Laurence Lundblade | cc2ed34 | 2018-09-22 17:29:55 -0700 | [diff] [blame] | 1 | /*============================================================================== |
Laurence Lundblade | a3fd49f | 2019-01-21 10:16:22 -0800 | [diff] [blame^] | 2 | ieee754.c -- floating point conversion between half, double and single precision |
| 3 | |
| 4 | Copyright (c) 2018-2019, Laurence Lundblade. All rights reserved. |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 5 | |
Laurence Lundblade | a3fd49f | 2019-01-21 10:16:22 -0800 | [diff] [blame^] | 6 | SPDX-License-Identifier: BSD-3-Clause |
| 7 | |
| 8 | See BSD-3-Clause license in README.md |
| 9 | |
| 10 | Created on 7/23/18 |
Laurence Lundblade | cc2ed34 | 2018-09-22 17:29:55 -0700 | [diff] [blame] | 11 | ==============================================================================*/ |
| 12 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 13 | #include "ieee754.h" |
| 14 | #include <string.h> // For memcpy() |
| 15 | |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 16 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 17 | /* |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 18 | This code is written for clarity and verifiability, not for size, on the assumption |
| 19 | that the optimizer will do a good job. The LLVM optimizer, -Os, does seem to do the |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 20 | job and the resulting object code is smaller from combining code for the many different |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 21 | cases (normal, subnormal, infinity, zero...) for the conversions. |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 22 | |
Laurence Lundblade | 570fab5 | 2018-10-13 18:28:27 +0800 | [diff] [blame] | 23 | Dead stripping is also really helpful to get code size down when floating point |
| 24 | encoding is not needed. |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 25 | |
Laurence Lundblade | 570fab5 | 2018-10-13 18:28:27 +0800 | [diff] [blame] | 26 | This code works solely using shifts and masks and thus has no dependency on |
| 27 | any math libraries. It can even work if the CPU doesn't have any floating |
| 28 | point support, though that isn't the most useful thing to do. |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 29 | |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 30 | The memcpy() dependency is only for CopyFloatToUint32() and friends which only |
| 31 | is needed to avoid type punning when converting the actual float bits to |
| 32 | an unsigned value so the bit shifts and masks can work. |
| 33 | */ |
| 34 | |
| 35 | /* |
| 36 | The references used to write this code: |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 37 | |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 38 | - IEEE 754-2008, particularly section 3.6 and 6.2.1 |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 39 | |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 40 | - https://en.wikipedia.org/wiki/IEEE_754 and subordinate pages |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 41 | |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 42 | - https://stackoverflow.com/questions/19800415/why-does-ieee-754-reserve-so-many-nan-values |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 43 | */ |
| 44 | |
| 45 | |
| 46 | // ----- Half Precsion ----------- |
| 47 | #define HALF_NUM_SIGNIFICAND_BITS (10) |
| 48 | #define HALF_NUM_EXPONENT_BITS (5) |
| 49 | #define HALF_NUM_SIGN_BITS (1) |
| 50 | |
| 51 | #define HALF_SIGNIFICAND_SHIFT (0) |
| 52 | #define HALF_EXPONENT_SHIFT (HALF_NUM_SIGNIFICAND_BITS) |
| 53 | #define HALF_SIGN_SHIFT (HALF_NUM_SIGNIFICAND_BITS + HALF_NUM_EXPONENT_BITS) |
| 54 | |
| 55 | #define HALF_SIGNIFICAND_MASK (0x3ff) // The lower 10 bits // 0x03ff |
| 56 | #define HALF_EXPONENT_MASK (0x1f << HALF_EXPONENT_SHIFT) // 0x7c00 5 bits of exponent |
| 57 | #define HALF_SIGN_MASK (0x01 << HALF_SIGN_SHIFT) // // 0x80001 bit of sign |
| 58 | #define HALF_QUIET_NAN_BIT (0x01 << (HALF_NUM_SIGNIFICAND_BITS-1)) // 0x0200 |
| 59 | |
| 60 | /* Biased Biased Unbiased Use |
| 61 | 0x00 0 -15 0 and subnormal |
| 62 | 0x01 1 -14 Smallest normal exponent |
| 63 | 0x1e 30 15 Largest normal exponent |
| 64 | 0x1F 31 16 NaN and Infinity */ |
| 65 | #define HALF_EXPONENT_BIAS (15) |
| 66 | #define HALF_EXPONENT_MAX (HALF_EXPONENT_BIAS) // 15 Unbiased |
| 67 | #define HALF_EXPONENT_MIN (-HALF_EXPONENT_BIAS+1) // -14 Unbiased |
| 68 | #define HALF_EXPONENT_ZERO (-HALF_EXPONENT_BIAS) // -15 Unbiased |
| 69 | #define HALF_EXPONENT_INF_OR_NAN (HALF_EXPONENT_BIAS+1) // 16 Unbiased |
| 70 | |
| 71 | |
| 72 | // ------ Single Precision -------- |
| 73 | #define SINGLE_NUM_SIGNIFICAND_BITS (23) |
| 74 | #define SINGLE_NUM_EXPONENT_BITS (8) |
| 75 | #define SINGLE_NUM_SIGN_BITS (1) |
| 76 | |
| 77 | #define SINGLE_SIGNIFICAND_SHIFT (0) |
| 78 | #define SINGLE_EXPONENT_SHIFT (SINGLE_NUM_SIGNIFICAND_BITS) |
| 79 | #define SINGLE_SIGN_SHIFT (SINGLE_NUM_SIGNIFICAND_BITS + SINGLE_NUM_EXPONENT_BITS) |
| 80 | |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 81 | #define SINGLE_SIGNIFICAND_MASK (0x7fffffUL) // The lower 23 bits |
| 82 | #define SINGLE_EXPONENT_MASK (0xffUL << SINGLE_EXPONENT_SHIFT) // 8 bits of exponent |
| 83 | #define SINGLE_SIGN_MASK (0x01UL << SINGLE_SIGN_SHIFT) // 1 bit of sign |
| 84 | #define SINGLE_QUIET_NAN_BIT (0x01UL << (SINGLE_NUM_SIGNIFICAND_BITS-1)) |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 85 | |
| 86 | /* Biased Biased Unbiased Use |
| 87 | 0x0000 0 -127 0 and subnormal |
| 88 | 0x0001 1 -126 Smallest normal exponent |
| 89 | 0x7f 127 0 1 |
| 90 | 0xfe 254 127 Largest normal exponent |
| 91 | 0xff 255 128 NaN and Infinity */ |
| 92 | #define SINGLE_EXPONENT_BIAS (127) |
| 93 | #define SINGLE_EXPONENT_MAX (SINGLE_EXPONENT_BIAS) // 127 unbiased |
| 94 | #define SINGLE_EXPONENT_MIN (-SINGLE_EXPONENT_BIAS+1) // -126 unbiased |
| 95 | #define SINGLE_EXPONENT_ZERO (-SINGLE_EXPONENT_BIAS) // -127 unbiased |
| 96 | #define SINGLE_EXPONENT_INF_OR_NAN (SINGLE_EXPONENT_BIAS+1) // 128 unbiased |
| 97 | |
| 98 | |
| 99 | // --------- Double Precision ---------- |
| 100 | #define DOUBLE_NUM_SIGNIFICAND_BITS (52) |
| 101 | #define DOUBLE_NUM_EXPONENT_BITS (11) |
| 102 | #define DOUBLE_NUM_SIGN_BITS (1) |
| 103 | |
| 104 | #define DOUBLE_SIGNIFICAND_SHIFT (0) |
| 105 | #define DOUBLE_EXPONENT_SHIFT (DOUBLE_NUM_SIGNIFICAND_BITS) |
| 106 | #define DOUBLE_SIGN_SHIFT (DOUBLE_NUM_SIGNIFICAND_BITS + DOUBLE_NUM_EXPONENT_BITS) |
| 107 | |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 108 | #define DOUBLE_SIGNIFICAND_MASK (0xfffffffffffffULL) // The lower 52 bits |
| 109 | #define DOUBLE_EXPONENT_MASK (0x7ffULL << DOUBLE_EXPONENT_SHIFT) // 11 bits of exponent |
| 110 | #define DOUBLE_SIGN_MASK (0x01ULL << DOUBLE_SIGN_SHIFT) // 1 bit of sign |
| 111 | #define DOUBLE_QUIET_NAN_BIT (0x01ULL << (DOUBLE_NUM_SIGNIFICAND_BITS-1)) |
| 112 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 113 | |
| 114 | /* Biased Biased Unbiased Use |
| 115 | 0x00000000 0 -1023 0 and subnormal |
| 116 | 0x00000001 1 -1022 Smallest normal exponent |
| 117 | 0x000007fe 2046 1023 Largest normal exponent |
| 118 | 0x000007ff 2047 1024 NaN and Infinity */ |
| 119 | #define DOUBLE_EXPONENT_BIAS (1023) |
| 120 | #define DOUBLE_EXPONENT_MAX (DOUBLE_EXPONENT_BIAS) // unbiased |
| 121 | #define DOUBLE_EXPONENT_MIN (-DOUBLE_EXPONENT_BIAS+1) // unbiased |
| 122 | #define DOUBLE_EXPONENT_ZERO (-DOUBLE_EXPONENT_BIAS) // unbiased |
| 123 | #define DOUBLE_EXPONENT_INF_OR_NAN (DOUBLE_EXPONENT_BIAS+1) // unbiased |
| 124 | |
| 125 | |
| 126 | |
| 127 | /* |
| 128 | Convenient functions to avoid type punning, compiler warnings and such |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 129 | The optimizer reduces them to a simple assignment. |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 130 | This is a crusty corner of C. It shouldn't be this hard. |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 131 | |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 132 | These are also in UsefulBuf.h under a different name. They are copied |
Laurence Lundblade | 3df8c7e | 2018-11-02 13:12:41 +0700 | [diff] [blame] | 133 | here to avoid a dependency on UsefulBuf.h. There is no |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 134 | object code size impact because these always optimze down to a |
| 135 | simple assignment. |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 136 | */ |
| 137 | static inline uint32_t CopyFloatToUint32(float f) |
| 138 | { |
| 139 | uint32_t u32; |
| 140 | memcpy(&u32, &f, sizeof(uint32_t)); |
| 141 | return u32; |
| 142 | } |
| 143 | |
| 144 | static inline uint64_t CopyDoubleToUint64(double d) |
| 145 | { |
| 146 | uint64_t u64; |
| 147 | memcpy(&u64, &d, sizeof(uint64_t)); |
| 148 | return u64; |
| 149 | } |
| 150 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 151 | static inline float CopyUint32ToFloat(uint32_t u32) |
| 152 | { |
| 153 | float f; |
| 154 | memcpy(&f, &u32, sizeof(uint32_t)); |
| 155 | return f; |
| 156 | } |
| 157 | |
Laurence Lundblade | 67bd551 | 2018-11-02 21:44:06 +0700 | [diff] [blame] | 158 | static inline double CopyUint64ToDouble(uint64_t u64) |
| 159 | { |
| 160 | double d; |
| 161 | memcpy(&d, &u64, sizeof(uint64_t)); |
| 162 | return d; |
| 163 | } |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 164 | |
| 165 | |
| 166 | // Public function; see ieee754.h |
Laurence Lundblade | cc2ed34 | 2018-09-22 17:29:55 -0700 | [diff] [blame] | 167 | uint16_t IEEE754_FloatToHalf(float f) |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 168 | { |
| 169 | // Pull the three parts out of the single-precision float |
| 170 | const uint32_t uSingle = CopyFloatToUint32(f); |
| 171 | const int32_t nSingleUnbiasedExponent = ((uSingle & SINGLE_EXPONENT_MASK) >> SINGLE_EXPONENT_SHIFT) - SINGLE_EXPONENT_BIAS; |
| 172 | const uint32_t uSingleSign = (uSingle & SINGLE_SIGN_MASK) >> SINGLE_SIGN_SHIFT; |
| 173 | const uint32_t uSingleSignificand = uSingle & SINGLE_SIGNIFICAND_MASK; |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 174 | |
| 175 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 176 | // Now convert the three parts to half-precision. |
| 177 | uint16_t uHalfSign, uHalfSignificand, uHalfBiasedExponent; |
| 178 | if(nSingleUnbiasedExponent == SINGLE_EXPONENT_INF_OR_NAN) { |
| 179 | // +/- Infinity and NaNs -- single biased exponent is 0xff |
| 180 | uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS; |
| 181 | if(!uSingleSignificand) { |
| 182 | // Infinity |
| 183 | uHalfSignificand = 0; |
| 184 | } else { |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 185 | // Copy the LBSs of the NaN payload that will fit from the single to the half |
| 186 | uHalfSignificand = uSingleSignificand & (HALF_SIGNIFICAND_MASK & ~HALF_QUIET_NAN_BIT); |
| 187 | if(uSingleSignificand & SINGLE_QUIET_NAN_BIT) { |
| 188 | // It's a qNaN; copy the qNaN bit |
| 189 | uHalfSignificand |= HALF_QUIET_NAN_BIT; |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 190 | } else { |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 191 | // It's a sNaN; make sure the significand is not zero so it stays a NaN |
| 192 | // This is needed because not all significand bits are copied from single |
| 193 | if(!uHalfSignificand) { |
| 194 | // Set the LSB. This is what wikipedia shows for sNAN. |
| 195 | uHalfSignificand |= 0x01; |
| 196 | } |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 197 | } |
| 198 | } |
| 199 | } else if(nSingleUnbiasedExponent == SINGLE_EXPONENT_ZERO) { |
| 200 | // 0 or a subnormal number -- singled biased exponent is 0 |
| 201 | uHalfBiasedExponent = 0; |
| 202 | uHalfSignificand = 0; // Any subnormal single will be too small to express as a half precision |
| 203 | } else if(nSingleUnbiasedExponent > HALF_EXPONENT_MAX) { |
| 204 | // Exponent is too large to express in half-precision; round up to infinity |
| 205 | uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS; |
| 206 | uHalfSignificand = 0; |
| 207 | } else if(nSingleUnbiasedExponent < HALF_EXPONENT_MIN) { |
| 208 | // Exponent is too small to express in half-precision normal; make it a half-precision subnormal |
| 209 | uHalfBiasedExponent = (uint16_t)(HALF_EXPONENT_ZERO + HALF_EXPONENT_BIAS); |
| 210 | // Difference between single normal exponent and the base exponent of a half subnormal |
| 211 | const uint32_t nExpDiff = -(nSingleUnbiasedExponent - HALF_EXPONENT_MIN); |
| 212 | // Also have to shift the significand by the difference in number of bits between a single and a half significand |
| 213 | const int32_t nSignificandBitsDiff = SINGLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS; |
| 214 | // Add in the 1 that is implied in the significand of a normal number; it needs to be present in a subnormal |
| 215 | const uint32_t uSingleSignificandSubnormal = uSingleSignificand + (0x01L << SINGLE_NUM_SIGNIFICAND_BITS); |
| 216 | uHalfSignificand = uSingleSignificandSubnormal >> (nExpDiff + nSignificandBitsDiff); |
| 217 | } else { |
| 218 | // The normal case |
| 219 | uHalfBiasedExponent = nSingleUnbiasedExponent + HALF_EXPONENT_BIAS; |
| 220 | uHalfSignificand = uSingleSignificand >> (SINGLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS); |
| 221 | } |
| 222 | uHalfSign = uSingleSign; |
| 223 | |
| 224 | // Put the 3 values in the right place for a half precision |
| 225 | const uint16_t uHalfPrecision = uHalfSignificand | |
| 226 | (uHalfBiasedExponent << HALF_EXPONENT_SHIFT) | |
| 227 | (uHalfSign << HALF_SIGN_SHIFT); |
| 228 | return uHalfPrecision; |
| 229 | } |
| 230 | |
| 231 | |
| 232 | // Public function; see ieee754.h |
Laurence Lundblade | cc2ed34 | 2018-09-22 17:29:55 -0700 | [diff] [blame] | 233 | uint16_t IEEE754_DoubleToHalf(double d) |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 234 | { |
| 235 | // Pull the three parts out of the double-precision float |
| 236 | const uint64_t uDouble = CopyDoubleToUint64(d); |
| 237 | const int64_t nDoubleUnbiasedExponent = ((uDouble & DOUBLE_EXPONENT_MASK) >> DOUBLE_EXPONENT_SHIFT) - DOUBLE_EXPONENT_BIAS; |
| 238 | const uint64_t uDoubleSign = (uDouble & DOUBLE_SIGN_MASK) >> DOUBLE_SIGN_SHIFT; |
| 239 | const uint64_t uDoubleSignificand = uDouble & DOUBLE_SIGNIFICAND_MASK; |
| 240 | |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 241 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 242 | // Now convert the three parts to half-precision. |
| 243 | uint16_t uHalfSign, uHalfSignificand, uHalfBiasedExponent; |
| 244 | if(nDoubleUnbiasedExponent == DOUBLE_EXPONENT_INF_OR_NAN) { |
| 245 | // +/- Infinity and NaNs -- single biased exponent is 0xff |
| 246 | uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS; |
| 247 | if(!uDoubleSignificand) { |
| 248 | // Infinity |
| 249 | uHalfSignificand = 0; |
| 250 | } else { |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 251 | // Copy the LBSs of the NaN payload that will fit from the double to the half |
| 252 | uHalfSignificand = uDoubleSignificand & (HALF_SIGNIFICAND_MASK & ~HALF_QUIET_NAN_BIT); |
| 253 | if(uDoubleSignificand & DOUBLE_QUIET_NAN_BIT) { |
| 254 | // It's a qNaN; copy the qNaN bit |
| 255 | uHalfSignificand |= HALF_QUIET_NAN_BIT; |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 256 | } else { |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 257 | // It's an sNaN; make sure the significand is not zero so it stays a NaN |
| 258 | // This is needed because not all significand bits are copied from single |
| 259 | if(!uHalfSignificand) { |
| 260 | // Set the LSB. This is what wikipedia shows for sNAN. |
| 261 | uHalfSignificand |= 0x01; |
| 262 | } |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 263 | } |
| 264 | } |
| 265 | } else if(nDoubleUnbiasedExponent == DOUBLE_EXPONENT_ZERO) { |
| 266 | // 0 or a subnormal number -- double biased exponent is 0 |
| 267 | uHalfBiasedExponent = 0; |
| 268 | uHalfSignificand = 0; // Any subnormal single will be too small to express as a half precision; TODO, is this really true? |
| 269 | } else if(nDoubleUnbiasedExponent > HALF_EXPONENT_MAX) { |
| 270 | // Exponent is too large to express in half-precision; round up to infinity; TODO, is this really true? |
| 271 | uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS; |
| 272 | uHalfSignificand = 0; |
| 273 | } else if(nDoubleUnbiasedExponent < HALF_EXPONENT_MIN) { |
| 274 | // Exponent is too small to express in half-precision; round down to zero |
| 275 | uHalfBiasedExponent = (uint16_t)(HALF_EXPONENT_ZERO + HALF_EXPONENT_BIAS); |
| 276 | // Difference between double normal exponent and the base exponent of a half subnormal |
| 277 | const uint64_t nExpDiff = -(nDoubleUnbiasedExponent - HALF_EXPONENT_MIN); |
| 278 | // Also have to shift the significand by the difference in number of bits between a double and a half significand |
| 279 | const int64_t nSignificandBitsDiff = DOUBLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS; |
| 280 | // Add in the 1 that is implied in the significand of a normal number; it needs to be present in a subnormal |
Laurence Lundblade | f280195 | 2018-12-17 10:40:29 -0800 | [diff] [blame] | 281 | const uint64_t uDoubleSignificandSubnormal = uDoubleSignificand + (0x01ULL << DOUBLE_NUM_SIGNIFICAND_BITS); |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 282 | uHalfSignificand = uDoubleSignificandSubnormal >> (nExpDiff + nSignificandBitsDiff); |
| 283 | } else { |
| 284 | // The normal case |
| 285 | uHalfBiasedExponent = nDoubleUnbiasedExponent + HALF_EXPONENT_BIAS; |
| 286 | uHalfSignificand = uDoubleSignificand >> (DOUBLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS); |
| 287 | } |
| 288 | uHalfSign = uDoubleSign; |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 289 | |
| 290 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 291 | // Put the 3 values in the right place for a half precision |
| 292 | const uint16_t uHalfPrecision = uHalfSignificand | |
| 293 | (uHalfBiasedExponent << HALF_EXPONENT_SHIFT) | |
| 294 | (uHalfSign << HALF_SIGN_SHIFT); |
| 295 | return uHalfPrecision; |
| 296 | } |
| 297 | |
| 298 | |
| 299 | // Public function; see ieee754.h |
| 300 | float IEEE754_HalfToFloat(uint16_t uHalfPrecision) |
| 301 | { |
| 302 | // Pull out the three parts of the half-precision float |
| 303 | const uint16_t uHalfSignificand = uHalfPrecision & HALF_SIGNIFICAND_MASK; |
| 304 | const int16_t nHalfUnBiasedExponent = ((uHalfPrecision & HALF_EXPONENT_MASK) >> HALF_EXPONENT_SHIFT) - HALF_EXPONENT_BIAS; |
| 305 | const uint16_t uHalfSign = (uHalfPrecision & HALF_SIGN_MASK) >> HALF_SIGN_SHIFT; |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 306 | |
| 307 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 308 | // Make the three parts of the single-precision number |
| 309 | uint32_t uSingleSignificand, uSingleSign, uSingleBiasedExponent; |
| 310 | if(nHalfUnBiasedExponent == HALF_EXPONENT_ZERO) { |
| 311 | // 0 or subnormal |
| 312 | if(uHalfSignificand) { |
| 313 | // Subnormal case |
| 314 | uSingleBiasedExponent = -HALF_EXPONENT_BIAS + SINGLE_EXPONENT_BIAS +1; |
| 315 | // A half-precision subnormal can always be converted to a normal single-precision float because the ranges line up |
| 316 | uSingleSignificand = uHalfSignificand; |
| 317 | // Shift bits from right of the decimal to left, reducing the exponent by 1 each time |
| 318 | do { |
| 319 | uSingleSignificand <<= 1; |
| 320 | uSingleBiasedExponent--; |
| 321 | } while ((uSingleSignificand & 0x400) == 0); |
| 322 | uSingleSignificand &= HALF_SIGNIFICAND_MASK; |
| 323 | uSingleSignificand <<= (SINGLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS); |
| 324 | } else { |
| 325 | // Just zero |
| 326 | uSingleBiasedExponent = SINGLE_EXPONENT_ZERO + SINGLE_EXPONENT_BIAS; |
| 327 | uSingleSignificand = 0; |
| 328 | } |
| 329 | } else if(nHalfUnBiasedExponent == HALF_EXPONENT_INF_OR_NAN) { |
| 330 | // NaN or Inifinity |
| 331 | uSingleBiasedExponent = SINGLE_EXPONENT_INF_OR_NAN + SINGLE_EXPONENT_BIAS; |
| 332 | if(uHalfSignificand) { |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 333 | // NaN |
| 334 | // First preserve the NaN payload from half to single |
| 335 | uSingleSignificand = uHalfSignificand & ~HALF_QUIET_NAN_BIT; |
| 336 | if(uHalfSignificand & HALF_QUIET_NAN_BIT) { |
| 337 | // Next, set qNaN if needed since half qNaN bit is not copied above |
| 338 | uSingleSignificand |= SINGLE_QUIET_NAN_BIT; |
| 339 | } |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 340 | } else { |
| 341 | // Infinity |
| 342 | uSingleSignificand = 0; |
| 343 | } |
| 344 | } else { |
| 345 | // Normal number |
| 346 | uSingleBiasedExponent = nHalfUnBiasedExponent + SINGLE_EXPONENT_BIAS; |
| 347 | uSingleSignificand = uHalfSignificand << (SINGLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS); |
| 348 | } |
| 349 | uSingleSign = uHalfSign; |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 350 | |
| 351 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 352 | // Shift the three parts of the single precision into place |
| 353 | const uint32_t uSinglePrecision = uSingleSignificand | |
| 354 | (uSingleBiasedExponent << SINGLE_EXPONENT_SHIFT) | |
| 355 | (uSingleSign << SINGLE_SIGN_SHIFT); |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 356 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 357 | return CopyUint32ToFloat(uSinglePrecision); |
| 358 | } |
| 359 | |
| 360 | |
Laurence Lundblade | 67bd551 | 2018-11-02 21:44:06 +0700 | [diff] [blame] | 361 | // Public function; see ieee754.h |
| 362 | double IEEE754_HalfToDouble(uint16_t uHalfPrecision) |
| 363 | { |
| 364 | // Pull out the three parts of the half-precision float |
| 365 | const uint16_t uHalfSignificand = uHalfPrecision & HALF_SIGNIFICAND_MASK; |
| 366 | const int16_t nHalfUnBiasedExponent = ((uHalfPrecision & HALF_EXPONENT_MASK) >> HALF_EXPONENT_SHIFT) - HALF_EXPONENT_BIAS; |
| 367 | const uint16_t uHalfSign = (uHalfPrecision & HALF_SIGN_MASK) >> HALF_SIGN_SHIFT; |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 368 | |
| 369 | |
Laurence Lundblade | 67bd551 | 2018-11-02 21:44:06 +0700 | [diff] [blame] | 370 | // Make the three parts of hte single-precision number |
| 371 | uint64_t uDoubleSignificand, uDoubleSign, uDoubleBiasedExponent; |
| 372 | if(nHalfUnBiasedExponent == HALF_EXPONENT_ZERO) { |
| 373 | // 0 or subnormal |
| 374 | uDoubleBiasedExponent = DOUBLE_EXPONENT_ZERO + DOUBLE_EXPONENT_BIAS; |
| 375 | if(uHalfSignificand) { |
| 376 | // Subnormal case |
| 377 | uDoubleBiasedExponent = -HALF_EXPONENT_BIAS + DOUBLE_EXPONENT_BIAS +1; |
| 378 | // A half-precision subnormal can always be converted to a normal double-precision float because the ranges line up |
| 379 | uDoubleSignificand = uHalfSignificand; |
| 380 | // Shift bits from right of the decimal to left, reducing the exponent by 1 each time |
| 381 | do { |
| 382 | uDoubleSignificand <<= 1; |
| 383 | uDoubleBiasedExponent--; |
| 384 | } while ((uDoubleSignificand & 0x400) == 0); |
| 385 | uDoubleSignificand &= HALF_SIGNIFICAND_MASK; |
| 386 | uDoubleSignificand <<= (DOUBLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS); |
| 387 | } else { |
| 388 | // Just zero |
| 389 | uDoubleSignificand = 0; |
| 390 | } |
| 391 | } else if(nHalfUnBiasedExponent == HALF_EXPONENT_INF_OR_NAN) { |
| 392 | // NaN or Inifinity |
| 393 | uDoubleBiasedExponent = DOUBLE_EXPONENT_INF_OR_NAN + DOUBLE_EXPONENT_BIAS; |
| 394 | if(uHalfSignificand) { |
| 395 | // NaN |
| 396 | // First preserve the NaN payload from half to single |
| 397 | uDoubleSignificand = uHalfSignificand & ~HALF_QUIET_NAN_BIT; |
| 398 | if(uHalfSignificand & HALF_QUIET_NAN_BIT) { |
| 399 | // Next, set qNaN if needed since half qNaN bit is not copied above |
| 400 | uDoubleSignificand |= DOUBLE_QUIET_NAN_BIT; |
| 401 | } |
| 402 | } else { |
| 403 | // Infinity |
| 404 | uDoubleSignificand = 0; |
| 405 | } |
| 406 | } else { |
| 407 | // Normal number |
| 408 | uDoubleBiasedExponent = nHalfUnBiasedExponent + DOUBLE_EXPONENT_BIAS; |
| 409 | uDoubleSignificand = (uint64_t)uHalfSignificand << (DOUBLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS); |
| 410 | } |
| 411 | uDoubleSign = uHalfSign; |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 412 | |
| 413 | |
Laurence Lundblade | 67bd551 | 2018-11-02 21:44:06 +0700 | [diff] [blame] | 414 | // Shift the 3 parts into place as a double-precision |
| 415 | const uint64_t uDouble = uDoubleSignificand | |
| 416 | (uDoubleBiasedExponent << DOUBLE_EXPONENT_SHIFT) | |
| 417 | (uDoubleSign << DOUBLE_SIGN_SHIFT); |
| 418 | return CopyUint64ToDouble(uDouble); |
| 419 | } |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 420 | |
| 421 | |
| 422 | // Public function; see ieee754.h |
| 423 | IEEE754_union IEEE754_FloatToSmallest(float f) |
| 424 | { |
| 425 | IEEE754_union result; |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 426 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 427 | // Pull the neeed two parts out of the single-precision float |
| 428 | const uint32_t uSingle = CopyFloatToUint32(f); |
| 429 | const int32_t nSingleExponent = ((uSingle & SINGLE_EXPONENT_MASK) >> SINGLE_EXPONENT_SHIFT) - SINGLE_EXPONENT_BIAS; |
| 430 | const uint32_t uSingleSignificand = uSingle & SINGLE_SIGNIFICAND_MASK; |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 431 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 432 | // Bit mask that is the significand bits that would be lost when converting |
| 433 | // from single-precision to half-precision |
| 434 | const uint64_t uDroppedSingleBits = SINGLE_SIGNIFICAND_MASK >> HALF_NUM_SIGNIFICAND_BITS; |
| 435 | |
| 436 | // Optimizer will re organize so there is only one call to IEEE754_FloatToHalf() |
| 437 | if(uSingle == 0) { |
| 438 | // Value is 0.0000, not a a subnormal |
Laurence Lundblade | 577d821 | 2018-11-01 14:04:08 +0700 | [diff] [blame] | 439 | result.uSize = IEEE754_UNION_IS_HALF; |
| 440 | result.uValue = IEEE754_FloatToHalf(f); |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 441 | } else if(nSingleExponent == SINGLE_EXPONENT_INF_OR_NAN) { |
| 442 | // NaN, +/- infinity |
Laurence Lundblade | 577d821 | 2018-11-01 14:04:08 +0700 | [diff] [blame] | 443 | result.uSize = IEEE754_UNION_IS_HALF; |
| 444 | result.uValue = IEEE754_FloatToHalf(f); |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 445 | } else if((nSingleExponent >= HALF_EXPONENT_MIN) && nSingleExponent <= HALF_EXPONENT_MAX && (!(uSingleSignificand & uDroppedSingleBits))) { |
| 446 | // Normal number in exponent range and precision won't be lost |
Laurence Lundblade | 577d821 | 2018-11-01 14:04:08 +0700 | [diff] [blame] | 447 | result.uSize = IEEE754_UNION_IS_HALF; |
| 448 | result.uValue = IEEE754_FloatToHalf(f); |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 449 | } else { |
| 450 | // Subnormal, exponent out of range, or precision will be lost |
Laurence Lundblade | 577d821 | 2018-11-01 14:04:08 +0700 | [diff] [blame] | 451 | result.uSize = IEEE754_UNION_IS_SINGLE; |
| 452 | result.uValue = uSingle; |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 453 | } |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 454 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 455 | return result; |
| 456 | } |
| 457 | |
Laurence Lundblade | 8db3d3e | 2018-09-29 11:46:37 -0700 | [diff] [blame] | 458 | // Public function; see ieee754.h |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 459 | IEEE754_union IEEE754_DoubleToSmallestInternal(double d, int bAllowHalfPrecision) |
| 460 | { |
| 461 | IEEE754_union result; |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 462 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 463 | // Pull the needed two parts out of the double-precision float |
| 464 | const uint64_t uDouble = CopyDoubleToUint64(d); |
| 465 | const int64_t nDoubleExponent = ((uDouble & DOUBLE_EXPONENT_MASK) >> DOUBLE_EXPONENT_SHIFT) - DOUBLE_EXPONENT_BIAS; |
| 466 | const uint64_t uDoubleSignificand = uDouble & DOUBLE_SIGNIFICAND_MASK; |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 467 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 468 | // Masks to check whether dropped significand bits are zero or not |
| 469 | const uint64_t uDroppedDoubleBits = DOUBLE_SIGNIFICAND_MASK >> HALF_NUM_SIGNIFICAND_BITS; |
| 470 | const uint64_t uDroppedSingleBits = DOUBLE_SIGNIFICAND_MASK >> SINGLE_NUM_SIGNIFICAND_BITS; |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 471 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 472 | // The various cases |
Laurence Lundblade | d711fb2 | 2018-09-26 14:35:22 -0700 | [diff] [blame] | 473 | if(d == 0.0) { // Take care of positive and negative zero |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 474 | // Value is 0.0000, not a a subnormal |
Laurence Lundblade | 577d821 | 2018-11-01 14:04:08 +0700 | [diff] [blame] | 475 | result.uSize = IEEE754_UNION_IS_HALF; |
| 476 | result.uValue = IEEE754_DoubleToHalf(d); |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 477 | } else if(nDoubleExponent == DOUBLE_EXPONENT_INF_OR_NAN) { |
| 478 | // NaN, +/- infinity |
Laurence Lundblade | 577d821 | 2018-11-01 14:04:08 +0700 | [diff] [blame] | 479 | result.uSize = IEEE754_UNION_IS_HALF; |
| 480 | result.uValue = IEEE754_DoubleToHalf(d); |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 481 | } else if(bAllowHalfPrecision && (nDoubleExponent >= HALF_EXPONENT_MIN) && nDoubleExponent <= HALF_EXPONENT_MAX && (!(uDoubleSignificand & uDroppedDoubleBits))) { |
| 482 | // Can convert to half without precision loss |
Laurence Lundblade | 577d821 | 2018-11-01 14:04:08 +0700 | [diff] [blame] | 483 | result.uSize = IEEE754_UNION_IS_HALF; |
| 484 | result.uValue = IEEE754_DoubleToHalf(d); |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 485 | } else if((nDoubleExponent >= SINGLE_EXPONENT_MIN) && nDoubleExponent <= SINGLE_EXPONENT_MAX && (!(uDoubleSignificand & uDroppedSingleBits))) { |
| 486 | // Can convert to single without precision loss |
Laurence Lundblade | 577d821 | 2018-11-01 14:04:08 +0700 | [diff] [blame] | 487 | result.uSize = IEEE754_UNION_IS_SINGLE; |
| 488 | result.uValue = CopyFloatToUint32((float)d); |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 489 | } else { |
| 490 | // Can't convert without precision loss |
Laurence Lundblade | 577d821 | 2018-11-01 14:04:08 +0700 | [diff] [blame] | 491 | result.uSize = IEEE754_UNION_IS_DOUBLE; |
| 492 | result.uValue = uDouble; |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 493 | } |
Laurence Lundblade | 3aee3a3 | 2018-12-17 16:17:45 -0800 | [diff] [blame] | 494 | |
Laurence Lundblade | 12d32c5 | 2018-09-19 11:25:27 -0700 | [diff] [blame] | 495 | return result; |
| 496 | } |
| 497 | |