 if( mbedcrypto_mpi_cmp_int( &P->Z, 0 ) == 0 )
1040 return( mbedcrypto_ecp_copy( R, Q ) );
1041
1042 if( Q->Z.p != NULL && mbedcrypto_mpi_cmp_int( &Q->Z, 0 ) == 0 )
1043 return( mbedcrypto_ecp_copy( R, P ) );
1044
1045 /*
1046 * Make sure Q coordinates are normalized
1047 */
1048 if( Q->Z.p != NULL && mbedcrypto_mpi_cmp_int( &Q->Z, 1 ) != 0 )
1049 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
1050
1051 mbedcrypto_mpi_init( &T1 ); mbedcrypto_mpi_init( &T2 ); mbedcrypto_mpi_init( &T3 ); mbedcrypto_mpi_init( &T4 );
1052 mbedcrypto_mpi_init( &X ); mbedcrypto_mpi_init( &Y ); mbedcrypto_mpi_init( &Z );
1053
1054 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
1055 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
1056 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
1057 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
1058 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
1059 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
1060
1061 /* Special cases (2) and (3) */
1062 if( mbedcrypto_mpi_cmp_int( &T1, 0 ) == 0 )
1063 {
1064 if( mbedcrypto_mpi_cmp_int( &T2, 0 ) == 0 )
1065 {
1066 ret = ecp_double_jac( grp, R, P );
1067 goto cleanup;
1068 }
1069 else
1070 {
1071 ret = mbedcrypto_ecp_set_zero( R );
1072 goto cleanup;
1073 }
1074 }
1075
1076 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z );
1077 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 );
1078 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 );
1079 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 );
1080 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
1081 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
1082 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
1083 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X );
1084 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 );
1085 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 );
1086 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 );
1087 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y );
1088
1089 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &R->X, &X ) );
1090 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &R->Y, &Y ) );
1091 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &R->Z, &Z ) );
1092
1093cleanup:
1094
1095 mbedcrypto_mpi_free( &T1 ); mbedcrypto_mpi_free( &T2 ); mbedcrypto_mpi_free( &T3 ); mbedcrypto_mpi_free( &T4 );
1096 mbedcrypto_mpi_free( &X ); mbedcrypto_mpi_free( &Y ); mbedcrypto_mpi_free( &Z );
1097
1098 return( ret );
1099}
1100
1101/*
1102 * Randomize jacobian coordinates:
1103 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1104 * This is sort of the reverse operation of ecp_normalize_jac().
1105 *
1106 * This countermeasure was first suggested in [2].
1107 */
1108static int ecp_randomize_jac( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *pt,
1109 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1110{
1111 int ret;
1112 mbedcrypto_mpi l, ll;
1113 size_t p_size;
1114 int count = 0;
1115
1116#if defined(MBEDCRYPTO_ECP_RANDOMIZE_JAC_ALT)
1117 if ( mbedcrypto_internal_ecp_grp_capable( grp ) )
1118 {
1119 return mbedcrypto_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng );
1120 }
1121#endif /* MBEDCRYPTO_ECP_RANDOMIZE_JAC_ALT */
1122
1123 p_size = ( grp->pbits + 7 ) / 8;
1124 mbedcrypto_mpi_init( &l ); mbedcrypto_mpi_init( &ll );
1125
1126 /* Generate l such that 1 < l < p */
1127 do
1128 {
1129 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
1130
1131 while( mbedcrypto_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1132 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &l, 1 ) );
1133
1134 if( count++ > 10 )
1135 return( MBEDCRYPTO_ERR_ECP_RANDOM_FAILED );
1136 }
1137 while( mbedcrypto_mpi_cmp_int( &l, 1 ) <= 0 );
1138
1139 /* Z = l * Z */
1140 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &pt->Z, &pt->Z, &l ) ); MOD_MUL( pt->Z );
1141
1142 /* X = l^2 * X */
1143 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &ll, &l, &l ) ); MOD_MUL( ll );
1144 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &pt->X, &pt->X, &ll ) ); MOD_MUL( pt->X );
1145
1146 /* Y = l^3 * Y */
1147 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &ll, &ll, &l ) ); MOD_MUL( ll );
1148 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &pt->Y, &pt->Y, &ll ) ); MOD_MUL( pt->Y );
1149
1150cleanup:
1151 mbedcrypto_mpi_free( &l ); mbedcrypto_mpi_free( &ll );
1152
1153 return( ret );
1154}
1155
1156/*
1157 * Check and define parameters used by the comb method (see below for details)
1158 */
1159#if MBEDCRYPTO_ECP_WINDOW_SIZE < 2 || MBEDCRYPTO_ECP_WINDOW_SIZE > 7
1160#error "MBEDCRYPTO_ECP_WINDOW_SIZE out of bounds"
1161#endif
1162
1163/* d = ceil( n / w ) */
1164#define COMB_MAX_D ( MBEDCRYPTO_ECP_MAX_BITS + 1 ) / 2
1165
1166/* number of precomputed points */
1167#define COMB_MAX_PRE ( 1 << ( MBEDCRYPTO_ECP_WINDOW_SIZE - 1 ) )
1168
1169/*
1170 * Compute the representation of m that will be used with our comb method.
1171 *
1172 * The basic comb method is described in GECC 3.44 for example. We use a
1173 * modified version that provides resistance to SPA by avoiding zero
1174 * digits in the representation as in [3]. We modify the method further by
1175 * requiring that all K_i be odd, which has the small cost that our
1176 * representation uses one more K_i, due to carries.
1177 *
1178 * Also, for the sake of compactness, only the seven low-order bits of x[i]
1179 * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
1180 * the paper): it is set if and only if if s_i == -1;
1181 *
1182 * Calling conventions:
1183 * - x is an array of size d + 1
1184 * - w is the size, ie number of teeth, of the comb, and must be between
1185 * 2 and 7 (in practice, between 2 and MBEDCRYPTO_ECP_WINDOW_SIZE)
1186 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1187 * (the result will be incorrect if these assumptions are not satisfied)
1188 */
1189static void ecp_comb_fixed( unsigned char x[], size_t d,
1190 unsigned char w, const mbedcrypto_mpi *m )
1191{
1192 size_t i, j;
1193 unsigned char c, cc, adjust;
1194
1195 memset( x, 0, d+1 );
1196
1197 /* First get the classical comb values (except for x_d = 0) */
1198 for( i = 0; i < d; i++ )
1199 for( j = 0; j < w; j++ )
1200 x[i] |= mbedcrypto_mpi_get_bit( m, i + d * j ) << j;
1201
1202 /* Now make sure x_1 .. x_d are odd */
1203 c = 0;
1204 for( i = 1; i <= d; i++ )
1205 {
1206 /* Add carry and update it */
1207 cc = x[i] & c;
1208 x[i] = x[i] ^ c;
1209 c = cc;
1210
1211 /* Adjust if needed, avoiding branches */
1212 adjust = 1 - ( x[i] & 0x01 );
1213 c |= x[i] & ( x[i-1] * adjust );
1214 x[i] = x[i] ^ ( x[i-1] * adjust );
1215 x[i-1] |= adjust << 7;
1216 }
1217}
1218
1219/*
1220 * Precompute points for the comb method
1221 *
1222 * If i = i_{w-1} ... i_1 is the binary representation of i, then
1223 * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
1224 *
1225 * T must be able to hold 2^{w - 1} elements
1226 *
1227 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1228 */
1229static int ecp_precompute_comb( const mbedcrypto_ecp_group *grp,
1230 mbedcrypto_ecp_point T[], const mbedcrypto_ecp_point *P,
1231 unsigned char w, size_t d )
1232{
1233 int ret;
1234 unsigned char i, k;
1235 size_t j;
1236 mbedcrypto_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
1237
1238 /*
1239 * Set T[0] = P and
1240 * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1241 */
1242 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_copy( &T[0], P ) );
1243
1244 k = 0;
1245 for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
1246 {
1247 cur = T + i;
1248 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_copy( cur, T + ( i >> 1 ) ) );
1249 for( j = 0; j < d; j++ )
1250 MBEDCRYPTO_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
1251
1252 TT[k++] = cur;
1253 }
1254
1255 MBEDCRYPTO_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
1256
1257 /*
1258 * Compute the remaining ones using the minimal number of additions
1259 * Be careful to update T[2^l] only after using it!
1260 */
1261 k = 0;
1262 for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
1263 {
1264 j = i;
1265 while( j-- )
1266 {
1267 MBEDCRYPTO_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
1268 TT[k++] = &T[i + j];
1269 }
1270 }
1271
1272 MBEDCRYPTO_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
1273
1274cleanup:
1275
1276 return( ret );
1277}
1278
1279/*
1280 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
1281 */
1282static int ecp_select_comb( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *R,
1283 const mbedcrypto_ecp_point T[], unsigned char t_len,
1284 unsigned char i )
1285{
1286 int ret;
1287 unsigned char ii, j;
1288
1289 /* Ignore the "sign" bit and scale down */
1290 ii = ( i & 0x7Fu ) >> 1;
1291
1292 /* Read the whole table to thwart cache-based timing attacks */
1293 for( j = 0; j < t_len; j++ )
1294 {
1295 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
1296 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
1297 }
1298
1299 /* Safely invert result if i is "negative" */
1300 MBEDCRYPTO_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
1301
1302cleanup:
1303 return( ret );
1304}
1305
1306/*
1307 * Core multiplication algorithm for the (modified) comb method.
1308 * This part is actually common with the basic comb method (GECC 3.44)
1309 *
1310 * Cost: d A + d D + 1 R
1311 */
1312static int ecp_mul_comb_core( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *R,
1313 const mbedcrypto_ecp_point T[], unsigned char t_len,
1314 const unsigned char x[], size_t d,
1315 int (*f_rng)(void *, unsigned char *, size_t),
1316 void *p_rng )
1317{
1318 int ret;
1319 mbedcrypto_ecp_point Txi;
1320 size_t i;
1321
1322 mbedcrypto_ecp_point_init( &Txi );
1323
1324 /* Start with a non-zero point and randomize its coordinates */
1325 i = d;
1326 MBEDCRYPTO_MPI_CHK( ecp_select_comb( grp, R, T, t_len, x[i] ) );
1327 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &R->Z, 1 ) );
1328 if( f_rng != 0 )
1329 MBEDCRYPTO_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
1330
1331 while( i-- != 0 )
1332 {
1333 MBEDCRYPTO_MPI_CHK( ecp_double_jac( grp, R, R ) );
1334 MBEDCRYPTO_MPI_CHK( ecp_select_comb( grp, &Txi, T, t_len, x[i] ) );
1335 MBEDCRYPTO_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
1336 }
1337
1338cleanup:
1339
1340 mbedcrypto_ecp_point_free( &Txi );
1341
1342 return( ret );
1343}
1344
1345/*
1346 * Multiplication using the comb method,
1347 * for curves in short Weierstrass form
1348 */
1349static int ecp_mul_comb( mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *R,
1350 const mbedcrypto_mpi *m, const mbedcrypto_ecp_point *P,
1351 int (*f_rng)(void *, unsigned char *, size_t),
1352 void *p_rng )
1353{
1354 int ret;
1355 unsigned char w, m_is_odd, p_eq_g, pre_len, i;
1356 size_t d;
1357 unsigned char k[COMB_MAX_D + 1];
1358 mbedcrypto_ecp_point *T;
1359 mbedcrypto_mpi M, mm;
1360
1361 mbedcrypto_mpi_init( &M );
1362 mbedcrypto_mpi_init( &mm );
1363
1364 /* we need N to be odd to trnaform m in an odd number, check now */
1365 if( mbedcrypto_mpi_get_bit( &grp->N, 0 ) != 1 )
1366 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
1367
1368 /*
1369 * Minimize the number of multiplications, that is minimize
1370 * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
1371 * (see costs of the various parts, with 1S = 1M)
1372 */
1373 w = grp->nbits >= 384 ? 5 : 4;
1374
1375 /*
1376 * If P == G, pre-compute a bit more, since this may be re-used later.
1377 * Just adding one avoids upping the cost of the first mul too much,
1378 * and the memory cost too.
1379 */
1380#if MBEDCRYPTO_ECP_FIXED_POINT_OPTIM == 1
1381 p_eq_g = ( mbedcrypto_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
1382 mbedcrypto_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
1383 if( p_eq_g )
1384 w++;
1385#else
1386 p_eq_g = 0;
1387#endif
1388
1389 /*
1390 * Make sure w is within bounds.
1391 * (The last test is useful only for very small curves in the test suite.)
1392 */
1393 if( w > MBEDCRYPTO_ECP_WINDOW_SIZE )
1394 w = MBEDCRYPTO_ECP_WINDOW_SIZE;
1395 if( w >= grp->nbits )
1396 w = 2;
1397
1398 /* Other sizes that depend on w */
1399 pre_len = 1U << ( w - 1 );
1400 d = ( grp->nbits + w - 1 ) / w;
1401
1402 /*
1403 * Prepare precomputed points: if P == G we want to
1404 * use grp->T if already initialized, or initialize it.
1405 */
1406 T = p_eq_g ? grp->T : NULL;
1407
1408 if( T == NULL )
1409 {
1410 T = mbedcrypto_calloc( pre_len, sizeof( mbedcrypto_ecp_point ) );
1411 if( T == NULL )
1412 {
1413 ret = MBEDCRYPTO_ERR_ECP_ALLOC_FAILED;
1414 goto cleanup;
1415 }
1416
1417 MBEDCRYPTO_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) );
1418
1419 if( p_eq_g )
1420 {
1421 grp->T = T;
1422 grp->T_size = pre_len;
1423 }
1424 }
1425
1426 /*
1427 * Make sure M is odd (M = m or M = N - m, since N is odd)
1428 * using the fact that m * P = - (N - m) * P
1429 */
1430 m_is_odd = ( mbedcrypto_mpi_get_bit( m, 0 ) == 1 );
1431 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &M, m ) );
1432 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &mm, &grp->N, m ) );
1433 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) );
1434
1435 /*
1436 * Go for comb multiplication, R = M * P
1437 */
1438 ecp_comb_fixed( k, d, w, &M );
1439 MBEDCRYPTO_MPI_CHK( ecp_mul_comb_core( grp, R, T, pre_len, k, d, f_rng, p_rng ) );
1440
1441 /*
1442 * Now get m * P from M * P and normalize it
1443 */
1444 MBEDCRYPTO_MPI_CHK( ecp_safe_invert_jac( grp, R, ! m_is_odd ) );
1445 MBEDCRYPTO_MPI_CHK( ecp_normalize_jac( grp, R ) );
1446
1447cleanup:
1448
1449 if( T != NULL && ! p_eq_g )
1450 {
1451 for( i = 0; i < pre_len; i++ )
1452 mbedcrypto_ecp_point_free( &T[i] );
1453 mbedcrypto_free( T );
1454 }
1455
1456 mbedcrypto_mpi_free( &M );
1457 mbedcrypto_mpi_free( &mm );
1458
1459 if( ret != 0 )
1460 mbedcrypto_ecp_point_free( R );
1461
1462 return( ret );
1463}
1464
1465#endif /* ECP_SHORTWEIERSTRASS */
1466
1467#if defined(ECP_MONTGOMERY)
1468/*
1469 * For Montgomery curves, we do all the internal arithmetic in projective
1470 * coordinates. Import/export of points uses only the x coordinates, which is
1471 * internaly represented as X / Z.
1472 *
1473 * For scalar multiplication, we'll use a Montgomery ladder.
1474 */
1475
1476/*
1477 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
1478 * Cost: 1M + 1I
1479 */
1480static int ecp_normalize_mxz( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *P )
1481{
1482 int ret;
1483
1484#if defined(MBEDCRYPTO_ECP_NORMALIZE_MXZ_ALT)
1485 if ( mbedcrypto_internal_ecp_grp_capable( grp ) )
1486 {
1487 return mbedcrypto_internal_ecp_normalize_mxz( grp, P );
1488 }
1489#endif /* MBEDCRYPTO_ECP_NORMALIZE_MXZ_ALT */
1490
1491 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
1492 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
1493 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &P->Z, 1 ) );
1494
1495cleanup:
1496 return( ret );
1497}
1498
1499/*
1500 * Randomize projective x/z coordinates:
1501 * (X, Z) -> (l X, l Z) for random l
1502 * This is sort of the reverse operation of ecp_normalize_mxz().
1503 *
1504 * This countermeasure was first suggested in [2].
1505 * Cost: 2M
1506 */
1507static int ecp_randomize_mxz( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *P,
1508 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1509{
1510 int ret;
1511 mbedcrypto_mpi l;
1512 size_t p_size;
1513 int count = 0;
1514
1515#if defined(MBEDCRYPTO_ECP_RANDOMIZE_MXZ_ALT)
1516 if ( mbedcrypto_internal_ecp_grp_capable( grp ) )
1517 {
1518 return mbedcrypto_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng );
1519 }
1520#endif /* MBEDCRYPTO_ECP_RANDOMIZE_MXZ_ALT */
1521
1522 p_size = ( grp->pbits + 7 ) / 8;
1523 mbedcrypto_mpi_init( &l );
1524
1525 /* Generate l such that 1 < l < p */
1526 do
1527 {
1528 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
1529
1530 while( mbedcrypto_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1531 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &l, 1 ) );
1532
1533 if( count++ > 10 )
1534 return( MBEDCRYPTO_ERR_ECP_RANDOM_FAILED );
1535 }
1536 while( mbedcrypto_mpi_cmp_int( &l, 1 ) <= 0 );
1537
1538 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
1539 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );
1540
1541cleanup:
1542 mbedcrypto_mpi_free( &l );
1543
1544 return( ret );
1545}
1546
1547/*
1548 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
1549 * for Montgomery curves in x/z coordinates.
1550 *
1551 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
1552 * with
1553 * d = X1
1554 * P = (X2, Z2)
1555 * Q = (X3, Z3)
1556 * R = (X4, Z4)
1557 * S = (X5, Z5)
1558 * and eliminating temporary variables tO, ..., t4.
1559 *
1560 * Cost: 5M + 4S
1561 */
1562static int ecp_double_add_mxz( const mbedcrypto_ecp_group *grp,
1563 mbedcrypto_ecp_point *R, mbedcrypto_ecp_point *S,
1564 const mbedcrypto_ecp_point *P, const mbedcrypto_ecp_point *Q,
1565 const mbedcrypto_mpi *d )
1566{
1567 int ret;
1568 mbedcrypto_mpi A, AA, B, BB, E, C, D, DA, CB;
1569
1570#if defined(MBEDCRYPTO_ECP_DOUBLE_ADD_MXZ_ALT)
1571 if ( mbedcrypto_internal_ecp_grp_capable( grp ) )
1572 {
1573 return mbedcrypto_internal_ecp_double_add_mxz( grp, R, S, P, Q, d );
1574 }
1575#endif /* MBEDCRYPTO_ECP_DOUBLE_ADD_MXZ_ALT */
1576
1577 mbedcrypto_mpi_init( &A ); mbedcrypto_mpi_init( &AA ); mbedcrypto_mpi_init( &B );
1578 mbedcrypto_mpi_init( &BB ); mbedcrypto_mpi_init( &E ); mbedcrypto_mpi_init( &C );
1579 mbedcrypto_mpi_init( &D ); mbedcrypto_mpi_init( &DA ); mbedcrypto_mpi_init( &CB );
1580
1581 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &A, &P->X, &P->Z ) ); MOD_ADD( A );
1582 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &AA, &A, &A ) ); MOD_MUL( AA );
1583 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &B, &P->X, &P->Z ) ); MOD_SUB( B );
1584 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &BB, &B, &B ) ); MOD_MUL( BB );
1585 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &E, &AA, &BB ) ); MOD_SUB( E );
1586 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &C, &Q->X, &Q->Z ) ); MOD_ADD( C );
1587 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &D, &Q->X, &Q->Z ) ); MOD_SUB( D );
1588 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &DA, &D, &A ) ); MOD_MUL( DA );
1589 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &CB, &C, &B ) ); MOD_MUL( CB );
1590 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &S->X, &DA, &CB ) ); MOD_MUL( S->X );
1591 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &S->X, &S->X, &S->X ) ); MOD_MUL( S->X );
1592 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &S->Z, &DA, &CB ) ); MOD_SUB( S->Z );
1593 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &S->Z, &S->Z, &S->Z ) ); MOD_MUL( S->Z );
1594 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &S->Z, d, &S->Z ) ); MOD_MUL( S->Z );
1595 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &R->X, &AA, &BB ) ); MOD_MUL( R->X );
1596 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &R->Z, &grp->A, &E ) ); MOD_MUL( R->Z );
1597 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &R->Z, &BB, &R->Z ) ); MOD_ADD( R->Z );
1598 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &R->Z, &E, &R->Z ) ); MOD_MUL( R->Z );
1599
1600cleanup:
1601 mbedcrypto_mpi_free( &A ); mbedcrypto_mpi_free( &AA ); mbedcrypto_mpi_free( &B );
1602 mbedcrypto_mpi_free( &BB ); mbedcrypto_mpi_free( &E ); mbedcrypto_mpi_free( &C );
1603 mbedcrypto_mpi_free( &D ); mbedcrypto_mpi_free( &DA ); mbedcrypto_mpi_free( &CB );
1604
1605 return( ret );
1606}
1607
1608/*
1609 * Multiplication with Montgomery ladder in x/z coordinates,
1610 * for curves in Montgomery form
1611 */
1612static int ecp_mul_mxz( mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *R,
1613 const mbedcrypto_mpi *m, const mbedcrypto_ecp_point *P,
1614 int (*f_rng)(void *, unsigned char *, size_t),
1615 void *p_rng )
1616{
1617 int ret;
1618 size_t i;
1619 unsigned char b;
1620 mbedcrypto_ecp_point RP;
1621 mbedcrypto_mpi PX;
1622
1623 mbedcrypto_ecp_point_init( &RP ); mbedcrypto_mpi_init( &PX );
1624
1625 /* Save PX and read from P before writing to R, in case P == R */
1626 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &PX, &P->X ) );
1627 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_copy( &RP, P ) );
1628
1629 /* Set R to zero in modified x/z coordinates */
1630 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &R->X, 1 ) );
1631 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &R->Z, 0 ) );
1632 mbedcrypto_mpi_free( &R->Y );
1633
1634 /* RP.X might be sligtly larger than P, so reduce it */
1635 MOD_ADD( RP.X );
1636
1637 /* Randomize coordinates of the starting point */
1638 if( f_rng != NULL )
1639 MBEDCRYPTO_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
1640
1641 /* Loop invariant: R = result so far, RP = R + P */
1642 i = mbedcrypto_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
1643 while( i-- > 0 )
1644 {
1645 b = mbedcrypto_mpi_get_bit( m, i );
1646 /*
1647 * if (b) R = 2R + P else R = 2R,
1648 * which is:
1649 * if (b) double_add( RP, R, RP, R )
1650 * else double_add( R, RP, R, RP )
1651 * but using safe conditional swaps to avoid leaks
1652 */
1653 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
1654 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
1655 MBEDCRYPTO_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
1656 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
1657 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
1658 }
1659
1660 MBEDCRYPTO_MPI_CHK( ecp_normalize_mxz( grp, R ) );
1661
1662cleanup:
1663 mbedcrypto_ecp_point_free( &RP ); mbedcrypto_mpi_free( &PX );
1664
1665 return( ret );
1666}
1667
1668#endif /* ECP_MONTGOMERY */
1669
1670/*
1671 * Multiplication R = m * P
1672 */
1673int mbedcrypto_ecp_mul( mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *R,
1674 const mbedcrypto_mpi *m, const mbedcrypto_ecp_point *P,
1675 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1676{
1677 int ret = MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA;
1678#if defined(MBEDCRYPTO_ECP_INTERNAL_ALT)
1679 char is_grp_capable = 0;
1680#endif
1681
1682 /* Common sanity checks */
1683 if( mbedcrypto_mpi_cmp_int( &P->Z, 1 ) != 0 )
1684 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
1685
1686 if( ( ret = mbedcrypto_ecp_check_privkey( grp, m ) ) != 0 ||
1687 ( ret = mbedcrypto_ecp_check_pubkey( grp, P ) ) != 0 )
1688 return( ret );
1689
1690#if defined(MBEDCRYPTO_ECP_INTERNAL_ALT)
1691 if ( is_grp_capable = mbedcrypto_internal_ecp_grp_capable( grp ) )
1692 {
1693 MBEDCRYPTO_MPI_CHK( mbedcrypto_internal_ecp_init( grp ) );
1694 }
1695
1696#endif /* MBEDCRYPTO_ECP_INTERNAL_ALT */
1697#if defined(ECP_MONTGOMERY)
1698 if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1699 ret = ecp_mul_mxz( grp, R, m, P, f_rng, p_rng );
1700
1701#endif
1702#if defined(ECP_SHORTWEIERSTRASS)
1703 if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1704 ret = ecp_mul_comb( grp, R, m, P, f_rng, p_rng );
1705
1706#endif
1707#if defined(MBEDCRYPTO_ECP_INTERNAL_ALT)
1708cleanup:
1709
1710 if ( is_grp_capable )
1711 {
1712 mbedcrypto_internal_ecp_free( grp );
1713 }
1714
1715#endif /* MBEDCRYPTO_ECP_INTERNAL_ALT */
1716 return( ret );
1717}
1718
1719#if defined(ECP_SHORTWEIERSTRASS)
1720/*
1721 * Check that an affine point is valid as a public key,
1722 * short weierstrass curves (SEC1 3.2.3.1)
1723 */
1724static int ecp_check_pubkey_sw( const mbedcrypto_ecp_group *grp, const mbedcrypto_ecp_point *pt )
1725{
1726 int ret;
1727 mbedcrypto_mpi YY, RHS;
1728
1729 /* pt coordinates must be normalized for our checks */
1730 if( mbedcrypto_mpi_cmp_int( &pt->X, 0 ) < 0 ||
1731 mbedcrypto_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
1732 mbedcrypto_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
1733 mbedcrypto_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
1734 return( MBEDCRYPTO_ERR_ECP_INVALID_KEY );
1735
1736 mbedcrypto_mpi_init( &YY ); mbedcrypto_mpi_init( &RHS );
1737
1738 /*
1739 * YY = Y^2
1740 * RHS = X (X^2 + A) + B = X^3 + A X + B
1741 */
1742 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &YY, &pt->Y, &pt->Y ) ); MOD_MUL( YY );
1743 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &RHS, &pt->X, &pt->X ) ); MOD_MUL( RHS );
1744
1745 /* Special case for A = -3 */
1746 if( grp->A.p == NULL )
1747 {
1748 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_int( &RHS, &RHS, 3 ) ); MOD_SUB( RHS );
1749 }
1750 else
1751 {
1752 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &RHS, &RHS, &grp->A ) ); MOD_ADD( RHS );
1753 }
1754
1755 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &RHS, &RHS, &pt->X ) ); MOD_MUL( RHS );
1756 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &RHS, &RHS, &grp->B ) ); MOD_ADD( RHS );
1757
1758 if( mbedcrypto_mpi_cmp_mpi( &YY, &RHS ) != 0 )
1759 ret = MBEDCRYPTO_ERR_ECP_INVALID_KEY;
1760
1761cleanup:
1762
1763 mbedcrypto_mpi_free( &YY ); mbedcrypto_mpi_free( &RHS );
1764
1765 return( ret );
1766}
1767#endif /* ECP_SHORTWEIERSTRASS */
1768
1769/*
1770 * R = m * P with shortcuts for m == 1 and m == -1
1771 * NOT constant-time - ONLY for short Weierstrass!
1772 */
1773static int mbedcrypto_ecp_mul_shortcuts( mbedcrypto_ecp_group *grp,
1774 mbedcrypto_ecp_point *R,
1775 const mbedcrypto_mpi *m,
1776 const mbedcrypto_ecp_point *P )
1777{
1778 int ret;
1779
1780 if( mbedcrypto_mpi_cmp_int( m, 1 ) == 0 )
1781 {
1782 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_copy( R, P ) );
1783 }
1784 else if( mbedcrypto_mpi_cmp_int( m, -1 ) == 0 )
1785 {
1786 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_copy( R, P ) );
1787 if( mbedcrypto_mpi_cmp_int( &R->Y, 0 ) != 0 )
1788 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
1789 }
1790 else
1791 {
1792 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_mul( grp, R, m, P, NULL, NULL ) );
1793 }
1794
1795cleanup:
1796 return( ret );
1797}
1798
1799/*
1800 * Linear combination
1801 * NOT constant-time
1802 */
1803int mbedcrypto_ecp_muladd( mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *R,
1804 const mbedcrypto_mpi *m, const mbedcrypto_ecp_point *P,
1805 const mbedcrypto_mpi *n, const mbedcrypto_ecp_point *Q )
1806{
1807 int ret;
1808 mbedcrypto_ecp_point mP;
1809#if defined(MBEDCRYPTO_ECP_INTERNAL_ALT)
1810 char is_grp_capable = 0;
1811#endif
1812
1813 if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )
1814 return( MBEDCRYPTO_ERR_ECP_FEATURE_UNAVAILABLE );
1815
1816 mbedcrypto_ecp_point_init( &mP );
1817
1818 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_mul_shortcuts( grp, &mP, m, P ) );
1819 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_mul_shortcuts( grp, R, n, Q ) );
1820
1821#if defined(MBEDCRYPTO_ECP_INTERNAL_ALT)
1822 if ( is_grp_capable = mbedcrypto_internal_ecp_grp_capable( grp ) )
1823 {
1824 MBEDCRYPTO_MPI_CHK( mbedcrypto_internal_ecp_init( grp ) );
1825 }
1826
1827#endif /* MBEDCRYPTO_ECP_INTERNAL_ALT */
1828 MBEDCRYPTO_MPI_CHK( ecp_add_mixed( grp, R, &mP, R ) );
1829 MBEDCRYPTO_MPI_CHK( ecp_normalize_jac( grp, R ) );
1830
1831cleanup:
1832
1833#if defined(MBEDCRYPTO_ECP_INTERNAL_ALT)
1834 if ( is_grp_capable )
1835 {
1836 mbedcrypto_internal_ecp_free( grp );
1837 }
1838
1839#endif /* MBEDCRYPTO_ECP_INTERNAL_ALT */
1840 mbedcrypto_ecp_point_free( &mP );
1841
1842 return( ret );
1843}
1844
1845
1846#if defined(ECP_MONTGOMERY)
1847/*
1848 * Check validity of a public key for Montgomery curves with x-only schemes
1849 */
1850static int ecp_check_pubkey_mx( const mbedcrypto_ecp_group *grp, const mbedcrypto_ecp_point *pt )
1851{
1852 /* [Curve25519 p. 5] Just check X is the correct number of bytes */
1853 /* Allow any public value, if it's too big then we'll just reduce it mod p
1854 * (RFC 7748 sec. 5 para. 3). */
1855 if( mbedcrypto_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
1856 return( MBEDCRYPTO_ERR_ECP_INVALID_KEY );
1857
1858 return( 0 );
1859}
1860#endif /* ECP_MONTGOMERY */
1861
1862/*
1863 * Check that a point is valid as a public key
1864 */
1865int mbedcrypto_ecp_check_pubkey( const mbedcrypto_ecp_group *grp, const mbedcrypto_ecp_point *pt )
1866{
1867 /* Must use affine coordinates */
1868 if( mbedcrypto_mpi_cmp_int( &pt->Z, 1 ) != 0 )
1869 return( MBEDCRYPTO_ERR_ECP_INVALID_KEY );
1870
1871#if defined(ECP_MONTGOMERY)
1872 if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1873 return( ecp_check_pubkey_mx( grp, pt ) );
1874#endif
1875#if defined(ECP_SHORTWEIERSTRASS)
1876 if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1877 return( ecp_check_pubkey_sw( grp, pt ) );
1878#endif
1879 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
1880}
1881
1882/*
1883 * Check that an mbedcrypto_mpi is valid as a private key
1884 */
1885int mbedcrypto_ecp_check_privkey( const mbedcrypto_ecp_group *grp, const mbedcrypto_mpi *d )
1886{
1887#if defined(ECP_MONTGOMERY)
1888 if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1889 {
1890 /* see RFC 7748 sec. 5 para. 5 */
1891 if( mbedcrypto_mpi_get_bit( d, 0 ) != 0 ||
1892 mbedcrypto_mpi_get_bit( d, 1 ) != 0 ||
1893 mbedcrypto_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedcrypto_mpi_bitlen is one-based! */
1894 return( MBEDCRYPTO_ERR_ECP_INVALID_KEY );
1895 else
1896
1897 /* see [Curve25519] page 5 */
1898 if( grp->nbits == 254 && mbedcrypto_mpi_get_bit( d, 2 ) != 0 )
1899 return( MBEDCRYPTO_ERR_ECP_INVALID_KEY );
1900
1901 return( 0 );
1902 }
1903#endif /* ECP_MONTGOMERY */
1904#if defined(ECP_SHORTWEIERSTRASS)
1905 if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1906 {
1907 /* see SEC1 3.2 */
1908 if( mbedcrypto_mpi_cmp_int( d, 1 ) < 0 ||
1909 mbedcrypto_mpi_cmp_mpi( d, &grp->N ) >= 0 )
1910 return( MBEDCRYPTO_ERR_ECP_INVALID_KEY );
1911 else
1912 return( 0 );
1913 }
1914#endif /* ECP_SHORTWEIERSTRASS */
1915
1916 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
1917}
1918
1919/*
1920 * Generate a keypair with configurable base point
1921 */
1922int mbedcrypto_ecp_gen_keypair_base( mbedcrypto_ecp_group *grp,
1923 const mbedcrypto_ecp_point *G,
1924 mbedcrypto_mpi *d, mbedcrypto_ecp_point *Q,
1925 int (*f_rng)(void *, unsigned char *, size_t),
1926 void *p_rng )
1927{
1928 int ret;
1929 size_t n_size = ( grp->nbits + 7 ) / 8;
1930
1931#if defined(ECP_MONTGOMERY)
1932 if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
1933 {
1934 /* [M225] page 5 */
1935 size_t b;
1936
1937 do {
1938 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_fill_random( d, n_size, f_rng, p_rng ) );
1939 } while( mbedcrypto_mpi_bitlen( d ) == 0);
1940
1941 /* Make sure the most significant bit is nbits */
1942 b = mbedcrypto_mpi_bitlen( d ) - 1; /* mbedcrypto_mpi_bitlen is one-based */
1943 if( b > grp->nbits )
1944 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( d, b - grp->nbits ) );
1945 else
1946 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_set_bit( d, grp->nbits, 1 ) );
1947
1948 /* Make sure the last two bits are unset for Curve448, three bits for
1949 Curve25519 */
1950 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_set_bit( d, 0, 0 ) );
1951 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_set_bit( d, 1, 0 ) );
1952 if( grp->nbits == 254 )
1953 {
1954 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_set_bit( d, 2, 0 ) );
1955 }
1956 }
1957 else
1958#endif /* ECP_MONTGOMERY */
1959#if defined(ECP_SHORTWEIERSTRASS)
1960 if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
1961 {
1962 /* SEC1 3.2.1: Generate d such that 1 <= n < N */
1963 int count = 0;
1964
1965 /*
1966 * Match the procedure given in RFC 6979 (deterministic ECDSA):
1967 * - use the same byte ordering;
1968 * - keep the leftmost nbits bits of the generated octet string;
1969 * - try until result is in the desired range.
1970 * This also avoids any biais, which is especially important for ECDSA.
1971 */
1972 do
1973 {
1974 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_fill_random( d, n_size, f_rng, p_rng ) );
1975 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( d, 8 * n_size - grp->nbits ) );
1976
1977 /*
1978 * Each try has at worst a probability 1/2 of failing (the msb has
1979 * a probability 1/2 of being 0, and then the result will be < N),
1980 * so after 30 tries failure probability is a most 2**(-30).
1981 *
1982 * For most curves, 1 try is enough with overwhelming probability,
1983 * since N starts with a lot of 1s in binary, but some curves
1984 * such as secp224k1 are actually very close to the worst case.
1985 */
1986 if( ++count > 30 )
1987 return( MBEDCRYPTO_ERR_ECP_RANDOM_FAILED );
1988 }
1989 while( mbedcrypto_mpi_cmp_int( d, 1 ) < 0 ||
1990 mbedcrypto_mpi_cmp_mpi( d, &grp->N ) >= 0 );
1991 }
1992 else
1993#endif /* ECP_SHORTWEIERSTRASS */
1994 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
1995
1996cleanup:
1997 if( ret != 0 )
1998 return( ret );
1999
2000 return( mbedcrypto_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
2001}
2002
2003/*
2004 * Generate key pair, wrapper for conventional base point
2005 */
2006int mbedcrypto_ecp_gen_keypair( mbedcrypto_ecp_group *grp,
2007 mbedcrypto_mpi *d, mbedcrypto_ecp_point *Q,
2008 int (*f_rng)(void *, unsigned char *, size_t),
2009 void *p_rng )
2010{
2011 return( mbedcrypto_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
2012}
2013
2014/*
2015 * Generate a keypair, prettier wrapper
2016 */
2017int mbedcrypto_ecp_gen_key( mbedcrypto_ecp_group_id grp_id, mbedcrypto_ecp_keypair *key,
2018 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2019{
2020 int ret;
2021
2022 if( ( ret = mbedcrypto_ecp_group_load( &key->grp, grp_id ) ) != 0 )
2023 return( ret );
2024
2025 return( mbedcrypto_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
2026}
2027
2028/*
2029 * Check a public-private key pair
2030 */
2031int mbedcrypto_ecp_check_pub_priv( const mbedcrypto_ecp_keypair *pub, const mbedcrypto_ecp_keypair *prv )
2032{
2033 int ret;
2034 mbedcrypto_ecp_point Q;
2035 mbedcrypto_ecp_group grp;
2036
2037 if( pub->grp.id == MBEDCRYPTO_ECP_DP_NONE ||
2038 pub->grp.id != prv->grp.id ||
2039 mbedcrypto_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
2040 mbedcrypto_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
2041 mbedcrypto_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
2042 {
2043 return( MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA );
2044 }
2045
2046 mbedcrypto_ecp_point_init( &Q );
2047 mbedcrypto_ecp_group_init( &grp );
2048
2049 /* mbedcrypto_ecp_mul() needs a non-const group... */
2050 mbedcrypto_ecp_group_copy( &grp, &prv->grp );
2051
2052 /* Also checks d is valid */
2053 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );
2054
2055 if( mbedcrypto_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
2056 mbedcrypto_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
2057 mbedcrypto_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
2058 {
2059 ret = MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA;
2060 goto cleanup;
2061 }
2062
2063cleanup:
2064 mbedcrypto_ecp_point_free( &Q );
2065 mbedcrypto_ecp_group_free( &grp );
2066
2067 return( ret );
2068}
2069
2070#if defined(MBEDCRYPTO_SELF_TEST)
2071
2072/*
2073 * Checkup routine
2074 */
2075int mbedcrypto_ecp_self_test( int verbose )
2076{
2077 int ret;
2078 size_t i;
2079 mbedcrypto_ecp_group grp;
2080 mbedcrypto_ecp_point R, P;
2081 mbedcrypto_mpi m;
2082 unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
2083 /* exponents especially adapted for secp192r1 */
2084 const char *exponents[] =
2085 {
2086 "000000000000000000000000000000000000000000000001", /* one */
2087 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
2088 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
2089 "400000000000000000000000000000000000000000000000", /* one and zeros */
2090 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
2091 "555555555555555555555555555555555555555555555555", /* 101010... */
2092 };
2093
2094 mbedcrypto_ecp_group_init( &grp );
2095 mbedcrypto_ecp_point_init( &R );
2096 mbedcrypto_ecp_point_init( &P );
2097 mbedcrypto_mpi_init( &m );
2098
2099 /* Use secp192r1 if available, or any available curve */
2100#if defined(MBEDCRYPTO_ECP_DP_SECP192R1_ENABLED)
2101 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_group_load( &grp, MBEDCRYPTO_ECP_DP_SECP192R1 ) );
2102#else
2103 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_group_load( &grp, mbedcrypto_ecp_curve_list()->grp_id ) );
2104#endif
2105
2106 if( verbose != 0 )
2107 mbedcrypto_printf( " ECP test #1 (constant op_count, base point G): " );
2108
2109 /* Do a dummy multiplication first to trigger precomputation */
2110 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &m, 2 ) );
2111 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
2112
2113 add_count = 0;
2114 dbl_count = 0;
2115 mul_count = 0;
2116 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &m, 16, exponents[0] ) );
2117 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2118
2119 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2120 {
2121 add_c_prev = add_count;
2122 dbl_c_prev = dbl_count;
2123 mul_c_prev = mul_count;
2124 add_count = 0;
2125 dbl_count = 0;
2126 mul_count = 0;
2127
2128 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &m, 16, exponents[i] ) );
2129 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
2130
2131 if( add_count != add_c_prev ||
2132 dbl_count != dbl_c_prev ||
2133 mul_count != mul_c_prev )
2134 {
2135 if( verbose != 0 )
2136 mbedcrypto_printf( "failed (%u)\n", (unsigned int) i );
2137
2138 ret = 1;
2139 goto cleanup;
2140 }
2141 }
2142
2143 if( verbose != 0 )
2144 mbedcrypto_printf( "passed\n" );
2145
2146 if( verbose != 0 )
2147 mbedcrypto_printf( " ECP test #2 (constant op_count, other point): " );
2148 /* We computed P = 2G last time, use it */
2149
2150 add_count = 0;
2151 dbl_count = 0;
2152 mul_count = 0;
2153 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &m, 16, exponents[0] ) );
2154 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2155
2156 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2157 {
2158 add_c_prev = add_count;
2159 dbl_c_prev = dbl_count;
2160 mul_c_prev = mul_count;
2161 add_count = 0;
2162 dbl_count = 0;
2163 mul_count = 0;
2164
2165 MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &m, 16, exponents[i] ) );
2166 MBEDCRYPTO_MPI_CHK( mbedcrypto_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2167
2168 if( add_count != add_c_prev ||
2169 dbl_count != dbl_c_prev ||
2170 mul_count != mul_c_prev )
2171 {
2172 if( verbose != 0 )
2173 mbedcrypto_printf( "failed (%u)\n", (unsigned int) i );
2174
2175 ret = 1;
2176 goto cleanup;
2177 }
2178 }
2179
2180 if( verbose != 0 )
2181 mbedcrypto_printf( "passed\n" );
2182
2183cleanup:
2184
2185 if( ret < 0 && verbose != 0 )
2186 mbedcrypto_printf( "Unexpected error, return code = %08X\n", ret );
2187
2188 mbedcrypto_ecp_group_free( &grp );
2189 mbedcrypto_ecp_point_free( &R );
2190 mbedcrypto_ecp_point_free( &P );
2191 mbedcrypto_mpi_free( &m );
2192
2193 if( verbose != 0 )
2194 mbedcrypto_printf( "\n" );
2195
2196 return( ret );
2197}
2198
2199#endif /* MBEDCRYPTO_SELF_TEST */
2200
2201#endif /* !MBEDCRYPTO_ECP_ALT */
2202
2203#endif /* MBEDCRYPTO_ECP_C */