Jaeden Amero | e54e693 | 2018-08-06 16:19:58 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Multi-precision integer library |
| 3 | * |
| 4 | * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved |
| 5 | * SPDX-License-Identifier: Apache-2.0 |
| 6 | * |
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 8 | * not use this file except in compliance with the License. |
| 9 | * You may obtain a copy of the License at |
| 10 | * |
| 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | * |
| 13 | * Unless required by applicable law or agreed to in writing, software |
| 14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | * See the License for the specific language governing permissions and |
| 17 | * limitations under the License. |
| 18 | * |
| 19 | * This file is part of Mbed Crypto (https://tls.mbed.org) |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | * The following sources were referenced in the design of this Multi-precision |
| 24 | * Integer library: |
| 25 | * |
| 26 | * [1] Handbook of Applied Cryptography - 1997 |
| 27 | * Menezes, van Oorschot and Vanstone |
| 28 | * |
| 29 | * [2] Multi-Precision Math |
| 30 | * Tom St Denis |
| 31 | * https://github.com/libtom/libtommath/blob/develop/tommath.pdf |
| 32 | * |
| 33 | * [3] GNU Multi-Precision Arithmetic Library |
| 34 | * https://gmplib.org/manual/index.html |
| 35 | * |
| 36 | */ |
| 37 | |
| 38 | #if !defined(MBEDCRYPTO_CONFIG_FILE) |
| 39 | #include "mbedcrypto/config.h" |
| 40 | #else |
| 41 | #include MBEDCRYPTO_CONFIG_FILE |
| 42 | #endif |
| 43 | |
| 44 | #if defined(MBEDCRYPTO_BIGNUM_C) |
| 45 | |
| 46 | #include "mbedcrypto/bignum.h" |
| 47 | #include "mbedcrypto/bn_mul.h" |
| 48 | #include "mbedcrypto/platform_util.h" |
| 49 | |
| 50 | #include <string.h> |
| 51 | |
| 52 | #if defined(MBEDCRYPTO_PLATFORM_C) |
| 53 | #include "mbedcrypto/platform.h" |
| 54 | #else |
| 55 | #include <stdio.h> |
| 56 | #include <stdlib.h> |
| 57 | #define mbedcrypto_printf printf |
| 58 | #define mbedcrypto_calloc calloc |
| 59 | #define mbedcrypto_free free |
| 60 | #endif |
| 61 | |
| 62 | #define ciL (sizeof(mbedcrypto_mpi_uint)) /* chars in limb */ |
| 63 | #define biL (ciL << 3) /* bits in limb */ |
| 64 | #define biH (ciL << 2) /* half limb size */ |
| 65 | |
| 66 | #define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */ |
| 67 | |
| 68 | /* |
| 69 | * Convert between bits/chars and number of limbs |
| 70 | * Divide first in order to avoid potential overflows |
| 71 | */ |
| 72 | #define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) ) |
| 73 | #define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) ) |
| 74 | |
| 75 | /* Implementation that should never be optimized out by the compiler */ |
| 76 | static void mbedcrypto_mpi_zeroize( mbedcrypto_mpi_uint *v, size_t n ) |
| 77 | { |
| 78 | mbedcrypto_platform_zeroize( v, ciL * n ); |
| 79 | } |
| 80 | |
| 81 | /* |
| 82 | * Initialize one MPI |
| 83 | */ |
| 84 | void mbedcrypto_mpi_init( mbedcrypto_mpi *X ) |
| 85 | { |
| 86 | if( X == NULL ) |
| 87 | return; |
| 88 | |
| 89 | X->s = 1; |
| 90 | X->n = 0; |
| 91 | X->p = NULL; |
| 92 | } |
| 93 | |
| 94 | /* |
| 95 | * Unallocate one MPI |
| 96 | */ |
| 97 | void mbedcrypto_mpi_free( mbedcrypto_mpi *X ) |
| 98 | { |
| 99 | if( X == NULL ) |
| 100 | return; |
| 101 | |
| 102 | if( X->p != NULL ) |
| 103 | { |
| 104 | mbedcrypto_mpi_zeroize( X->p, X->n ); |
| 105 | mbedcrypto_free( X->p ); |
| 106 | } |
| 107 | |
| 108 | X->s = 1; |
| 109 | X->n = 0; |
| 110 | X->p = NULL; |
| 111 | } |
| 112 | |
| 113 | /* |
| 114 | * Enlarge to the specified number of limbs |
| 115 | */ |
| 116 | int mbedcrypto_mpi_grow( mbedcrypto_mpi *X, size_t nblimbs ) |
| 117 | { |
| 118 | mbedcrypto_mpi_uint *p; |
| 119 | |
| 120 | if( nblimbs > MBEDCRYPTO_MPI_MAX_LIMBS ) |
| 121 | return( MBEDCRYPTO_ERR_MPI_ALLOC_FAILED ); |
| 122 | |
| 123 | if( X->n < nblimbs ) |
| 124 | { |
| 125 | if( ( p = (mbedcrypto_mpi_uint*)mbedcrypto_calloc( nblimbs, ciL ) ) == NULL ) |
| 126 | return( MBEDCRYPTO_ERR_MPI_ALLOC_FAILED ); |
| 127 | |
| 128 | if( X->p != NULL ) |
| 129 | { |
| 130 | memcpy( p, X->p, X->n * ciL ); |
| 131 | mbedcrypto_mpi_zeroize( X->p, X->n ); |
| 132 | mbedcrypto_free( X->p ); |
| 133 | } |
| 134 | |
| 135 | X->n = nblimbs; |
| 136 | X->p = p; |
| 137 | } |
| 138 | |
| 139 | return( 0 ); |
| 140 | } |
| 141 | |
| 142 | /* |
| 143 | * Resize down as much as possible, |
| 144 | * while keeping at least the specified number of limbs |
| 145 | */ |
| 146 | int mbedcrypto_mpi_shrink( mbedcrypto_mpi *X, size_t nblimbs ) |
| 147 | { |
| 148 | mbedcrypto_mpi_uint *p; |
| 149 | size_t i; |
| 150 | |
| 151 | /* Actually resize up in this case */ |
| 152 | if( X->n <= nblimbs ) |
| 153 | return( mbedcrypto_mpi_grow( X, nblimbs ) ); |
| 154 | |
| 155 | for( i = X->n - 1; i > 0; i-- ) |
| 156 | if( X->p[i] != 0 ) |
| 157 | break; |
| 158 | i++; |
| 159 | |
| 160 | if( i < nblimbs ) |
| 161 | i = nblimbs; |
| 162 | |
| 163 | if( ( p = (mbedcrypto_mpi_uint*)mbedcrypto_calloc( i, ciL ) ) == NULL ) |
| 164 | return( MBEDCRYPTO_ERR_MPI_ALLOC_FAILED ); |
| 165 | |
| 166 | if( X->p != NULL ) |
| 167 | { |
| 168 | memcpy( p, X->p, i * ciL ); |
| 169 | mbedcrypto_mpi_zeroize( X->p, X->n ); |
| 170 | mbedcrypto_free( X->p ); |
| 171 | } |
| 172 | |
| 173 | X->n = i; |
| 174 | X->p = p; |
| 175 | |
| 176 | return( 0 ); |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * Copy the contents of Y into X |
| 181 | */ |
| 182 | int mbedcrypto_mpi_copy( mbedcrypto_mpi *X, const mbedcrypto_mpi *Y ) |
| 183 | { |
| 184 | int ret = 0; |
| 185 | size_t i; |
| 186 | |
| 187 | if( X == Y ) |
| 188 | return( 0 ); |
| 189 | |
| 190 | if( Y->p == NULL ) |
| 191 | { |
| 192 | mbedcrypto_mpi_free( X ); |
| 193 | return( 0 ); |
| 194 | } |
| 195 | |
| 196 | for( i = Y->n - 1; i > 0; i-- ) |
| 197 | if( Y->p[i] != 0 ) |
| 198 | break; |
| 199 | i++; |
| 200 | |
| 201 | X->s = Y->s; |
| 202 | |
| 203 | if( X->n < i ) |
| 204 | { |
| 205 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, i ) ); |
| 206 | } |
| 207 | else |
| 208 | { |
| 209 | memset( X->p + i, 0, ( X->n - i ) * ciL ); |
| 210 | } |
| 211 | |
| 212 | memcpy( X->p, Y->p, i * ciL ); |
| 213 | |
| 214 | cleanup: |
| 215 | |
| 216 | return( ret ); |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * Swap the contents of X and Y |
| 221 | */ |
| 222 | void mbedcrypto_mpi_swap( mbedcrypto_mpi *X, mbedcrypto_mpi *Y ) |
| 223 | { |
| 224 | mbedcrypto_mpi T; |
| 225 | |
| 226 | memcpy( &T, X, sizeof( mbedcrypto_mpi ) ); |
| 227 | memcpy( X, Y, sizeof( mbedcrypto_mpi ) ); |
| 228 | memcpy( Y, &T, sizeof( mbedcrypto_mpi ) ); |
| 229 | } |
| 230 | |
| 231 | /* |
| 232 | * Conditionally assign X = Y, without leaking information |
| 233 | * about whether the assignment was made or not. |
| 234 | * (Leaking information about the respective sizes of X and Y is ok however.) |
| 235 | */ |
| 236 | int mbedcrypto_mpi_safe_cond_assign( mbedcrypto_mpi *X, const mbedcrypto_mpi *Y, unsigned char assign ) |
| 237 | { |
| 238 | int ret = 0; |
| 239 | size_t i; |
| 240 | |
| 241 | /* make sure assign is 0 or 1 in a time-constant manner */ |
| 242 | assign = (assign | (unsigned char)-assign) >> 7; |
| 243 | |
| 244 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, Y->n ) ); |
| 245 | |
| 246 | X->s = X->s * ( 1 - assign ) + Y->s * assign; |
| 247 | |
| 248 | for( i = 0; i < Y->n; i++ ) |
| 249 | X->p[i] = X->p[i] * ( 1 - assign ) + Y->p[i] * assign; |
| 250 | |
| 251 | for( ; i < X->n; i++ ) |
| 252 | X->p[i] *= ( 1 - assign ); |
| 253 | |
| 254 | cleanup: |
| 255 | return( ret ); |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Conditionally swap X and Y, without leaking information |
| 260 | * about whether the swap was made or not. |
| 261 | * Here it is not ok to simply swap the pointers, which whould lead to |
| 262 | * different memory access patterns when X and Y are used afterwards. |
| 263 | */ |
| 264 | int mbedcrypto_mpi_safe_cond_swap( mbedcrypto_mpi *X, mbedcrypto_mpi *Y, unsigned char swap ) |
| 265 | { |
| 266 | int ret, s; |
| 267 | size_t i; |
| 268 | mbedcrypto_mpi_uint tmp; |
| 269 | |
| 270 | if( X == Y ) |
| 271 | return( 0 ); |
| 272 | |
| 273 | /* make sure swap is 0 or 1 in a time-constant manner */ |
| 274 | swap = (swap | (unsigned char)-swap) >> 7; |
| 275 | |
| 276 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, Y->n ) ); |
| 277 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( Y, X->n ) ); |
| 278 | |
| 279 | s = X->s; |
| 280 | X->s = X->s * ( 1 - swap ) + Y->s * swap; |
| 281 | Y->s = Y->s * ( 1 - swap ) + s * swap; |
| 282 | |
| 283 | |
| 284 | for( i = 0; i < X->n; i++ ) |
| 285 | { |
| 286 | tmp = X->p[i]; |
| 287 | X->p[i] = X->p[i] * ( 1 - swap ) + Y->p[i] * swap; |
| 288 | Y->p[i] = Y->p[i] * ( 1 - swap ) + tmp * swap; |
| 289 | } |
| 290 | |
| 291 | cleanup: |
| 292 | return( ret ); |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * Set value from integer |
| 297 | */ |
| 298 | int mbedcrypto_mpi_lset( mbedcrypto_mpi *X, mbedcrypto_mpi_sint z ) |
| 299 | { |
| 300 | int ret; |
| 301 | |
| 302 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, 1 ) ); |
| 303 | memset( X->p, 0, X->n * ciL ); |
| 304 | |
| 305 | X->p[0] = ( z < 0 ) ? -z : z; |
| 306 | X->s = ( z < 0 ) ? -1 : 1; |
| 307 | |
| 308 | cleanup: |
| 309 | |
| 310 | return( ret ); |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * Get a specific bit |
| 315 | */ |
| 316 | int mbedcrypto_mpi_get_bit( const mbedcrypto_mpi *X, size_t pos ) |
| 317 | { |
| 318 | if( X->n * biL <= pos ) |
| 319 | return( 0 ); |
| 320 | |
| 321 | return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 ); |
| 322 | } |
| 323 | |
| 324 | /* |
| 325 | * Set a bit to a specific value of 0 or 1 |
| 326 | */ |
| 327 | int mbedcrypto_mpi_set_bit( mbedcrypto_mpi *X, size_t pos, unsigned char val ) |
| 328 | { |
| 329 | int ret = 0; |
| 330 | size_t off = pos / biL; |
| 331 | size_t idx = pos % biL; |
| 332 | |
| 333 | if( val != 0 && val != 1 ) |
| 334 | return( MBEDCRYPTO_ERR_MPI_BAD_INPUT_DATA ); |
| 335 | |
| 336 | if( X->n * biL <= pos ) |
| 337 | { |
| 338 | if( val == 0 ) |
| 339 | return( 0 ); |
| 340 | |
| 341 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, off + 1 ) ); |
| 342 | } |
| 343 | |
| 344 | X->p[off] &= ~( (mbedcrypto_mpi_uint) 0x01 << idx ); |
| 345 | X->p[off] |= (mbedcrypto_mpi_uint) val << idx; |
| 346 | |
| 347 | cleanup: |
| 348 | |
| 349 | return( ret ); |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * Return the number of less significant zero-bits |
| 354 | */ |
| 355 | size_t mbedcrypto_mpi_lsb( const mbedcrypto_mpi *X ) |
| 356 | { |
| 357 | size_t i, j, count = 0; |
| 358 | |
| 359 | for( i = 0; i < X->n; i++ ) |
| 360 | for( j = 0; j < biL; j++, count++ ) |
| 361 | if( ( ( X->p[i] >> j ) & 1 ) != 0 ) |
| 362 | return( count ); |
| 363 | |
| 364 | return( 0 ); |
| 365 | } |
| 366 | |
| 367 | /* |
| 368 | * Count leading zero bits in a given integer |
| 369 | */ |
| 370 | static size_t mbedcrypto_clz( const mbedcrypto_mpi_uint x ) |
| 371 | { |
| 372 | size_t j; |
| 373 | mbedcrypto_mpi_uint mask = (mbedcrypto_mpi_uint) 1 << (biL - 1); |
| 374 | |
| 375 | for( j = 0; j < biL; j++ ) |
| 376 | { |
| 377 | if( x & mask ) break; |
| 378 | |
| 379 | mask >>= 1; |
| 380 | } |
| 381 | |
| 382 | return j; |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * Return the number of bits |
| 387 | */ |
| 388 | size_t mbedcrypto_mpi_bitlen( const mbedcrypto_mpi *X ) |
| 389 | { |
| 390 | size_t i, j; |
| 391 | |
| 392 | if( X->n == 0 ) |
| 393 | return( 0 ); |
| 394 | |
| 395 | for( i = X->n - 1; i > 0; i-- ) |
| 396 | if( X->p[i] != 0 ) |
| 397 | break; |
| 398 | |
| 399 | j = biL - mbedcrypto_clz( X->p[i] ); |
| 400 | |
| 401 | return( ( i * biL ) + j ); |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * Return the total size in bytes |
| 406 | */ |
| 407 | size_t mbedcrypto_mpi_size( const mbedcrypto_mpi *X ) |
| 408 | { |
| 409 | return( ( mbedcrypto_mpi_bitlen( X ) + 7 ) >> 3 ); |
| 410 | } |
| 411 | |
| 412 | /* |
| 413 | * Convert an ASCII character to digit value |
| 414 | */ |
| 415 | static int mpi_get_digit( mbedcrypto_mpi_uint *d, int radix, char c ) |
| 416 | { |
| 417 | *d = 255; |
| 418 | |
| 419 | if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30; |
| 420 | if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37; |
| 421 | if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57; |
| 422 | |
| 423 | if( *d >= (mbedcrypto_mpi_uint) radix ) |
| 424 | return( MBEDCRYPTO_ERR_MPI_INVALID_CHARACTER ); |
| 425 | |
| 426 | return( 0 ); |
| 427 | } |
| 428 | |
| 429 | /* |
| 430 | * Import from an ASCII string |
| 431 | */ |
| 432 | int mbedcrypto_mpi_read_string( mbedcrypto_mpi *X, int radix, const char *s ) |
| 433 | { |
| 434 | int ret; |
| 435 | size_t i, j, slen, n; |
| 436 | mbedcrypto_mpi_uint d; |
| 437 | mbedcrypto_mpi T; |
| 438 | |
| 439 | if( radix < 2 || radix > 16 ) |
| 440 | return( MBEDCRYPTO_ERR_MPI_BAD_INPUT_DATA ); |
| 441 | |
| 442 | mbedcrypto_mpi_init( &T ); |
| 443 | |
| 444 | slen = strlen( s ); |
| 445 | |
| 446 | if( radix == 16 ) |
| 447 | { |
| 448 | if( slen > MPI_SIZE_T_MAX >> 2 ) |
| 449 | return( MBEDCRYPTO_ERR_MPI_BAD_INPUT_DATA ); |
| 450 | |
| 451 | n = BITS_TO_LIMBS( slen << 2 ); |
| 452 | |
| 453 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, n ) ); |
| 454 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( X, 0 ) ); |
| 455 | |
| 456 | for( i = slen, j = 0; i > 0; i--, j++ ) |
| 457 | { |
| 458 | if( i == 1 && s[i - 1] == '-' ) |
| 459 | { |
| 460 | X->s = -1; |
| 461 | break; |
| 462 | } |
| 463 | |
| 464 | MBEDCRYPTO_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) ); |
| 465 | X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 ); |
| 466 | } |
| 467 | } |
| 468 | else |
| 469 | { |
| 470 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( X, 0 ) ); |
| 471 | |
| 472 | for( i = 0; i < slen; i++ ) |
| 473 | { |
| 474 | if( i == 0 && s[i] == '-' ) |
| 475 | { |
| 476 | X->s = -1; |
| 477 | continue; |
| 478 | } |
| 479 | |
| 480 | MBEDCRYPTO_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) ); |
| 481 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_int( &T, X, radix ) ); |
| 482 | |
| 483 | if( X->s == 1 ) |
| 484 | { |
| 485 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_int( X, &T, d ) ); |
| 486 | } |
| 487 | else |
| 488 | { |
| 489 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_int( X, &T, d ) ); |
| 490 | } |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | cleanup: |
| 495 | |
| 496 | mbedcrypto_mpi_free( &T ); |
| 497 | |
| 498 | return( ret ); |
| 499 | } |
| 500 | |
| 501 | /* |
| 502 | * Helper to write the digits high-order first |
| 503 | */ |
| 504 | static int mpi_write_hlp( mbedcrypto_mpi *X, int radix, char **p ) |
| 505 | { |
| 506 | int ret; |
| 507 | mbedcrypto_mpi_uint r; |
| 508 | |
| 509 | if( radix < 2 || radix > 16 ) |
| 510 | return( MBEDCRYPTO_ERR_MPI_BAD_INPUT_DATA ); |
| 511 | |
| 512 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mod_int( &r, X, radix ) ); |
| 513 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_div_int( X, NULL, X, radix ) ); |
| 514 | |
| 515 | if( mbedcrypto_mpi_cmp_int( X, 0 ) != 0 ) |
| 516 | MBEDCRYPTO_MPI_CHK( mpi_write_hlp( X, radix, p ) ); |
| 517 | |
| 518 | if( r < 10 ) |
| 519 | *(*p)++ = (char)( r + 0x30 ); |
| 520 | else |
| 521 | *(*p)++ = (char)( r + 0x37 ); |
| 522 | |
| 523 | cleanup: |
| 524 | |
| 525 | return( ret ); |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * Export into an ASCII string |
| 530 | */ |
| 531 | int mbedcrypto_mpi_write_string( const mbedcrypto_mpi *X, int radix, |
| 532 | char *buf, size_t buflen, size_t *olen ) |
| 533 | { |
| 534 | int ret = 0; |
| 535 | size_t n; |
| 536 | char *p; |
| 537 | mbedcrypto_mpi T; |
| 538 | |
| 539 | if( radix < 2 || radix > 16 ) |
| 540 | return( MBEDCRYPTO_ERR_MPI_BAD_INPUT_DATA ); |
| 541 | |
| 542 | n = mbedcrypto_mpi_bitlen( X ); |
| 543 | if( radix >= 4 ) n >>= 1; |
| 544 | if( radix >= 16 ) n >>= 1; |
| 545 | /* |
| 546 | * Round up the buffer length to an even value to ensure that there is |
| 547 | * enough room for hexadecimal values that can be represented in an odd |
| 548 | * number of digits. |
| 549 | */ |
| 550 | n += 3 + ( ( n + 1 ) & 1 ); |
| 551 | |
| 552 | if( buflen < n ) |
| 553 | { |
| 554 | *olen = n; |
| 555 | return( MBEDCRYPTO_ERR_MPI_BUFFER_TOO_SMALL ); |
| 556 | } |
| 557 | |
| 558 | p = buf; |
| 559 | mbedcrypto_mpi_init( &T ); |
| 560 | |
| 561 | if( X->s == -1 ) |
| 562 | *p++ = '-'; |
| 563 | |
| 564 | if( radix == 16 ) |
| 565 | { |
| 566 | int c; |
| 567 | size_t i, j, k; |
| 568 | |
| 569 | for( i = X->n, k = 0; i > 0; i-- ) |
| 570 | { |
| 571 | for( j = ciL; j > 0; j-- ) |
| 572 | { |
| 573 | c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF; |
| 574 | |
| 575 | if( c == 0 && k == 0 && ( i + j ) != 2 ) |
| 576 | continue; |
| 577 | |
| 578 | *(p++) = "0123456789ABCDEF" [c / 16]; |
| 579 | *(p++) = "0123456789ABCDEF" [c % 16]; |
| 580 | k = 1; |
| 581 | } |
| 582 | } |
| 583 | } |
| 584 | else |
| 585 | { |
| 586 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &T, X ) ); |
| 587 | |
| 588 | if( T.s == -1 ) |
| 589 | T.s = 1; |
| 590 | |
| 591 | MBEDCRYPTO_MPI_CHK( mpi_write_hlp( &T, radix, &p ) ); |
| 592 | } |
| 593 | |
| 594 | *p++ = '\0'; |
| 595 | *olen = p - buf; |
| 596 | |
| 597 | cleanup: |
| 598 | |
| 599 | mbedcrypto_mpi_free( &T ); |
| 600 | |
| 601 | return( ret ); |
| 602 | } |
| 603 | |
| 604 | #if defined(MBEDCRYPTO_FS_IO) |
| 605 | /* |
| 606 | * Read X from an opened file |
| 607 | */ |
| 608 | int mbedcrypto_mpi_read_file( mbedcrypto_mpi *X, int radix, FILE *fin ) |
| 609 | { |
| 610 | mbedcrypto_mpi_uint d; |
| 611 | size_t slen; |
| 612 | char *p; |
| 613 | /* |
| 614 | * Buffer should have space for (short) label and decimal formatted MPI, |
| 615 | * newline characters and '\0' |
| 616 | */ |
| 617 | char s[ MBEDCRYPTO_MPI_RW_BUFFER_SIZE ]; |
| 618 | |
| 619 | memset( s, 0, sizeof( s ) ); |
| 620 | if( fgets( s, sizeof( s ) - 1, fin ) == NULL ) |
| 621 | return( MBEDCRYPTO_ERR_MPI_FILE_IO_ERROR ); |
| 622 | |
| 623 | slen = strlen( s ); |
| 624 | if( slen == sizeof( s ) - 2 ) |
| 625 | return( MBEDCRYPTO_ERR_MPI_BUFFER_TOO_SMALL ); |
| 626 | |
| 627 | if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; } |
| 628 | if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; } |
| 629 | |
| 630 | p = s + slen; |
| 631 | while( p-- > s ) |
| 632 | if( mpi_get_digit( &d, radix, *p ) != 0 ) |
| 633 | break; |
| 634 | |
| 635 | return( mbedcrypto_mpi_read_string( X, radix, p + 1 ) ); |
| 636 | } |
| 637 | |
| 638 | /* |
| 639 | * Write X into an opened file (or stdout if fout == NULL) |
| 640 | */ |
| 641 | int mbedcrypto_mpi_write_file( const char *p, const mbedcrypto_mpi *X, int radix, FILE *fout ) |
| 642 | { |
| 643 | int ret; |
| 644 | size_t n, slen, plen; |
| 645 | /* |
| 646 | * Buffer should have space for (short) label and decimal formatted MPI, |
| 647 | * newline characters and '\0' |
| 648 | */ |
| 649 | char s[ MBEDCRYPTO_MPI_RW_BUFFER_SIZE ]; |
| 650 | |
| 651 | memset( s, 0, sizeof( s ) ); |
| 652 | |
| 653 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) ); |
| 654 | |
| 655 | if( p == NULL ) p = ""; |
| 656 | |
| 657 | plen = strlen( p ); |
| 658 | slen = strlen( s ); |
| 659 | s[slen++] = '\r'; |
| 660 | s[slen++] = '\n'; |
| 661 | |
| 662 | if( fout != NULL ) |
| 663 | { |
| 664 | if( fwrite( p, 1, plen, fout ) != plen || |
| 665 | fwrite( s, 1, slen, fout ) != slen ) |
| 666 | return( MBEDCRYPTO_ERR_MPI_FILE_IO_ERROR ); |
| 667 | } |
| 668 | else |
| 669 | mbedcrypto_printf( "%s%s", p, s ); |
| 670 | |
| 671 | cleanup: |
| 672 | |
| 673 | return( ret ); |
| 674 | } |
| 675 | #endif /* MBEDCRYPTO_FS_IO */ |
| 676 | |
| 677 | /* |
| 678 | * Import X from unsigned binary data, big endian |
| 679 | */ |
| 680 | int mbedcrypto_mpi_read_binary( mbedcrypto_mpi *X, const unsigned char *buf, size_t buflen ) |
| 681 | { |
| 682 | int ret; |
| 683 | size_t i, j; |
| 684 | size_t const limbs = CHARS_TO_LIMBS( buflen ); |
| 685 | |
| 686 | /* Ensure that target MPI has exactly the necessary number of limbs */ |
| 687 | if( X->n != limbs ) |
| 688 | { |
| 689 | mbedcrypto_mpi_free( X ); |
| 690 | mbedcrypto_mpi_init( X ); |
| 691 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, limbs ) ); |
| 692 | } |
| 693 | |
| 694 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( X, 0 ) ); |
| 695 | |
| 696 | for( i = buflen, j = 0; i > 0; i--, j++ ) |
| 697 | X->p[j / ciL] |= ((mbedcrypto_mpi_uint) buf[i - 1]) << ((j % ciL) << 3); |
| 698 | |
| 699 | cleanup: |
| 700 | |
| 701 | return( ret ); |
| 702 | } |
| 703 | |
| 704 | /* |
| 705 | * Export X into unsigned binary data, big endian |
| 706 | */ |
| 707 | int mbedcrypto_mpi_write_binary( const mbedcrypto_mpi *X, unsigned char *buf, size_t buflen ) |
| 708 | { |
| 709 | size_t i, j, n; |
| 710 | |
| 711 | n = mbedcrypto_mpi_size( X ); |
| 712 | |
| 713 | if( buflen < n ) |
| 714 | return( MBEDCRYPTO_ERR_MPI_BUFFER_TOO_SMALL ); |
| 715 | |
| 716 | memset( buf, 0, buflen ); |
| 717 | |
| 718 | for( i = buflen - 1, j = 0; n > 0; i--, j++, n-- ) |
| 719 | buf[i] = (unsigned char)( X->p[j / ciL] >> ((j % ciL) << 3) ); |
| 720 | |
| 721 | return( 0 ); |
| 722 | } |
| 723 | |
| 724 | /* |
| 725 | * Left-shift: X <<= count |
| 726 | */ |
| 727 | int mbedcrypto_mpi_shift_l( mbedcrypto_mpi *X, size_t count ) |
| 728 | { |
| 729 | int ret; |
| 730 | size_t i, v0, t1; |
| 731 | mbedcrypto_mpi_uint r0 = 0, r1; |
| 732 | |
| 733 | v0 = count / (biL ); |
| 734 | t1 = count & (biL - 1); |
| 735 | |
| 736 | i = mbedcrypto_mpi_bitlen( X ) + count; |
| 737 | |
| 738 | if( X->n * biL < i ) |
| 739 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, BITS_TO_LIMBS( i ) ) ); |
| 740 | |
| 741 | ret = 0; |
| 742 | |
| 743 | /* |
| 744 | * shift by count / limb_size |
| 745 | */ |
| 746 | if( v0 > 0 ) |
| 747 | { |
| 748 | for( i = X->n; i > v0; i-- ) |
| 749 | X->p[i - 1] = X->p[i - v0 - 1]; |
| 750 | |
| 751 | for( ; i > 0; i-- ) |
| 752 | X->p[i - 1] = 0; |
| 753 | } |
| 754 | |
| 755 | /* |
| 756 | * shift by count % limb_size |
| 757 | */ |
| 758 | if( t1 > 0 ) |
| 759 | { |
| 760 | for( i = v0; i < X->n; i++ ) |
| 761 | { |
| 762 | r1 = X->p[i] >> (biL - t1); |
| 763 | X->p[i] <<= t1; |
| 764 | X->p[i] |= r0; |
| 765 | r0 = r1; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | cleanup: |
| 770 | |
| 771 | return( ret ); |
| 772 | } |
| 773 | |
| 774 | /* |
| 775 | * Right-shift: X >>= count |
| 776 | */ |
| 777 | int mbedcrypto_mpi_shift_r( mbedcrypto_mpi *X, size_t count ) |
| 778 | { |
| 779 | size_t i, v0, v1; |
| 780 | mbedcrypto_mpi_uint r0 = 0, r1; |
| 781 | |
| 782 | v0 = count / biL; |
| 783 | v1 = count & (biL - 1); |
| 784 | |
| 785 | if( v0 > X->n || ( v0 == X->n && v1 > 0 ) ) |
| 786 | return mbedcrypto_mpi_lset( X, 0 ); |
| 787 | |
| 788 | /* |
| 789 | * shift by count / limb_size |
| 790 | */ |
| 791 | if( v0 > 0 ) |
| 792 | { |
| 793 | for( i = 0; i < X->n - v0; i++ ) |
| 794 | X->p[i] = X->p[i + v0]; |
| 795 | |
| 796 | for( ; i < X->n; i++ ) |
| 797 | X->p[i] = 0; |
| 798 | } |
| 799 | |
| 800 | /* |
| 801 | * shift by count % limb_size |
| 802 | */ |
| 803 | if( v1 > 0 ) |
| 804 | { |
| 805 | for( i = X->n; i > 0; i-- ) |
| 806 | { |
| 807 | r1 = X->p[i - 1] << (biL - v1); |
| 808 | X->p[i - 1] >>= v1; |
| 809 | X->p[i - 1] |= r0; |
| 810 | r0 = r1; |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | return( 0 ); |
| 815 | } |
| 816 | |
| 817 | /* |
| 818 | * Compare unsigned values |
| 819 | */ |
| 820 | int mbedcrypto_mpi_cmp_abs( const mbedcrypto_mpi *X, const mbedcrypto_mpi *Y ) |
| 821 | { |
| 822 | size_t i, j; |
| 823 | |
| 824 | for( i = X->n; i > 0; i-- ) |
| 825 | if( X->p[i - 1] != 0 ) |
| 826 | break; |
| 827 | |
| 828 | for( j = Y->n; j > 0; j-- ) |
| 829 | if( Y->p[j - 1] != 0 ) |
| 830 | break; |
| 831 | |
| 832 | if( i == 0 && j == 0 ) |
| 833 | return( 0 ); |
| 834 | |
| 835 | if( i > j ) return( 1 ); |
| 836 | if( j > i ) return( -1 ); |
| 837 | |
| 838 | for( ; i > 0; i-- ) |
| 839 | { |
| 840 | if( X->p[i - 1] > Y->p[i - 1] ) return( 1 ); |
| 841 | if( X->p[i - 1] < Y->p[i - 1] ) return( -1 ); |
| 842 | } |
| 843 | |
| 844 | return( 0 ); |
| 845 | } |
| 846 | |
| 847 | /* |
| 848 | * Compare signed values |
| 849 | */ |
| 850 | int mbedcrypto_mpi_cmp_mpi( const mbedcrypto_mpi *X, const mbedcrypto_mpi *Y ) |
| 851 | { |
| 852 | size_t i, j; |
| 853 | |
| 854 | for( i = X->n; i > 0; i-- ) |
| 855 | if( X->p[i - 1] != 0 ) |
| 856 | break; |
| 857 | |
| 858 | for( j = Y->n; j > 0; j-- ) |
| 859 | if( Y->p[j - 1] != 0 ) |
| 860 | break; |
| 861 | |
| 862 | if( i == 0 && j == 0 ) |
| 863 | return( 0 ); |
| 864 | |
| 865 | if( i > j ) return( X->s ); |
| 866 | if( j > i ) return( -Y->s ); |
| 867 | |
| 868 | if( X->s > 0 && Y->s < 0 ) return( 1 ); |
| 869 | if( Y->s > 0 && X->s < 0 ) return( -1 ); |
| 870 | |
| 871 | for( ; i > 0; i-- ) |
| 872 | { |
| 873 | if( X->p[i - 1] > Y->p[i - 1] ) return( X->s ); |
| 874 | if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s ); |
| 875 | } |
| 876 | |
| 877 | return( 0 ); |
| 878 | } |
| 879 | |
| 880 | /* |
| 881 | * Compare signed values |
| 882 | */ |
| 883 | int mbedcrypto_mpi_cmp_int( const mbedcrypto_mpi *X, mbedcrypto_mpi_sint z ) |
| 884 | { |
| 885 | mbedcrypto_mpi Y; |
| 886 | mbedcrypto_mpi_uint p[1]; |
| 887 | |
| 888 | *p = ( z < 0 ) ? -z : z; |
| 889 | Y.s = ( z < 0 ) ? -1 : 1; |
| 890 | Y.n = 1; |
| 891 | Y.p = p; |
| 892 | |
| 893 | return( mbedcrypto_mpi_cmp_mpi( X, &Y ) ); |
| 894 | } |
| 895 | |
| 896 | /* |
| 897 | * Unsigned addition: X = |A| + |B| (HAC 14.7) |
| 898 | */ |
| 899 | int mbedcrypto_mpi_add_abs( mbedcrypto_mpi *X, const mbedcrypto_mpi *A, const mbedcrypto_mpi *B ) |
| 900 | { |
| 901 | int ret; |
| 902 | size_t i, j; |
| 903 | mbedcrypto_mpi_uint *o, *p, c, tmp; |
| 904 | |
| 905 | if( X == B ) |
| 906 | { |
| 907 | const mbedcrypto_mpi *T = A; A = X; B = T; |
| 908 | } |
| 909 | |
| 910 | if( X != A ) |
| 911 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( X, A ) ); |
| 912 | |
| 913 | /* |
| 914 | * X should always be positive as a result of unsigned additions. |
| 915 | */ |
| 916 | X->s = 1; |
| 917 | |
| 918 | for( j = B->n; j > 0; j-- ) |
| 919 | if( B->p[j - 1] != 0 ) |
| 920 | break; |
| 921 | |
| 922 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, j ) ); |
| 923 | |
| 924 | o = B->p; p = X->p; c = 0; |
| 925 | |
| 926 | /* |
| 927 | * tmp is used because it might happen that p == o |
| 928 | */ |
| 929 | for( i = 0; i < j; i++, o++, p++ ) |
| 930 | { |
| 931 | tmp= *o; |
| 932 | *p += c; c = ( *p < c ); |
| 933 | *p += tmp; c += ( *p < tmp ); |
| 934 | } |
| 935 | |
| 936 | while( c != 0 ) |
| 937 | { |
| 938 | if( i >= X->n ) |
| 939 | { |
| 940 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, i + 1 ) ); |
| 941 | p = X->p + i; |
| 942 | } |
| 943 | |
| 944 | *p += c; c = ( *p < c ); i++; p++; |
| 945 | } |
| 946 | |
| 947 | cleanup: |
| 948 | |
| 949 | return( ret ); |
| 950 | } |
| 951 | |
| 952 | /* |
| 953 | * Helper for mbedcrypto_mpi subtraction |
| 954 | */ |
| 955 | static void mpi_sub_hlp( size_t n, mbedcrypto_mpi_uint *s, mbedcrypto_mpi_uint *d ) |
| 956 | { |
| 957 | size_t i; |
| 958 | mbedcrypto_mpi_uint c, z; |
| 959 | |
| 960 | for( i = c = 0; i < n; i++, s++, d++ ) |
| 961 | { |
| 962 | z = ( *d < c ); *d -= c; |
| 963 | c = ( *d < *s ) + z; *d -= *s; |
| 964 | } |
| 965 | |
| 966 | while( c != 0 ) |
| 967 | { |
| 968 | z = ( *d < c ); *d -= c; |
| 969 | c = z; d++; |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | /* |
| 974 | * Unsigned subtraction: X = |A| - |B| (HAC 14.9) |
| 975 | */ |
| 976 | int mbedcrypto_mpi_sub_abs( mbedcrypto_mpi *X, const mbedcrypto_mpi *A, const mbedcrypto_mpi *B ) |
| 977 | { |
| 978 | mbedcrypto_mpi TB; |
| 979 | int ret; |
| 980 | size_t n; |
| 981 | |
| 982 | if( mbedcrypto_mpi_cmp_abs( A, B ) < 0 ) |
| 983 | return( MBEDCRYPTO_ERR_MPI_NEGATIVE_VALUE ); |
| 984 | |
| 985 | mbedcrypto_mpi_init( &TB ); |
| 986 | |
| 987 | if( X == B ) |
| 988 | { |
| 989 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &TB, B ) ); |
| 990 | B = &TB; |
| 991 | } |
| 992 | |
| 993 | if( X != A ) |
| 994 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( X, A ) ); |
| 995 | |
| 996 | /* |
| 997 | * X should always be positive as a result of unsigned subtractions. |
| 998 | */ |
| 999 | X->s = 1; |
| 1000 | |
| 1001 | ret = 0; |
| 1002 | |
| 1003 | for( n = B->n; n > 0; n-- ) |
| 1004 | if( B->p[n - 1] != 0 ) |
| 1005 | break; |
| 1006 | |
| 1007 | mpi_sub_hlp( n, B->p, X->p ); |
| 1008 | |
| 1009 | cleanup: |
| 1010 | |
| 1011 | mbedcrypto_mpi_free( &TB ); |
| 1012 | |
| 1013 | return( ret ); |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * Signed addition: X = A + B |
| 1018 | */ |
| 1019 | int mbedcrypto_mpi_add_mpi( mbedcrypto_mpi *X, const mbedcrypto_mpi *A, const mbedcrypto_mpi *B ) |
| 1020 | { |
| 1021 | int ret, s = A->s; |
| 1022 | |
| 1023 | if( A->s * B->s < 0 ) |
| 1024 | { |
| 1025 | if( mbedcrypto_mpi_cmp_abs( A, B ) >= 0 ) |
| 1026 | { |
| 1027 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_abs( X, A, B ) ); |
| 1028 | X->s = s; |
| 1029 | } |
| 1030 | else |
| 1031 | { |
| 1032 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_abs( X, B, A ) ); |
| 1033 | X->s = -s; |
| 1034 | } |
| 1035 | } |
| 1036 | else |
| 1037 | { |
| 1038 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_abs( X, A, B ) ); |
| 1039 | X->s = s; |
| 1040 | } |
| 1041 | |
| 1042 | cleanup: |
| 1043 | |
| 1044 | return( ret ); |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | * Signed subtraction: X = A - B |
| 1049 | */ |
| 1050 | int mbedcrypto_mpi_sub_mpi( mbedcrypto_mpi *X, const mbedcrypto_mpi *A, const mbedcrypto_mpi *B ) |
| 1051 | { |
| 1052 | int ret, s = A->s; |
| 1053 | |
| 1054 | if( A->s * B->s > 0 ) |
| 1055 | { |
| 1056 | if( mbedcrypto_mpi_cmp_abs( A, B ) >= 0 ) |
| 1057 | { |
| 1058 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_abs( X, A, B ) ); |
| 1059 | X->s = s; |
| 1060 | } |
| 1061 | else |
| 1062 | { |
| 1063 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_abs( X, B, A ) ); |
| 1064 | X->s = -s; |
| 1065 | } |
| 1066 | } |
| 1067 | else |
| 1068 | { |
| 1069 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_abs( X, A, B ) ); |
| 1070 | X->s = s; |
| 1071 | } |
| 1072 | |
| 1073 | cleanup: |
| 1074 | |
| 1075 | return( ret ); |
| 1076 | } |
| 1077 | |
| 1078 | /* |
| 1079 | * Signed addition: X = A + b |
| 1080 | */ |
| 1081 | int mbedcrypto_mpi_add_int( mbedcrypto_mpi *X, const mbedcrypto_mpi *A, mbedcrypto_mpi_sint b ) |
| 1082 | { |
| 1083 | mbedcrypto_mpi _B; |
| 1084 | mbedcrypto_mpi_uint p[1]; |
| 1085 | |
| 1086 | p[0] = ( b < 0 ) ? -b : b; |
| 1087 | _B.s = ( b < 0 ) ? -1 : 1; |
| 1088 | _B.n = 1; |
| 1089 | _B.p = p; |
| 1090 | |
| 1091 | return( mbedcrypto_mpi_add_mpi( X, A, &_B ) ); |
| 1092 | } |
| 1093 | |
| 1094 | /* |
| 1095 | * Signed subtraction: X = A - b |
| 1096 | */ |
| 1097 | int mbedcrypto_mpi_sub_int( mbedcrypto_mpi *X, const mbedcrypto_mpi *A, mbedcrypto_mpi_sint b ) |
| 1098 | { |
| 1099 | mbedcrypto_mpi _B; |
| 1100 | mbedcrypto_mpi_uint p[1]; |
| 1101 | |
| 1102 | p[0] = ( b < 0 ) ? -b : b; |
| 1103 | _B.s = ( b < 0 ) ? -1 : 1; |
| 1104 | _B.n = 1; |
| 1105 | _B.p = p; |
| 1106 | |
| 1107 | return( mbedcrypto_mpi_sub_mpi( X, A, &_B ) ); |
| 1108 | } |
| 1109 | |
| 1110 | /* |
| 1111 | * Helper for mbedcrypto_mpi multiplication |
| 1112 | */ |
| 1113 | static |
| 1114 | #if defined(__APPLE__) && defined(__arm__) |
| 1115 | /* |
| 1116 | * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn) |
| 1117 | * appears to need this to prevent bad ARM code generation at -O3. |
| 1118 | */ |
| 1119 | __attribute__ ((noinline)) |
| 1120 | #endif |
| 1121 | void mpi_mul_hlp( size_t i, mbedcrypto_mpi_uint *s, mbedcrypto_mpi_uint *d, mbedcrypto_mpi_uint b ) |
| 1122 | { |
| 1123 | mbedcrypto_mpi_uint c = 0, t = 0; |
| 1124 | |
| 1125 | #if defined(MULADDC_HUIT) |
| 1126 | for( ; i >= 8; i -= 8 ) |
| 1127 | { |
| 1128 | MULADDC_INIT |
| 1129 | MULADDC_HUIT |
| 1130 | MULADDC_STOP |
| 1131 | } |
| 1132 | |
| 1133 | for( ; i > 0; i-- ) |
| 1134 | { |
| 1135 | MULADDC_INIT |
| 1136 | MULADDC_CORE |
| 1137 | MULADDC_STOP |
| 1138 | } |
| 1139 | #else /* MULADDC_HUIT */ |
| 1140 | for( ; i >= 16; i -= 16 ) |
| 1141 | { |
| 1142 | MULADDC_INIT |
| 1143 | MULADDC_CORE MULADDC_CORE |
| 1144 | MULADDC_CORE MULADDC_CORE |
| 1145 | MULADDC_CORE MULADDC_CORE |
| 1146 | MULADDC_CORE MULADDC_CORE |
| 1147 | |
| 1148 | MULADDC_CORE MULADDC_CORE |
| 1149 | MULADDC_CORE MULADDC_CORE |
| 1150 | MULADDC_CORE MULADDC_CORE |
| 1151 | MULADDC_CORE MULADDC_CORE |
| 1152 | MULADDC_STOP |
| 1153 | } |
| 1154 | |
| 1155 | for( ; i >= 8; i -= 8 ) |
| 1156 | { |
| 1157 | MULADDC_INIT |
| 1158 | MULADDC_CORE MULADDC_CORE |
| 1159 | MULADDC_CORE MULADDC_CORE |
| 1160 | |
| 1161 | MULADDC_CORE MULADDC_CORE |
| 1162 | MULADDC_CORE MULADDC_CORE |
| 1163 | MULADDC_STOP |
| 1164 | } |
| 1165 | |
| 1166 | for( ; i > 0; i-- ) |
| 1167 | { |
| 1168 | MULADDC_INIT |
| 1169 | MULADDC_CORE |
| 1170 | MULADDC_STOP |
| 1171 | } |
| 1172 | #endif /* MULADDC_HUIT */ |
| 1173 | |
| 1174 | t++; |
| 1175 | |
| 1176 | do { |
| 1177 | *d += c; c = ( *d < c ); d++; |
| 1178 | } |
| 1179 | while( c != 0 ); |
| 1180 | } |
| 1181 | |
| 1182 | /* |
| 1183 | * Baseline multiplication: X = A * B (HAC 14.12) |
| 1184 | */ |
| 1185 | int mbedcrypto_mpi_mul_mpi( mbedcrypto_mpi *X, const mbedcrypto_mpi *A, const mbedcrypto_mpi *B ) |
| 1186 | { |
| 1187 | int ret; |
| 1188 | size_t i, j; |
| 1189 | mbedcrypto_mpi TA, TB; |
| 1190 | |
| 1191 | mbedcrypto_mpi_init( &TA ); mbedcrypto_mpi_init( &TB ); |
| 1192 | |
| 1193 | if( X == A ) { MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &TA, A ) ); A = &TA; } |
| 1194 | if( X == B ) { MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &TB, B ) ); B = &TB; } |
| 1195 | |
| 1196 | for( i = A->n; i > 0; i-- ) |
| 1197 | if( A->p[i - 1] != 0 ) |
| 1198 | break; |
| 1199 | |
| 1200 | for( j = B->n; j > 0; j-- ) |
| 1201 | if( B->p[j - 1] != 0 ) |
| 1202 | break; |
| 1203 | |
| 1204 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, i + j ) ); |
| 1205 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( X, 0 ) ); |
| 1206 | |
| 1207 | for( ; j > 0; j-- ) |
| 1208 | mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] ); |
| 1209 | |
| 1210 | X->s = A->s * B->s; |
| 1211 | |
| 1212 | cleanup: |
| 1213 | |
| 1214 | mbedcrypto_mpi_free( &TB ); mbedcrypto_mpi_free( &TA ); |
| 1215 | |
| 1216 | return( ret ); |
| 1217 | } |
| 1218 | |
| 1219 | /* |
| 1220 | * Baseline multiplication: X = A * b |
| 1221 | */ |
| 1222 | int mbedcrypto_mpi_mul_int( mbedcrypto_mpi *X, const mbedcrypto_mpi *A, mbedcrypto_mpi_uint b ) |
| 1223 | { |
| 1224 | mbedcrypto_mpi _B; |
| 1225 | mbedcrypto_mpi_uint p[1]; |
| 1226 | |
| 1227 | _B.s = 1; |
| 1228 | _B.n = 1; |
| 1229 | _B.p = p; |
| 1230 | p[0] = b; |
| 1231 | |
| 1232 | return( mbedcrypto_mpi_mul_mpi( X, A, &_B ) ); |
| 1233 | } |
| 1234 | |
| 1235 | /* |
| 1236 | * Unsigned integer divide - double mbedcrypto_mpi_uint dividend, u1/u0, and |
| 1237 | * mbedcrypto_mpi_uint divisor, d |
| 1238 | */ |
| 1239 | static mbedcrypto_mpi_uint mbedcrypto_int_div_int( mbedcrypto_mpi_uint u1, |
| 1240 | mbedcrypto_mpi_uint u0, mbedcrypto_mpi_uint d, mbedcrypto_mpi_uint *r ) |
| 1241 | { |
| 1242 | #if defined(MBEDCRYPTO_HAVE_UDBL) |
| 1243 | mbedcrypto_t_udbl dividend, quotient; |
| 1244 | #else |
| 1245 | const mbedcrypto_mpi_uint radix = (mbedcrypto_mpi_uint) 1 << biH; |
| 1246 | const mbedcrypto_mpi_uint uint_halfword_mask = ( (mbedcrypto_mpi_uint) 1 << biH ) - 1; |
| 1247 | mbedcrypto_mpi_uint d0, d1, q0, q1, rAX, r0, quotient; |
| 1248 | mbedcrypto_mpi_uint u0_msw, u0_lsw; |
| 1249 | size_t s; |
| 1250 | #endif |
| 1251 | |
| 1252 | /* |
| 1253 | * Check for overflow |
| 1254 | */ |
| 1255 | if( 0 == d || u1 >= d ) |
| 1256 | { |
| 1257 | if (r != NULL) *r = ~0; |
| 1258 | |
| 1259 | return ( ~0 ); |
| 1260 | } |
| 1261 | |
| 1262 | #if defined(MBEDCRYPTO_HAVE_UDBL) |
| 1263 | dividend = (mbedcrypto_t_udbl) u1 << biL; |
| 1264 | dividend |= (mbedcrypto_t_udbl) u0; |
| 1265 | quotient = dividend / d; |
| 1266 | if( quotient > ( (mbedcrypto_t_udbl) 1 << biL ) - 1 ) |
| 1267 | quotient = ( (mbedcrypto_t_udbl) 1 << biL ) - 1; |
| 1268 | |
| 1269 | if( r != NULL ) |
| 1270 | *r = (mbedcrypto_mpi_uint)( dividend - (quotient * d ) ); |
| 1271 | |
| 1272 | return (mbedcrypto_mpi_uint) quotient; |
| 1273 | #else |
| 1274 | |
| 1275 | /* |
| 1276 | * Algorithm D, Section 4.3.1 - The Art of Computer Programming |
| 1277 | * Vol. 2 - Seminumerical Algorithms, Knuth |
| 1278 | */ |
| 1279 | |
| 1280 | /* |
| 1281 | * Normalize the divisor, d, and dividend, u0, u1 |
| 1282 | */ |
| 1283 | s = mbedcrypto_clz( d ); |
| 1284 | d = d << s; |
| 1285 | |
| 1286 | u1 = u1 << s; |
| 1287 | u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedcrypto_mpi_sint)s >> ( biL - 1 ) ); |
| 1288 | u0 = u0 << s; |
| 1289 | |
| 1290 | d1 = d >> biH; |
| 1291 | d0 = d & uint_halfword_mask; |
| 1292 | |
| 1293 | u0_msw = u0 >> biH; |
| 1294 | u0_lsw = u0 & uint_halfword_mask; |
| 1295 | |
| 1296 | /* |
| 1297 | * Find the first quotient and remainder |
| 1298 | */ |
| 1299 | q1 = u1 / d1; |
| 1300 | r0 = u1 - d1 * q1; |
| 1301 | |
| 1302 | while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) ) |
| 1303 | { |
| 1304 | q1 -= 1; |
| 1305 | r0 += d1; |
| 1306 | |
| 1307 | if ( r0 >= radix ) break; |
| 1308 | } |
| 1309 | |
| 1310 | rAX = ( u1 * radix ) + ( u0_msw - q1 * d ); |
| 1311 | q0 = rAX / d1; |
| 1312 | r0 = rAX - q0 * d1; |
| 1313 | |
| 1314 | while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) ) |
| 1315 | { |
| 1316 | q0 -= 1; |
| 1317 | r0 += d1; |
| 1318 | |
| 1319 | if ( r0 >= radix ) break; |
| 1320 | } |
| 1321 | |
| 1322 | if (r != NULL) |
| 1323 | *r = ( rAX * radix + u0_lsw - q0 * d ) >> s; |
| 1324 | |
| 1325 | quotient = q1 * radix + q0; |
| 1326 | |
| 1327 | return quotient; |
| 1328 | #endif |
| 1329 | } |
| 1330 | |
| 1331 | /* |
| 1332 | * Division by mbedcrypto_mpi: A = Q * B + R (HAC 14.20) |
| 1333 | */ |
| 1334 | int mbedcrypto_mpi_div_mpi( mbedcrypto_mpi *Q, mbedcrypto_mpi *R, const mbedcrypto_mpi *A, const mbedcrypto_mpi *B ) |
| 1335 | { |
| 1336 | int ret; |
| 1337 | size_t i, n, t, k; |
| 1338 | mbedcrypto_mpi X, Y, Z, T1, T2; |
| 1339 | |
| 1340 | if( mbedcrypto_mpi_cmp_int( B, 0 ) == 0 ) |
| 1341 | return( MBEDCRYPTO_ERR_MPI_DIVISION_BY_ZERO ); |
| 1342 | |
| 1343 | mbedcrypto_mpi_init( &X ); mbedcrypto_mpi_init( &Y ); mbedcrypto_mpi_init( &Z ); |
| 1344 | mbedcrypto_mpi_init( &T1 ); mbedcrypto_mpi_init( &T2 ); |
| 1345 | |
| 1346 | if( mbedcrypto_mpi_cmp_abs( A, B ) < 0 ) |
| 1347 | { |
| 1348 | if( Q != NULL ) MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( Q, 0 ) ); |
| 1349 | if( R != NULL ) MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( R, A ) ); |
| 1350 | return( 0 ); |
| 1351 | } |
| 1352 | |
| 1353 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &X, A ) ); |
| 1354 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &Y, B ) ); |
| 1355 | X.s = Y.s = 1; |
| 1356 | |
| 1357 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( &Z, A->n + 2 ) ); |
| 1358 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &Z, 0 ) ); |
| 1359 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( &T1, 2 ) ); |
| 1360 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( &T2, 3 ) ); |
| 1361 | |
| 1362 | k = mbedcrypto_mpi_bitlen( &Y ) % biL; |
| 1363 | if( k < biL - 1 ) |
| 1364 | { |
| 1365 | k = biL - 1 - k; |
| 1366 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_l( &X, k ) ); |
| 1367 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_l( &Y, k ) ); |
| 1368 | } |
| 1369 | else k = 0; |
| 1370 | |
| 1371 | n = X.n - 1; |
| 1372 | t = Y.n - 1; |
| 1373 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_l( &Y, biL * ( n - t ) ) ); |
| 1374 | |
| 1375 | while( mbedcrypto_mpi_cmp_mpi( &X, &Y ) >= 0 ) |
| 1376 | { |
| 1377 | Z.p[n - t]++; |
| 1378 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &X, &X, &Y ) ); |
| 1379 | } |
| 1380 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &Y, biL * ( n - t ) ) ); |
| 1381 | |
| 1382 | for( i = n; i > t ; i-- ) |
| 1383 | { |
| 1384 | if( X.p[i] >= Y.p[t] ) |
| 1385 | Z.p[i - t - 1] = ~0; |
| 1386 | else |
| 1387 | { |
| 1388 | Z.p[i - t - 1] = mbedcrypto_int_div_int( X.p[i], X.p[i - 1], |
| 1389 | Y.p[t], NULL); |
| 1390 | } |
| 1391 | |
| 1392 | Z.p[i - t - 1]++; |
| 1393 | do |
| 1394 | { |
| 1395 | Z.p[i - t - 1]--; |
| 1396 | |
| 1397 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &T1, 0 ) ); |
| 1398 | T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1]; |
| 1399 | T1.p[1] = Y.p[t]; |
| 1400 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) ); |
| 1401 | |
| 1402 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &T2, 0 ) ); |
| 1403 | T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2]; |
| 1404 | T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1]; |
| 1405 | T2.p[2] = X.p[i]; |
| 1406 | } |
| 1407 | while( mbedcrypto_mpi_cmp_mpi( &T1, &T2 ) > 0 ); |
| 1408 | |
| 1409 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) ); |
| 1410 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) ); |
| 1411 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &X, &X, &T1 ) ); |
| 1412 | |
| 1413 | if( mbedcrypto_mpi_cmp_int( &X, 0 ) < 0 ) |
| 1414 | { |
| 1415 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &T1, &Y ) ); |
| 1416 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) ); |
| 1417 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &X, &X, &T1 ) ); |
| 1418 | Z.p[i - t - 1]--; |
| 1419 | } |
| 1420 | } |
| 1421 | |
| 1422 | if( Q != NULL ) |
| 1423 | { |
| 1424 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( Q, &Z ) ); |
| 1425 | Q->s = A->s * B->s; |
| 1426 | } |
| 1427 | |
| 1428 | if( R != NULL ) |
| 1429 | { |
| 1430 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &X, k ) ); |
| 1431 | X.s = A->s; |
| 1432 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( R, &X ) ); |
| 1433 | |
| 1434 | if( mbedcrypto_mpi_cmp_int( R, 0 ) == 0 ) |
| 1435 | R->s = 1; |
| 1436 | } |
| 1437 | |
| 1438 | cleanup: |
| 1439 | |
| 1440 | mbedcrypto_mpi_free( &X ); mbedcrypto_mpi_free( &Y ); mbedcrypto_mpi_free( &Z ); |
| 1441 | mbedcrypto_mpi_free( &T1 ); mbedcrypto_mpi_free( &T2 ); |
| 1442 | |
| 1443 | return( ret ); |
| 1444 | } |
| 1445 | |
| 1446 | /* |
| 1447 | * Division by int: A = Q * b + R |
| 1448 | */ |
| 1449 | int mbedcrypto_mpi_div_int( mbedcrypto_mpi *Q, mbedcrypto_mpi *R, const mbedcrypto_mpi *A, mbedcrypto_mpi_sint b ) |
| 1450 | { |
| 1451 | mbedcrypto_mpi _B; |
| 1452 | mbedcrypto_mpi_uint p[1]; |
| 1453 | |
| 1454 | p[0] = ( b < 0 ) ? -b : b; |
| 1455 | _B.s = ( b < 0 ) ? -1 : 1; |
| 1456 | _B.n = 1; |
| 1457 | _B.p = p; |
| 1458 | |
| 1459 | return( mbedcrypto_mpi_div_mpi( Q, R, A, &_B ) ); |
| 1460 | } |
| 1461 | |
| 1462 | /* |
| 1463 | * Modulo: R = A mod B |
| 1464 | */ |
| 1465 | int mbedcrypto_mpi_mod_mpi( mbedcrypto_mpi *R, const mbedcrypto_mpi *A, const mbedcrypto_mpi *B ) |
| 1466 | { |
| 1467 | int ret; |
| 1468 | |
| 1469 | if( mbedcrypto_mpi_cmp_int( B, 0 ) < 0 ) |
| 1470 | return( MBEDCRYPTO_ERR_MPI_NEGATIVE_VALUE ); |
| 1471 | |
| 1472 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_div_mpi( NULL, R, A, B ) ); |
| 1473 | |
| 1474 | while( mbedcrypto_mpi_cmp_int( R, 0 ) < 0 ) |
| 1475 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( R, R, B ) ); |
| 1476 | |
| 1477 | while( mbedcrypto_mpi_cmp_mpi( R, B ) >= 0 ) |
| 1478 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( R, R, B ) ); |
| 1479 | |
| 1480 | cleanup: |
| 1481 | |
| 1482 | return( ret ); |
| 1483 | } |
| 1484 | |
| 1485 | /* |
| 1486 | * Modulo: r = A mod b |
| 1487 | */ |
| 1488 | int mbedcrypto_mpi_mod_int( mbedcrypto_mpi_uint *r, const mbedcrypto_mpi *A, mbedcrypto_mpi_sint b ) |
| 1489 | { |
| 1490 | size_t i; |
| 1491 | mbedcrypto_mpi_uint x, y, z; |
| 1492 | |
| 1493 | if( b == 0 ) |
| 1494 | return( MBEDCRYPTO_ERR_MPI_DIVISION_BY_ZERO ); |
| 1495 | |
| 1496 | if( b < 0 ) |
| 1497 | return( MBEDCRYPTO_ERR_MPI_NEGATIVE_VALUE ); |
| 1498 | |
| 1499 | /* |
| 1500 | * handle trivial cases |
| 1501 | */ |
| 1502 | if( b == 1 ) |
| 1503 | { |
| 1504 | *r = 0; |
| 1505 | return( 0 ); |
| 1506 | } |
| 1507 | |
| 1508 | if( b == 2 ) |
| 1509 | { |
| 1510 | *r = A->p[0] & 1; |
| 1511 | return( 0 ); |
| 1512 | } |
| 1513 | |
| 1514 | /* |
| 1515 | * general case |
| 1516 | */ |
| 1517 | for( i = A->n, y = 0; i > 0; i-- ) |
| 1518 | { |
| 1519 | x = A->p[i - 1]; |
| 1520 | y = ( y << biH ) | ( x >> biH ); |
| 1521 | z = y / b; |
| 1522 | y -= z * b; |
| 1523 | |
| 1524 | x <<= biH; |
| 1525 | y = ( y << biH ) | ( x >> biH ); |
| 1526 | z = y / b; |
| 1527 | y -= z * b; |
| 1528 | } |
| 1529 | |
| 1530 | /* |
| 1531 | * If A is negative, then the current y represents a negative value. |
| 1532 | * Flipping it to the positive side. |
| 1533 | */ |
| 1534 | if( A->s < 0 && y != 0 ) |
| 1535 | y = b - y; |
| 1536 | |
| 1537 | *r = y; |
| 1538 | |
| 1539 | return( 0 ); |
| 1540 | } |
| 1541 | |
| 1542 | /* |
| 1543 | * Fast Montgomery initialization (thanks to Tom St Denis) |
| 1544 | */ |
| 1545 | static void mpi_montg_init( mbedcrypto_mpi_uint *mm, const mbedcrypto_mpi *N ) |
| 1546 | { |
| 1547 | mbedcrypto_mpi_uint x, m0 = N->p[0]; |
| 1548 | unsigned int i; |
| 1549 | |
| 1550 | x = m0; |
| 1551 | x += ( ( m0 + 2 ) & 4 ) << 1; |
| 1552 | |
| 1553 | for( i = biL; i >= 8; i /= 2 ) |
| 1554 | x *= ( 2 - ( m0 * x ) ); |
| 1555 | |
| 1556 | *mm = ~x + 1; |
| 1557 | } |
| 1558 | |
| 1559 | /* |
| 1560 | * Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36) |
| 1561 | */ |
| 1562 | static int mpi_montmul( mbedcrypto_mpi *A, const mbedcrypto_mpi *B, const mbedcrypto_mpi *N, mbedcrypto_mpi_uint mm, |
| 1563 | const mbedcrypto_mpi *T ) |
| 1564 | { |
| 1565 | size_t i, n, m; |
| 1566 | mbedcrypto_mpi_uint u0, u1, *d; |
| 1567 | |
| 1568 | if( T->n < N->n + 1 || T->p == NULL ) |
| 1569 | return( MBEDCRYPTO_ERR_MPI_BAD_INPUT_DATA ); |
| 1570 | |
| 1571 | memset( T->p, 0, T->n * ciL ); |
| 1572 | |
| 1573 | d = T->p; |
| 1574 | n = N->n; |
| 1575 | m = ( B->n < n ) ? B->n : n; |
| 1576 | |
| 1577 | for( i = 0; i < n; i++ ) |
| 1578 | { |
| 1579 | /* |
| 1580 | * T = (T + u0*B + u1*N) / 2^biL |
| 1581 | */ |
| 1582 | u0 = A->p[i]; |
| 1583 | u1 = ( d[0] + u0 * B->p[0] ) * mm; |
| 1584 | |
| 1585 | mpi_mul_hlp( m, B->p, d, u0 ); |
| 1586 | mpi_mul_hlp( n, N->p, d, u1 ); |
| 1587 | |
| 1588 | *d++ = u0; d[n + 1] = 0; |
| 1589 | } |
| 1590 | |
| 1591 | memcpy( A->p, d, ( n + 1 ) * ciL ); |
| 1592 | |
| 1593 | if( mbedcrypto_mpi_cmp_abs( A, N ) >= 0 ) |
| 1594 | mpi_sub_hlp( n, N->p, A->p ); |
| 1595 | else |
| 1596 | /* prevent timing attacks */ |
| 1597 | mpi_sub_hlp( n, A->p, T->p ); |
| 1598 | |
| 1599 | return( 0 ); |
| 1600 | } |
| 1601 | |
| 1602 | /* |
| 1603 | * Montgomery reduction: A = A * R^-1 mod N |
| 1604 | */ |
| 1605 | static int mpi_montred( mbedcrypto_mpi *A, const mbedcrypto_mpi *N, mbedcrypto_mpi_uint mm, const mbedcrypto_mpi *T ) |
| 1606 | { |
| 1607 | mbedcrypto_mpi_uint z = 1; |
| 1608 | mbedcrypto_mpi U; |
| 1609 | |
| 1610 | U.n = U.s = (int) z; |
| 1611 | U.p = &z; |
| 1612 | |
| 1613 | return( mpi_montmul( A, &U, N, mm, T ) ); |
| 1614 | } |
| 1615 | |
| 1616 | /* |
| 1617 | * Sliding-window exponentiation: X = A^E mod N (HAC 14.85) |
| 1618 | */ |
| 1619 | int mbedcrypto_mpi_exp_mod( mbedcrypto_mpi *X, const mbedcrypto_mpi *A, const mbedcrypto_mpi *E, const mbedcrypto_mpi *N, mbedcrypto_mpi *_RR ) |
| 1620 | { |
| 1621 | int ret; |
| 1622 | size_t wbits, wsize, one = 1; |
| 1623 | size_t i, j, nblimbs; |
| 1624 | size_t bufsize, nbits; |
| 1625 | mbedcrypto_mpi_uint ei, mm, state; |
| 1626 | mbedcrypto_mpi RR, T, W[ 2 << MBEDCRYPTO_MPI_WINDOW_SIZE ], Apos; |
| 1627 | int neg; |
| 1628 | |
| 1629 | if( mbedcrypto_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 ) |
| 1630 | return( MBEDCRYPTO_ERR_MPI_BAD_INPUT_DATA ); |
| 1631 | |
| 1632 | if( mbedcrypto_mpi_cmp_int( E, 0 ) < 0 ) |
| 1633 | return( MBEDCRYPTO_ERR_MPI_BAD_INPUT_DATA ); |
| 1634 | |
| 1635 | /* |
| 1636 | * Init temps and window size |
| 1637 | */ |
| 1638 | mpi_montg_init( &mm, N ); |
| 1639 | mbedcrypto_mpi_init( &RR ); mbedcrypto_mpi_init( &T ); |
| 1640 | mbedcrypto_mpi_init( &Apos ); |
| 1641 | memset( W, 0, sizeof( W ) ); |
| 1642 | |
| 1643 | i = mbedcrypto_mpi_bitlen( E ); |
| 1644 | |
| 1645 | wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 : |
| 1646 | ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1; |
| 1647 | |
| 1648 | if( wsize > MBEDCRYPTO_MPI_WINDOW_SIZE ) |
| 1649 | wsize = MBEDCRYPTO_MPI_WINDOW_SIZE; |
| 1650 | |
| 1651 | j = N->n + 1; |
| 1652 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( X, j ) ); |
| 1653 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( &W[1], j ) ); |
| 1654 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( &T, j * 2 ) ); |
| 1655 | |
| 1656 | /* |
| 1657 | * Compensate for negative A (and correct at the end) |
| 1658 | */ |
| 1659 | neg = ( A->s == -1 ); |
| 1660 | if( neg ) |
| 1661 | { |
| 1662 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &Apos, A ) ); |
| 1663 | Apos.s = 1; |
| 1664 | A = &Apos; |
| 1665 | } |
| 1666 | |
| 1667 | /* |
| 1668 | * If 1st call, pre-compute R^2 mod N |
| 1669 | */ |
| 1670 | if( _RR == NULL || _RR->p == NULL ) |
| 1671 | { |
| 1672 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &RR, 1 ) ); |
| 1673 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_l( &RR, N->n * 2 * biL ) ); |
| 1674 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mod_mpi( &RR, &RR, N ) ); |
| 1675 | |
| 1676 | if( _RR != NULL ) |
| 1677 | memcpy( _RR, &RR, sizeof( mbedcrypto_mpi ) ); |
| 1678 | } |
| 1679 | else |
| 1680 | memcpy( &RR, _RR, sizeof( mbedcrypto_mpi ) ); |
| 1681 | |
| 1682 | /* |
| 1683 | * W[1] = A * R^2 * R^-1 mod N = A * R mod N |
| 1684 | */ |
| 1685 | if( mbedcrypto_mpi_cmp_mpi( A, N ) >= 0 ) |
| 1686 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mod_mpi( &W[1], A, N ) ); |
| 1687 | else |
| 1688 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &W[1], A ) ); |
| 1689 | |
| 1690 | MBEDCRYPTO_MPI_CHK( mpi_montmul( &W[1], &RR, N, mm, &T ) ); |
| 1691 | |
| 1692 | /* |
| 1693 | * X = R^2 * R^-1 mod N = R mod N |
| 1694 | */ |
| 1695 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( X, &RR ) ); |
| 1696 | MBEDCRYPTO_MPI_CHK( mpi_montred( X, N, mm, &T ) ); |
| 1697 | |
| 1698 | if( wsize > 1 ) |
| 1699 | { |
| 1700 | /* |
| 1701 | * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1) |
| 1702 | */ |
| 1703 | j = one << ( wsize - 1 ); |
| 1704 | |
| 1705 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( &W[j], N->n + 1 ) ); |
| 1706 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &W[j], &W[1] ) ); |
| 1707 | |
| 1708 | for( i = 0; i < wsize - 1; i++ ) |
| 1709 | MBEDCRYPTO_MPI_CHK( mpi_montmul( &W[j], &W[j], N, mm, &T ) ); |
| 1710 | |
| 1711 | /* |
| 1712 | * W[i] = W[i - 1] * W[1] |
| 1713 | */ |
| 1714 | for( i = j + 1; i < ( one << wsize ); i++ ) |
| 1715 | { |
| 1716 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_grow( &W[i], N->n + 1 ) ); |
| 1717 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &W[i], &W[i - 1] ) ); |
| 1718 | |
| 1719 | MBEDCRYPTO_MPI_CHK( mpi_montmul( &W[i], &W[1], N, mm, &T ) ); |
| 1720 | } |
| 1721 | } |
| 1722 | |
| 1723 | nblimbs = E->n; |
| 1724 | bufsize = 0; |
| 1725 | nbits = 0; |
| 1726 | wbits = 0; |
| 1727 | state = 0; |
| 1728 | |
| 1729 | while( 1 ) |
| 1730 | { |
| 1731 | if( bufsize == 0 ) |
| 1732 | { |
| 1733 | if( nblimbs == 0 ) |
| 1734 | break; |
| 1735 | |
| 1736 | nblimbs--; |
| 1737 | |
| 1738 | bufsize = sizeof( mbedcrypto_mpi_uint ) << 3; |
| 1739 | } |
| 1740 | |
| 1741 | bufsize--; |
| 1742 | |
| 1743 | ei = (E->p[nblimbs] >> bufsize) & 1; |
| 1744 | |
| 1745 | /* |
| 1746 | * skip leading 0s |
| 1747 | */ |
| 1748 | if( ei == 0 && state == 0 ) |
| 1749 | continue; |
| 1750 | |
| 1751 | if( ei == 0 && state == 1 ) |
| 1752 | { |
| 1753 | /* |
| 1754 | * out of window, square X |
| 1755 | */ |
| 1756 | MBEDCRYPTO_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) ); |
| 1757 | continue; |
| 1758 | } |
| 1759 | |
| 1760 | /* |
| 1761 | * add ei to current window |
| 1762 | */ |
| 1763 | state = 2; |
| 1764 | |
| 1765 | nbits++; |
| 1766 | wbits |= ( ei << ( wsize - nbits ) ); |
| 1767 | |
| 1768 | if( nbits == wsize ) |
| 1769 | { |
| 1770 | /* |
| 1771 | * X = X^wsize R^-1 mod N |
| 1772 | */ |
| 1773 | for( i = 0; i < wsize; i++ ) |
| 1774 | MBEDCRYPTO_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) ); |
| 1775 | |
| 1776 | /* |
| 1777 | * X = X * W[wbits] R^-1 mod N |
| 1778 | */ |
| 1779 | MBEDCRYPTO_MPI_CHK( mpi_montmul( X, &W[wbits], N, mm, &T ) ); |
| 1780 | |
| 1781 | state--; |
| 1782 | nbits = 0; |
| 1783 | wbits = 0; |
| 1784 | } |
| 1785 | } |
| 1786 | |
| 1787 | /* |
| 1788 | * process the remaining bits |
| 1789 | */ |
| 1790 | for( i = 0; i < nbits; i++ ) |
| 1791 | { |
| 1792 | MBEDCRYPTO_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) ); |
| 1793 | |
| 1794 | wbits <<= 1; |
| 1795 | |
| 1796 | if( ( wbits & ( one << wsize ) ) != 0 ) |
| 1797 | MBEDCRYPTO_MPI_CHK( mpi_montmul( X, &W[1], N, mm, &T ) ); |
| 1798 | } |
| 1799 | |
| 1800 | /* |
| 1801 | * X = A^E * R * R^-1 mod N = A^E mod N |
| 1802 | */ |
| 1803 | MBEDCRYPTO_MPI_CHK( mpi_montred( X, N, mm, &T ) ); |
| 1804 | |
| 1805 | if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 ) |
| 1806 | { |
| 1807 | X->s = -1; |
| 1808 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( X, N, X ) ); |
| 1809 | } |
| 1810 | |
| 1811 | cleanup: |
| 1812 | |
| 1813 | for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ ) |
| 1814 | mbedcrypto_mpi_free( &W[i] ); |
| 1815 | |
| 1816 | mbedcrypto_mpi_free( &W[1] ); mbedcrypto_mpi_free( &T ); mbedcrypto_mpi_free( &Apos ); |
| 1817 | |
| 1818 | if( _RR == NULL || _RR->p == NULL ) |
| 1819 | mbedcrypto_mpi_free( &RR ); |
| 1820 | |
| 1821 | return( ret ); |
| 1822 | } |
| 1823 | |
| 1824 | /* |
| 1825 | * Greatest common divisor: G = gcd(A, B) (HAC 14.54) |
| 1826 | */ |
| 1827 | int mbedcrypto_mpi_gcd( mbedcrypto_mpi *G, const mbedcrypto_mpi *A, const mbedcrypto_mpi *B ) |
| 1828 | { |
| 1829 | int ret; |
| 1830 | size_t lz, lzt; |
| 1831 | mbedcrypto_mpi TG, TA, TB; |
| 1832 | |
| 1833 | mbedcrypto_mpi_init( &TG ); mbedcrypto_mpi_init( &TA ); mbedcrypto_mpi_init( &TB ); |
| 1834 | |
| 1835 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &TA, A ) ); |
| 1836 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &TB, B ) ); |
| 1837 | |
| 1838 | lz = mbedcrypto_mpi_lsb( &TA ); |
| 1839 | lzt = mbedcrypto_mpi_lsb( &TB ); |
| 1840 | |
| 1841 | if( lzt < lz ) |
| 1842 | lz = lzt; |
| 1843 | |
| 1844 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &TA, lz ) ); |
| 1845 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &TB, lz ) ); |
| 1846 | |
| 1847 | TA.s = TB.s = 1; |
| 1848 | |
| 1849 | while( mbedcrypto_mpi_cmp_int( &TA, 0 ) != 0 ) |
| 1850 | { |
| 1851 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &TA, mbedcrypto_mpi_lsb( &TA ) ) ); |
| 1852 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &TB, mbedcrypto_mpi_lsb( &TB ) ) ); |
| 1853 | |
| 1854 | if( mbedcrypto_mpi_cmp_mpi( &TA, &TB ) >= 0 ) |
| 1855 | { |
| 1856 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_abs( &TA, &TA, &TB ) ); |
| 1857 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &TA, 1 ) ); |
| 1858 | } |
| 1859 | else |
| 1860 | { |
| 1861 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_abs( &TB, &TB, &TA ) ); |
| 1862 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &TB, 1 ) ); |
| 1863 | } |
| 1864 | } |
| 1865 | |
| 1866 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_l( &TB, lz ) ); |
| 1867 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( G, &TB ) ); |
| 1868 | |
| 1869 | cleanup: |
| 1870 | |
| 1871 | mbedcrypto_mpi_free( &TG ); mbedcrypto_mpi_free( &TA ); mbedcrypto_mpi_free( &TB ); |
| 1872 | |
| 1873 | return( ret ); |
| 1874 | } |
| 1875 | |
| 1876 | /* |
| 1877 | * Fill X with size bytes of random. |
| 1878 | * |
| 1879 | * Use a temporary bytes representation to make sure the result is the same |
| 1880 | * regardless of the platform endianness (useful when f_rng is actually |
| 1881 | * deterministic, eg for tests). |
| 1882 | */ |
| 1883 | int mbedcrypto_mpi_fill_random( mbedcrypto_mpi *X, size_t size, |
| 1884 | int (*f_rng)(void *, unsigned char *, size_t), |
| 1885 | void *p_rng ) |
| 1886 | { |
| 1887 | int ret; |
| 1888 | unsigned char buf[MBEDCRYPTO_MPI_MAX_SIZE]; |
| 1889 | |
| 1890 | if( size > MBEDCRYPTO_MPI_MAX_SIZE ) |
| 1891 | return( MBEDCRYPTO_ERR_MPI_BAD_INPUT_DATA ); |
| 1892 | |
| 1893 | MBEDCRYPTO_MPI_CHK( f_rng( p_rng, buf, size ) ); |
| 1894 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_binary( X, buf, size ) ); |
| 1895 | |
| 1896 | cleanup: |
| 1897 | mbedcrypto_platform_zeroize( buf, sizeof( buf ) ); |
| 1898 | return( ret ); |
| 1899 | } |
| 1900 | |
| 1901 | /* |
| 1902 | * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64) |
| 1903 | */ |
| 1904 | int mbedcrypto_mpi_inv_mod( mbedcrypto_mpi *X, const mbedcrypto_mpi *A, const mbedcrypto_mpi *N ) |
| 1905 | { |
| 1906 | int ret; |
| 1907 | mbedcrypto_mpi G, TA, TU, U1, U2, TB, TV, V1, V2; |
| 1908 | |
| 1909 | if( mbedcrypto_mpi_cmp_int( N, 1 ) <= 0 ) |
| 1910 | return( MBEDCRYPTO_ERR_MPI_BAD_INPUT_DATA ); |
| 1911 | |
| 1912 | mbedcrypto_mpi_init( &TA ); mbedcrypto_mpi_init( &TU ); mbedcrypto_mpi_init( &U1 ); mbedcrypto_mpi_init( &U2 ); |
| 1913 | mbedcrypto_mpi_init( &G ); mbedcrypto_mpi_init( &TB ); mbedcrypto_mpi_init( &TV ); |
| 1914 | mbedcrypto_mpi_init( &V1 ); mbedcrypto_mpi_init( &V2 ); |
| 1915 | |
| 1916 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_gcd( &G, A, N ) ); |
| 1917 | |
| 1918 | if( mbedcrypto_mpi_cmp_int( &G, 1 ) != 0 ) |
| 1919 | { |
| 1920 | ret = MBEDCRYPTO_ERR_MPI_NOT_ACCEPTABLE; |
| 1921 | goto cleanup; |
| 1922 | } |
| 1923 | |
| 1924 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mod_mpi( &TA, A, N ) ); |
| 1925 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &TU, &TA ) ); |
| 1926 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &TB, N ) ); |
| 1927 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &TV, N ) ); |
| 1928 | |
| 1929 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &U1, 1 ) ); |
| 1930 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &U2, 0 ) ); |
| 1931 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &V1, 0 ) ); |
| 1932 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &V2, 1 ) ); |
| 1933 | |
| 1934 | do |
| 1935 | { |
| 1936 | while( ( TU.p[0] & 1 ) == 0 ) |
| 1937 | { |
| 1938 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &TU, 1 ) ); |
| 1939 | |
| 1940 | if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 ) |
| 1941 | { |
| 1942 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &U1, &U1, &TB ) ); |
| 1943 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &U2, &U2, &TA ) ); |
| 1944 | } |
| 1945 | |
| 1946 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &U1, 1 ) ); |
| 1947 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &U2, 1 ) ); |
| 1948 | } |
| 1949 | |
| 1950 | while( ( TV.p[0] & 1 ) == 0 ) |
| 1951 | { |
| 1952 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &TV, 1 ) ); |
| 1953 | |
| 1954 | if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 ) |
| 1955 | { |
| 1956 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &V1, &V1, &TB ) ); |
| 1957 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &V2, &V2, &TA ) ); |
| 1958 | } |
| 1959 | |
| 1960 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &V1, 1 ) ); |
| 1961 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &V2, 1 ) ); |
| 1962 | } |
| 1963 | |
| 1964 | if( mbedcrypto_mpi_cmp_mpi( &TU, &TV ) >= 0 ) |
| 1965 | { |
| 1966 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &TU, &TU, &TV ) ); |
| 1967 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &U1, &U1, &V1 ) ); |
| 1968 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &U2, &U2, &V2 ) ); |
| 1969 | } |
| 1970 | else |
| 1971 | { |
| 1972 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &TV, &TV, &TU ) ); |
| 1973 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &V1, &V1, &U1 ) ); |
| 1974 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &V2, &V2, &U2 ) ); |
| 1975 | } |
| 1976 | } |
| 1977 | while( mbedcrypto_mpi_cmp_int( &TU, 0 ) != 0 ); |
| 1978 | |
| 1979 | while( mbedcrypto_mpi_cmp_int( &V1, 0 ) < 0 ) |
| 1980 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_mpi( &V1, &V1, N ) ); |
| 1981 | |
| 1982 | while( mbedcrypto_mpi_cmp_mpi( &V1, N ) >= 0 ) |
| 1983 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_mpi( &V1, &V1, N ) ); |
| 1984 | |
| 1985 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( X, &V1 ) ); |
| 1986 | |
| 1987 | cleanup: |
| 1988 | |
| 1989 | mbedcrypto_mpi_free( &TA ); mbedcrypto_mpi_free( &TU ); mbedcrypto_mpi_free( &U1 ); mbedcrypto_mpi_free( &U2 ); |
| 1990 | mbedcrypto_mpi_free( &G ); mbedcrypto_mpi_free( &TB ); mbedcrypto_mpi_free( &TV ); |
| 1991 | mbedcrypto_mpi_free( &V1 ); mbedcrypto_mpi_free( &V2 ); |
| 1992 | |
| 1993 | return( ret ); |
| 1994 | } |
| 1995 | |
| 1996 | #if defined(MBEDCRYPTO_GENPRIME) |
| 1997 | |
| 1998 | static const int small_prime[] = |
| 1999 | { |
| 2000 | 3, 5, 7, 11, 13, 17, 19, 23, |
| 2001 | 29, 31, 37, 41, 43, 47, 53, 59, |
| 2002 | 61, 67, 71, 73, 79, 83, 89, 97, |
| 2003 | 101, 103, 107, 109, 113, 127, 131, 137, |
| 2004 | 139, 149, 151, 157, 163, 167, 173, 179, |
| 2005 | 181, 191, 193, 197, 199, 211, 223, 227, |
| 2006 | 229, 233, 239, 241, 251, 257, 263, 269, |
| 2007 | 271, 277, 281, 283, 293, 307, 311, 313, |
| 2008 | 317, 331, 337, 347, 349, 353, 359, 367, |
| 2009 | 373, 379, 383, 389, 397, 401, 409, 419, |
| 2010 | 421, 431, 433, 439, 443, 449, 457, 461, |
| 2011 | 463, 467, 479, 487, 491, 499, 503, 509, |
| 2012 | 521, 523, 541, 547, 557, 563, 569, 571, |
| 2013 | 577, 587, 593, 599, 601, 607, 613, 617, |
| 2014 | 619, 631, 641, 643, 647, 653, 659, 661, |
| 2015 | 673, 677, 683, 691, 701, 709, 719, 727, |
| 2016 | 733, 739, 743, 751, 757, 761, 769, 773, |
| 2017 | 787, 797, 809, 811, 821, 823, 827, 829, |
| 2018 | 839, 853, 857, 859, 863, 877, 881, 883, |
| 2019 | 887, 907, 911, 919, 929, 937, 941, 947, |
| 2020 | 953, 967, 971, 977, 983, 991, 997, -103 |
| 2021 | }; |
| 2022 | |
| 2023 | /* |
| 2024 | * Small divisors test (X must be positive) |
| 2025 | * |
| 2026 | * Return values: |
| 2027 | * 0: no small factor (possible prime, more tests needed) |
| 2028 | * 1: certain prime |
| 2029 | * MBEDCRYPTO_ERR_MPI_NOT_ACCEPTABLE: certain non-prime |
| 2030 | * other negative: error |
| 2031 | */ |
| 2032 | static int mpi_check_small_factors( const mbedcrypto_mpi *X ) |
| 2033 | { |
| 2034 | int ret = 0; |
| 2035 | size_t i; |
| 2036 | mbedcrypto_mpi_uint r; |
| 2037 | |
| 2038 | if( ( X->p[0] & 1 ) == 0 ) |
| 2039 | return( MBEDCRYPTO_ERR_MPI_NOT_ACCEPTABLE ); |
| 2040 | |
| 2041 | for( i = 0; small_prime[i] > 0; i++ ) |
| 2042 | { |
| 2043 | if( mbedcrypto_mpi_cmp_int( X, small_prime[i] ) <= 0 ) |
| 2044 | return( 1 ); |
| 2045 | |
| 2046 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mod_int( &r, X, small_prime[i] ) ); |
| 2047 | |
| 2048 | if( r == 0 ) |
| 2049 | return( MBEDCRYPTO_ERR_MPI_NOT_ACCEPTABLE ); |
| 2050 | } |
| 2051 | |
| 2052 | cleanup: |
| 2053 | return( ret ); |
| 2054 | } |
| 2055 | |
| 2056 | /* |
| 2057 | * Miller-Rabin pseudo-primality test (HAC 4.24) |
| 2058 | */ |
| 2059 | static int mpi_miller_rabin( const mbedcrypto_mpi *X, |
| 2060 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2061 | void *p_rng ) |
| 2062 | { |
| 2063 | int ret, count; |
| 2064 | size_t i, j, k, n, s; |
| 2065 | mbedcrypto_mpi W, R, T, A, RR; |
| 2066 | |
| 2067 | mbedcrypto_mpi_init( &W ); mbedcrypto_mpi_init( &R ); mbedcrypto_mpi_init( &T ); mbedcrypto_mpi_init( &A ); |
| 2068 | mbedcrypto_mpi_init( &RR ); |
| 2069 | |
| 2070 | /* |
| 2071 | * W = |X| - 1 |
| 2072 | * R = W >> lsb( W ) |
| 2073 | */ |
| 2074 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_sub_int( &W, X, 1 ) ); |
| 2075 | s = mbedcrypto_mpi_lsb( &W ); |
| 2076 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &R, &W ) ); |
| 2077 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &R, s ) ); |
| 2078 | |
| 2079 | i = mbedcrypto_mpi_bitlen( X ); |
| 2080 | /* |
| 2081 | * HAC, table 4.4 |
| 2082 | */ |
| 2083 | n = ( ( i >= 1300 ) ? 2 : ( i >= 850 ) ? 3 : |
| 2084 | ( i >= 650 ) ? 4 : ( i >= 350 ) ? 8 : |
| 2085 | ( i >= 250 ) ? 12 : ( i >= 150 ) ? 18 : 27 ); |
| 2086 | |
| 2087 | for( i = 0; i < n; i++ ) |
| 2088 | { |
| 2089 | /* |
| 2090 | * pick a random A, 1 < A < |X| - 1 |
| 2091 | */ |
| 2092 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) ); |
| 2093 | |
| 2094 | if( mbedcrypto_mpi_cmp_mpi( &A, &W ) >= 0 ) |
| 2095 | { |
| 2096 | j = mbedcrypto_mpi_bitlen( &A ) - mbedcrypto_mpi_bitlen( &W ); |
| 2097 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &A, j + 1 ) ); |
| 2098 | } |
| 2099 | A.p[0] |= 3; |
| 2100 | |
| 2101 | count = 0; |
| 2102 | do { |
| 2103 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) ); |
| 2104 | |
| 2105 | j = mbedcrypto_mpi_bitlen( &A ); |
| 2106 | k = mbedcrypto_mpi_bitlen( &W ); |
| 2107 | if (j > k) { |
| 2108 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &A, j - k ) ); |
| 2109 | } |
| 2110 | |
| 2111 | if (count++ > 30) { |
| 2112 | return MBEDCRYPTO_ERR_MPI_NOT_ACCEPTABLE; |
| 2113 | } |
| 2114 | |
| 2115 | } while ( mbedcrypto_mpi_cmp_mpi( &A, &W ) >= 0 || |
| 2116 | mbedcrypto_mpi_cmp_int( &A, 1 ) <= 0 ); |
| 2117 | |
| 2118 | /* |
| 2119 | * A = A^R mod |X| |
| 2120 | */ |
| 2121 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_exp_mod( &A, &A, &R, X, &RR ) ); |
| 2122 | |
| 2123 | if( mbedcrypto_mpi_cmp_mpi( &A, &W ) == 0 || |
| 2124 | mbedcrypto_mpi_cmp_int( &A, 1 ) == 0 ) |
| 2125 | continue; |
| 2126 | |
| 2127 | j = 1; |
| 2128 | while( j < s && mbedcrypto_mpi_cmp_mpi( &A, &W ) != 0 ) |
| 2129 | { |
| 2130 | /* |
| 2131 | * A = A * A mod |X| |
| 2132 | */ |
| 2133 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &T, &A, &A ) ); |
| 2134 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mod_mpi( &A, &T, X ) ); |
| 2135 | |
| 2136 | if( mbedcrypto_mpi_cmp_int( &A, 1 ) == 0 ) |
| 2137 | break; |
| 2138 | |
| 2139 | j++; |
| 2140 | } |
| 2141 | |
| 2142 | /* |
| 2143 | * not prime if A != |X| - 1 or A == 1 |
| 2144 | */ |
| 2145 | if( mbedcrypto_mpi_cmp_mpi( &A, &W ) != 0 || |
| 2146 | mbedcrypto_mpi_cmp_int( &A, 1 ) == 0 ) |
| 2147 | { |
| 2148 | ret = MBEDCRYPTO_ERR_MPI_NOT_ACCEPTABLE; |
| 2149 | break; |
| 2150 | } |
| 2151 | } |
| 2152 | |
| 2153 | cleanup: |
| 2154 | mbedcrypto_mpi_free( &W ); mbedcrypto_mpi_free( &R ); mbedcrypto_mpi_free( &T ); mbedcrypto_mpi_free( &A ); |
| 2155 | mbedcrypto_mpi_free( &RR ); |
| 2156 | |
| 2157 | return( ret ); |
| 2158 | } |
| 2159 | |
| 2160 | /* |
| 2161 | * Pseudo-primality test: small factors, then Miller-Rabin |
| 2162 | */ |
| 2163 | int mbedcrypto_mpi_is_prime( const mbedcrypto_mpi *X, |
| 2164 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2165 | void *p_rng ) |
| 2166 | { |
| 2167 | int ret; |
| 2168 | mbedcrypto_mpi XX; |
| 2169 | |
| 2170 | XX.s = 1; |
| 2171 | XX.n = X->n; |
| 2172 | XX.p = X->p; |
| 2173 | |
| 2174 | if( mbedcrypto_mpi_cmp_int( &XX, 0 ) == 0 || |
| 2175 | mbedcrypto_mpi_cmp_int( &XX, 1 ) == 0 ) |
| 2176 | return( MBEDCRYPTO_ERR_MPI_NOT_ACCEPTABLE ); |
| 2177 | |
| 2178 | if( mbedcrypto_mpi_cmp_int( &XX, 2 ) == 0 ) |
| 2179 | return( 0 ); |
| 2180 | |
| 2181 | if( ( ret = mpi_check_small_factors( &XX ) ) != 0 ) |
| 2182 | { |
| 2183 | if( ret == 1 ) |
| 2184 | return( 0 ); |
| 2185 | |
| 2186 | return( ret ); |
| 2187 | } |
| 2188 | |
| 2189 | return( mpi_miller_rabin( &XX, f_rng, p_rng ) ); |
| 2190 | } |
| 2191 | |
| 2192 | /* |
| 2193 | * Prime number generation |
| 2194 | * |
| 2195 | * If dh_flag is 0 and nbits is at least 1024, then the procedure |
| 2196 | * follows the RSA probably-prime generation method of FIPS 186-4. |
| 2197 | * NB. FIPS 186-4 only allows the specific bit lengths of 1024 and 1536. |
| 2198 | */ |
| 2199 | int mbedcrypto_mpi_gen_prime( mbedcrypto_mpi *X, size_t nbits, int dh_flag, |
| 2200 | int (*f_rng)(void *, unsigned char *, size_t), |
| 2201 | void *p_rng ) |
| 2202 | { |
| 2203 | #ifdef MBEDCRYPTO_HAVE_INT64 |
| 2204 | // ceil(2^63.5) |
| 2205 | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL |
| 2206 | #else |
| 2207 | // ceil(2^31.5) |
| 2208 | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U |
| 2209 | #endif |
| 2210 | int ret = MBEDCRYPTO_ERR_MPI_NOT_ACCEPTABLE; |
| 2211 | size_t k, n; |
| 2212 | mbedcrypto_mpi_uint r; |
| 2213 | mbedcrypto_mpi Y; |
| 2214 | |
| 2215 | if( nbits < 3 || nbits > MBEDCRYPTO_MPI_MAX_BITS ) |
| 2216 | return( MBEDCRYPTO_ERR_MPI_BAD_INPUT_DATA ); |
| 2217 | |
| 2218 | mbedcrypto_mpi_init( &Y ); |
| 2219 | |
| 2220 | n = BITS_TO_LIMBS( nbits ); |
| 2221 | |
| 2222 | while( 1 ) |
| 2223 | { |
| 2224 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_fill_random( X, n * ciL, f_rng, p_rng ) ); |
| 2225 | /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */ |
| 2226 | if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue; |
| 2227 | |
| 2228 | k = n * biL; |
| 2229 | if( k > nbits ) MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( X, k - nbits ) ); |
| 2230 | X->p[0] |= 1; |
| 2231 | |
| 2232 | if( dh_flag == 0 ) |
| 2233 | { |
| 2234 | ret = mbedcrypto_mpi_is_prime( X, f_rng, p_rng ); |
| 2235 | |
| 2236 | if( ret != MBEDCRYPTO_ERR_MPI_NOT_ACCEPTABLE ) |
| 2237 | goto cleanup; |
| 2238 | } |
| 2239 | else |
| 2240 | { |
| 2241 | /* |
| 2242 | * An necessary condition for Y and X = 2Y + 1 to be prime |
| 2243 | * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3). |
| 2244 | * Make sure it is satisfied, while keeping X = 3 mod 4 |
| 2245 | */ |
| 2246 | |
| 2247 | X->p[0] |= 2; |
| 2248 | |
| 2249 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mod_int( &r, X, 3 ) ); |
| 2250 | if( r == 0 ) |
| 2251 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_int( X, X, 8 ) ); |
| 2252 | else if( r == 1 ) |
| 2253 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_int( X, X, 4 ) ); |
| 2254 | |
| 2255 | /* Set Y = (X-1) / 2, which is X / 2 because X is odd */ |
| 2256 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_copy( &Y, X ) ); |
| 2257 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_shift_r( &Y, 1 ) ); |
| 2258 | |
| 2259 | while( 1 ) |
| 2260 | { |
| 2261 | /* |
| 2262 | * First, check small factors for X and Y |
| 2263 | * before doing Miller-Rabin on any of them |
| 2264 | */ |
| 2265 | if( ( ret = mpi_check_small_factors( X ) ) == 0 && |
| 2266 | ( ret = mpi_check_small_factors( &Y ) ) == 0 && |
| 2267 | ( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 && |
| 2268 | ( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 ) |
| 2269 | goto cleanup; |
| 2270 | |
| 2271 | if( ret != MBEDCRYPTO_ERR_MPI_NOT_ACCEPTABLE ) |
| 2272 | goto cleanup; |
| 2273 | |
| 2274 | /* |
| 2275 | * Next candidates. We want to preserve Y = (X-1) / 2 and |
| 2276 | * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3) |
| 2277 | * so up Y by 6 and X by 12. |
| 2278 | */ |
| 2279 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_int( X, X, 12 ) ); |
| 2280 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_add_int( &Y, &Y, 6 ) ); |
| 2281 | } |
| 2282 | } |
| 2283 | } |
| 2284 | |
| 2285 | cleanup: |
| 2286 | |
| 2287 | mbedcrypto_mpi_free( &Y ); |
| 2288 | |
| 2289 | return( ret ); |
| 2290 | } |
| 2291 | |
| 2292 | #endif /* MBEDCRYPTO_GENPRIME */ |
| 2293 | |
| 2294 | #if defined(MBEDCRYPTO_SELF_TEST) |
| 2295 | |
| 2296 | #define GCD_PAIR_COUNT 3 |
| 2297 | |
| 2298 | static const int gcd_pairs[GCD_PAIR_COUNT][3] = |
| 2299 | { |
| 2300 | { 693, 609, 21 }, |
| 2301 | { 1764, 868, 28 }, |
| 2302 | { 768454923, 542167814, 1 } |
| 2303 | }; |
| 2304 | |
| 2305 | /* |
| 2306 | * Checkup routine |
| 2307 | */ |
| 2308 | int mbedcrypto_mpi_self_test( int verbose ) |
| 2309 | { |
| 2310 | int ret, i; |
| 2311 | mbedcrypto_mpi A, E, N, X, Y, U, V; |
| 2312 | |
| 2313 | mbedcrypto_mpi_init( &A ); mbedcrypto_mpi_init( &E ); mbedcrypto_mpi_init( &N ); mbedcrypto_mpi_init( &X ); |
| 2314 | mbedcrypto_mpi_init( &Y ); mbedcrypto_mpi_init( &U ); mbedcrypto_mpi_init( &V ); |
| 2315 | |
| 2316 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &A, 16, |
| 2317 | "EFE021C2645FD1DC586E69184AF4A31E" \ |
| 2318 | "D5F53E93B5F123FA41680867BA110131" \ |
| 2319 | "944FE7952E2517337780CB0DB80E61AA" \ |
| 2320 | "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) ); |
| 2321 | |
| 2322 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &E, 16, |
| 2323 | "B2E7EFD37075B9F03FF989C7C5051C20" \ |
| 2324 | "34D2A323810251127E7BF8625A4F49A5" \ |
| 2325 | "F3E27F4DA8BD59C47D6DAABA4C8127BD" \ |
| 2326 | "5B5C25763222FEFCCFC38B832366C29E" ) ); |
| 2327 | |
| 2328 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &N, 16, |
| 2329 | "0066A198186C18C10B2F5ED9B522752A" \ |
| 2330 | "9830B69916E535C8F047518A889A43A5" \ |
| 2331 | "94B6BED27A168D31D4A52F88925AA8F5" ) ); |
| 2332 | |
| 2333 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_mul_mpi( &X, &A, &N ) ); |
| 2334 | |
| 2335 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &U, 16, |
| 2336 | "602AB7ECA597A3D6B56FF9829A5E8B85" \ |
| 2337 | "9E857EA95A03512E2BAE7391688D264A" \ |
| 2338 | "A5663B0341DB9CCFD2C4C5F421FEC814" \ |
| 2339 | "8001B72E848A38CAE1C65F78E56ABDEF" \ |
| 2340 | "E12D3C039B8A02D6BE593F0BBBDA56F1" \ |
| 2341 | "ECF677152EF804370C1A305CAF3B5BF1" \ |
| 2342 | "30879B56C61DE584A0F53A2447A51E" ) ); |
| 2343 | |
| 2344 | if( verbose != 0 ) |
| 2345 | mbedcrypto_printf( " MPI test #1 (mul_mpi): " ); |
| 2346 | |
| 2347 | if( mbedcrypto_mpi_cmp_mpi( &X, &U ) != 0 ) |
| 2348 | { |
| 2349 | if( verbose != 0 ) |
| 2350 | mbedcrypto_printf( "failed\n" ); |
| 2351 | |
| 2352 | ret = 1; |
| 2353 | goto cleanup; |
| 2354 | } |
| 2355 | |
| 2356 | if( verbose != 0 ) |
| 2357 | mbedcrypto_printf( "passed\n" ); |
| 2358 | |
| 2359 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_div_mpi( &X, &Y, &A, &N ) ); |
| 2360 | |
| 2361 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &U, 16, |
| 2362 | "256567336059E52CAE22925474705F39A94" ) ); |
| 2363 | |
| 2364 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &V, 16, |
| 2365 | "6613F26162223DF488E9CD48CC132C7A" \ |
| 2366 | "0AC93C701B001B092E4E5B9F73BCD27B" \ |
| 2367 | "9EE50D0657C77F374E903CDFA4C642" ) ); |
| 2368 | |
| 2369 | if( verbose != 0 ) |
| 2370 | mbedcrypto_printf( " MPI test #2 (div_mpi): " ); |
| 2371 | |
| 2372 | if( mbedcrypto_mpi_cmp_mpi( &X, &U ) != 0 || |
| 2373 | mbedcrypto_mpi_cmp_mpi( &Y, &V ) != 0 ) |
| 2374 | { |
| 2375 | if( verbose != 0 ) |
| 2376 | mbedcrypto_printf( "failed\n" ); |
| 2377 | |
| 2378 | ret = 1; |
| 2379 | goto cleanup; |
| 2380 | } |
| 2381 | |
| 2382 | if( verbose != 0 ) |
| 2383 | mbedcrypto_printf( "passed\n" ); |
| 2384 | |
| 2385 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_exp_mod( &X, &A, &E, &N, NULL ) ); |
| 2386 | |
| 2387 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &U, 16, |
| 2388 | "36E139AEA55215609D2816998ED020BB" \ |
| 2389 | "BD96C37890F65171D948E9BC7CBAA4D9" \ |
| 2390 | "325D24D6A3C12710F10A09FA08AB87" ) ); |
| 2391 | |
| 2392 | if( verbose != 0 ) |
| 2393 | mbedcrypto_printf( " MPI test #3 (exp_mod): " ); |
| 2394 | |
| 2395 | if( mbedcrypto_mpi_cmp_mpi( &X, &U ) != 0 ) |
| 2396 | { |
| 2397 | if( verbose != 0 ) |
| 2398 | mbedcrypto_printf( "failed\n" ); |
| 2399 | |
| 2400 | ret = 1; |
| 2401 | goto cleanup; |
| 2402 | } |
| 2403 | |
| 2404 | if( verbose != 0 ) |
| 2405 | mbedcrypto_printf( "passed\n" ); |
| 2406 | |
| 2407 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_inv_mod( &X, &A, &N ) ); |
| 2408 | |
| 2409 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_read_string( &U, 16, |
| 2410 | "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \ |
| 2411 | "C3DBA76456363A10869622EAC2DD84EC" \ |
| 2412 | "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) ); |
| 2413 | |
| 2414 | if( verbose != 0 ) |
| 2415 | mbedcrypto_printf( " MPI test #4 (inv_mod): " ); |
| 2416 | |
| 2417 | if( mbedcrypto_mpi_cmp_mpi( &X, &U ) != 0 ) |
| 2418 | { |
| 2419 | if( verbose != 0 ) |
| 2420 | mbedcrypto_printf( "failed\n" ); |
| 2421 | |
| 2422 | ret = 1; |
| 2423 | goto cleanup; |
| 2424 | } |
| 2425 | |
| 2426 | if( verbose != 0 ) |
| 2427 | mbedcrypto_printf( "passed\n" ); |
| 2428 | |
| 2429 | if( verbose != 0 ) |
| 2430 | mbedcrypto_printf( " MPI test #5 (simple gcd): " ); |
| 2431 | |
| 2432 | for( i = 0; i < GCD_PAIR_COUNT; i++ ) |
| 2433 | { |
| 2434 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &X, gcd_pairs[i][0] ) ); |
| 2435 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_lset( &Y, gcd_pairs[i][1] ) ); |
| 2436 | |
| 2437 | MBEDCRYPTO_MPI_CHK( mbedcrypto_mpi_gcd( &A, &X, &Y ) ); |
| 2438 | |
| 2439 | if( mbedcrypto_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 ) |
| 2440 | { |
| 2441 | if( verbose != 0 ) |
| 2442 | mbedcrypto_printf( "failed at %d\n", i ); |
| 2443 | |
| 2444 | ret = 1; |
| 2445 | goto cleanup; |
| 2446 | } |
| 2447 | } |
| 2448 | |
| 2449 | if( verbose != 0 ) |
| 2450 | mbedcrypto_printf( "passed\n" ); |
| 2451 | |
| 2452 | cleanup: |
| 2453 | |
| 2454 | if( ret != 0 && verbose != 0 ) |
| 2455 | mbedcrypto_printf( "Unexpected error, return code = %08X\n", ret ); |
| 2456 | |
| 2457 | mbedcrypto_mpi_free( &A ); mbedcrypto_mpi_free( &E ); mbedcrypto_mpi_free( &N ); mbedcrypto_mpi_free( &X ); |
| 2458 | mbedcrypto_mpi_free( &Y ); mbedcrypto_mpi_free( &U ); mbedcrypto_mpi_free( &V ); |
| 2459 | |
| 2460 | if( verbose != 0 ) |
| 2461 | mbedcrypto_printf( "\n" ); |
| 2462 | |
| 2463 | return( ret ); |
| 2464 | } |
| 2465 | |
| 2466 | #endif /* MBEDCRYPTO_SELF_TEST */ |
| 2467 | |
| 2468 | #endif /* MBEDCRYPTO_BIGNUM_C */ |