| /*============================================================================== |
| Copyright (c) 2016-2018, The Linux Foundation. |
| Copyright (c) 2018-2022, Laurence Lundblade. |
| Copyright (c) 2021, Arm Limited. |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following |
| disclaimer in the documentation and/or other materials provided |
| with the distribution. |
| * Neither the name of The Linux Foundation nor the names of its |
| contributors, nor the name "Laurence Lundblade" may be used to |
| endorse or promote products derived from this software without |
| specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED |
| WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS |
| BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
| OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN |
| IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| =============================================================================*/ |
| |
| |
| #include "qcbor/qcbor_decode.h" |
| #include "qcbor/qcbor_spiffy_decode.h" |
| #include "ieee754.h" /* Does not use math.h */ |
| |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| |
| #include <math.h> /* For isnan(), llround(), llroudf(), round(), roundf(), |
| * pow(), exp2() |
| */ |
| #include <fenv.h> /* feclearexcept(), fetestexcept() */ |
| |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| |
| |
| |
| #define SIZEOF_C_ARRAY(array,type) (sizeof(array)/sizeof(type)) |
| |
| |
| |
| |
| static inline bool |
| QCBORItem_IsMapOrArray(const QCBORItem *pMe) |
| { |
| const uint8_t uDataType = pMe->uDataType; |
| return uDataType == QCBOR_TYPE_MAP || |
| uDataType == QCBOR_TYPE_ARRAY || |
| uDataType == QCBOR_TYPE_MAP_AS_ARRAY; |
| } |
| |
| static inline bool |
| QCBORItem_IsEmptyDefiniteLengthMapOrArray(const QCBORItem *pMe) |
| { |
| if(!QCBORItem_IsMapOrArray(pMe)){ |
| return false; |
| } |
| |
| if(pMe->val.uCount != 0) { |
| return false; |
| } |
| return true; |
| } |
| |
| static inline bool |
| QCBORItem_IsIndefiniteLengthMapOrArray(const QCBORItem *pMe) |
| { |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS |
| if(!QCBORItem_IsMapOrArray(pMe)){ |
| return false; |
| } |
| |
| if(pMe->val.uCount != QCBOR_COUNT_INDICATES_INDEFINITE_LENGTH) { |
| return false; |
| } |
| return true; |
| #else /* QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS */ |
| (void)pMe; |
| return false; |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS */ |
| } |
| |
| |
| /*=========================================================================== |
| DecodeNesting -- Tracking array/map/sequence/bstr-wrapped nesting |
| ===========================================================================*/ |
| |
| /* |
| * See comments about and typedef of QCBORDecodeNesting in qcbor_private.h, |
| * the data structure all these functions work on. |
| */ |
| |
| |
| static inline uint8_t |
| DecodeNesting_GetCurrentLevel(const QCBORDecodeNesting *pNesting) |
| { |
| const ptrdiff_t nLevel = pNesting->pCurrent - &(pNesting->pLevels[0]); |
| /* Limit in DecodeNesting_Descend against more than |
| * QCBOR_MAX_ARRAY_NESTING gaurantees cast is safe |
| */ |
| return (uint8_t)nLevel; |
| } |
| |
| |
| static inline uint8_t |
| DecodeNesting_GetBoundedModeLevel(const QCBORDecodeNesting *pNesting) |
| { |
| const ptrdiff_t nLevel = pNesting->pCurrentBounded - &(pNesting->pLevels[0]); |
| /* Limit in DecodeNesting_Descend against more than |
| * QCBOR_MAX_ARRAY_NESTING gaurantees cast is safe |
| */ |
| return (uint8_t)nLevel; |
| } |
| |
| |
| static inline uint32_t |
| DecodeNesting_GetMapOrArrayStart(const QCBORDecodeNesting *pNesting) |
| { |
| return pNesting->pCurrentBounded->u.ma.uStartOffset; |
| } |
| |
| |
| static inline bool |
| DecodeNesting_IsBoundedEmpty(const QCBORDecodeNesting *pNesting) |
| { |
| if(pNesting->pCurrentBounded->u.ma.uCountCursor == QCBOR_COUNT_INDICATES_ZERO_LENGTH) { |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| |
| static inline bool |
| DecodeNesting_IsCurrentAtTop(const QCBORDecodeNesting *pNesting) |
| { |
| if(pNesting->pCurrent == &(pNesting->pLevels[0])) { |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| |
| static inline bool |
| DecodeNesting_IsCurrentDefiniteLength(const QCBORDecodeNesting *pNesting) |
| { |
| if(pNesting->pCurrent->uLevelType == QCBOR_TYPE_BYTE_STRING) { |
| /* Not a map or array */ |
| return false; |
| } |
| |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS |
| if(pNesting->pCurrent->u.ma.uCountTotal == QCBOR_COUNT_INDICATES_INDEFINITE_LENGTH) { |
| /* Is indefinite */ |
| return false; |
| } |
| |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS */ |
| |
| /* All checks passed; is a definte length map or array */ |
| return true; |
| } |
| |
| static inline bool |
| DecodeNesting_IsCurrentBstrWrapped(const QCBORDecodeNesting *pNesting) |
| { |
| if(pNesting->pCurrent->uLevelType == QCBOR_TYPE_BYTE_STRING) { |
| /* is a byte string */ |
| return true; |
| } |
| return false; |
| } |
| |
| |
| static inline bool DecodeNesting_IsCurrentBounded(const QCBORDecodeNesting *pNesting) |
| { |
| if(pNesting->pCurrent->uLevelType == QCBOR_TYPE_BYTE_STRING) { |
| return true; |
| } |
| if(pNesting->pCurrent->u.ma.uStartOffset != QCBOR_NON_BOUNDED_OFFSET) { |
| return true; |
| } |
| return false; |
| } |
| |
| |
| static inline void DecodeNesting_SetMapOrArrayBoundedMode(QCBORDecodeNesting *pNesting, bool bIsEmpty, size_t uStart) |
| { |
| /* Should be only called on maps and arrays */ |
| /* |
| * DecodeNesting_EnterBoundedMode() checks to be sure uStart is not |
| * larger than DecodeNesting_EnterBoundedMode which keeps it less than |
| * uin32_t so the cast is safe. |
| */ |
| pNesting->pCurrent->u.ma.uStartOffset = (uint32_t)uStart; |
| |
| if(bIsEmpty) { |
| pNesting->pCurrent->u.ma.uCountCursor = QCBOR_COUNT_INDICATES_ZERO_LENGTH; |
| } |
| } |
| |
| |
| static inline void DecodeNesting_ClearBoundedMode(QCBORDecodeNesting *pNesting) |
| { |
| pNesting->pCurrent->u.ma.uStartOffset = QCBOR_NON_BOUNDED_OFFSET; |
| } |
| |
| |
| static inline bool |
| DecodeNesting_IsAtEndOfBoundedLevel(const QCBORDecodeNesting *pNesting) |
| { |
| if(pNesting->pCurrentBounded == NULL) { |
| /* No bounded map or array set up */ |
| return false; |
| } |
| if(pNesting->pCurrent->uLevelType == QCBOR_TYPE_BYTE_STRING) { |
| /* Not a map or array; end of those is by byte count */ |
| return false; |
| } |
| if(!DecodeNesting_IsCurrentBounded(pNesting)) { |
| /* In a traveral at a level deeper than the bounded level */ |
| return false; |
| } |
| /* Works for both definite- and indefinitelength maps/arrays */ |
| if(pNesting->pCurrentBounded->u.ma.uCountCursor != 0 && |
| pNesting->pCurrentBounded->u.ma.uCountCursor != QCBOR_COUNT_INDICATES_ZERO_LENGTH) { |
| /* Count is not zero, still unconsumed item */ |
| return false; |
| } |
| /* All checks passed, got to the end of an array or map*/ |
| return true; |
| } |
| |
| |
| static inline bool |
| DecodeNesting_IsEndOfDefiniteLengthMapOrArray(const QCBORDecodeNesting *pNesting) |
| { |
| /* Must only be called on map / array */ |
| if(pNesting->pCurrent->u.ma.uCountCursor == 0) { |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| |
| static inline bool |
| DecodeNesting_IsCurrentTypeMap(const QCBORDecodeNesting *pNesting) |
| { |
| if(pNesting->pCurrent->uLevelType == CBOR_MAJOR_TYPE_MAP) { |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| |
| static inline bool |
| DecodeNesting_IsBoundedType(const QCBORDecodeNesting *pNesting, uint8_t uType) |
| { |
| if(pNesting->pCurrentBounded == NULL) { |
| return false; |
| } |
| |
| if(pNesting->pCurrentBounded->uLevelType != uType) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| static inline void |
| DecodeNesting_DecrementDefiniteLengthMapOrArrayCount(QCBORDecodeNesting *pNesting) |
| { |
| /* Only call on a definite-length array / map */ |
| pNesting->pCurrent->u.ma.uCountCursor--; |
| } |
| |
| |
| static inline void |
| DecodeNesting_ReverseDecrement(QCBORDecodeNesting *pNesting) |
| { |
| /* Only call on a definite-length array / map */ |
| pNesting->pCurrent->u.ma.uCountCursor++; |
| } |
| |
| |
| static inline void |
| DecodeNesting_Ascend(QCBORDecodeNesting *pNesting) |
| { |
| pNesting->pCurrent--; |
| } |
| |
| |
| static QCBORError |
| DecodeNesting_Descend(QCBORDecodeNesting *pNesting, uint8_t uType) |
| { |
| /* Error out if nesting is too deep */ |
| if(pNesting->pCurrent >= &(pNesting->pLevels[QCBOR_MAX_ARRAY_NESTING])) { |
| return QCBOR_ERR_ARRAY_DECODE_NESTING_TOO_DEEP; |
| } |
| |
| /* The actual descend */ |
| pNesting->pCurrent++; |
| |
| pNesting->pCurrent->uLevelType = uType; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| static inline QCBORError |
| DecodeNesting_EnterBoundedMapOrArray(QCBORDecodeNesting *pNesting, |
| bool bIsEmpty, |
| size_t uOffset) |
| { |
| /* |
| * Should only be called on map/array. |
| * |
| * Have descended into this before this is called. The job here is |
| * just to mark it in bounded mode. |
| * |
| * Check against QCBOR_MAX_DECODE_INPUT_SIZE make sure that |
| * uOffset doesn't collide with QCBOR_NON_BOUNDED_OFFSET. |
| * |
| * Cast of uOffset to uint32_t for cases where SIZE_MAX < UINT32_MAX. |
| */ |
| if((uint32_t)uOffset >= QCBOR_MAX_DECODE_INPUT_SIZE) { |
| return QCBOR_ERR_INPUT_TOO_LARGE; |
| } |
| |
| pNesting->pCurrentBounded = pNesting->pCurrent; |
| |
| DecodeNesting_SetMapOrArrayBoundedMode(pNesting, bIsEmpty, uOffset); |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| static inline QCBORError |
| DecodeNesting_DescendMapOrArray(QCBORDecodeNesting *pNesting, |
| uint8_t uQCBORType, |
| uint64_t uCount) |
| { |
| QCBORError uError = QCBOR_SUCCESS; |
| |
| if(uCount == 0) { |
| /* Nothing to do for empty definite-length arrays. They are just are |
| * effectively the same as an item that is not a map or array. |
| */ |
| goto Done; |
| /* Empty indefinite-length maps and arrays are handled elsewhere */ |
| } |
| |
| /* Error out if arrays is too long to handle */ |
| if(uCount != QCBOR_COUNT_INDICATES_INDEFINITE_LENGTH && |
| uCount > QCBOR_MAX_ITEMS_IN_ARRAY) { |
| uError = QCBOR_ERR_ARRAY_DECODE_TOO_LONG; |
| goto Done; |
| } |
| |
| uError = DecodeNesting_Descend(pNesting, uQCBORType); |
| if(uError != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| /* Fill in the new map/array level. Check above makes casts OK. */ |
| pNesting->pCurrent->u.ma.uCountCursor = (uint16_t)uCount; |
| pNesting->pCurrent->u.ma.uCountTotal = (uint16_t)uCount; |
| |
| DecodeNesting_ClearBoundedMode(pNesting); |
| |
| Done: |
| return uError;; |
| } |
| |
| |
| static inline void |
| DecodeNesting_LevelUpCurrent(QCBORDecodeNesting *pNesting) |
| { |
| pNesting->pCurrent = pNesting->pCurrentBounded - 1; |
| } |
| |
| |
| static inline void |
| DecodeNesting_LevelUpBounded(QCBORDecodeNesting *pNesting) |
| { |
| while(pNesting->pCurrentBounded != &(pNesting->pLevels[0])) { |
| pNesting->pCurrentBounded--; |
| if(DecodeNesting_IsCurrentBounded(pNesting)) { |
| break; |
| } |
| } |
| } |
| |
| |
| static inline void |
| DecodeNesting_SetCurrentToBoundedLevel(QCBORDecodeNesting *pNesting) |
| { |
| pNesting->pCurrent = pNesting->pCurrentBounded; |
| } |
| |
| |
| static inline QCBORError |
| DecodeNesting_DescendIntoBstrWrapped(QCBORDecodeNesting *pNesting, |
| uint32_t uEndOffset, |
| uint32_t uStartOffset) |
| { |
| QCBORError uError; |
| |
| uError = DecodeNesting_Descend(pNesting, QCBOR_TYPE_BYTE_STRING); |
| if(uError != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| /* Fill in the new byte string level */ |
| pNesting->pCurrent->u.bs.uSavedEndOffset = uEndOffset; |
| pNesting->pCurrent->u.bs.uBstrStartOffset = uStartOffset; |
| |
| /* Bstr wrapped levels are always bounded */ |
| pNesting->pCurrentBounded = pNesting->pCurrent; |
| |
| Done: |
| return uError;; |
| } |
| |
| |
| static inline void |
| DecodeNesting_ZeroMapOrArrayCount(QCBORDecodeNesting *pNesting) |
| { |
| pNesting->pCurrent->u.ma.uCountCursor = 0; |
| } |
| |
| |
| static inline void |
| DecodeNesting_ResetMapOrArrayCount(QCBORDecodeNesting *pNesting) |
| { |
| if(pNesting->pCurrent->u.ma.uCountCursor != QCBOR_COUNT_INDICATES_ZERO_LENGTH) { |
| pNesting->pCurrentBounded->u.ma.uCountCursor = pNesting->pCurrentBounded->u.ma.uCountTotal; |
| } |
| } |
| |
| |
| static inline void |
| DecodeNesting_Init(QCBORDecodeNesting *pNesting) |
| { |
| /* Assumes that *pNesting has been zero'd before this call. */ |
| pNesting->pLevels[0].uLevelType = QCBOR_TYPE_BYTE_STRING; |
| pNesting->pCurrent = &(pNesting->pLevels[0]); |
| } |
| |
| |
| static inline void |
| DecodeNesting_PrepareForMapSearch(QCBORDecodeNesting *pNesting, |
| QCBORDecodeNesting *pSave) |
| { |
| *pSave = *pNesting; |
| } |
| |
| |
| static inline void |
| DecodeNesting_RestoreFromMapSearch(QCBORDecodeNesting *pNesting, |
| const QCBORDecodeNesting *pSave) |
| { |
| *pNesting = *pSave; |
| } |
| |
| |
| static inline uint32_t |
| DecodeNesting_GetPreviousBoundedEnd(const QCBORDecodeNesting *pMe) |
| { |
| return pMe->pCurrentBounded->u.bs.uSavedEndOffset; |
| } |
| |
| |
| |
| |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS |
| /*=========================================================================== |
| QCBORStringAllocate -- STRING ALLOCATOR INVOCATION |
| |
| The following four functions are pretty wrappers for invocation of |
| the string allocator supplied by the caller. |
| |
| ===========================================================================*/ |
| |
| static inline void |
| StringAllocator_Free(const QCBORInternalAllocator *pMe, const void *pMem) |
| { |
| /* This cast to uintptr_t suppresses the "-Wcast-qual" warnings. |
| * This is the one place where the const needs to be cast away so const can |
| * be use in the rest of the code. |
| */ |
| (pMe->pfAllocator)(pMe->pAllocateCxt, (void *)(uintptr_t)pMem, 0); |
| } |
| |
| // StringAllocator_Reallocate called with pMem NULL is |
| // equal to StringAllocator_Allocate() |
| static inline UsefulBuf |
| StringAllocator_Reallocate(const QCBORInternalAllocator *pMe, |
| const void *pMem, |
| size_t uSize) |
| { |
| /* See comment in StringAllocator_Free() */ |
| return (pMe->pfAllocator)(pMe->pAllocateCxt, (void *)(uintptr_t)pMem, uSize); |
| } |
| |
| static inline UsefulBuf |
| StringAllocator_Allocate(const QCBORInternalAllocator *pMe, size_t uSize) |
| { |
| return (pMe->pfAllocator)(pMe->pAllocateCxt, NULL, uSize); |
| } |
| |
| static inline void |
| StringAllocator_Destruct(const QCBORInternalAllocator *pMe) |
| { |
| /* See comment in StringAllocator_Free() */ |
| if(pMe->pfAllocator) { |
| (pMe->pfAllocator)(pMe->pAllocateCxt, NULL, 0); |
| } |
| } |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS */ |
| |
| |
| |
| |
| /*=========================================================================== |
| QCBORDecode -- The main implementation of CBOR decoding |
| |
| See qcbor/qcbor_decode.h for definition of the object |
| used here: QCBORDecodeContext |
| ===========================================================================*/ |
| /* |
| * Public function, see header file |
| */ |
| void QCBORDecode_Init(QCBORDecodeContext *pMe, |
| UsefulBufC EncodedCBOR, |
| QCBORDecodeMode nDecodeMode) |
| { |
| memset(pMe, 0, sizeof(QCBORDecodeContext)); |
| UsefulInputBuf_Init(&(pMe->InBuf), EncodedCBOR); |
| /* Don't bother with error check on decode mode. If a bad value is |
| * passed it will just act as if the default normal mode of 0 was set. |
| */ |
| pMe->uDecodeMode = (uint8_t)nDecodeMode; |
| DecodeNesting_Init(&(pMe->nesting)); |
| |
| /* Inialize me->auMappedTags to CBOR_TAG_INVALID16. See |
| * GetNext_TaggedItem() and MapTagNumber(). */ |
| memset(pMe->auMappedTags, 0xff, sizeof(pMe->auMappedTags)); |
| } |
| |
| |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS |
| |
| /* |
| * Public function, see header file |
| */ |
| void QCBORDecode_SetUpAllocator(QCBORDecodeContext *pMe, |
| QCBORStringAllocate pfAllocateFunction, |
| void *pAllocateContext, |
| bool bAllStrings) |
| { |
| pMe->StringAllocator.pfAllocator = pfAllocateFunction; |
| pMe->StringAllocator.pAllocateCxt = pAllocateContext; |
| pMe->bStringAllocateAll = bAllStrings; |
| } |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS */ |
| |
| |
| |
| |
| /* |
| * Deprecated public function, see header file |
| */ |
| void QCBORDecode_SetCallerConfiguredTagList(QCBORDecodeContext *pMe, |
| const QCBORTagListIn *pTagList) |
| { |
| /* This does nothing now. It is retained for backwards compatibility */ |
| (void)pMe; |
| (void)pTagList; |
| } |
| |
| |
| |
| |
| /* |
| * Decoding items is done in six layers, one calling the next one |
| * down. If a layer has no work to do for a particular item, it |
| * returns quickly. |
| * |
| * 1. QCBORDecode_GetNextTagContent - The top layer processes tagged |
| * data items, turning them into the local C representation. For the |
| * most simple it is just associating a QCBOR_TYPE with the data. For |
| * the complex ones that an aggregate of data items, there is some |
| * further decoding and some limited recursion. |
| * |
| * 2. QCBORDecode_GetNextMapOrArray - This manages the beginnings and |
| * ends of maps and arrays. It tracks descending into and ascending |
| * out of maps/arrays. It processes breaks that terminate |
| * indefinite-length maps and arrays. |
| * |
| * 3. QCBORDecode_GetNextMapEntry - This handles the combining of two |
| * items, the label and the data, that make up a map entry. It only |
| * does work on maps. It combines the label and data items into one |
| * labeled item. |
| * |
| * 4. QCBORDecode_GetNextTagNumber - This decodes type 6 tag |
| * numbers. It turns the tag numbers into bit flags associated with |
| * the data item. No actual decoding of the contents of the tag is |
| * performed here. |
| * |
| * 5. QCBORDecode_GetNextFullString - This assembles the sub-items |
| * that make up an indefinite-length string into one string item. It |
| * uses the string allocator to create contiguous space for the |
| * item. It processes all breaks that are part of indefinite-length |
| * strings. |
| * |
| * 6. DecodeAtomicDataItem - This decodes the atomic data items in |
| * CBOR. Each atomic data item has a "major type", an integer |
| * "argument" and optionally some content. For text and byte strings, |
| * the content is the bytes that make up the string. These are the |
| * smallest data items that are considered to be well-formed. The |
| * content may also be other data items in the case of aggregate |
| * types. They are not handled in this layer. |
| * |
| * Roughly this takes 300 bytes of stack for vars. TODO: evaluate this |
| * more carefully and correctly. |
| */ |
| |
| |
| /* |
| * Note about use of int and unsigned variables. |
| * |
| * See http://www.unix.org/whitepapers/64bit.html for reasons int is |
| * used carefully here, and in particular why it isn't used in the |
| * public interface. Also see |
| * https://stackoverflow.com/questions/17489857/why-is-int-typically-32-bit-on-64-bit-compilers |
| * |
| * Int is used for values that need less than 16-bits and would be |
| * subject to integer promotion and result in complaining from static |
| * analyzers. |
| */ |
| |
| |
| /** |
| * @brief Decode the CBOR head, the type and argument. |
| * |
| * @param[in] pUInBuf The input buffer to read from. |
| * @param[out] pnMajorType The decoded major type. |
| * @param[out] puArgument The decoded argument. |
| * @param[out] pnAdditionalInfo The decoded Lower 5 bits of initial byte. |
| * |
| * @retval QCBOR_ERR_UNSUPPORTED |
| * @retval QCBOR_ERR_HIT_END |
| * |
| * This decodes the CBOR "head" that every CBOR data item has. See |
| * longer explaination of the head in documentation for |
| * QCBOREncode_EncodeHead(). |
| * |
| * This does the network->host byte order conversion. The conversion |
| * here also results in the conversion for floats in addition to that |
| * for lengths, tags and integer values. |
| * |
| * The int type is preferred to uint8_t for some variables as this |
| * avoids integer promotions, can reduce code size and makes static |
| * analyzers happier. |
| */ |
| static inline QCBORError |
| DecodeHead(UsefulInputBuf *pUInBuf, |
| int *pnMajorType, |
| uint64_t *puArgument, |
| int *pnAdditionalInfo) |
| { |
| QCBORError uReturn; |
| |
| /* Get the initial byte that every CBOR data item has and break it |
| * down. */ |
| const int nInitialByte = (int)UsefulInputBuf_GetByte(pUInBuf); |
| const int nTmpMajorType = nInitialByte >> 5; |
| const int nAdditionalInfo = nInitialByte & 0x1f; |
| |
| /* Where the argument accumulates */ |
| uint64_t uArgument; |
| |
| if(nAdditionalInfo >= LEN_IS_ONE_BYTE && nAdditionalInfo <= LEN_IS_EIGHT_BYTES) { |
| /* Need to get 1,2,4 or 8 additional argument bytes. Map |
| * LEN_IS_ONE_BYTE..LEN_IS_EIGHT_BYTES to actual length. |
| */ |
| static const uint8_t aIterate[] = {1,2,4,8}; |
| |
| /* Loop getting all the bytes in the argument */ |
| uArgument = 0; |
| for(int i = aIterate[nAdditionalInfo - LEN_IS_ONE_BYTE]; i; i--) { |
| /* This shift and add gives the endian conversion. */ |
| uArgument = (uArgument << 8) + UsefulInputBuf_GetByte(pUInBuf); |
| } |
| } else if(nAdditionalInfo >= ADDINFO_RESERVED1 && nAdditionalInfo <= ADDINFO_RESERVED3) { |
| /* The reserved and thus-far unused additional info values */ |
| uReturn = QCBOR_ERR_UNSUPPORTED; |
| goto Done; |
| } else { |
| /* Less than 24, additional info is argument or 31, an |
| * indefinite-length. No more bytes to get. |
| */ |
| uArgument = (uint64_t)nAdditionalInfo; |
| } |
| |
| if(UsefulInputBuf_GetError(pUInBuf)) { |
| uReturn = QCBOR_ERR_HIT_END; |
| goto Done; |
| } |
| |
| /* All successful if arrived here. */ |
| uReturn = QCBOR_SUCCESS; |
| *pnMajorType = nTmpMajorType; |
| *puArgument = uArgument; |
| *pnAdditionalInfo = nAdditionalInfo; |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| /** |
| * @brief Decode integer types, major types 0 and 1. |
| * |
| * @param[in] nMajorType The CBOR major type (0 or 1). |
| * @param[in] uArgument The argument from the head. |
| * @param[out] pDecodedItem The filled in decoded item. |
| * |
| * @retval QCBOR_ERR_INT_OVERFLOW |
| * |
| * Must only be called when major type is 0 or 1. |
| * |
| * CBOR doesn't explicitly specify two's compliment for integers but |
| * all CPUs use it these days and the test vectors in the RFC are |
| * so. All integers in the CBOR structure are positive and the major |
| * type indicates positive or negative. CBOR can express positive |
| * integers up to 2^x - 1 where x is the number of bits and negative |
| * integers down to 2^x. Note that negative numbers can be one more |
| * away from zero than positive. Stdint, as far as I can tell, uses |
| * two's compliment to represent negative integers. |
| */ |
| static inline QCBORError |
| DecodeInteger(int nMajorType, uint64_t uArgument, QCBORItem *pDecodedItem) |
| { |
| QCBORError uReturn = QCBOR_SUCCESS; |
| |
| if(nMajorType == CBOR_MAJOR_TYPE_POSITIVE_INT) { |
| if (uArgument <= INT64_MAX) { |
| pDecodedItem->val.int64 = (int64_t)uArgument; |
| pDecodedItem->uDataType = QCBOR_TYPE_INT64; |
| |
| } else { |
| pDecodedItem->val.uint64 = uArgument; |
| pDecodedItem->uDataType = QCBOR_TYPE_UINT64; |
| } |
| |
| } else { |
| if(uArgument <= INT64_MAX) { |
| /* CBOR's representation of negative numbers lines up with |
| * the two-compliment representation. A negative integer has |
| * one more in range than a positive integer. INT64_MIN is |
| * equal to (-INT64_MAX) - 1. |
| */ |
| pDecodedItem->val.int64 = (-(int64_t)uArgument) - 1; |
| pDecodedItem->uDataType = QCBOR_TYPE_INT64; |
| |
| } else { |
| /* C can't represent a negative integer in this range so it |
| * is an error. |
| */ |
| uReturn = QCBOR_ERR_INT_OVERFLOW; |
| } |
| } |
| |
| return uReturn; |
| } |
| |
| |
| /* Make sure #define value line up as DecodeSimple counts on this. */ |
| #if QCBOR_TYPE_FALSE != CBOR_SIMPLEV_FALSE |
| #error QCBOR_TYPE_FALSE macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_TRUE != CBOR_SIMPLEV_TRUE |
| #error QCBOR_TYPE_TRUE macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_NULL != CBOR_SIMPLEV_NULL |
| #error QCBOR_TYPE_NULL macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_UNDEF != CBOR_SIMPLEV_UNDEF |
| #error QCBOR_TYPE_UNDEF macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_BREAK != CBOR_SIMPLE_BREAK |
| #error QCBOR_TYPE_BREAK macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_DOUBLE != DOUBLE_PREC_FLOAT |
| #error QCBOR_TYPE_DOUBLE macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_FLOAT != SINGLE_PREC_FLOAT |
| #error QCBOR_TYPE_FLOAT macro value wrong |
| #endif |
| |
| |
| /** |
| * @brief Decode major type 7 -- true, false, floating-point, break... |
| * |
| * @param[in] nAdditionalInfo The lower five bits from the initial byte. |
| * @param[in] uArgument The argument from the head. |
| * @param[out] pDecodedItem The filled in decoded item. |
| * |
| * @retval QCBOR_ERR_HALF_PRECISION_DISABLED |
| * @retval QCBOR_ERR_ALL_FLOAT_DISABLED |
| * @retval QCBOR_ERR_BAD_TYPE_7 |
| */ |
| |
| static inline QCBORError |
| DecodeType7(int nAdditionalInfo, uint64_t uArgument, QCBORItem *pDecodedItem) |
| { |
| QCBORError uReturn = QCBOR_SUCCESS; |
| |
| /* uAdditionalInfo is 5 bits from the initial byte. Compile time |
| * checks above make sure uAdditionalInfo values line up with |
| * uDataType values. DecodeHead() never returns an AdditionalInfo |
| * > 0x1f so cast is safe. |
| */ |
| pDecodedItem->uDataType = (uint8_t)nAdditionalInfo; |
| |
| switch(nAdditionalInfo) { |
| /* No check for ADDINFO_RESERVED1 - ADDINFO_RESERVED3 as they |
| * are caught before this is called. |
| */ |
| |
| case HALF_PREC_FLOAT: /* 25 */ |
| #ifndef QCBOR_DISABLE_PREFERRED_FLOAT |
| /* Half-precision is returned as a double. The cast to |
| * uint16_t is safe because the encoded value was 16 bits. It |
| * was widened to 64 bits to be passed in here. |
| */ |
| pDecodedItem->val.dfnum = IEEE754_HalfToDouble((uint16_t)uArgument); |
| pDecodedItem->uDataType = QCBOR_TYPE_DOUBLE; |
| #endif /* QCBOR_DISABLE_PREFERRED_FLOAT */ |
| uReturn = FLOAT_ERR_CODE_NO_HALF_PREC(QCBOR_SUCCESS); |
| break; |
| case SINGLE_PREC_FLOAT: /* 26 */ |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| /* Single precision is normally returned as a double since |
| * double is widely supported, there is no loss of precision, |
| * it makes it easy for the caller in most cases and it can |
| * be converted back to single with no loss of precision |
| * |
| * The cast to uint32_t is safe because the encoded value was |
| * 32 bits. It was widened to 64 bits to be passed in here. |
| */ |
| { |
| const float f = UsefulBufUtil_CopyUint32ToFloat((uint32_t)uArgument); |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| /* In the normal case, use HW to convert float to |
| * double. */ |
| pDecodedItem->val.dfnum = (double)f; |
| pDecodedItem->uDataType = QCBOR_TYPE_DOUBLE; |
| #else /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| /* Use of float HW is disabled, return as a float. */ |
| pDecodedItem->val.fnum = f; |
| pDecodedItem->uDataType = QCBOR_TYPE_FLOAT; |
| |
| /* IEEE754_FloatToDouble() could be used here to return as |
| * a double, but it adds object code and most likely |
| * anyone disabling FLOAT HW use doesn't care about floats |
| * and wants to save object code. |
| */ |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| } |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| uReturn = FLOAT_ERR_CODE_NO_FLOAT(QCBOR_SUCCESS); |
| break; |
| |
| case DOUBLE_PREC_FLOAT: /* 27 */ |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| pDecodedItem->val.dfnum = UsefulBufUtil_CopyUint64ToDouble(uArgument); |
| pDecodedItem->uDataType = QCBOR_TYPE_DOUBLE; |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| uReturn = FLOAT_ERR_CODE_NO_FLOAT(QCBOR_SUCCESS); |
| break; |
| |
| case CBOR_SIMPLEV_FALSE: /* 20 */ |
| case CBOR_SIMPLEV_TRUE: /* 21 */ |
| case CBOR_SIMPLEV_NULL: /* 22 */ |
| case CBOR_SIMPLEV_UNDEF: /* 23 */ |
| case CBOR_SIMPLE_BREAK: /* 31 */ |
| break; /* nothing to do */ |
| |
| case CBOR_SIMPLEV_ONEBYTE: /* 24 */ |
| if(uArgument <= CBOR_SIMPLE_BREAK) { |
| /* This takes out f8 00 ... f8 1f which should be encoded |
| * as e0 … f7 |
| */ |
| uReturn = QCBOR_ERR_BAD_TYPE_7; |
| goto Done; |
| } |
| /* FALLTHROUGH */ |
| |
| default: /* 0-19 */ |
| pDecodedItem->uDataType = QCBOR_TYPE_UKNOWN_SIMPLE; |
| /* DecodeHead() will make uArgument equal to |
| * nAdditionalInfo when nAdditionalInfo is < 24. This cast is |
| * safe because the 2, 4 and 8 byte lengths of uNumber are in |
| * the double/float cases above |
| */ |
| pDecodedItem->val.uSimple = (uint8_t)uArgument; |
| break; |
| } |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| /** |
| * @brief Decode text and byte strings |
| * |
| * @param[in] pAllocator The string allocator or NULL. |
| * @param[in] uStrLen The length of the string. |
| * @param[in] pUInBuf The surce from which to read the string's bytes. |
| * @param[out] pDecodedItem The filled in decoded item. |
| * |
| * @retval QCBOR_ERR_HIT_END |
| * @retval QCBOR_ERR_STRING_ALLOCATE |
| * @retval QCBOR_ERR_STRING_TOO_LONG |
| * |
| * The reads @c uStrlen bytes from @c pUInBuf and fills in @c |
| * pDecodedItem. If @c pAllocator is not NULL then memory for the |
| * string is allocated. |
| */ |
| static inline QCBORError |
| DecodeBytes(const QCBORInternalAllocator *pAllocator, |
| uint64_t uStrLen, |
| UsefulInputBuf *pUInBuf, |
| QCBORItem *pDecodedItem) |
| { |
| QCBORError uReturn = QCBOR_SUCCESS; |
| |
| /* CBOR lengths can be 64 bits, but size_t is not 64 bits on all |
| * CPUs. This check makes the casts to size_t below safe. |
| * |
| * The max is 4 bytes less than the largest sizeof() so this can be |
| * tested by putting a SIZE_MAX length in the CBOR test input (no |
| * one will care the limit on strings is 4 bytes shorter). |
| */ |
| if(uStrLen > SIZE_MAX-4) { |
| uReturn = QCBOR_ERR_STRING_TOO_LONG; |
| goto Done; |
| } |
| |
| const UsefulBufC Bytes = UsefulInputBuf_GetUsefulBuf(pUInBuf, (size_t)uStrLen); |
| if(UsefulBuf_IsNULLC(Bytes)) { |
| /* Failed to get the bytes for this string item */ |
| uReturn = QCBOR_ERR_HIT_END; |
| goto Done; |
| } |
| |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS |
| /* Note that this is not where allocation to coalesce |
| * indefinite-length strings is done. This is for when the caller |
| * has requested all strings be allocated. Disabling indefinite |
| * length strings also disables this allocate-all option. |
| */ |
| if(pAllocator) { |
| /* request to use the string allocator to make a copy */ |
| UsefulBuf NewMem = StringAllocator_Allocate(pAllocator, (size_t)uStrLen); |
| if(UsefulBuf_IsNULL(NewMem)) { |
| uReturn = QCBOR_ERR_STRING_ALLOCATE; |
| goto Done; |
| } |
| pDecodedItem->val.string = UsefulBuf_Copy(NewMem, Bytes); |
| pDecodedItem->uDataAlloc = 1; |
| goto Done; |
| } |
| #else /* QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS */ |
| (void)pAllocator; |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS */ |
| |
| /* Normal case with no string allocator */ |
| pDecodedItem->val.string = Bytes; |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| /** |
| * @brief Map the CBOR major types for strings to the QCBOR types. |
| * |
| * @param[in] nCBORMajorType The CBOR major type to convert. |
| * @retturns QCBOR type number. |
| * |
| * This only works for the two string types. |
| */ |
| static inline uint8_t ConvertStringMajorTypes(int nCBORMajorType) |
| { |
| #if CBOR_MAJOR_TYPE_BYTE_STRING + 4 != QCBOR_TYPE_BYTE_STRING |
| #error QCBOR_TYPE_BYTE_STRING no lined up with major type |
| #endif |
| |
| #if CBOR_MAJOR_TYPE_TEXT_STRING + 4 != QCBOR_TYPE_TEXT_STRING |
| #error QCBOR_TYPE_TEXT_STRING no lined up with major type |
| #endif |
| |
| return (uint8_t)(nCBORMajorType + 4); |
| } |
| |
| |
| /** |
| * @brief Map the CBOR major types for arrays/maps to the QCBOR types. |
| * |
| * @param[in] nCBORMajorType The CBOR major type to convert. |
| * @retturns QCBOR type number. |
| * |
| * This only works for the two aggregate types. |
| */ |
| static inline uint8_t ConvertArrayOrMapType(int nCBORMajorType) |
| { |
| #if QCBOR_TYPE_ARRAY != CBOR_MAJOR_TYPE_ARRAY |
| #error QCBOR_TYPE_ARRAY value not lined up with major type |
| #endif |
| |
| #if QCBOR_TYPE_MAP != CBOR_MAJOR_TYPE_MAP |
| #error QCBOR_TYPE_MAP value not lined up with major type |
| #endif |
| |
| return (uint8_t)(nCBORMajorType); |
| } |
| |
| |
| /** |
| * @brief Decode a single primitive data item (decode layer 6). |
| * |
| * @param[in] pUInBuf Input buffer to read data item from. |
| * @param[out] pDecodedItem The filled-in decoded item. |
| * @param[in] pAllocator The allocator to use for strings or NULL. |
| * |
| * @retval QCBOR_ERR_UNSUPPORTED |
| * @retval QCBOR_ERR_HIT_END |
| * @retval QCBOR_ERR_INT_OVERFLOW |
| * @retval QCBOR_ERR_STRING_ALLOCATE |
| * @retval QCBOR_ERR_STRING_TOO_LONG |
| * @retval QCBOR_ERR_HALF_PRECISION_DISABLED |
| * @retval QCBOR_ERR_ALL_FLOAT_DISABLED |
| * @retval QCBOR_ERR_BAD_TYPE_7 |
| * @retval QCBOR_ERR_INDEF_LEN_ARRAYS_DISABLED |
| * |
| * This decodes the most primitive / atomic data item. It does |
| * no combing of data items. |
| */ |
| static QCBORError |
| DecodeAtomicDataItem(UsefulInputBuf *pUInBuf, |
| QCBORItem *pDecodedItem, |
| const QCBORInternalAllocator *pAllocator) |
| { |
| QCBORError uReturn; |
| |
| /* Get the major type and the argument. The argument could be |
| * length of more bytes or the value depending on the major |
| * type. nAdditionalInfo is an encoding of the length of the |
| * uNumber and is needed to decode floats and doubles. |
| */ |
| int nMajorType = 0; |
| uint64_t uArgument = 0; |
| int nAdditionalInfo = 0; |
| |
| memset(pDecodedItem, 0, sizeof(QCBORItem)); |
| |
| uReturn = DecodeHead(pUInBuf, &nMajorType, &uArgument, &nAdditionalInfo); |
| if(uReturn) { |
| goto Done; |
| } |
| |
| /* At this point the major type and the argument are valid. We've |
| * got the type and the argument that starts every CBOR data item. |
| */ |
| switch (nMajorType) { |
| case CBOR_MAJOR_TYPE_POSITIVE_INT: /* Major type 0 */ |
| case CBOR_MAJOR_TYPE_NEGATIVE_INT: /* Major type 1 */ |
| if(nAdditionalInfo == LEN_IS_INDEFINITE) { |
| uReturn = QCBOR_ERR_BAD_INT; |
| } else { |
| uReturn = DecodeInteger(nMajorType, uArgument, pDecodedItem); |
| } |
| break; |
| |
| case CBOR_MAJOR_TYPE_BYTE_STRING: /* Major type 2 */ |
| case CBOR_MAJOR_TYPE_TEXT_STRING: /* Major type 3 */ |
| pDecodedItem->uDataType = ConvertStringMajorTypes(nMajorType); |
| if(nAdditionalInfo == LEN_IS_INDEFINITE) { |
| pDecodedItem->val.string = (UsefulBufC){NULL, QCBOR_STRING_LENGTH_INDEFINITE}; |
| } else { |
| uReturn = DecodeBytes(pAllocator, uArgument, pUInBuf, pDecodedItem); |
| } |
| break; |
| |
| case CBOR_MAJOR_TYPE_ARRAY: /* Major type 4 */ |
| case CBOR_MAJOR_TYPE_MAP: /* Major type 5 */ |
| if(nAdditionalInfo == LEN_IS_INDEFINITE) { |
| /* Indefinite-length string. */ |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS |
| pDecodedItem->val.uCount = QCBOR_COUNT_INDICATES_INDEFINITE_LENGTH; |
| #else /* QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS */ |
| uReturn = QCBOR_ERR_INDEF_LEN_ARRAYS_DISABLED; |
| break; |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS */ |
| } else { |
| /* Definite-length string. */ |
| if(uArgument > QCBOR_MAX_ITEMS_IN_ARRAY) { |
| uReturn = QCBOR_ERR_ARRAY_DECODE_TOO_LONG; |
| goto Done; |
| } |
| /* cast OK because of check above */ |
| pDecodedItem->val.uCount = (uint16_t)uArgument; |
| } |
| pDecodedItem->uDataType = ConvertArrayOrMapType(nMajorType); |
| break; |
| |
| case CBOR_MAJOR_TYPE_TAG: /* Major type 6, tag numbers */ |
| #ifndef QCBOR_DISABLE_TAGS |
| if(nAdditionalInfo == LEN_IS_INDEFINITE) { |
| uReturn = QCBOR_ERR_BAD_INT; |
| } else { |
| pDecodedItem->val.uTagV = uArgument; |
| pDecodedItem->uDataType = QCBOR_TYPE_TAG; |
| } |
| #else /* QCBOR_DISABLE_TAGS */ |
| uReturn = QCBOR_ERR_TAGS_DISABLED; |
| #endif /* QCBOR_DISABLE_TAGS */ |
| break; |
| |
| case CBOR_MAJOR_TYPE_SIMPLE: |
| /* Major type 7: float, double, true, false, null... */ |
| uReturn = DecodeType7(nAdditionalInfo, uArgument, pDecodedItem); |
| break; |
| |
| default: |
| /* Never happens because DecodeHead() should never return > 7 */ |
| uReturn = QCBOR_ERR_UNSUPPORTED; |
| break; |
| } |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| /** |
| * @brief Process indefinite-length strings (decode layer 5). |
| * |
| * @param[in] pMe Decoder context |
| * @param[out] pDecodedItem The decoded item that work is done on. |
| * |
| * @retval QCBOR_ERR_UNSUPPORTED |
| * @retval QCBOR_ERR_HIT_END |
| * @retval QCBOR_ERR_INT_OVERFLOW |
| * @retval QCBOR_ERR_STRING_ALLOCATE |
| * @retval QCBOR_ERR_STRING_TOO_LONG |
| * @retval QCBOR_ERR_HALF_PRECISION_DISABLED |
| * @retval QCBOR_ERR_ALL_FLOAT_DISABLED |
| * @retval QCBOR_ERR_BAD_TYPE_7 |
| * @retval QCBOR_ERR_INDEF_LEN_ARRAYS_DISABLED |
| * @retval QCBOR_ERR_NO_STRING_ALLOCATOR |
| * @retval QCBOR_ERR_INDEFINITE_STRING_CHUNK |
| * @retval QCBOR_ERR_INDEF_LEN_STRINGS_DISABLED |
| * |
| * If @c pDecodedItem is not an indefinite-length string, this does nothing. |
| * |
| * If it is, this loops getting the subsequent chunk data items that |
| * make up the string. The string allocator is used to make a |
| * contiguous buffer for the chunks. When this completes @c |
| * pDecodedItem contains the put-together string. |
| * |
| * Code Reviewers: THIS FUNCTION DOES A LITTLE POINTER MATH |
| */ |
| static inline QCBORError |
| QCBORDecode_GetNextFullString(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem) |
| { |
| /* Aproximate stack usage |
| * 64-bit 32-bit |
| * local vars 32 16 |
| * 2 UsefulBufs 32 16 |
| * QCBORItem 56 52 |
| * TOTAL 120 74 |
| */ |
| |
| /* The string allocator is used here for two purposes: 1) |
| * coalescing the chunks of an indefinite-length string, 2) |
| * allocating storage for every string returned when requested. |
| * |
| * The first use is below in this function. Indefinite-length |
| * strings cannot be processed at all without a string allocator. |
| * |
| * The second used is in DecodeBytes() which is called by |
| * GetNext_Item() below. This second use unneccessary for most use |
| * and only happens when requested in the call to |
| * QCBORDecode_SetMemPool(). If the second use not requested then |
| * NULL is passed for the string allocator to GetNext_Item(). |
| * |
| * QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS disables the string |
| * allocator altogether and thus both of these uses. It reduced the |
| * decoder object code by about 400 bytes. |
| */ |
| const QCBORInternalAllocator *pAllocatorForGetNext = NULL; |
| |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS |
| const QCBORInternalAllocator *pAllocator = NULL; |
| |
| if(pMe->StringAllocator.pfAllocator) { |
| pAllocator = &(pMe->StringAllocator); |
| if(pMe->bStringAllocateAll) { |
| pAllocatorForGetNext = pAllocator; |
| } |
| } |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS */ |
| |
| QCBORError uReturn; |
| uReturn = DecodeAtomicDataItem(&(pMe->InBuf), pDecodedItem, pAllocatorForGetNext); |
| if(uReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| /* Only do indefinite-length processing on strings */ |
| const uint8_t uStringType = pDecodedItem->uDataType; |
| if(uStringType!= QCBOR_TYPE_BYTE_STRING && uStringType != QCBOR_TYPE_TEXT_STRING) { |
| goto Done; |
| } |
| |
| /* Is this a string with an indefinite length? */ |
| if(pDecodedItem->val.string.len != QCBOR_STRING_LENGTH_INDEFINITE) { |
| goto Done; |
| } |
| |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS |
| /* Can't decode indefinite-length strings without a string allocator */ |
| if(pAllocator == NULL) { |
| uReturn = QCBOR_ERR_NO_STRING_ALLOCATOR; |
| goto Done; |
| } |
| |
| /* Loop getting chunks of the indefinite-length string */ |
| UsefulBufC FullString = NULLUsefulBufC; |
| |
| for(;;) { |
| /* Get QCBORItem for next chunk */ |
| QCBORItem StringChunkItem; |
| /* Pass a NULL string allocator to GetNext_Item() because the |
| * individual string chunks in an indefinite-length should not |
| * be allocated. They are always copied in the the contiguous |
| * buffer allocated here. |
| */ |
| uReturn = DecodeAtomicDataItem(&(pMe->InBuf), &StringChunkItem, NULL); |
| if(uReturn) { |
| break; |
| } |
| |
| /* Is item is the marker for end of the indefinite-length string? */ |
| if(StringChunkItem.uDataType == QCBOR_TYPE_BREAK) { |
| /* String is complete */ |
| pDecodedItem->val.string = FullString; |
| pDecodedItem->uDataAlloc = 1; |
| break; |
| } |
| |
| /* All chunks must be of the same type, the type of the item |
| * that introduces the indefinite-length string. This also |
| * catches errors where the chunk is not a string at all and an |
| * indefinite-length string inside an indefinite-length string. |
| */ |
| if(StringChunkItem.uDataType != uStringType || |
| StringChunkItem.val.string.len == QCBOR_STRING_LENGTH_INDEFINITE) { |
| uReturn = QCBOR_ERR_INDEFINITE_STRING_CHUNK; |
| break; |
| } |
| |
| if (StringChunkItem.val.string.len > 0) { |
| /* The first time throurgh FullString.ptr is NULL and this is |
| * equivalent to StringAllocator_Allocate(). Subsequently it is |
| * not NULL and a reallocation happens. |
| */ |
| UsefulBuf NewMem = StringAllocator_Reallocate(pAllocator, |
| FullString.ptr, |
| FullString.len + StringChunkItem.val.string.len); |
| |
| if(UsefulBuf_IsNULL(NewMem)) { |
| uReturn = QCBOR_ERR_STRING_ALLOCATE; |
| break; |
| } |
| |
| /* Copy new string chunk to the end of accumulated string */ |
| FullString = UsefulBuf_CopyOffset(NewMem, FullString.len, StringChunkItem.val.string); |
| } |
| } |
| |
| if(uReturn != QCBOR_SUCCESS && !UsefulBuf_IsNULLC(FullString)) { |
| /* Getting the item failed, clean up the allocated memory */ |
| StringAllocator_Free(pAllocator, FullString.ptr); |
| } |
| #else /* QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS */ |
| uReturn = QCBOR_ERR_INDEF_LEN_STRINGS_DISABLED; |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS */ |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| #ifndef QCBOR_DISABLE_TAGS |
| /** |
| * @brief This converts a tag number to a shorter mapped value for storage. |
| * |
| * @param[in] pMe The decode context. |
| * @param[in] uUnMappedTag The tag number to map |
| * @param[out] puMappedTagNumer The stored tag number. |
| * |
| * @return error code. |
| * |
| * The main point of mapping tag numbers is make QCBORItem |
| * smaller. With this mapping storage of 4 tags takes up 8 |
| * bytes. Without, it would take up 32 bytes. |
| * |
| * This maps tag numbers greater than QCBOR_LAST_UNMAPPED_TAG. |
| * QCBOR_LAST_UNMAPPED_TAG is a little smaller than MAX_UINT16. |
| * |
| * See also UnMapTagNumber() and @ref QCBORItem. |
| */ |
| static inline QCBORError |
| MapTagNumber(QCBORDecodeContext *pMe, uint64_t uUnMappedTag, uint16_t *puMappedTagNumer) |
| { |
| if(uUnMappedTag > QCBOR_LAST_UNMAPPED_TAG) { |
| unsigned uTagMapIndex; |
| /* Is there room in the tag map, or is it in it already? */ |
| for(uTagMapIndex = 0; uTagMapIndex < QCBOR_NUM_MAPPED_TAGS; uTagMapIndex++) { |
| if(pMe->auMappedTags[uTagMapIndex] == CBOR_TAG_INVALID64) { |
| break; |
| } |
| if(pMe->auMappedTags[uTagMapIndex] == uUnMappedTag) { |
| break; |
| } |
| } |
| if(uTagMapIndex >= QCBOR_NUM_MAPPED_TAGS) { |
| return QCBOR_ERR_TOO_MANY_TAGS; |
| } |
| |
| /* Covers the cases where tag is new and were it is already in the map */ |
| pMe->auMappedTags[uTagMapIndex] = uUnMappedTag; |
| *puMappedTagNumer = (uint16_t)(uTagMapIndex + QCBOR_LAST_UNMAPPED_TAG + 1); |
| |
| } else { |
| *puMappedTagNumer = (uint16_t)uUnMappedTag; |
| } |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /** |
| * @brief This converts a mapped tag number to the actual tag number. |
| * |
| * @param[in] pMe The decode context. |
| * @param[in] uMappedTagNumber The stored tag number. |
| * |
| * @return The actual tag number is returned or |
| * @ref CBOR_TAG_INVALID64 on error. |
| * |
| * This is the reverse of MapTagNumber() |
| */ |
| static uint64_t |
| UnMapTagNumber(const QCBORDecodeContext *pMe, uint16_t uMappedTagNumber) |
| { |
| if(uMappedTagNumber <= QCBOR_LAST_UNMAPPED_TAG) { |
| return uMappedTagNumber; |
| } else if(uMappedTagNumber == CBOR_TAG_INVALID16) { |
| return CBOR_TAG_INVALID64; |
| } else { |
| /* This won't be negative because of code below in |
| * MapTagNumber() |
| */ |
| const unsigned uIndex = uMappedTagNumber - (QCBOR_LAST_UNMAPPED_TAG + 1); |
| return pMe->auMappedTags[uIndex]; |
| } |
| } |
| #endif /* QCBOR_DISABLE_TAGS */ |
| |
| |
| /** |
| * @brief Aggregate all tags wrapping a data item (decode layer 4). |
| * |
| * @param[in] pMe Decoder context |
| * @param[out] pDecodedItem The decoded item that work is done on. |
| |
| * @retval QCBOR_ERR_UNSUPPORTED |
| * @retval QCBOR_ERR_HIT_END |
| * @retval QCBOR_ERR_INT_OVERFLOW |
| * @retval QCBOR_ERR_STRING_ALLOCATE |
| * @retval QCBOR_ERR_STRING_TOO_LONG |
| * @retval QCBOR_ERR_HALF_PRECISION_DISABLED |
| * @retval QCBOR_ERR_ALL_FLOAT_DISABLED |
| * @retval QCBOR_ERR_BAD_TYPE_7 |
| * @retval QCBOR_ERR_INDEF_LEN_ARRAYS_DISABLED |
| * @retval QCBOR_ERR_NO_STRING_ALLOCATOR |
| * @retval QCBOR_ERR_INDEFINITE_STRING_CHUNK |
| * @retval QCBOR_ERR_INDEF_LEN_STRINGS_DISABLED |
| * @retval QCBOR_ERR_TOO_MANY_TAGS |
| * |
| * This loops getting atomic data items until one is not a tag |
| * number. Usually this is largely pass-through because most |
| * item are not tag numbers. |
| */ |
| static QCBORError |
| QCBORDecode_GetNextTagNumber(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem) |
| { |
| #ifndef QCBOR_DISABLE_TAGS |
| /* Accummulate the tags from multiple items here and then copy them |
| * into the last item, the non-tag item. |
| */ |
| uint16_t auItemsTags[QCBOR_MAX_TAGS_PER_ITEM]; |
| |
| /* Initialize to CBOR_TAG_INVALID16 */ |
| #if CBOR_TAG_INVALID16 != 0xffff |
| /* Be sure the memset does the right thing. */ |
| #err CBOR_TAG_INVALID16 tag not defined as expected |
| #endif |
| memset(auItemsTags, 0xff, sizeof(auItemsTags)); |
| |
| QCBORError uReturn = QCBOR_SUCCESS; |
| |
| /* Loop fetching data items until the item fetched is not a tag */ |
| for(;;) { |
| QCBORError uErr = QCBORDecode_GetNextFullString(pMe, pDecodedItem); |
| if(uErr != QCBOR_SUCCESS) { |
| uReturn = uErr; |
| goto Done; |
| } |
| |
| if(pDecodedItem->uDataType != QCBOR_TYPE_TAG) { |
| /* Successful exit from loop; maybe got some tags, maybe not */ |
| memcpy(pDecodedItem->uTags, auItemsTags, sizeof(auItemsTags)); |
| break; |
| } |
| |
| if(auItemsTags[QCBOR_MAX_TAGS_PER_ITEM - 1] != CBOR_TAG_INVALID16) { |
| /* No room in the tag list */ |
| uReturn = QCBOR_ERR_TOO_MANY_TAGS; |
| /* Continue on to get all tags wrapping this item even though |
| * it is erroring out in the end. This allows decoding to |
| * continue. This is a resource limit error, not a problem |
| * with being well-formed CBOR. |
| */ |
| continue; |
| } |
| /* Slide tags over one in the array to make room at index 0. |
| * Must use memmove because the move source and destination |
| * overlap. |
| */ |
| memmove(&auItemsTags[1], |
| auItemsTags, |
| sizeof(auItemsTags) - sizeof(auItemsTags[0])); |
| |
| /* Map the tag */ |
| uint16_t uMappedTagNumber = 0; |
| uReturn = MapTagNumber(pMe, pDecodedItem->val.uTagV, &uMappedTagNumber); |
| /* Continue even on error so as to consume all tags wrapping |
| * this data item so decoding can go on. If MapTagNumber() |
| * errors once it will continue to error. |
| */ |
| auItemsTags[0] = uMappedTagNumber; |
| } |
| |
| Done: |
| return uReturn; |
| |
| #else /* QCBOR_DISABLE_TAGS */ |
| |
| return QCBORDecode_GetNextFullString(pMe, pDecodedItem); |
| |
| #endif /* QCBOR_DISABLE_TAGS */ |
| } |
| |
| /** |
| * @brief Combine a map entry label and value into one item (decode layer 3). |
| * |
| * @param[in] pMe Decoder context |
| * @param[out] pDecodedItem The decoded item that work is done on. |
| * |
| * @retval QCBOR_ERR_UNSUPPORTED |
| * @retval QCBOR_ERR_HIT_END |
| * @retval QCBOR_ERR_INT_OVERFLOW |
| * @retval QCBOR_ERR_STRING_ALLOCATE |
| * @retval QCBOR_ERR_STRING_TOO_LONG |
| * @retval QCBOR_ERR_HALF_PRECISION_DISABLED |
| * @retval QCBOR_ERR_ALL_FLOAT_DISABLED |
| * @retval QCBOR_ERR_BAD_TYPE_7 |
| * @retval QCBOR_ERR_INDEF_LEN_ARRAYS_DISABLED |
| * @retval QCBOR_ERR_NO_STRING_ALLOCATOR |
| * @retval QCBOR_ERR_INDEFINITE_STRING_CHUNK |
| * @retval QCBOR_ERR_INDEF_LEN_STRINGS_DISABLED |
| * @retval QCBOR_ERR_TOO_MANY_TAGS |
| * @retval QCBOR_ERR_ARRAY_DECODE_TOO_LONG |
| * @retval QCBOR_ERR_MAP_LABEL_TYPE |
| * |
| * If a the current nesting level is a map, then this |
| * combines pairs of items into one data item with a label |
| * and value. |
| * |
| * This is passthrough if the current nesting level is |
| * not a map. |
| * |
| * This also implements maps-as-array mode where a map |
| * is treated like an array to allow caller to do their |
| * own label processing. |
| */ |
| static inline QCBORError |
| QCBORDecode_GetNextMapEntry(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem) |
| { |
| QCBORError uReturn = QCBORDecode_GetNextTagNumber(pMe, pDecodedItem); |
| if(uReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| if(pDecodedItem->uDataType == QCBOR_TYPE_BREAK) { |
| /* Break can't be a map entry */ |
| goto Done; |
| } |
| |
| if(pMe->uDecodeMode != QCBOR_DECODE_MODE_MAP_AS_ARRAY) { |
| /* Normal decoding of maps -- combine label and value into one item. */ |
| |
| if(DecodeNesting_IsCurrentTypeMap(&(pMe->nesting))) { |
| /* Save label in pDecodedItem and get the next which will |
| * be the real data item. |
| */ |
| QCBORItem LabelItem = *pDecodedItem; |
| uReturn = QCBORDecode_GetNextTagNumber(pMe, pDecodedItem); |
| if(QCBORDecode_IsUnrecoverableError(uReturn)) { |
| goto Done; |
| } |
| |
| pDecodedItem->uLabelAlloc = LabelItem.uDataAlloc; |
| |
| if(LabelItem.uDataType == QCBOR_TYPE_TEXT_STRING) { |
| /* strings are always good labels */ |
| pDecodedItem->label.string = LabelItem.val.string; |
| pDecodedItem->uLabelType = QCBOR_TYPE_TEXT_STRING; |
| } else if (QCBOR_DECODE_MODE_MAP_STRINGS_ONLY == pMe->uDecodeMode) { |
| /* It's not a string and we only want strings */ |
| uReturn = QCBOR_ERR_MAP_LABEL_TYPE; |
| goto Done; |
| } else if(LabelItem.uDataType == QCBOR_TYPE_INT64) { |
| pDecodedItem->label.int64 = LabelItem.val.int64; |
| pDecodedItem->uLabelType = QCBOR_TYPE_INT64; |
| } else if(LabelItem.uDataType == QCBOR_TYPE_UINT64) { |
| pDecodedItem->label.uint64 = LabelItem.val.uint64; |
| pDecodedItem->uLabelType = QCBOR_TYPE_UINT64; |
| } else if(LabelItem.uDataType == QCBOR_TYPE_BYTE_STRING) { |
| pDecodedItem->label.string = LabelItem.val.string; |
| pDecodedItem->uLabelAlloc = LabelItem.uDataAlloc; |
| pDecodedItem->uLabelType = QCBOR_TYPE_BYTE_STRING; |
| } else { |
| /* label is not an int or a string. It is an arrray |
| * or a float or such and this implementation doesn't handle that. |
| * Also, tags on labels are ignored. |
| */ |
| uReturn = QCBOR_ERR_MAP_LABEL_TYPE; |
| goto Done; |
| } |
| } |
| } else { |
| /* Decoding of maps as arrays to let the caller decide what to do |
| * about labels, particularly lables that are not integers or |
| * strings. |
| */ |
| if(pDecodedItem->uDataType == QCBOR_TYPE_MAP) { |
| if(pDecodedItem->val.uCount > QCBOR_MAX_ITEMS_IN_ARRAY/2) { |
| uReturn = QCBOR_ERR_ARRAY_DECODE_TOO_LONG; |
| goto Done; |
| } |
| pDecodedItem->uDataType = QCBOR_TYPE_MAP_AS_ARRAY; |
| /* Cast is safe because of check against QCBOR_MAX_ITEMS_IN_ARRAY/2. |
| * Cast is needed because of integer promotion. |
| */ |
| pDecodedItem->val.uCount = (uint16_t)(pDecodedItem->val.uCount * 2); |
| } |
| } |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS |
| /** |
| * @brief Peek and see if next data item is a break; |
| * |
| * @param[in] pUIB UsefulInputBuf to read from. |
| * @param[out] pbNextIsBreak Indicate if next was a break or not. |
| * |
| * @return Any decoding error. |
| * |
| * See if next item is a CBOR break. If it is, it is consumed, |
| * if not it is not consumed. |
| */ |
| static inline QCBORError |
| NextIsBreak(UsefulInputBuf *pUIB, bool *pbNextIsBreak) |
| { |
| *pbNextIsBreak = false; |
| if(UsefulInputBuf_BytesUnconsumed(pUIB) != 0) { |
| QCBORItem Peek; |
| size_t uPeek = UsefulInputBuf_Tell(pUIB); |
| QCBORError uReturn = DecodeAtomicDataItem(pUIB, &Peek, NULL); |
| if(uReturn != QCBOR_SUCCESS) { |
| return uReturn; |
| } |
| if(Peek.uDataType != QCBOR_TYPE_BREAK) { |
| /* It is not a break, rewind so it can be processed normally. */ |
| UsefulInputBuf_Seek(pUIB, uPeek); |
| } else { |
| *pbNextIsBreak = true; |
| } |
| } |
| |
| return QCBOR_SUCCESS; |
| } |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS */ |
| |
| |
| /** |
| * @brief Ascend up nesting levels if all items in them have been consumed. |
| * |
| * @param[in] pMe The decode context. |
| * @param[in] bMarkEnd If true mark end of maps/arrays with count of zero. |
| * |
| * An item was just consumed, now figure out if it was the |
| * end of an array/map map that can be closed out. That |
| * may in turn close out the above array/map... |
| */ |
| static QCBORError |
| QCBORDecode_NestLevelAscender(QCBORDecodeContext *pMe, bool bMarkEnd) |
| { |
| QCBORError uReturn; |
| |
| /* Loop ascending nesting levels as long as there is ascending to do */ |
| while(!DecodeNesting_IsCurrentAtTop(&(pMe->nesting))) { |
| |
| if(DecodeNesting_IsCurrentBstrWrapped(&(pMe->nesting))) { |
| /* Nesting level is bstr-wrapped CBOR */ |
| |
| /* Ascent for bstr-wrapped CBOR is always by explicit call |
| * so no further ascending can happen. |
| */ |
| break; |
| |
| } else if(DecodeNesting_IsCurrentDefiniteLength(&(pMe->nesting))) { |
| /* Level is a definite-length array/map */ |
| |
| /* Decrement the item count the definite-length array/map */ |
| DecodeNesting_DecrementDefiniteLengthMapOrArrayCount(&(pMe->nesting)); |
| if(!DecodeNesting_IsEndOfDefiniteLengthMapOrArray(&(pMe->nesting))) { |
| /* Didn't close out array/map, so all work here is done */ |
| break; |
| } |
| /* All items in a definite-length array were consumed so it |
| * is time to ascend one level. This happens below. |
| */ |
| |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS |
| } else { |
| /* Level is an indefinite-length array/map. */ |
| |
| /* Check for a break which is what ends indefinite-length arrays/maps */ |
| bool bIsBreak = false; |
| uReturn = NextIsBreak(&(pMe->InBuf), &bIsBreak); |
| if(uReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| if(!bIsBreak) { |
| /* Not a break so array/map does not close out. All work is done */ |
| break; |
| } |
| |
| /* It was a break in an indefinitelength map / array so |
| * it is time to ascend one level. |
| */ |
| |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS */ |
| } |
| |
| |
| /* All items in the array/map have been consumed. */ |
| |
| /* But ascent in bounded mode is only by explicit call to |
| * QCBORDecode_ExitBoundedMode(). |
| */ |
| if(DecodeNesting_IsCurrentBounded(&(pMe->nesting))) { |
| /* Set the count to zero for definite-length arrays to indicate |
| * cursor is at end of bounded array/map */ |
| if(bMarkEnd) { |
| /* Used for definite and indefinite to signal end */ |
| DecodeNesting_ZeroMapOrArrayCount(&(pMe->nesting)); |
| |
| } |
| break; |
| } |
| |
| /* Finally, actually ascend one level. */ |
| DecodeNesting_Ascend(&(pMe->nesting)); |
| } |
| |
| uReturn = QCBOR_SUCCESS; |
| |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS |
| Done: |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_ARRAYS */ |
| |
| return uReturn; |
| } |
| |
| |
| /** |
| * @brief Ascending & Descending out of nesting levels (decode layer 2). |
| * |
| * @param[in] pMe Decoder context |
| * @param[out] pDecodedItem The decoded item that work is done on. |
| * |
| * @retval QCBOR_ERR_UNSUPPORTED |
| * @retval QCBOR_ERR_HIT_END |
| * @retval QCBOR_ERR_INT_OVERFLOW |
| * @retval QCBOR_ERR_STRING_ALLOCATE |
| * @retval QCBOR_ERR_STRING_TOO_LONG |
| * @retval QCBOR_ERR_HALF_PRECISION_DISABLED |
| * @retval QCBOR_ERR_ALL_FLOAT_DISABLED |
| * @retval QCBOR_ERR_BAD_TYPE_7 |
| * @retval QCBOR_ERR_INDEF_LEN_ARRAYS_DISABLED |
| * @retval QCBOR_ERR_NO_STRING_ALLOCATOR |
| * @retval QCBOR_ERR_INDEFINITE_STRING_CHUNK |
| * @retval QCBOR_ERR_INDEF_LEN_STRINGS_DISABLED |
| * @retval QCBOR_ERR_TOO_MANY_TAGS |
| * @retval QCBOR_ERR_ARRAY_DECODE_TOO_LONG |
| * @retval QCBOR_ERR_MAP_LABEL_TYPE |
| * @retval QCBOR_ERR_NO_MORE_ITEMS |
| * @retval QCBOR_ERR_BAD_BREAK |
| * @retval QCBOR_ERR_ARRAY_DECODE_NESTING_TOO_DEEP |
| * |
| * This handles the traversal descending into and asecnding out of |
| * maps, arrays and bstr-wrapped CBOR. It figures out the ends of |
| * definite- and indefinte-length maps and arrays by looking at the |
| * item count or finding CBOR breaks. It detects the ends of the |
| * top-level sequence and of bstr-wrapped CBOR by byte count. |
| */ |
| static QCBORError |
| QCBORDecode_GetNextMapOrArray(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem) |
| { |
| QCBORError uReturn; |
| /* ==== First: figure out if at the end of a traversal ==== */ |
| |
| /* If out of bytes to consume, it is either the end of the |
| * top-level sequence of some bstr-wrapped CBOR that was entered. |
| * |
| * In the case of bstr-wrapped CBOR, the length of the |
| * UsefulInputBuf was set to that of the bstr-wrapped CBOR. When |
| * the bstr-wrapped CBOR is exited, the length is set back to the |
| * top-level's length or to the next highest bstr-wrapped CBOR. |
| */ |
| if(UsefulInputBuf_BytesUnconsumed(&(pMe->InBuf)) == 0) { |
| uReturn = QCBOR_ERR_NO_MORE_ITEMS; |
| goto Done; |
| } |
| |
| /* Check to see if at the end of a bounded definite-length map or |
| * array. The check for a break ending indefinite-length array is |
| * later in QCBORDecode_NestLevelAscender(). |
| */ |
| if(DecodeNesting_IsAtEndOfBoundedLevel(&(pMe->nesting))) { |
| uReturn = QCBOR_ERR_NO_MORE_ITEMS; |
| goto Done; |
| } |
| |
| /* ==== Next: not at the end, so get another item ==== */ |
| uReturn = QCBORDecode_GetNextMapEntry(pMe, pDecodedItem); |
| if(QCBORDecode_IsUnrecoverableError(uReturn)) { |
| /* Error is so bad that traversal is not possible. */ |
| goto Done; |
| } |
| |
| /* Breaks ending arrays/maps are processed later in the call to |
| * QCBORDecode_NestLevelAscender(). They should never show up here. |
| */ |
| if(pDecodedItem->uDataType == QCBOR_TYPE_BREAK) { |
| uReturn = QCBOR_ERR_BAD_BREAK; |
| goto Done; |
| } |
| |
| /* Record the nesting level for this data item before processing |
| * any of decrementing and descending. |
| */ |
| pDecodedItem->uNestingLevel = DecodeNesting_GetCurrentLevel(&(pMe->nesting)); |
| |
| |
| /* ==== Next: Process the item for descent, ascent, decrement... ==== */ |
| if(QCBORItem_IsMapOrArray(pDecodedItem)) { |
| /* If the new item is a map or array, descend. |
| * |
| * Empty indefinite-length maps and arrays are descended into, |
| * but then ascended out of in the next chunk of code. |
| * |
| * Maps and arrays do count as items in the map/array that |
| * encloses them so a decrement needs to be done for them too, |
| * but that is done only when all the items in them have been |
| * processed, not when they are opened with the exception of an |
| * empty map or array. |
| */ |
| QCBORError uDescendErr; |
| uDescendErr = DecodeNesting_DescendMapOrArray(&(pMe->nesting), |
| pDecodedItem->uDataType, |
| pDecodedItem->val.uCount); |
| if(uDescendErr != QCBOR_SUCCESS) { |
| /* This error is probably a traversal error and it overrides |
| * the non-traversal error. |
| */ |
| uReturn = uDescendErr; |
| goto Done; |
| } |
| } |
| |
| if(!QCBORItem_IsMapOrArray(pDecodedItem) || |
| QCBORItem_IsEmptyDefiniteLengthMapOrArray(pDecodedItem) || |
| QCBORItem_IsIndefiniteLengthMapOrArray(pDecodedItem)) { |
| /* The following cases are handled here: |
| * - A non-aggregate item like an integer or string |
| * - An empty definite-length map or array |
| * - An indefinite-length map or array that might be empty or might not. |
| * |
| * QCBORDecode_NestLevelAscender() does the work of decrementing the count |
| * for an definite-length map/array and break detection for an |
| * indefinite-0length map/array. If the end of the map/array was |
| * reached, then it ascends nesting levels, possibly all the way |
| * to the top level. |
| */ |
| QCBORError uAscendErr; |
| uAscendErr = QCBORDecode_NestLevelAscender(pMe, true); |
| if(uAscendErr != QCBOR_SUCCESS) { |
| /* This error is probably a traversal error and it overrides |
| * the non-traversal error. |
| */ |
| uReturn = uAscendErr; |
| goto Done; |
| } |
| } |
| |
| /* ==== Last: tell the caller the nest level of the next item ==== */ |
| /* Tell the caller what level is next. This tells them what |
| * maps/arrays were closed out and makes it possible for them to |
| * reconstruct the tree with just the information returned in a |
| * QCBORItem. |
| */ |
| if(DecodeNesting_IsAtEndOfBoundedLevel(&(pMe->nesting))) { |
| /* At end of a bounded map/array; uNextNestLevel 0 to indicate this */ |
| pDecodedItem->uNextNestLevel = 0; |
| } else { |
| pDecodedItem->uNextNestLevel = DecodeNesting_GetCurrentLevel(&(pMe->nesting)); |
| } |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| #ifndef QCBOR_DISABLE_TAGS |
| /** |
| * @brief Shift 0th tag out of the tag list. |
| * |
| * pDecodedItem[in,out] The data item to convert. |
| * |
| * The 0th tag is discarded. \ref CBOR_TAG_INVALID16 is |
| * shifted into empty slot at the end of the tag list. |
| */ |
| static inline void ShiftTags(QCBORItem *pDecodedItem) |
| { |
| for(int i = 0; i < QCBOR_MAX_TAGS_PER_ITEM-1; i++) { |
| pDecodedItem->uTags[i] = pDecodedItem->uTags[i+1]; |
| } |
| pDecodedItem->uTags[QCBOR_MAX_TAGS_PER_ITEM-1] = CBOR_TAG_INVALID16; |
| } |
| |
| #endif /* QCBOR_DISABLE_TAGS */ |
| |
| /** |
| * @brief Convert different epoch date formats in to the QCBOR epoch date format |
| * |
| * pDecodedItem[in,out] The data item to convert. |
| * |
| * @retval QCBOR_ERR_DATE_OVERFLOW |
| * @retval QCBOR_ERR_FLOAT_DATE_DISABLED |
| * @retval QCBOR_ERR_ALL_FLOAT_DISABLED |
| * @retval QCBOR_ERR_UNRECOVERABLE_TAG_CONTENT |
| * |
| * The epoch date tag defined in QCBOR allows for floating-point |
| * dates. It even allows a protocol to flop between date formats when |
| * ever it wants. Floating-point dates aren't that useful as they are |
| * only needed for dates beyond the age of the earth. |
| * |
| * This converts all the date formats into one format of an unsigned |
| * integer plus a floating-point fraction. |
| */ |
| static QCBORError DecodeDateEpoch(QCBORItem *pDecodedItem) |
| { |
| QCBORError uReturn = QCBOR_SUCCESS; |
| |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| pDecodedItem->val.epochDate.fSecondsFraction = 0; |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| |
| switch (pDecodedItem->uDataType) { |
| |
| case QCBOR_TYPE_INT64: |
| pDecodedItem->val.epochDate.nSeconds = pDecodedItem->val.int64; |
| break; |
| |
| case QCBOR_TYPE_UINT64: |
| /* This only happens for CBOR type 0 > INT64_MAX so it is |
| * always an overflow. |
| */ |
| uReturn = QCBOR_ERR_DATE_OVERFLOW; |
| goto Done; |
| break; |
| |
| case QCBOR_TYPE_DOUBLE: |
| case QCBOR_TYPE_FLOAT: |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| { |
| /* Convert working value to double if input was a float */ |
| const double d = pDecodedItem->uDataType == QCBOR_TYPE_DOUBLE ? |
| pDecodedItem->val.dfnum : |
| (double)pDecodedItem->val.fnum; |
| |
| /* The conversion from float to integer requires overflow |
| * detection since floats can be much larger than integers. |
| * This implementation errors out on these large float values |
| * since they are beyond the age of the earth. |
| * |
| * These constants for the overflow check are computed by the |
| * compiler. They are not computed at run time. |
| * |
| * The factor of 0x7ff is added/subtracted to avoid a |
| * rounding error in the wrong direction when the compiler |
| * computes these constants. There is rounding because a |
| * 64-bit integer has 63 bits of precision where a double |
| * only has 53 bits. Without the 0x7ff factor, the compiler |
| * may round up and produce a double for the bounds check |
| * that is larger than can be stored in a 64-bit integer. The |
| * amount of 0x7ff is picked because it has 11 bits set. |
| * |
| * Without the 0x7ff there is a ~30 minute range of time |
| * values 10 billion years in the past and in the future |
| * where this code could go wrong. Some compilers |
| * generate a warning or error without the 0x7ff. |
| */ |
| const double dDateMax = (double)(INT64_MAX - 0x7ff); |
| const double dDateMin = (double)(INT64_MIN + 0x7ff); |
| |
| if(isnan(d) || d > dDateMax || d < dDateMin) { |
| uReturn = QCBOR_ERR_DATE_OVERFLOW; |
| goto Done; |
| } |
| |
| /* The actual conversion */ |
| pDecodedItem->val.epochDate.nSeconds = (int64_t)d; |
| pDecodedItem->val.epochDate.fSecondsFraction = |
| d - (double)pDecodedItem->val.epochDate.nSeconds; |
| } |
| #else /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| |
| uReturn = QCBOR_ERR_HW_FLOAT_DISABLED; |
| goto Done; |
| |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| break; |
| |
| default: |
| /* It's the arrays and maps that are unrecoverable because |
| * they are not consumed here. Since this is just an error |
| * condition, no extra code is added here to make the error |
| * recoverable for non-arrays and maps like strings. */ |
| uReturn = QCBOR_ERR_UNRECOVERABLE_TAG_CONTENT; |
| goto Done; |
| } |
| |
| pDecodedItem->uDataType = QCBOR_TYPE_DATE_EPOCH; |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| /** |
| * @brief Convert the days epoch date. |
| * |
| * pDecodedItem[in,out] The data item to convert. |
| * |
| * @retval QCBOR_ERR_DATE_OVERFLOW |
| * @retval QCBOR_ERR_FLOAT_DATE_DISABLED |
| * @retval QCBOR_ERR_ALL_FLOAT_DISABLED |
| * @retval QCBOR_ERR_UNRECOVERABLE_TAG_CONTENT |
| * |
| * This is much simpler than the other epoch date format because |
| * floating-porint is not allowed. This is mostly a simple type check. |
| */ |
| static QCBORError DecodeDaysEpoch(QCBORItem *pDecodedItem) |
| { |
| QCBORError uReturn = QCBOR_SUCCESS; |
| |
| switch (pDecodedItem->uDataType) { |
| |
| case QCBOR_TYPE_INT64: |
| pDecodedItem->val.epochDays = pDecodedItem->val.int64; |
| break; |
| |
| case QCBOR_TYPE_UINT64: |
| /* This only happens for CBOR type 0 > INT64_MAX so it is |
| * always an overflow. |
| */ |
| uReturn = QCBOR_ERR_DATE_OVERFLOW; |
| goto Done; |
| break; |
| |
| default: |
| /* It's the arrays and maps that are unrecoverable because |
| * they are not consumed here. Since this is just an error |
| * condition, no extra code is added here to make the error |
| * recoverable for non-arrays and maps like strings. */ |
| uReturn = QCBOR_ERR_UNRECOVERABLE_TAG_CONTENT; |
| goto Done; |
| break; |
| } |
| |
| pDecodedItem->uDataType = QCBOR_TYPE_DAYS_EPOCH; |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| #ifndef QCBOR_DISABLE_EXP_AND_MANTISSA |
| |
| /* Forward declaration is necessary for |
| * QCBORDecode_MantissaAndExponent(). to be able to decode bignum |
| * tags in the mantissa. If the mantissa is a decimal fraction or big |
| * float in error, this will result in a recurive call to |
| * QCBORDecode_MantissaAndExponent(), but the recursion will unwined |
| * correctly and the correct error is returned. |
| */ |
| static QCBORError |
| QCBORDecode_GetNextTagContent(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem); |
| |
| |
| /** |
| * @brief Decode decimal fractions and big floats. |
| * |
| * @param[in] pMe The decode context. |
| * @param[in,out] pDecodedItem On input the array data item that |
| * holds the mantissa and exponent. On |
| * output the decoded mantissa and |
| * exponent. |
| * |
| * @returns Decoding errors from getting primitive data items or |
| * \ref QCBOR_ERR_BAD_EXP_AND_MANTISSA. |
| * |
| * When called pDecodedItem must be the array with two members, the |
| * exponent and mantissa. |
| * |
| * This will fetch and decode the exponent and mantissa and put the |
| * result back into pDecodedItem. |
| * |
| * This does no checking or processing of tag numbers. That is to be |
| * done by the code that calls this. |
| * |
| * This stuffs the type of the mantissa into pDecodedItem with the expectation |
| * the caller will process it. |
| */ |
| static QCBORError |
| QCBORDecode_MantissaAndExponent(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem) |
| { |
| QCBORError uReturn; |
| |
| /* --- Make sure it is an array; track nesting level of members --- */ |
| if(pDecodedItem->uDataType != QCBOR_TYPE_ARRAY) { |
| uReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| |
| /* A check for pDecodedItem->val.uCount == 2 would work for |
| * definite-length arrays, but not for indefinite. Instead remember |
| * the nesting level the two integers must be at, which is one |
| * deeper than that of the array. |
| */ |
| const int nNestLevel = pDecodedItem->uNestingLevel + 1; |
| |
| /* --- Get the exponent --- */ |
| QCBORItem exponentItem; |
| uReturn = QCBORDecode_GetNextMapOrArray(pMe, &exponentItem); |
| if(uReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| if(exponentItem.uNestingLevel != nNestLevel) { |
| /* Array is empty or a map/array encountered when expecting an int */ |
| uReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| if(exponentItem.uDataType == QCBOR_TYPE_INT64) { |
| /* Data arriving as an unsigned int < INT64_MAX has been |
| * converted to QCBOR_TYPE_INT64 and thus handled here. This is |
| * also means that the only data arriving here of type |
| * QCBOR_TYPE_UINT64 data will be too large for this to handle |
| * and thus an error that will get handled in the next else. |
| */ |
| pDecodedItem->val.expAndMantissa.nExponent = exponentItem.val.int64; |
| } else { |
| /* Wrong type of exponent or a QCBOR_TYPE_UINT64 > INT64_MAX */ |
| uReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| |
| /* --- Get the mantissa --- */ |
| QCBORItem mantissaItem; |
| uReturn = QCBORDecode_GetNextTagContent(pMe, &mantissaItem); |
| if(uReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| if(mantissaItem.uNestingLevel != nNestLevel) { |
| /* Mantissa missing or map/array encountered when expecting number */ |
| uReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| /* Stuff the mantissa data type into the item to send it up to the |
| * the next level. */ |
| pDecodedItem->uDataType = mantissaItem.uDataType; |
| if(mantissaItem.uDataType == QCBOR_TYPE_INT64) { |
| /* Data arriving as an unsigned int < INT64_MAX has been |
| * converted to QCBOR_TYPE_INT64 and thus handled here. This is |
| * also means that the only data arriving here of type |
| * QCBOR_TYPE_UINT64 data will be too large for this to handle |
| * and thus an error that will get handled in an else below. |
| */ |
| pDecodedItem->val.expAndMantissa.Mantissa.nInt = mantissaItem.val.int64; |
| #ifndef QCBOR_DISABLE_TAGS |
| /* With tags fully disabled a big number mantissa will error out |
| * in the call to QCBORDecode_GetNextWithTags() because it has |
| * a tag number. |
| */ |
| } else if(mantissaItem.uDataType == QCBOR_TYPE_POSBIGNUM || |
| mantissaItem.uDataType == QCBOR_TYPE_NEGBIGNUM) { |
| /* Got a good big num mantissa */ |
| pDecodedItem->val.expAndMantissa.Mantissa.bigNum = mantissaItem.val.bigNum; |
| #endif /* QCBOR_DISABLE_TAGS */ |
| } else { |
| /* Wrong type of mantissa or a QCBOR_TYPE_UINT64 > INT64_MAX */ |
| uReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| |
| /* --- Check that array only has the two numbers --- */ |
| if(mantissaItem.uNextNestLevel == nNestLevel) { |
| /* Extra items in the decimal fraction / big float */ |
| /* Improvement: this should probably be an unrecoverable error. */ |
| uReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| pDecodedItem->uNextNestLevel = mantissaItem.uNextNestLevel; |
| |
| Done: |
| return uReturn; |
| } |
| #endif /* QCBOR_DISABLE_EXP_AND_MANTISSA */ |
| |
| |
| #ifndef QCBOR_DISABLE_TAGS |
| |
| #ifndef QCBOR_DISABLE_UNCOMMON_TAGS |
| /** |
| * @brief Decode the MIME type tag |
| * |
| * @param[in,out] pDecodedItem The item to decode. |
| * |
| * Handle the text and binary MIME type tags. Slightly too complicated |
| * f or ProcessTaggedString() because the RFC 7049 MIME type was |
| * incorreclty text-only. |
| */ |
| static inline QCBORError DecodeMIME(QCBORItem *pDecodedItem) |
| { |
| if(pDecodedItem->uDataType == QCBOR_TYPE_TEXT_STRING) { |
| pDecodedItem->uDataType = QCBOR_TYPE_MIME; |
| } else if(pDecodedItem->uDataType == QCBOR_TYPE_BYTE_STRING) { |
| pDecodedItem->uDataType = QCBOR_TYPE_BINARY_MIME; |
| } else { |
| /* It's the arrays and maps that are unrecoverable because |
| * they are not consumed here. Since this is just an error |
| * condition, no extra code is added here to make the error |
| * recoverable for non-arrays and maps like strings. */ |
| return QCBOR_ERR_UNRECOVERABLE_TAG_CONTENT; |
| } |
| |
| return QCBOR_SUCCESS; |
| } |
| #endif /* QCBOR_DISABLE_UNCOMMON_TAGS */ |
| |
| /** |
| * Table of CBOR tags whose content is either a text string or a byte |
| * string. The table maps the CBOR tag to the QCBOR type. The high-bit |
| * of uQCBORtype indicates the content should be a byte string rather |
| * than a text string |
| */ |
| struct StringTagMapEntry { |
| uint16_t uTagNumber; |
| uint8_t uQCBORtype; |
| }; |
| |
| #define IS_BYTE_STRING_BIT 0x80 |
| #define QCBOR_TYPE_MASK ~IS_BYTE_STRING_BIT |
| |
| static const struct StringTagMapEntry StringTagMap[] = { |
| {CBOR_TAG_DATE_STRING, QCBOR_TYPE_DATE_STRING}, |
| {CBOR_TAG_DAYS_STRING, QCBOR_TYPE_DAYS_STRING}, |
| {CBOR_TAG_POS_BIGNUM, QCBOR_TYPE_POSBIGNUM | IS_BYTE_STRING_BIT}, |
| {CBOR_TAG_NEG_BIGNUM, QCBOR_TYPE_NEGBIGNUM | IS_BYTE_STRING_BIT}, |
| {CBOR_TAG_CBOR, QBCOR_TYPE_WRAPPED_CBOR | IS_BYTE_STRING_BIT}, |
| {CBOR_TAG_URI, QCBOR_TYPE_URI}, |
| #ifndef QCBOR_DISABLE_UNCOMMON_TAGS |
| {CBOR_TAG_B64URL, QCBOR_TYPE_BASE64URL}, |
| {CBOR_TAG_B64, QCBOR_TYPE_BASE64}, |
| {CBOR_TAG_REGEX, QCBOR_TYPE_REGEX}, |
| {CBOR_TAG_BIN_UUID, QCBOR_TYPE_UUID | IS_BYTE_STRING_BIT}, |
| #endif /* QCBOR_DISABLE_UNCOMMON_TAGS */ |
| {CBOR_TAG_CBOR_SEQUENCE, QBCOR_TYPE_WRAPPED_CBOR_SEQUENCE | IS_BYTE_STRING_BIT}, |
| {CBOR_TAG_INVALID16, QCBOR_TYPE_NONE} |
| }; |
| |
| |
| /** |
| * @brief Process standard CBOR tags whose content is a string |
| * |
| * @param[in] uTag The tag. |
| * @param[in,out] pDecodedItem The data item. |
| * |
| * @returns This returns QCBOR_SUCCESS if the tag was procssed, |
| * \ref QCBOR_ERR_UNSUPPORTED if the tag was not processed and |
| * \ref QCBOR_ERR_UNRECOVERABLE_TAG_CONTENT if the content type was wrong for the tag. |
| * |
| * Process the CBOR tags that whose content is a byte string or a text |
| * string and for which the string is just passed on to the caller. |
| * |
| * This maps the CBOR tag to the QCBOR type and checks the content |
| * type. Nothing more. It may not be the most important |
| * functionality, but it part of implementing as much of RFC 8949 as |
| * possible. |
| */ |
| static inline QCBORError |
| ProcessTaggedString(uint16_t uTag, QCBORItem *pDecodedItem) |
| { |
| /* This only works on tags that were not mapped; no need for other yet */ |
| if(uTag > QCBOR_LAST_UNMAPPED_TAG) { |
| return QCBOR_ERR_UNSUPPORTED; |
| } |
| |
| unsigned uIndex; |
| for(uIndex = 0; StringTagMap[uIndex].uTagNumber != CBOR_TAG_INVALID16; uIndex++) { |
| if(StringTagMap[uIndex].uTagNumber == uTag) { |
| break; |
| } |
| } |
| |
| const uint8_t uQCBORType = StringTagMap[uIndex].uQCBORtype; |
| if(uQCBORType == QCBOR_TYPE_NONE) { |
| /* repurpose this error to mean not handled here */ |
| return QCBOR_ERR_UNSUPPORTED; |
| } |
| |
| uint8_t uExpectedType = QCBOR_TYPE_TEXT_STRING; |
| if(uQCBORType & IS_BYTE_STRING_BIT) { |
| uExpectedType = QCBOR_TYPE_BYTE_STRING; |
| } |
| |
| if(pDecodedItem->uDataType != uExpectedType) { |
| /* It's the arrays and maps that are unrecoverable because |
| * they are not consumed here. Since this is just an error |
| * condition, no extra code is added here to make the error |
| * recoverable for non-arrays and maps like strings. */ |
| return QCBOR_ERR_UNRECOVERABLE_TAG_CONTENT; |
| } |
| |
| pDecodedItem->uDataType = (uint8_t)(uQCBORType & QCBOR_TYPE_MASK); |
| return QCBOR_SUCCESS; |
| } |
| #endif /* QCBOR_DISABLE_TAGS */ |
| |
| |
| #ifndef QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA |
| /* |
| * This returns the QCBOR_TYPE for a mantissa and exponent. |
| |
| Called in one context where there is always a tag |
| |
| Called in another context where there might be a tag or the caller might say what they are expecting. |
| |
| 6 possible outputs |
| */ |
| static inline uint8_t |
| MantissaExponentDataType(const uint16_t uTagToProcess, const QCBORItem *pDecodedItem) |
| { |
| uint8_t uBase = uTagToProcess == CBOR_TAG_DECIMAL_FRACTION ? |
| QCBOR_TYPE_DECIMAL_FRACTION : |
| QCBOR_TYPE_BIGFLOAT; |
| if(pDecodedItem->uDataType != QCBOR_TYPE_INT64) { |
| uBase = (uint8_t)(uBase + pDecodedItem->uDataType - QCBOR_TYPE_POSBIGNUM + 1); |
| } |
| return uBase; |
| } |
| #endif /* QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA */ |
| |
| |
| /** |
| * @brief Decode tag content for select tags (decoding layer 1). |
| * |
| * @param[in] pMe The decode context. |
| * @param[out] pDecodedItem The decoded item. |
| * |
| * @return Decoding error code. |
| * |
| * CBOR tag numbers for the item were decoded in GetNext_TaggedItem(), |
| * but the whole tag was not decoded. Here, the whole tags (tag number |
| * and tag content) that are supported by QCBOR are decoded. This is a |
| * quick pass through for items that are not tags. |
| */ |
| static QCBORError |
| QCBORDecode_GetNextTagContent(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem) |
| { |
| QCBORError uReturn; |
| |
| uReturn = QCBORDecode_GetNextMapOrArray(pMe, pDecodedItem); |
| if(uReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| #ifndef QCBOR_DISABLE_TAGS |
| /* When there are no tag numbers for the item, this exits first |
| * thing and effectively does nothing. |
| * |
| * This loops over all the tag numbers accumulated for this item |
| * trying to decode and interpret them. This stops at the end of |
| * the list or at the first tag number that can't be interpreted by |
| * this code. This is effectively a recursive processing of the |
| * tags number list that handles nested tags. |
| */ |
| while(1) { |
| /* Don't bother to unmap tags via QCBORITem.uTags since this |
| * code only works on tags less than QCBOR_LAST_UNMAPPED_TAG. |
| */ |
| const uint16_t uTagToProcess = pDecodedItem->uTags[0]; |
| |
| if(uTagToProcess == CBOR_TAG_INVALID16) { |
| /* Hit the end of the tag list. A successful exit. */ |
| break; |
| |
| } else if(uTagToProcess == CBOR_TAG_DATE_EPOCH) { |
| uReturn = DecodeDateEpoch(pDecodedItem); |
| |
| } else if(uTagToProcess == CBOR_TAG_DAYS_EPOCH) { |
| uReturn = DecodeDaysEpoch(pDecodedItem); |
| |
| #ifndef QCBOR_DISABLE_EXP_AND_MANTISSA |
| } else if(uTagToProcess == CBOR_TAG_DECIMAL_FRACTION || |
| uTagToProcess == CBOR_TAG_BIGFLOAT) { |
| uReturn = QCBORDecode_MantissaAndExponent(pMe, pDecodedItem); |
| /* --- Which is it, decimal fraction or a bigfloat? --- */ |
| pDecodedItem->uDataType = MantissaExponentDataType(uTagToProcess, pDecodedItem); |
| |
| #endif /* QCBOR_DISABLE_EXP_AND_MANTISSA */ |
| #ifndef QCBOR_DISABLE_UNCOMMON_TAGS |
| } else if(uTagToProcess == CBOR_TAG_MIME || |
| uTagToProcess == CBOR_TAG_BINARY_MIME) { |
| uReturn = DecodeMIME(pDecodedItem); |
| #endif /* QCBOR_DISABLE_UNCOMMON_TAGS */ |
| |
| } else { |
| /* See if it is a passthrough byte/text string tag; process if so */ |
| uReturn = ProcessTaggedString(pDecodedItem->uTags[0], pDecodedItem); |
| |
| if(uReturn == QCBOR_ERR_UNSUPPORTED) { |
| /* It wasn't a passthrough byte/text string tag so it is |
| * an unknown tag. This is the exit from the loop on the |
| * first unknown tag. It is a successful exit. |
| */ |
| uReturn = QCBOR_SUCCESS; |
| break; |
| } |
| } |
| |
| if(uReturn != QCBOR_SUCCESS) { |
| /* Error exit from the loop */ |
| break; |
| } |
| |
| /* A tag was successfully processed, shift it out of the list of |
| * tags returned. This is the loop increment. |
| */ |
| ShiftTags(pDecodedItem); |
| } |
| #endif /* QCBOR_DISABLE_TAGS */ |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| QCBORError |
| QCBORDecode_GetNext(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem) |
| { |
| QCBORError uErr; |
| uErr = QCBORDecode_GetNextTagContent(pMe, pDecodedItem); |
| if(uErr != QCBOR_SUCCESS) { |
| pDecodedItem->uDataType = QCBOR_TYPE_NONE; |
| pDecodedItem->uLabelType = QCBOR_TYPE_NONE; |
| } |
| return uErr; |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| QCBORError |
| QCBORDecode_PeekNext(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem) |
| { |
| const QCBORDecodeNesting SaveNesting = pMe->nesting; |
| const UsefulInputBuf Save = pMe->InBuf; |
| |
| QCBORError uErr = QCBORDecode_GetNext(pMe, pDecodedItem); |
| |
| pMe->nesting = SaveNesting; |
| pMe->InBuf = Save; |
| |
| return uErr; |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void |
| QCBORDecode_VPeekNext(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)QCBORDecode_PeekNext(pMe, pDecodedItem); |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_VGetNext(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)QCBORDecode_GetNext(pMe, pDecodedItem); |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| QCBORError |
| QCBORDecode_GetNextWithTags(QCBORDecodeContext *pMe, |
| QCBORItem *pDecodedItem, |
| QCBORTagListOut *pTags) |
| { |
| #ifndef QCBOR_DISABLE_TAGS |
| |
| QCBORError uReturn; |
| |
| uReturn = QCBORDecode_GetNext(pMe, pDecodedItem); |
| if(uReturn != QCBOR_SUCCESS) { |
| return uReturn; |
| } |
| |
| if(pTags != NULL) { |
| pTags->uNumUsed = 0; |
| /* Reverse the order because pTags is reverse of QCBORItem.uTags. */ |
| for(int nTagIndex = QCBOR_MAX_TAGS_PER_ITEM-1; nTagIndex >=0; nTagIndex--) { |
| if(pDecodedItem->uTags[nTagIndex] == CBOR_TAG_INVALID16) { |
| continue; |
| } |
| if(pTags->uNumUsed >= pTags->uNumAllocated) { |
| return QCBOR_ERR_TOO_MANY_TAGS; |
| } |
| pTags->puTags[pTags->uNumUsed] = UnMapTagNumber(pMe,pDecodedItem->uTags[nTagIndex]); |
| pTags->uNumUsed++; |
| } |
| } |
| |
| return QCBOR_SUCCESS; |
| |
| #else /* QCBOR_DISABLE_TAGS */ |
| (void)pMe; |
| (void)pDecodedItem; |
| (void)pTags; |
| return QCBOR_ERR_TAGS_DISABLED; |
| #endif /* QCBOR_DISABLE_TAGS */ |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| bool QCBORDecode_IsTagged(QCBORDecodeContext *pMe, |
| const QCBORItem *pItem, |
| uint64_t uTag) |
| { |
| #ifndef QCBOR_DISABLE_TAGS |
| for(unsigned uTagIndex = 0; uTagIndex < QCBOR_MAX_TAGS_PER_ITEM; uTagIndex++) { |
| if(pItem->uTags[uTagIndex] == CBOR_TAG_INVALID16) { |
| break; |
| } |
| if(UnMapTagNumber(pMe, pItem->uTags[uTagIndex]) == uTag) { |
| return true; |
| } |
| } |
| #else /* QCBOR_TAGS_DISABLED */ |
| (void)pMe; |
| (void)pItem; |
| (void)uTag; |
| #endif /* QCBOR_TAGS_DISABLED */ |
| |
| return false; |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| QCBORError QCBORDecode_PartialFinish(QCBORDecodeContext *pMe, size_t *puConsumed) |
| { |
| if(puConsumed != NULL) { |
| *puConsumed = pMe->InBuf.cursor; |
| } |
| |
| QCBORError uReturn = pMe->uLastError; |
| |
| if(uReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| /* Error out if all the maps/arrays are not closed out */ |
| if(!DecodeNesting_IsCurrentAtTop(&(pMe->nesting))) { |
| uReturn = QCBOR_ERR_ARRAY_OR_MAP_UNCONSUMED; |
| goto Done; |
| } |
| |
| /* Error out if not all the bytes are consumed */ |
| if(UsefulInputBuf_BytesUnconsumed(&(pMe->InBuf))) { |
| uReturn = QCBOR_ERR_EXTRA_BYTES; |
| } |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| QCBORError QCBORDecode_Finish(QCBORDecodeContext *pMe) |
| { |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS |
| /* Call the destructor for the string allocator if there is one. |
| * Always called, even if there are errors; always have to clean up. |
| */ |
| StringAllocator_Destruct(&(pMe->StringAllocator)); |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS */ |
| |
| return QCBORDecode_PartialFinish(pMe, NULL); |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| // Improvement: make these inline? |
| uint64_t QCBORDecode_GetNthTag(QCBORDecodeContext *pMe, |
| const QCBORItem *pItem, |
| uint32_t uIndex) |
| { |
| #ifndef QCBOR_DISABLE_TAGS |
| if(pItem->uDataType == QCBOR_TYPE_NONE) { |
| return CBOR_TAG_INVALID64; |
| } |
| if(uIndex >= QCBOR_MAX_TAGS_PER_ITEM) { |
| return CBOR_TAG_INVALID64; |
| } else { |
| return UnMapTagNumber(pMe, pItem->uTags[uIndex]); |
| } |
| #else /* QCBOR_DISABLE_TAGS */ |
| (void)pMe; |
| (void)pItem; |
| (void)uIndex; |
| |
| return CBOR_TAG_INVALID64; |
| #endif /* QCBOR_DISABLE_TAGS */ |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| uint64_t QCBORDecode_GetNthTagOfLast(const QCBORDecodeContext *pMe, |
| uint32_t uIndex) |
| { |
| #ifndef QCBOR_DISABLE_TAGS |
| |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return CBOR_TAG_INVALID64; |
| } |
| if(uIndex >= QCBOR_MAX_TAGS_PER_ITEM) { |
| return CBOR_TAG_INVALID64; |
| } else { |
| return UnMapTagNumber(pMe, pMe->uLastTags[uIndex]); |
| } |
| #else /* QCBOR_DISABLE_TAGS */ |
| (void)pMe; |
| (void)uIndex; |
| |
| return CBOR_TAG_INVALID64; |
| #endif /* QCBOR_DISABLE_TAGS */ |
| } |
| |
| |
| |
| |
| #ifndef QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS |
| |
| /* =========================================================================== |
| MemPool -- BUILT-IN SIMPLE STRING ALLOCATOR |
| |
| This implements a simple sting allocator for indefinite-length |
| strings that can be enabled by calling QCBORDecode_SetMemPool(). It |
| implements the function type QCBORStringAllocate and allows easy |
| use of it. |
| |
| This particular allocator is built-in for convenience. The caller |
| can implement their own. All of this following code will get |
| dead-stripped if QCBORDecode_SetMemPool() is not called. |
| |
| This is a very primitive memory allocator. It does not track |
| individual allocations, only a high-water mark. A free or |
| reallocation must be of the last chunk allocated. |
| |
| The size of the pool and offset to free memory are packed into the |
| first 8 bytes of the memory pool so we don't have to keep them in |
| the decode context. Since the address of the pool may not be |
| aligned, they have to be packed and unpacked as if they were |
| serialized data of the wire or such. |
| |
| The sizes packed in are uint32_t to be the same on all CPU types |
| and simplify the code. |
| ========================================================================== */ |
| |
| |
| static inline int |
| MemPool_Unpack(const void *pMem, uint32_t *puPoolSize, uint32_t *puFreeOffset) |
| { |
| // Use of UsefulInputBuf is overkill, but it is convenient. |
| UsefulInputBuf UIB; |
| |
| // Just assume the size here. It was checked during SetUp so |
| // the assumption is safe. |
| UsefulInputBuf_Init(&UIB, (UsefulBufC){pMem,QCBOR_DECODE_MIN_MEM_POOL_SIZE}); |
| *puPoolSize = UsefulInputBuf_GetUint32(&UIB); |
| *puFreeOffset = UsefulInputBuf_GetUint32(&UIB); |
| return UsefulInputBuf_GetError(&UIB); |
| } |
| |
| |
| static inline int |
| MemPool_Pack(UsefulBuf Pool, uint32_t uFreeOffset) |
| { |
| // Use of UsefulOutBuf is overkill, but convenient. The |
| // length check performed here is useful. |
| UsefulOutBuf UOB; |
| |
| UsefulOutBuf_Init(&UOB, Pool); |
| UsefulOutBuf_AppendUint32(&UOB, (uint32_t)Pool.len); // size of pool |
| UsefulOutBuf_AppendUint32(&UOB, uFreeOffset); // first free position |
| return UsefulOutBuf_GetError(&UOB); |
| } |
| |
| |
| /* |
| Internal function for an allocation, reallocation free and destuct. |
| |
| Having only one function rather than one each per mode saves space in |
| QCBORDecodeContext. |
| |
| Code Reviewers: THIS FUNCTION DOES POINTER MATH |
| */ |
| static UsefulBuf |
| MemPool_Function(void *pPool, void *pMem, size_t uNewSize) |
| { |
| UsefulBuf ReturnValue = NULLUsefulBuf; |
| |
| uint32_t uPoolSize; |
| uint32_t uFreeOffset; |
| |
| if(uNewSize > UINT32_MAX) { |
| // This allocator is only good up to 4GB. This check should |
| // optimize out if sizeof(size_t) == sizeof(uint32_t) |
| goto Done; |
| } |
| const uint32_t uNewSize32 = (uint32_t)uNewSize; |
| |
| if(MemPool_Unpack(pPool, &uPoolSize, &uFreeOffset)) { |
| goto Done; |
| } |
| |
| if(uNewSize) { |
| if(pMem) { |
| // REALLOCATION MODE |
| // Calculate pointer to the end of the memory pool. It is |
| // assumed that pPool + uPoolSize won't wrap around by |
| // assuming the caller won't pass a pool buffer in that is |
| // not in legitimate memory space. |
| const void *pPoolEnd = (uint8_t *)pPool + uPoolSize; |
| |
| // Check that the pointer for reallocation is in the range of the |
| // pool. This also makes sure that pointer math further down |
| // doesn't wrap under or over. |
| if(pMem >= pPool && pMem < pPoolEnd) { |
| // Offset to start of chunk for reallocation. This won't |
| // wrap under because of check that pMem >= pPool. Cast |
| // is safe because the pool is always less than UINT32_MAX |
| // because of check in QCBORDecode_SetMemPool(). |
| const uint32_t uMemOffset = (uint32_t)((uint8_t *)pMem - (uint8_t *)pPool); |
| |
| // Check to see if the allocation will fit. uPoolSize - |
| // uMemOffset will not wrap under because of check that |
| // pMem is in the range of the uPoolSize by check above. |
| if(uNewSize <= uPoolSize - uMemOffset) { |
| ReturnValue.ptr = pMem; |
| ReturnValue.len = uNewSize; |
| |
| // Addition won't wrap around over because uNewSize was |
| // checked to be sure it is less than the pool size. |
| uFreeOffset = uMemOffset + uNewSize32; |
| } |
| } |
| } else { |
| // ALLOCATION MODE |
| // uPoolSize - uFreeOffset will not underflow because this |
| // pool implementation makes sure uFreeOffset is always |
| // smaller than uPoolSize through this check here and |
| // reallocation case. |
| if(uNewSize <= uPoolSize - uFreeOffset) { |
| ReturnValue.len = uNewSize; |
| ReturnValue.ptr = (uint8_t *)pPool + uFreeOffset; |
| uFreeOffset += (uint32_t)uNewSize; |
| } |
| } |
| } else { |
| if(pMem) { |
| // FREE MODE |
| // Cast is safe because of limit on pool size in |
| // QCBORDecode_SetMemPool() |
| uFreeOffset = (uint32_t)((uint8_t *)pMem - (uint8_t *)pPool); |
| } else { |
| // DESTRUCT MODE |
| // Nothing to do for this allocator |
| } |
| } |
| |
| UsefulBuf Pool = {pPool, uPoolSize}; |
| MemPool_Pack(Pool, uFreeOffset); |
| |
| Done: |
| return ReturnValue; |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| QCBORError QCBORDecode_SetMemPool(QCBORDecodeContext *pMe, |
| UsefulBuf Pool, |
| bool bAllStrings) |
| { |
| // The pool size and free mem offset are packed into the beginning |
| // of the pool memory. This compile time check makes sure the |
| // constant in the header is correct. This check should optimize |
| // down to nothing. |
| #ifdef _MSC_VER |
| #pragma warning(push) |
| #pragma warning(disable:4127) // conditional expression is constant |
| #endif |
| if(QCBOR_DECODE_MIN_MEM_POOL_SIZE < 2 * sizeof(uint32_t)) { |
| return QCBOR_ERR_MEM_POOL_SIZE; |
| } |
| #ifdef _MSC_VER |
| #pragma warning(pop) |
| #endif |
| |
| // The pool size and free offset packed in to the beginning of pool |
| // memory are only 32-bits. This check will optimize out on 32-bit |
| // machines. |
| if(Pool.len > UINT32_MAX) { |
| return QCBOR_ERR_MEM_POOL_SIZE; |
| } |
| |
| // This checks that the pool buffer given is big enough. |
| if(MemPool_Pack(Pool, QCBOR_DECODE_MIN_MEM_POOL_SIZE)) { |
| return QCBOR_ERR_MEM_POOL_SIZE; |
| } |
| |
| QCBORDecode_SetUpAllocator(pMe, MemPool_Function, Pool.ptr, bAllStrings); |
| |
| return QCBOR_SUCCESS; |
| } |
| #endif /* QCBOR_DISABLE_INDEFINITE_LENGTH_STRINGS */ |
| |
| |
| |
| static inline void |
| CopyTags(QCBORDecodeContext *pMe, const QCBORItem *pItem) |
| { |
| #ifndef QCBOR_DISABLE_TAGS |
| memcpy(pMe->uLastTags, pItem->uTags, sizeof(pItem->uTags)); |
| #else |
| (void)pMe; |
| (void)pItem; |
| #endif |
| } |
| |
| |
| /** |
| * @brief Consume an entire map or array including its contents. |
| * |
| * @param[in] pMe The decoder context. |
| * @param[in] pItemToConsume The array/map whose contents are to be |
| * consumed. |
| * @param[out] puNextNestLevel The next nesting level after the item was |
| * fully consumed. |
| * |
| * This may be called when @c pItemToConsume is not an array or |
| * map. In that case, this is just a pass through for @c puNextNestLevel |
| * since there is nothing to do. |
| */ |
| static inline QCBORError |
| ConsumeItem(QCBORDecodeContext *pMe, |
| const QCBORItem *pItemToConsume, |
| uint8_t *puNextNestLevel) |
| { |
| QCBORError uReturn; |
| QCBORItem Item; |
| |
| /* If it is a map or array, this will tell if it is empty. */ |
| const bool bIsEmpty = (pItemToConsume->uNextNestLevel <= pItemToConsume->uNestingLevel); |
| |
| if(QCBORItem_IsMapOrArray(pItemToConsume) && !bIsEmpty) { |
| /* There is only real work to do for non-empty maps and arrays */ |
| |
| /* This works for definite- and indefinite-length maps and |
| * arrays by using the nesting level |
| */ |
| do { |
| uReturn = QCBORDecode_GetNext(pMe, &Item); |
| if(QCBORDecode_IsUnrecoverableError(uReturn) || |
| uReturn == QCBOR_ERR_NO_MORE_ITEMS) { |
| goto Done; |
| } |
| } while(Item.uNextNestLevel >= pItemToConsume->uNextNestLevel); |
| |
| *puNextNestLevel = Item.uNextNestLevel; |
| |
| uReturn = QCBOR_SUCCESS; |
| |
| } else { |
| /* pItemToConsume is not a map or array. Just pass the nesting |
| * level through. */ |
| *puNextNestLevel = pItemToConsume->uNextNestLevel; |
| |
| uReturn = QCBOR_SUCCESS; |
| } |
| |
| Done: |
| return uReturn; |
| } |
| |
| |
| void QCBORDecode_VGetNextConsume(QCBORDecodeContext *pMe, QCBORItem *pDecodedItem) |
| { |
| QCBORDecode_VGetNext(pMe, pDecodedItem); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| pMe->uLastError = (uint8_t)ConsumeItem(pMe, pDecodedItem, |
| &pDecodedItem->uNextNestLevel); |
| } |
| } |
| |
| |
| |
| /* Call only on maps and arrays. Rewinds the cursor |
| * to the start as if it was just entered. |
| */ |
| static void RewindMapOrArray(QCBORDecodeContext *pMe) |
| { |
| /* Reset nesting tracking to the deepest bounded level */ |
| DecodeNesting_SetCurrentToBoundedLevel(&(pMe->nesting)); |
| |
| DecodeNesting_ResetMapOrArrayCount(&(pMe->nesting)); |
| |
| /* Reposition traversal cursor to the start of the map/array */ |
| UsefulInputBuf_Seek(&(pMe->InBuf), |
| DecodeNesting_GetMapOrArrayStart(&(pMe->nesting))); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_Rewind(QCBORDecodeContext *pMe) |
| { |
| if(pMe->nesting.pCurrentBounded != NULL) { |
| /* In a bounded map, array or bstr-wrapped CBOR */ |
| |
| if(DecodeNesting_IsBoundedType(&(pMe->nesting), QCBOR_TYPE_BYTE_STRING)) { |
| /* In bstr-wrapped CBOR. */ |
| |
| /* Reposition traversal cursor to start of wrapping byte string */ |
| UsefulInputBuf_Seek(&(pMe->InBuf), |
| pMe->nesting.pCurrentBounded->u.bs.uBstrStartOffset); |
| DecodeNesting_SetCurrentToBoundedLevel(&(pMe->nesting)); |
| |
| } else { |
| /* In a map or array */ |
| RewindMapOrArray(pMe); |
| } |
| |
| } else { |
| /* Not in anything bounded */ |
| |
| /* Reposition traversal cursor to the start of input CBOR */ |
| UsefulInputBuf_Seek(&(pMe->InBuf), 0ULL); |
| |
| /* Reset nesting tracking to beginning of input. */ |
| DecodeNesting_Init(&(pMe->nesting)); |
| } |
| |
| pMe->uLastError = QCBOR_SUCCESS; |
| } |
| |
| |
| /* Return true if the labels in Item1 and Item2 are the same. |
| Works only for integer and string labels. Returns false |
| for any other type. */ |
| static inline bool |
| MatchLabel(QCBORItem Item1, QCBORItem Item2) |
| { |
| if(Item1.uLabelType == QCBOR_TYPE_INT64) { |
| if(Item2.uLabelType == QCBOR_TYPE_INT64 && Item1.label.int64 == Item2.label.int64) { |
| return true; |
| } |
| } else if(Item1.uLabelType == QCBOR_TYPE_TEXT_STRING) { |
| if(Item2.uLabelType == QCBOR_TYPE_TEXT_STRING && !UsefulBuf_Compare(Item1.label.string, Item2.label.string)) { |
| return true; |
| } |
| } else if(Item1.uLabelType == QCBOR_TYPE_BYTE_STRING) { |
| if(Item2.uLabelType == QCBOR_TYPE_BYTE_STRING && !UsefulBuf_Compare(Item1.label.string, Item2.label.string)) { |
| return true; |
| } |
| } else if(Item1.uLabelType == QCBOR_TYPE_UINT64) { |
| if(Item2.uLabelType == QCBOR_TYPE_UINT64 && Item1.label.uint64 == Item2.label.uint64) { |
| return true; |
| } |
| } |
| |
| /* Other label types are never matched */ |
| return false; |
| } |
| |
| |
| /* |
| Returns true if Item1 and Item2 are the same type |
| or if either are of QCBOR_TYPE_ANY. |
| */ |
| static inline bool |
| MatchType(QCBORItem Item1, QCBORItem Item2) |
| { |
| if(Item1.uDataType == Item2.uDataType) { |
| return true; |
| } else if(Item1.uDataType == QCBOR_TYPE_ANY) { |
| return true; |
| } else if(Item2.uDataType == QCBOR_TYPE_ANY) { |
| return true; |
| } |
| return false; |
| } |
| |
| |
| /** |
| @brief Search a map for a set of items. |
| |
| @param[in] pMe The decode context to search. |
| @param[in,out] pItemArray The items to search for and the items found. |
| @param[out] puOffset Byte offset of last item matched. |
| @param[in] pCBContext Context for the not-found item call back. |
| @param[in] pfCallback Function to call on items not matched in pItemArray. |
| |
| @retval QCBOR_ERR_NOT_ENTERED Trying to search without having entered a map |
| |
| @retval QCBOR_ERR_DUPLICATE_LABEL Duplicate items (items with the same label) |
| were found for one of the labels being |
| search for. This duplicate detection is |
| only performed for items in pItemArray, |
| not every item in the map. |
| |
| @retval QCBOR_ERR_UNEXPECTED_TYPE A label was matched, but the type was |
| wrong for the matchd label. |
| |
| @retval Also errors returned by QCBORDecode_GetNext(). |
| |
| On input pItemArray contains a list of labels and data types |
| of items to be found. |
| |
| On output the fully retrieved items are filled in with |
| values and such. The label was matched, so it never changes. |
| |
| If an item was not found, its data type is set to QCBOR_TYPE_NONE. |
| |
| This also finds the ends of maps and arrays when they are exited. |
| */ |
| static QCBORError |
| MapSearch(QCBORDecodeContext *pMe, |
| QCBORItem *pItemArray, |
| size_t *puOffset, |
| void *pCBContext, |
| QCBORItemCallback pfCallback) |
| { |
| QCBORError uReturn; |
| uint64_t uFoundItemBitMap = 0; |
| |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| uReturn = pMe->uLastError; |
| goto Done2; |
| } |
| |
| if(!DecodeNesting_IsBoundedType(&(pMe->nesting), QCBOR_TYPE_MAP) && |
| pItemArray->uLabelType != QCBOR_TYPE_NONE) { |
| /* QCBOR_TYPE_NONE as first item indicates just looking |
| for the end of an array, so don't give error. */ |
| uReturn = QCBOR_ERR_MAP_NOT_ENTERED; |
| goto Done2; |
| } |
| |
| if(DecodeNesting_IsBoundedEmpty(&(pMe->nesting))) { |
| // It is an empty bounded array or map |
| if(pItemArray->uLabelType == QCBOR_TYPE_NONE) { |
| // Just trying to find the end of the map or array |
| pMe->uMapEndOffsetCache = DecodeNesting_GetMapOrArrayStart(&(pMe->nesting)); |
| uReturn = QCBOR_SUCCESS; |
| } else { |
| // Nothing is ever found in an empty array or map. All items |
| // are marked as not found below. |
| uReturn = QCBOR_SUCCESS; |
| } |
| goto Done2; |
| } |
| |
| QCBORDecodeNesting SaveNesting; |
| DecodeNesting_PrepareForMapSearch(&(pMe->nesting), &SaveNesting); |
| |
| /* Reposition to search from the start of the map / array */ |
| RewindMapOrArray(pMe); |
| |
| /* |
| Loop over all the items in the map or array. Each item |
| could be a map or array, but label matching is only at |
| the main level. This handles definite- and indefinite- |
| length maps and arrays. The only reason this is ever |
| called on arrays is to find their end position. |
| |
| This will always run over all items in order to do |
| duplicate detection. |
| |
| This will exit with failure if it encounters an |
| unrecoverable error, but continue on for recoverable |
| errors. |
| |
| If a recoverable error occurs on a matched item, then |
| that error code is returned. |
| */ |
| const uint8_t uMapNestLevel = DecodeNesting_GetBoundedModeLevel(&(pMe->nesting)); |
| uint8_t uNextNestLevel; |
| do { |
| /* Remember offset of the item because sometimes it has to be returned */ |
| const size_t uOffset = UsefulInputBuf_Tell(&(pMe->InBuf)); |
| |
| /* Get the item */ |
| QCBORItem Item; |
| QCBORError uResult = QCBORDecode_GetNextTagContent(pMe, &Item); |
| if(QCBORDecode_IsUnrecoverableError(uResult)) { |
| /* Unrecoverable error so map can't even be decoded. */ |
| uReturn = uResult; |
| goto Done; |
| } |
| if(uResult == QCBOR_ERR_NO_MORE_ITEMS) { |
| // Unexpected end of map or array. |
| uReturn = uResult; |
| goto Done; |
| } |
| |
| /* See if item has one of the labels that are of interest */ |
| bool bMatched = false; |
| for(int nIndex = 0; pItemArray[nIndex].uLabelType != QCBOR_TYPE_NONE; nIndex++) { |
| if(MatchLabel(Item, pItemArray[nIndex])) { |
| /* A label match has been found */ |
| if(uFoundItemBitMap & (0x01ULL << nIndex)) { |
| uReturn = QCBOR_ERR_DUPLICATE_LABEL; |
| goto Done; |
| } |
| if(uResult != QCBOR_SUCCESS) { |
| /* The label matches, but the data item is in error */ |
| uReturn = uResult; |
| goto Done; |
| } |
| if(!MatchType(Item, pItemArray[nIndex])) { |
| /* The data item is not of the type(s) requested */ |
| uReturn = QCBOR_ERR_UNEXPECTED_TYPE; |
| goto Done; |
| } |
| |
| /* Successful match. Return the item. */ |
| pItemArray[nIndex] = Item; |
| uFoundItemBitMap |= 0x01ULL << nIndex; |
| if(puOffset) { |
| *puOffset = uOffset; |
| } |
| bMatched = true; |
| } |
| } |
| |
| |
| if(!bMatched && pfCallback != NULL) { |
| /* |
| Call the callback on unmatched labels. |
| (It is tempting to do duplicate detection here, but that would |
| require dynamic memory allocation because the number of labels |
| that might be encountered is unbounded.) |
| */ |
| uReturn = (*pfCallback)(pCBContext, &Item); |
| if(uReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| } |
| |
| /* |
| Consume the item whether matched or not. This |
| does the work of traversing maps and array and |
| everything in them. In this loop only the |
| items at the current nesting level are examined |
| to match the labels. |
| */ |
| uReturn = ConsumeItem(pMe, &Item, &uNextNestLevel); |
| if(uReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| } while (uNextNestLevel >= uMapNestLevel); |
| |
| uReturn = QCBOR_SUCCESS; |
| |
| const size_t uEndOffset = UsefulInputBuf_Tell(&(pMe->InBuf)); |
| |
| // Check here makes sure that this won't accidentally be |
| // QCBOR_MAP_OFFSET_CACHE_INVALID which is larger than |
| // QCBOR_MAX_DECODE_INPUT_SIZE. |
| // Cast to uint32_t to possibly address cases where SIZE_MAX < UINT32_MAX |
| if((uint32_t)uEndOffset >= QCBOR_MAX_DECODE_INPUT_SIZE) { |
| uReturn = QCBOR_ERR_INPUT_TOO_LARGE; |
| goto Done; |
| } |
| /* Cast OK because encoded CBOR is limited to UINT32_MAX */ |
| pMe->uMapEndOffsetCache = (uint32_t)uEndOffset; |
| |
| Done: |
| DecodeNesting_RestoreFromMapSearch(&(pMe->nesting), &SaveNesting); |
| |
| Done2: |
| /* For all items not found, set the data and label type to QCBOR_TYPE_NONE */ |
| for(int i = 0; pItemArray[i].uLabelType != 0; i++) { |
| if(!(uFoundItemBitMap & (0x01ULL << i))) { |
| pItemArray[i].uDataType = QCBOR_TYPE_NONE; |
| pItemArray[i].uLabelType = QCBOR_TYPE_NONE; |
| } |
| } |
| |
| return uReturn; |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetItemInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint8_t uQcborType, |
| QCBORItem *pItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem OneItemSeach[2]; |
| OneItemSeach[0].uLabelType = QCBOR_TYPE_INT64; |
| OneItemSeach[0].label.int64 = nLabel; |
| OneItemSeach[0].uDataType = uQcborType; |
| OneItemSeach[1].uLabelType = QCBOR_TYPE_NONE; // Indicates end of array |
| |
| QCBORError uReturn = MapSearch(pMe, OneItemSeach, NULL, NULL, NULL); |
| |
| *pItem = OneItemSeach[0]; |
| |
| if(uReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| if(OneItemSeach[0].uDataType == QCBOR_TYPE_NONE) { |
| uReturn = QCBOR_ERR_LABEL_NOT_FOUND; |
| } |
| |
| Done: |
| pMe->uLastError = (uint8_t)uReturn; |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetItemInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint8_t uQcborType, |
| QCBORItem *pItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem OneItemSeach[2]; |
| OneItemSeach[0].uLabelType = QCBOR_TYPE_TEXT_STRING; |
| OneItemSeach[0].label.string = UsefulBuf_FromSZ(szLabel); |
| OneItemSeach[0].uDataType = uQcborType; |
| OneItemSeach[1].uLabelType = QCBOR_TYPE_NONE; // Indicates end of array |
| |
| QCBORError uReturn = MapSearch(pMe, OneItemSeach, NULL, NULL, NULL); |
| if(uReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| if(OneItemSeach[0].uDataType == QCBOR_TYPE_NONE) { |
| uReturn = QCBOR_ERR_LABEL_NOT_FOUND; |
| goto Done; |
| } |
| |
| *pItem = OneItemSeach[0]; |
| |
| Done: |
| pMe->uLastError = (uint8_t)uReturn; |
| } |
| |
| |
| static QCBORError |
| CheckTypeList(int uDataType, const uint8_t puTypeList[QCBOR_TAGSPEC_NUM_TYPES]) |
| { |
| for(size_t i = 0; i < QCBOR_TAGSPEC_NUM_TYPES; i++) { |
| if(uDataType == puTypeList[i]) { |
| return QCBOR_SUCCESS; |
| } |
| } |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| |
| /** |
| * Match a tag/type specification against the type of the item. |
| * |
| * @param[in] TagSpec Specification for matching tags. |
| * @param[in] pItem The item to check. |
| * |
| * @retval QCBOR_SUCCESS \c uDataType is allowed by @c TagSpec |
| * @retval QCBOR_ERR_UNEXPECTED_TYPE \c uDataType is not allowed by @c TagSpec |
| * |
| * This checks the item data type of untagged items as well as of |
| * tagged items against a specification to see if decoding should |
| * proceed. |
| * |
| * This relies on the automatic tag decoding done by QCBOR that turns |
| * tag numbers into particular QCBOR_TYPEs so there is no actual |
| * comparsion of tag numbers, just of QCBOR_TYPEs. |
| * |
| * This checks the data item type as possibly representing the tag |
| * number or as the tag content type. |
| * |
| * If QCBOR_DISABLE_TAGS is #defined, this primarily checks the item |
| * data type against the allowed tag content types. It will also error out |
| * if the caller tries to require a tag because there is no way that can |
| * ever be fulfilled. |
| */ |
| static QCBORError |
| CheckTagRequirement(const TagSpecification TagSpec, const QCBORItem *pItem) |
| { |
| const int nItemType = pItem->uDataType; |
| const int nTagReq = TagSpec.uTagRequirement & ~QCBOR_TAG_REQUIREMENT_ALLOW_ADDITIONAL_TAGS; |
| |
| #ifndef QCBOR_DISABLE_TAGS |
| if(!(TagSpec.uTagRequirement & QCBOR_TAG_REQUIREMENT_ALLOW_ADDITIONAL_TAGS) && |
| pItem->uTags[0] != CBOR_TAG_INVALID16) { |
| /* There are tags that QCBOR couldn't process on this item and |
| * the caller has told us there should not be. |
| */ |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| if(nTagReq == QCBOR_TAG_REQUIREMENT_TAG) { |
| /* Must match the tag number and only the tag */ |
| return CheckTypeList(nItemType, TagSpec.uTaggedTypes); |
| } |
| |
| QCBORError uReturn = CheckTypeList(nItemType, TagSpec.uAllowedContentTypes); |
| if(uReturn == QCBOR_SUCCESS) { |
| return QCBOR_SUCCESS; |
| } |
| |
| if(nTagReq == QCBOR_TAG_REQUIREMENT_NOT_A_TAG) { |
| /* Must match the content type and only the content type. |
| * There was no match just above so it is a fail. */ |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| /* QCBOR_TAG_REQUIREMENT_OPTIONAL_TAG: If here it can match either the tag or the content |
| * and it hasn't matched the content, so the end |
| * result is whether it matches the tag. This is |
| * the tag optional case that the CBOR standard discourages. |
| */ |
| |
| return CheckTypeList(nItemType, TagSpec.uTaggedTypes); |
| |
| #else /* QCBOR_DISABLE_TAGS */ |
| if(nTagReq == QCBOR_TAG_REQUIREMENT_TAG) { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| return CheckTypeList(nItemType, TagSpec.uAllowedContentTypes); |
| |
| #endif /* QCBOR_DISABLE_TAGS */ |
| } |
| |
| |
| // This could be semi-private if need be |
| static inline |
| void QCBORDecode_GetTaggedItemInMapN(QCBORDecodeContext *pMe, |
| const int64_t nLabel, |
| const TagSpecification TagSpec, |
| QCBORItem *pItem) |
| { |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, pItem); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)CheckTagRequirement(TagSpec, pItem); |
| } |
| |
| |
| // This could be semi-private if need be |
| static inline |
| void QCBORDecode_GetTaggedItemInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| const TagSpecification TagSpec, |
| QCBORItem *pItem) |
| { |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, pItem); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)CheckTagRequirement(TagSpec, pItem); |
| } |
| |
| // Semi-private |
| void QCBORDecode_GetTaggedStringInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| TagSpecification TagSpec, |
| UsefulBufC *pString) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetTaggedItemInMapN(pMe, nLabel, TagSpec, &Item); |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| *pString = Item.val.string; |
| } |
| } |
| |
| // Semi-private |
| void QCBORDecode_GetTaggedStringInMapSZ(QCBORDecodeContext *pMe, |
| const char * szLabel, |
| TagSpecification TagSpec, |
| UsefulBufC *pString) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetTaggedItemInMapSZ(pMe, szLabel, TagSpec, &Item); |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| *pString = Item.val.string; |
| } |
| } |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetItemsInMap(QCBORDecodeContext *pMe, QCBORItem *pItemList) |
| { |
| QCBORError uErr = MapSearch(pMe, pItemList, NULL, NULL, NULL); |
| pMe->uLastError = (uint8_t)uErr; |
| } |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetItemsInMapWithCallback(QCBORDecodeContext *pMe, |
| QCBORItem *pItemList, |
| void *pCallbackCtx, |
| QCBORItemCallback pfCB) |
| { |
| QCBORError uErr = MapSearch(pMe, pItemList, NULL, pCallbackCtx, pfCB); |
| pMe->uLastError = (uint8_t)uErr; |
| } |
| |
| |
| /** |
| * @brief Search for a map/array by label and enter it |
| * |
| * @param[in] pMe The decode context. |
| * @param[in] pSearch The map/array to search for. |
| * |
| * @c pSearch is expected to contain one item of type map or array |
| * with the label specified. The current bounded map will be searched for |
| * this and if found will be entered. |
| * |
| * If the label is not found, or the item found is not a map or array, |
| * the error state is set. |
| */ |
| static void SearchAndEnter(QCBORDecodeContext *pMe, QCBORItem pSearch[]) |
| { |
| // The first item in pSearch is the one that is to be |
| // entered. It should be the only one filled in. Any other |
| // will be ignored unless it causes an error. |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| size_t uOffset; |
| pMe->uLastError = (uint8_t)MapSearch(pMe, pSearch, &uOffset, NULL, NULL); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| if(pSearch->uDataType == QCBOR_TYPE_NONE) { |
| pMe->uLastError = QCBOR_ERR_LABEL_NOT_FOUND; |
| return; |
| } |
| |
| |
| /* The map or array was found. Now enter it. |
| * |
| * QCBORDecode_EnterBoundedMapOrArray() used here, requires the |
| * next item for the pre-order traversal cursor to be the map/array |
| * found by MapSearch(). The next few lines of code force the |
| * cursor to that. |
| * |
| * There is no need to retain the old cursor because |
| * QCBORDecode_EnterBoundedMapOrArray() will set it to the |
| * beginning of the map/array being entered. |
| * |
| * The cursor is forced by: 1) setting the input buffer position to |
| * the item offset found by MapSearch(), 2) setting the map/array |
| * counter to the total in the map/array, 3) setting the nesting |
| * level. Setting the map/array counter to the total is not |
| * strictly correct, but this is OK because this cursor only needs |
| * to be used to get one item and MapSearch() has already found it |
| * confirming it exists. |
| */ |
| UsefulInputBuf_Seek(&(pMe->InBuf), uOffset); |
| |
| DecodeNesting_ResetMapOrArrayCount(&(pMe->nesting)); |
| |
| DecodeNesting_SetCurrentToBoundedLevel(&(pMe->nesting)); |
| |
| QCBORDecode_EnterBoundedMapOrArray(pMe, pSearch->uDataType, NULL); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_EnterMapFromMapN(QCBORDecodeContext *pMe, int64_t nLabel) |
| { |
| QCBORItem OneItemSeach[2]; |
| OneItemSeach[0].uLabelType = QCBOR_TYPE_INT64; |
| OneItemSeach[0].label.int64 = nLabel; |
| OneItemSeach[0].uDataType = QCBOR_TYPE_MAP; |
| OneItemSeach[1].uLabelType = QCBOR_TYPE_NONE; |
| |
| /* The map to enter was found, now finish off entering it. */ |
| SearchAndEnter(pMe, OneItemSeach); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_EnterMapFromMapSZ(QCBORDecodeContext *pMe, const char *szLabel) |
| { |
| QCBORItem OneItemSeach[2]; |
| OneItemSeach[0].uLabelType = QCBOR_TYPE_TEXT_STRING; |
| OneItemSeach[0].label.string = UsefulBuf_FromSZ(szLabel); |
| OneItemSeach[0].uDataType = QCBOR_TYPE_MAP; |
| OneItemSeach[1].uLabelType = QCBOR_TYPE_NONE; |
| |
| SearchAndEnter(pMe, OneItemSeach); |
| } |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_EnterArrayFromMapN(QCBORDecodeContext *pMe, int64_t nLabel) |
| { |
| QCBORItem OneItemSeach[2]; |
| OneItemSeach[0].uLabelType = QCBOR_TYPE_INT64; |
| OneItemSeach[0].label.int64 = nLabel; |
| OneItemSeach[0].uDataType = QCBOR_TYPE_ARRAY; |
| OneItemSeach[1].uLabelType = QCBOR_TYPE_NONE; |
| |
| SearchAndEnter(pMe, OneItemSeach); |
| } |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_EnterArrayFromMapSZ(QCBORDecodeContext *pMe, const char *szLabel) |
| { |
| QCBORItem OneItemSeach[2]; |
| OneItemSeach[0].uLabelType = QCBOR_TYPE_TEXT_STRING; |
| OneItemSeach[0].label.string = UsefulBuf_FromSZ(szLabel); |
| OneItemSeach[0].uDataType = QCBOR_TYPE_ARRAY; |
| OneItemSeach[1].uLabelType = QCBOR_TYPE_NONE; |
| |
| SearchAndEnter(pMe, OneItemSeach); |
| } |
| |
| |
| // Semi-private function |
| void QCBORDecode_EnterBoundedMapOrArray(QCBORDecodeContext *pMe, uint8_t uType, QCBORItem *pItem) |
| { |
| QCBORError uErr; |
| |
| /* Must only be called on maps and arrays. */ |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| // Already in error state; do nothing. |
| return; |
| } |
| |
| /* Get the data item that is the map or array being entered. */ |
| QCBORItem Item; |
| uErr = QCBORDecode_GetNext(pMe, &Item); |
| if(uErr != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| if(Item.uDataType != uType) { |
| uErr = QCBOR_ERR_UNEXPECTED_TYPE; |
| goto Done; |
| } |
| |
| CopyTags(pMe, &Item); |
| |
| |
| const bool bIsEmpty = (Item.uNextNestLevel <= Item.uNestingLevel); |
| if(bIsEmpty) { |
| if(DecodeNesting_IsCurrentDefiniteLength(&(pMe->nesting))) { |
| // Undo decrement done by QCBORDecode_GetNext() so the the |
| // the decrement when exiting the map/array works correctly |
| pMe->nesting.pCurrent->u.ma.uCountCursor++; |
| } |
| // Special case to increment nesting level for zero-length maps |
| // and arrays entered in bounded mode. |
| DecodeNesting_Descend(&(pMe->nesting), uType); |
| } |
| |
| pMe->uMapEndOffsetCache = QCBOR_MAP_OFFSET_CACHE_INVALID; |
| |
| uErr = DecodeNesting_EnterBoundedMapOrArray(&(pMe->nesting), bIsEmpty, |
| UsefulInputBuf_Tell(&(pMe->InBuf))); |
| |
| if(pItem != NULL) { |
| *pItem = Item; |
| } |
| |
| Done: |
| pMe->uLastError = (uint8_t)uErr; |
| } |
| |
| |
| /* |
| This is the common work for exiting a level that is a bounded map, |
| array or bstr wrapped CBOR. |
| |
| One chunk of work is to set up the pre-order traversal so it is at |
| the item just after the bounded map, array or bstr that is being |
| exited. This is somewhat complex. |
| |
| The other work is to level-up the bounded mode to next higest bounded |
| mode or the top level if there isn't one. |
| */ |
| static QCBORError |
| ExitBoundedLevel(QCBORDecodeContext *pMe, uint32_t uEndOffset) |
| { |
| QCBORError uErr; |
| |
| /* |
| First the pre-order-traversal byte offset is positioned to the |
| item just after the bounded mode item that was just consumed. |
| */ |
| UsefulInputBuf_Seek(&(pMe->InBuf), uEndOffset); |
| |
| /* |
| Next, set the current nesting level to one above the bounded level |
| that was just exited. |
| |
| DecodeNesting_CheckBoundedType() is always called before this and |
| makes sure pCurrentBounded is valid. |
| */ |
| DecodeNesting_LevelUpCurrent(&(pMe->nesting)); |
| |
| /* |
| This does the complex work of leveling up the pre-order traversal |
| when the end of a map or array or another bounded level is |
| reached. It may do nothing, or ascend all the way to the top |
| level. |
| */ |
| uErr = QCBORDecode_NestLevelAscender(pMe, false); |
| if(uErr != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| /* |
| This makes the next highest bounded level the current bounded |
| level. If there is no next highest level, then no bounded mode is |
| in effect. |
| */ |
| DecodeNesting_LevelUpBounded(&(pMe->nesting)); |
| |
| pMe->uMapEndOffsetCache = QCBOR_MAP_OFFSET_CACHE_INVALID; |
| |
| Done: |
| return uErr; |
| } |
| |
| |
| // Semi-private function |
| void QCBORDecode_ExitBoundedMapOrArray(QCBORDecodeContext *pMe, uint8_t uType) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| /* Already in error state; do nothing. */ |
| return; |
| } |
| |
| QCBORError uErr; |
| |
| if(!DecodeNesting_IsBoundedType(&(pMe->nesting), uType)) { |
| uErr = QCBOR_ERR_EXIT_MISMATCH; |
| goto Done; |
| } |
| |
| /* |
| Have to set the offset to the end of the map/array |
| that is being exited. If there is no cached value, |
| from previous map search, then do a dummy search. |
| */ |
| if(pMe->uMapEndOffsetCache == QCBOR_MAP_OFFSET_CACHE_INVALID) { |
| QCBORItem Dummy; |
| Dummy.uLabelType = QCBOR_TYPE_NONE; |
| uErr = MapSearch(pMe, &Dummy, NULL, NULL, NULL); |
| if(uErr != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| } |
| |
| uErr = ExitBoundedLevel(pMe, pMe->uMapEndOffsetCache); |
| |
| Done: |
| pMe->uLastError = (uint8_t)uErr; |
| } |
| |
| |
| |
| static QCBORError |
| InternalEnterBstrWrapped(QCBORDecodeContext *pMe, |
| const QCBORItem *pItem, |
| const uint8_t uTagRequirement, |
| UsefulBufC *pBstr) |
| { |
| if(pBstr) { |
| *pBstr = NULLUsefulBufC; |
| } |
| |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| /* Already in error state; do nothing. */ |
| return pMe->uLastError; |
| } |
| |
| QCBORError uError; |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QBCOR_TYPE_WRAPPED_CBOR, QBCOR_TYPE_WRAPPED_CBOR_SEQUENCE, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_BYTE_STRING, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| uError = CheckTagRequirement(TagSpec, pItem); |
| if(uError != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| if(DecodeNesting_IsCurrentDefiniteLength(&(pMe->nesting))) { |
| /* Reverse the decrement done by GetNext() for the bstr so the |
| * increment in QCBORDecode_NestLevelAscender() called by |
| * ExitBoundedLevel() will work right. |
| */ |
| DecodeNesting_ReverseDecrement(&(pMe->nesting)); |
| } |
| |
| if(pBstr) { |
| *pBstr = pItem->val.string; |
| } |
| |
| /* This saves the current length of the UsefulInputBuf and then |
| * narrows the UsefulInputBuf to start and length of the wrapped |
| * CBOR that is being entered. |
| * |
| * Most of these calls are simple inline accessors so this doesn't |
| * amount to much code. |
| */ |
| |
| const size_t uPreviousLength = UsefulInputBuf_GetBufferLength(&(pMe->InBuf)); |
| /* This check makes the cast of uPreviousLength to uint32_t below safe. */ |
| if(uPreviousLength >= QCBOR_MAX_DECODE_INPUT_SIZE) { |
| uError = QCBOR_ERR_INPUT_TOO_LARGE; |
| goto Done; |
| } |
| |
| const size_t uStartOfBstr = UsefulInputBuf_PointerToOffset(&(pMe->InBuf), |
| pItem->val.string.ptr); |
| /* This check makes the cast of uStartOfBstr to uint32_t below safe. */ |
| if(uStartOfBstr == SIZE_MAX || uStartOfBstr > QCBOR_MAX_DECODE_INPUT_SIZE) { |
| /* This should never happen because pItem->val.string.ptr should |
| * always be valid since it was just returned. |
| */ |
| uError = QCBOR_ERR_INPUT_TOO_LARGE; |
| goto Done; |
| } |
| |
| const size_t uEndOfBstr = uStartOfBstr + pItem->val.string.len; |
| |
| UsefulInputBuf_Seek(&(pMe->InBuf), uStartOfBstr); |
| UsefulInputBuf_SetBufferLength(&(pMe->InBuf), uEndOfBstr); |
| |
| uError = DecodeNesting_DescendIntoBstrWrapped(&(pMe->nesting), |
| (uint32_t)uPreviousLength, |
| (uint32_t)uStartOfBstr); |
| Done: |
| return uError; |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_EnterBstrWrapped(QCBORDecodeContext *pMe, |
| uint8_t uTagRequirement, |
| UsefulBufC *pBstr) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| // Already in error state; do nothing. |
| return; |
| } |
| |
| /* Get the data item that is the byte string being entered */ |
| QCBORItem Item; |
| pMe->uLastError = (uint8_t)QCBORDecode_GetNext(pMe, &Item); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)InternalEnterBstrWrapped(pMe, |
| &Item, |
| uTagRequirement, |
| pBstr); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_EnterBstrWrappedFromMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint8_t uTagRequirement, |
| UsefulBufC *pBstr) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, &Item); |
| |
| pMe->uLastError = (uint8_t)InternalEnterBstrWrapped(pMe, |
| &Item, |
| uTagRequirement, |
| pBstr); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_EnterBstrWrappedFromMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint8_t uTagRequirement, |
| UsefulBufC *pBstr) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, &Item); |
| |
| pMe->uLastError = (uint8_t)InternalEnterBstrWrapped(pMe, |
| &Item, |
| uTagRequirement, |
| pBstr); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_ExitBstrWrapped(QCBORDecodeContext *pMe) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| // Already in error state; do nothing. |
| return; |
| } |
| |
| if(!DecodeNesting_IsBoundedType(&(pMe->nesting), QCBOR_TYPE_BYTE_STRING)) { |
| pMe->uLastError = QCBOR_ERR_EXIT_MISMATCH; |
| return; |
| } |
| |
| const uint32_t uEndOfBstr = (uint32_t)UsefulInputBuf_GetBufferLength(&(pMe->InBuf)); |
| |
| /* |
| Reset the length of the UsefulInputBuf to what it was before |
| the bstr wrapped CBOR was entered. |
| */ |
| UsefulInputBuf_SetBufferLength(&(pMe->InBuf), |
| DecodeNesting_GetPreviousBoundedEnd(&(pMe->nesting))); |
| |
| |
| QCBORError uErr = ExitBoundedLevel(pMe, uEndOfBstr); |
| pMe->uLastError = (uint8_t)uErr; |
| } |
| |
| |
| |
| |
| static inline void |
| ProcessBool(QCBORDecodeContext *pMe, const QCBORItem *pItem, bool *pBool) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| /* Already in error state, do nothing */ |
| return; |
| } |
| |
| switch(pItem->uDataType) { |
| case QCBOR_TYPE_TRUE: |
| *pBool = true; |
| break; |
| |
| case QCBOR_TYPE_FALSE: |
| *pBool = false; |
| break; |
| |
| default: |
| pMe->uLastError = QCBOR_ERR_UNEXPECTED_TYPE; |
| break; |
| } |
| CopyTags(pMe, pItem); |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetBool(QCBORDecodeContext *pMe, bool *pValue) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| /* Already in error state, do nothing */ |
| return; |
| } |
| |
| QCBORItem Item; |
| |
| pMe->uLastError = (uint8_t)QCBORDecode_GetNext(pMe, &Item); |
| |
| ProcessBool(pMe, &Item, pValue); |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetBoolInMapN(QCBORDecodeContext *pMe, int64_t nLabel, bool *pValue) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, &Item); |
| |
| ProcessBool(pMe, &Item, pValue); |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetBoolInMapSZ(QCBORDecodeContext *pMe, const char *szLabel, bool *pValue) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, &Item); |
| |
| ProcessBool(pMe, &Item, pValue); |
| } |
| |
| |
| |
| |
| static void ProcessEpochDate(QCBORDecodeContext *pMe, |
| QCBORItem *pItem, |
| const uint8_t uTagRequirement, |
| int64_t *pnTime) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| // Already in error state, do nothing |
| return; |
| } |
| |
| QCBORError uErr; |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_DATE_EPOCH, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_INT64, QCBOR_TYPE_DOUBLE, QCBOR_TYPE_FLOAT, QCBOR_TYPE_UINT64} |
| }; |
| |
| uErr = CheckTagRequirement(TagSpec, pItem); |
| if(uErr != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| if(pItem->uDataType != QCBOR_TYPE_DATE_EPOCH) { |
| uErr = DecodeDateEpoch(pItem); |
| if(uErr != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| } |
| |
| // Save the tags in the last item's tags in the decode context |
| // for QCBORDecode_GetNthTagOfLast() |
| CopyTags(pMe, pItem); |
| |
| *pnTime = pItem->val.epochDate.nSeconds; |
| |
| Done: |
| pMe->uLastError = (uint8_t)uErr; |
| } |
| |
| |
| void QCBORDecode_GetEpochDate(QCBORDecodeContext *pMe, |
| uint8_t uTagRequirement, |
| int64_t *pnTime) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| // Already in error state, do nothing |
| return; |
| } |
| |
| QCBORItem Item; |
| pMe->uLastError = (uint8_t)QCBORDecode_GetNext(pMe, &Item); |
| |
| ProcessEpochDate(pMe, &Item, uTagRequirement, pnTime); |
| } |
| |
| |
| void |
| QCBORDecode_GetEpochDateInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint8_t uTagRequirement, |
| int64_t *pnTime) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, &Item); |
| ProcessEpochDate(pMe, &Item, uTagRequirement, pnTime); |
| } |
| |
| |
| void |
| QCBORDecode_GetEpochDateInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint8_t uTagRequirement, |
| int64_t *pnTime) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, &Item); |
| ProcessEpochDate(pMe, &Item, uTagRequirement, pnTime); |
| } |
| |
| |
| |
| /* |
| * Common processing for the RFC 8943 day-count tag. Mostly |
| * make sure the tag content is correct and copy forward any |
| * further other tag numbers. |
| */ |
| static void ProcessEpochDays(QCBORDecodeContext *pMe, |
| QCBORItem *pItem, |
| uint8_t uTagRequirement, |
| int64_t *pnDays) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| /* Already in error state, do nothing */ |
| return; |
| } |
| |
| QCBORError uErr; |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_DAYS_EPOCH, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_INT64, QCBOR_TYPE_UINT64, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| uErr = CheckTagRequirement(TagSpec, pItem); |
| if(uErr != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| if(pItem->uDataType != QCBOR_TYPE_DAYS_EPOCH) { |
| uErr = DecodeDaysEpoch(pItem); |
| if(uErr != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| } |
| |
| /* Save the tags in the last item's tags in the decode context |
| * for QCBORDecode_GetNthTagOfLast() |
| */ |
| CopyTags(pMe, pItem); |
| |
| *pnDays = pItem->val.epochDays; |
| |
| Done: |
| pMe->uLastError = (uint8_t)uErr; |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h |
| */ |
| void QCBORDecode_GetEpochDays(QCBORDecodeContext *pMe, |
| uint8_t uTagRequirement, |
| int64_t *pnDays) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| /* Already in error state, do nothing */ |
| return; |
| } |
| |
| QCBORItem Item; |
| pMe->uLastError = (uint8_t)QCBORDecode_GetNext(pMe, &Item); |
| |
| ProcessEpochDays(pMe, &Item, uTagRequirement, pnDays); |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h |
| */ |
| void |
| QCBORDecode_GetEpochDaysInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint8_t uTagRequirement, |
| int64_t *pnDays) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, &Item); |
| ProcessEpochDays(pMe, &Item, uTagRequirement, pnDays); |
| } |
| |
| |
| /* |
| * Public function, see header qcbor/qcbor_decode.h |
| */ |
| void |
| QCBORDecode_GetEpochDaysInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint8_t uTagRequirement, |
| int64_t *pnDays) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, &Item); |
| ProcessEpochDays(pMe, &Item, uTagRequirement, pnDays); |
| } |
| |
| |
| |
| /* |
| * @brief Get a string that matches the type/tag specification. |
| */ |
| void |
| QCBORDecode_GetTaggedStringInternal(QCBORDecodeContext *pMe, |
| const TagSpecification TagSpec, |
| UsefulBufC *pBstr) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| /* Already in error state, do nothing */ |
| return; |
| } |
| |
| QCBORError uError; |
| QCBORItem Item; |
| |
| uError = QCBORDecode_GetNext(pMe, &Item); |
| if(uError != QCBOR_SUCCESS) { |
| pMe->uLastError = (uint8_t)uError; |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)CheckTagRequirement(TagSpec, &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| *pBstr = Item.val.string; |
| } else { |
| *pBstr = NULLUsefulBufC; |
| } |
| } |
| |
| |
| |
| |
| static QCBORError |
| ProcessBigNum(const uint8_t uTagRequirement, |
| const QCBORItem *pItem, |
| UsefulBufC *pValue, |
| bool *pbIsNegative) |
| { |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_POSBIGNUM, QCBOR_TYPE_NEGBIGNUM, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_BYTE_STRING, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| QCBORError uErr = CheckTagRequirement(TagSpec, pItem); |
| if(uErr != QCBOR_SUCCESS) { |
| return uErr; |
| } |
| |
| *pValue = pItem->val.string; |
| |
| if(pItem->uDataType == QCBOR_TYPE_POSBIGNUM) { |
| *pbIsNegative = false; |
| } else if(pItem->uDataType == QCBOR_TYPE_NEGBIGNUM) { |
| *pbIsNegative = true; |
| } |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h |
| */ |
| void QCBORDecode_GetBignum(QCBORDecodeContext *pMe, |
| uint8_t uTagRequirement, |
| UsefulBufC *pValue, |
| bool *pbIsNegative) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| // Already in error state, do nothing |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORError uError = QCBORDecode_GetNext(pMe, &Item); |
| if(uError != QCBOR_SUCCESS) { |
| pMe->uLastError = (uint8_t)uError; |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)ProcessBigNum(uTagRequirement, &Item, pValue, pbIsNegative); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h |
| */ |
| void QCBORDecode_GetBignumInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint8_t uTagRequirement, |
| UsefulBufC *pValue, |
| bool *pbIsNegative) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, &Item); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)ProcessBigNum(uTagRequirement, &Item, pValue, pbIsNegative); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h |
| */ |
| void QCBORDecode_GetBignumInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint8_t uTagRequirement, |
| UsefulBufC *pValue, |
| bool *pbIsNegative) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, &Item); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)ProcessBigNum(uTagRequirement, &Item, pValue, pbIsNegative); |
| } |
| |
| |
| |
| |
| // Semi private |
| QCBORError |
| QCBORDecode_GetMIMEInternal(const uint8_t uTagRequirement, |
| const QCBORItem *pItem, |
| UsefulBufC *pMessage, |
| bool *pbIsTag257) |
| { |
| const TagSpecification TagSpecText = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_MIME, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_TEXT_STRING, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| const TagSpecification TagSpecBinary = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_BINARY_MIME, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_BYTE_STRING, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| QCBORError uReturn; |
| |
| if(CheckTagRequirement(TagSpecText, pItem) == QCBOR_SUCCESS) { |
| *pMessage = pItem->val.string; |
| if(pbIsTag257 != NULL) { |
| *pbIsTag257 = false; |
| } |
| uReturn = QCBOR_SUCCESS; |
| } else if(CheckTagRequirement(TagSpecBinary, pItem) == QCBOR_SUCCESS) { |
| *pMessage = pItem->val.string; |
| if(pbIsTag257 != NULL) { |
| *pbIsTag257 = true; |
| } |
| uReturn = QCBOR_SUCCESS; |
| |
| } else { |
| uReturn = QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| return uReturn; |
| } |
| |
| // Improvement: add methods for wrapped CBOR, a simple alternate |
| // to EnterBstrWrapped |
| |
| |
| |
| |
| #ifndef QCBOR_DISABLE_EXP_AND_MANTISSA |
| |
| typedef QCBORError (*fExponentiator)(uint64_t uMantissa, int64_t nExponent, uint64_t *puResult); |
| |
| |
| /** |
| * @brief Base 10 exponentiate a mantissa and exponent into an unsigned 64-bit integer. |
| * |
| * @param[in] uMantissa The unsigned integer mantissa. |
| * @param[in] nExponent The signed integer exponent. |
| * @param[out] puResult Place to return the unsigned integer result. |
| * |
| * This computes: mantissa * 10 ^^ exponent as for a decimal fraction. The output is a 64-bit |
| * unsigned integer. |
| * |
| * There are many inputs for which the result will not fit in the |
| * 64-bit integer and \ref QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW will |
| * be returned. |
| */ |
| static QCBORError |
| Exponentitate10(uint64_t uMantissa, int64_t nExponent, uint64_t *puResult) |
| { |
| uint64_t uResult = uMantissa; |
| |
| if(uResult != 0) { |
| /* This loop will run a maximum of 19 times because |
| * UINT64_MAX < 10 ^^ 19. More than that will cause |
| * exit with the overflow error |
| */ |
| for(; nExponent > 0; nExponent--) { |
| if(uResult > UINT64_MAX / 10) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| uResult = uResult * 10; |
| } |
| |
| for(; nExponent < 0; nExponent++) { |
| uResult = uResult / 10; |
| if(uResult == 0) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| } |
| } |
| /* else, mantissa is zero so this returns zero */ |
| |
| *puResult = uResult; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /** |
| * @brief Base 2 exponentiate a mantissa and exponent into an unsigned 64-bit integer. |
| * |
| * @param[in] uMantissa The unsigned integer mantissa. |
| * @param[in] nExponent The signed integer exponent. |
| * @param[out] puResult Place to return the unsigned integer result. |
| * |
| * This computes: mantissa * 2 ^^ exponent as for a big float. The |
| * output is a 64-bit unsigned integer. |
| * |
| * There are many inputs for which the result will not fit in the |
| * 64-bit integer and \ref QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW will |
| * be returned. |
| */ |
| static QCBORError |
| Exponentitate2(uint64_t uMantissa, int64_t nExponent, uint64_t *puResult) |
| { |
| uint64_t uResult; |
| |
| uResult = uMantissa; |
| |
| /* This loop will run a maximum of 64 times because INT64_MAX < |
| * 2^31. More than that will cause exit with the overflow error |
| */ |
| while(nExponent > 0) { |
| if(uResult > UINT64_MAX >> 1) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| uResult = uResult << 1; |
| nExponent--; |
| } |
| |
| while(nExponent < 0 ) { |
| if(uResult == 0) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| uResult = uResult >> 1; |
| nExponent++; |
| } |
| |
| *puResult = uResult; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /** |
| * @brief Exponentiate a signed mantissa and signed exponent to produce a signed result. |
| * |
| * @param[in] nMantissa Signed integer mantissa. |
| * @param[in] nExponent Signed integer exponent. |
| * @param[out] pnResult Place to put the signed integer result. |
| * @param[in] pfExp Exponentiation function. |
| * |
| * @returns Error code |
| * |
| * \c pfExp performs exponentiation on and unsigned mantissa and |
| * produces an unsigned result. This converts the mantissa from signed |
| * and converts the result to signed. The exponentiation function is |
| * either for base 2 or base 10 (and could be other if needed). |
| */ |
| static QCBORError |
| ExponentiateNN(int64_t nMantissa, |
| int64_t nExponent, |
| int64_t *pnResult, |
| fExponentiator pfExp) |
| { |
| uint64_t uResult; |
| uint64_t uMantissa; |
| |
| /* Take the absolute value and put it into an unsigned. */ |
| if(nMantissa >= 0) { |
| /* Positive case is straightforward */ |
| uMantissa = (uint64_t)nMantissa; |
| } else if(nMantissa != INT64_MIN) { |
| /* The common negative case. See next. */ |
| uMantissa = (uint64_t)-nMantissa; |
| } else { |
| /* int64_t and uint64_t require two's complement representation |
| * of integers (and since QCBOR uses these it only works with |
| * two's complement (which is pretty much universal these |
| * days)). The range of a negative two's complement integer is |
| * one more that than a positive, so the simple code above might |
| * not work all the time because you can't simply negate the |
| * value INT64_MIN because it can't be represented in an |
| * int64_t. -INT64_MIN can however be represented in a |
| * uint64_t. Some compilers seem to recognize this case for the |
| * above code and put the correct value in uMantissa, however |
| * they are not required to do this by the C standard. This next |
| * line does however work for all compilers. |
| * |
| * This does assume two's complement where -INT64_MIN == |
| * INT64_MAX (which wouldn't be true for one's complement or |
| * sign and magnitude (but we know we're using two's complement |
| * because int64_t requires it)). |
| * |
| * See these, particularly the detailed commentary: |
| * https://stackoverflow.com/questions/54915742/does-c99-mandate-a-int64-t-type-be-available-always |
| * https://stackoverflow.com/questions/37301078/is-negating-int-min-undefined-behaviour |
| */ |
| uMantissa = (uint64_t)INT64_MAX+1; |
| } |
| |
| /* Call the exponentiator passed in for either base 2 or base 10. |
| * Here is where most of the overflow errors are caught. */ |
| QCBORError uReturn = (*pfExp)(uMantissa, nExponent, &uResult); |
| if(uReturn) { |
| return uReturn; |
| } |
| |
| /* Convert back to the sign of the original mantissa */ |
| if(nMantissa >= 0) { |
| if(uResult > INT64_MAX) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| *pnResult = (int64_t)uResult; |
| } else { |
| /* (uint64_t)INT64_MAX+1 is used to represent the absolute value |
| * of INT64_MIN. This assumes two's compliment representation |
| * where INT64_MIN is one increment farther from 0 than |
| * INT64_MAX. Trying to write -INT64_MIN doesn't work to get |
| * this because the compiler makes it an int64_t which can't |
| * represent -INT64_MIN. Also see above. |
| */ |
| if(uResult > (uint64_t)INT64_MAX+1) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| *pnResult = -(int64_t)uResult; |
| } |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /** |
| * @brief Exponentiate an unsigned mantissa and signed exponent to produce an unsigned result. |
| * |
| * @param[in] nMantissa Signed integer mantissa. |
| * @param[in] nExponent Signed integer exponent. |
| * @param[out] puResult Place to put the signed integer result. |
| * @param[in] pfExp Exponentiation function. |
| * |
| * @returns Error code |
| * |
| * \c pfExp performs exponentiation on and unsigned mantissa and |
| * produces an unsigned result. This errors out if the mantissa |
| * is negative because the output is unsigned. |
| */ |
| static QCBORError |
| ExponentitateNU(int64_t nMantissa, |
| int64_t nExponent, |
| uint64_t *puResult, |
| fExponentiator pfExp) |
| { |
| if(nMantissa < 0) { |
| return QCBOR_ERR_NUMBER_SIGN_CONVERSION; |
| } |
| |
| /* Cast to unsigned is OK because of check for negative. |
| * Cast to unsigned is OK because UINT64_MAX > INT64_MAX. |
| * Exponentiation is straight forward |
| */ |
| return (*pfExp)((uint64_t)nMantissa, nExponent, puResult); |
| } |
| |
| |
| /** |
| * @brief Exponentiate an usnigned mantissa and unsigned exponent to produce an unsigned result. |
| * |
| * @param[in] uMantissa Unsigned integer mantissa. |
| * @param[in] nExponent Unsigned integer exponent. |
| * @param[out] puResult Place to put the unsigned integer result. |
| * @param[in] pfExp Exponentiation function. |
| * |
| * @returns Error code |
| * |
| * \c pfExp performs exponentiation on and unsigned mantissa and |
| * produces an unsigned result so this is just a wrapper that does |
| * nothing (and is likely inlined). |
| */ |
| static QCBORError |
| ExponentitateUU(uint64_t uMantissa, |
| int64_t nExponent, |
| uint64_t *puResult, |
| fExponentiator pfExp) |
| { |
| return (*pfExp)(uMantissa, nExponent, puResult); |
| } |
| |
| #endif /* QCBOR_DISABLE_EXP_AND_MANTISSA */ |
| |
| |
| |
| |
| /** |
| * @brief Convert a CBOR big number to a uint64_t. |
| * |
| * @param[in] BigNum Bytes of the big number to convert. |
| * @param[in] uMax Maximum value allowed for the result. |
| * @param[out] pResult Place to put the unsigned integer result. |
| * |
| * @returns Error code |
| * |
| * Many values will overflow because a big num can represent a much |
| * larger range than uint64_t. |
| */ |
| static QCBORError |
| ConvertBigNumToUnsigned(const UsefulBufC BigNum, const uint64_t uMax, uint64_t *pResult) |
| { |
| uint64_t uResult; |
| |
| uResult = 0; |
| const uint8_t *pByte = BigNum.ptr; |
| size_t uLen = BigNum.len; |
| while(uLen--) { |
| if(uResult > (uMax >> 8)) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| uResult = (uResult << 8) + *pByte++; |
| } |
| |
| *pResult = uResult; |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /** |
| * @brief Convert a CBOR postive big number to a uint64_t. |
| * |
| * @param[in] BigNum Bytes of the big number to convert. |
| * @param[out] pResult Place to put the unsigned integer result. |
| * |
| * @returns Error code |
| * |
| * Many values will overflow because a big num can represent a much |
| * larger range than uint64_t. |
| */ |
| static QCBORError |
| ConvertPositiveBigNumToUnsigned(const UsefulBufC BigNum, uint64_t *pResult) |
| { |
| return ConvertBigNumToUnsigned(BigNum, UINT64_MAX, pResult); |
| } |
| |
| |
| /** |
| * @brief Convert a CBOR positive big number to an int64_t. |
| * |
| * @param[in] BigNum Bytes of the big number to convert. |
| * @param[out] pResult Place to put the signed integer result. |
| * |
| * @returns Error code |
| * |
| * Many values will overflow because a big num can represent a much |
| * larger range than int64_t. |
| */ |
| static QCBORError |
| ConvertPositiveBigNumToSigned(const UsefulBufC BigNum, int64_t *pResult) |
| { |
| uint64_t uResult; |
| QCBORError uError = ConvertBigNumToUnsigned(BigNum, INT64_MAX, &uResult); |
| if(uError) { |
| return uError; |
| } |
| /* Cast is safe because ConvertBigNumToUnsigned is told to limit to INT64_MAX */ |
| *pResult = (int64_t)uResult; |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /** |
| * @brief Convert a CBOR negative big number to an int64_t. |
| * |
| * @param[in] BigNum Bytes of the big number to convert. |
| * @param[out] pnResult Place to put the signed integer result. |
| * |
| * @returns Error code |
| * |
| * Many values will overflow because a big num can represent a much |
| * larger range than int64_t. |
| */ |
| static QCBORError |
| ConvertNegativeBigNumToSigned(const UsefulBufC BigNum, int64_t *pnResult) |
| { |
| uint64_t uResult; |
| /* The negative integer furthest from zero for a C int64_t is |
| * INT64_MIN which is expressed as -INT64_MAX - 1. The value of a |
| * negative number in CBOR is computed as -n - 1 where n is the |
| * encoded integer, where n is what is in the variable BigNum. When |
| * converting BigNum to a uint64_t, the maximum value is thus |
| * INT64_MAX, so that when it -n - 1 is applied to it the result |
| * will never be further from 0 than INT64_MIN. |
| * |
| * -n - 1 <= INT64_MIN. |
| * -n - 1 <= -INT64_MAX - 1 |
| * n <= INT64_MAX. |
| */ |
| QCBORError uError = ConvertBigNumToUnsigned(BigNum, INT64_MAX, &uResult); |
| if(uError != QCBOR_SUCCESS) { |
| return uError; |
| } |
| |
| /* Now apply -n - 1. The cast is safe because |
| * ConvertBigNumToUnsigned() is limited to INT64_MAX which does fit |
| * is the largest positive integer that an int64_t can |
| * represent. */ |
| *pnResult = -(int64_t)uResult - 1; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| |
| |
| |
| /* |
| Convert integers and floats to an int64_t. |
| |
| \param[in] uConvertTypes Bit mask list of conversion options. |
| |
| \retval QCBOR_ERR_UNEXPECTED_TYPE Conversion, possible, but not requested |
| in uConvertTypes. |
| |
| \retval QCBOR_ERR_UNEXPECTED_TYPE Of a type that can't be converted |
| |
| \retval QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW Conversion result is too large |
| or too small. |
| */ |
| static QCBORError |
| ConvertInt64(const QCBORItem *pItem, uint32_t uConvertTypes, int64_t *pnValue) |
| { |
| switch(pItem->uDataType) { |
| case QCBOR_TYPE_FLOAT: |
| case QCBOR_TYPE_DOUBLE: |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_FLOAT) { |
| /* https://pubs.opengroup.org/onlinepubs/009695399/functions/llround.html |
| http://www.cplusplus.com/reference/cmath/llround/ |
| */ |
| // Not interested in FE_INEXACT |
| feclearexcept(FE_INVALID|FE_OVERFLOW|FE_UNDERFLOW|FE_DIVBYZERO); |
| if(pItem->uDataType == QCBOR_TYPE_DOUBLE) { |
| *pnValue = llround(pItem->val.dfnum); |
| } else { |
| *pnValue = lroundf(pItem->val.fnum); |
| } |
| if(fetestexcept(FE_INVALID|FE_OVERFLOW|FE_UNDERFLOW|FE_DIVBYZERO)) { |
| // llround() shouldn't result in divide by zero, but catch |
| // it here in case it unexpectedly does. Don't try to |
| // distinguish between the various exceptions because it seems |
| // they vary by CPU, compiler and OS. |
| return QCBOR_ERR_FLOAT_EXCEPTION; |
| } |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| #else |
| return QCBOR_ERR_HW_FLOAT_DISABLED; |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| break; |
| |
| case QCBOR_TYPE_INT64: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_XINT64) { |
| *pnValue = pItem->val.int64; |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_UINT64: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_XINT64) { |
| if(pItem->val.uint64 < INT64_MAX) { |
| *pnValue = pItem->val.int64; |
| } else { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| default: |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| void QCBORDecode_GetInt64ConvertInternal(QCBORDecodeContext *pMe, |
| uint32_t uConvertTypes, |
| int64_t *pnValue, |
| QCBORItem *pItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORError uError = QCBORDecode_GetNext(pMe, &Item); |
| if(uError) { |
| pMe->uLastError = (uint8_t)uError; |
| return; |
| } |
| |
| if(pItem) { |
| *pItem = Item; |
| } |
| |
| pMe->uLastError = (uint8_t)ConvertInt64(&Item, uConvertTypes, pnValue); |
| } |
| |
| |
| void QCBORDecode_GetInt64ConvertInternalInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint32_t uConvertTypes, |
| int64_t *pnValue, |
| QCBORItem *pItem) |
| { |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, pItem); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)ConvertInt64(pItem, uConvertTypes, pnValue); |
| } |
| |
| |
| void QCBORDecode_GetInt64ConvertInternalInMapSZ(QCBORDecodeContext *pMe, |
| const char * szLabel, |
| uint32_t uConvertTypes, |
| int64_t *pnValue, |
| QCBORItem *pItem) |
| { |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, pItem); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)ConvertInt64(pItem, uConvertTypes, pnValue); |
| } |
| |
| |
| /* |
| Convert a large variety of integer types to an int64_t. |
| |
| \param[in] uConvertTypes Bit mask list of conversion options. |
| |
| \retval QCBOR_ERR_UNEXPECTED_TYPE Conversion, possible, but not requested |
| in uConvertTypes. |
| |
| \retval QCBOR_ERR_UNEXPECTED_TYPE Of a type that can't be converted |
| |
| \retval QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW Conversion result is too large |
| or too small. |
| */ |
| static QCBORError |
| Int64ConvertAll(const QCBORItem *pItem, uint32_t uConvertTypes, int64_t *pnValue) |
| { |
| switch(pItem->uDataType) { |
| |
| case QCBOR_TYPE_POSBIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| return ConvertPositiveBigNumToSigned(pItem->val.bigNum, pnValue); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_NEGBIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| return ConvertNegativeBigNumToSigned(pItem->val.bigNum, pnValue); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| #ifndef QCBOR_DISABLE_EXP_AND_MANTISSA |
| case QCBOR_TYPE_DECIMAL_FRACTION: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| return ExponentiateNN(pItem->val.expAndMantissa.Mantissa.nInt, |
| pItem->val.expAndMantissa.nExponent, |
| pnValue, |
| &Exponentitate10); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_BIGFLOAT) { |
| return ExponentiateNN(pItem->val.expAndMantissa.Mantissa.nInt, |
| pItem->val.expAndMantissa.nExponent, |
| pnValue, |
| Exponentitate2); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| QCBORError uErr; |
| uErr = ConvertPositiveBigNumToSigned(pItem->val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(uErr) { |
| return uErr; |
| } |
| return ExponentiateNN(nMantissa, |
| pItem->val.expAndMantissa.nExponent, |
| pnValue, |
| Exponentitate10); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| QCBORError uErr; |
| uErr = ConvertNegativeBigNumToSigned(pItem->val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(uErr) { |
| return uErr; |
| } |
| return ExponentiateNN(nMantissa, |
| pItem->val.expAndMantissa.nExponent, |
| pnValue, |
| Exponentitate10); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_POS_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| QCBORError uErr; |
| uErr = ConvertPositiveBigNumToSigned(pItem->val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(uErr) { |
| return uErr; |
| } |
| return ExponentiateNN(nMantissa, |
| pItem->val.expAndMantissa.nExponent, |
| pnValue, |
| Exponentitate2); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| QCBORError uErr; |
| uErr = ConvertNegativeBigNumToSigned(pItem->val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(uErr) { |
| return uErr; |
| } |
| return ExponentiateNN(nMantissa, |
| pItem->val.expAndMantissa.nExponent, |
| pnValue, |
| Exponentitate2); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| #endif /* QCBOR_DISABLE_EXP_AND_MANTISSA */ |
| |
| |
| default: |
| return QCBOR_ERR_UNEXPECTED_TYPE; } |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetInt64ConvertAll(QCBORDecodeContext *pMe, uint32_t uConvertTypes, int64_t *pnValue) |
| { |
| QCBORItem Item; |
| |
| QCBORDecode_GetInt64ConvertInternal(pMe, uConvertTypes, pnValue, &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)Int64ConvertAll(&Item, uConvertTypes, pnValue); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetInt64ConvertAllInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint32_t uConvertTypes, |
| int64_t *pnValue) |
| { |
| QCBORItem Item; |
| |
| QCBORDecode_GetInt64ConvertInternalInMapN(pMe, |
| nLabel, |
| uConvertTypes, |
| pnValue, |
| &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)Int64ConvertAll(&Item, uConvertTypes, pnValue); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetInt64ConvertAllInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint32_t uConvertTypes, |
| int64_t *pnValue) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetInt64ConvertInternalInMapSZ(pMe, |
| szLabel, |
| uConvertTypes, |
| pnValue, |
| &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)Int64ConvertAll(&Item, uConvertTypes, pnValue); |
| } |
| |
| |
| static QCBORError ConvertUInt64(const QCBORItem *pItem, uint32_t uConvertTypes, uint64_t *puValue) |
| { |
| switch(pItem->uDataType) { |
| case QCBOR_TYPE_DOUBLE: |
| case QCBOR_TYPE_FLOAT: |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_FLOAT) { |
| // Can't use llround here because it will not convert values |
| // greater than INT64_MAX and less than UINT64_MAX that |
| // need to be converted so it is more complicated. |
| feclearexcept(FE_INVALID|FE_OVERFLOW|FE_UNDERFLOW|FE_DIVBYZERO); |
| if(pItem->uDataType == QCBOR_TYPE_DOUBLE) { |
| if(isnan(pItem->val.dfnum)) { |
| return QCBOR_ERR_FLOAT_EXCEPTION; |
| } else if(pItem->val.dfnum < 0) { |
| return QCBOR_ERR_NUMBER_SIGN_CONVERSION; |
| } else { |
| double dRounded = round(pItem->val.dfnum); |
| // See discussion in DecodeDateEpoch() for |
| // explanation of - 0x7ff |
| if(dRounded > (double)(UINT64_MAX- 0x7ff)) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| *puValue = (uint64_t)dRounded; |
| } |
| } else { |
| if(isnan(pItem->val.fnum)) { |
| return QCBOR_ERR_FLOAT_EXCEPTION; |
| } else if(pItem->val.fnum < 0) { |
| return QCBOR_ERR_NUMBER_SIGN_CONVERSION; |
| } else { |
| float fRounded = roundf(pItem->val.fnum); |
| // See discussion in DecodeDateEpoch() for |
| // explanation of - 0x7ff |
| if(fRounded > (float)(UINT64_MAX- 0x7ff)) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| *puValue = (uint64_t)fRounded; |
| } |
| } |
| if(fetestexcept(FE_INVALID|FE_OVERFLOW|FE_UNDERFLOW|FE_DIVBYZERO)) { |
| // round() and roundf() shouldn't result in exceptions here, but |
| // catch them to be robust and thorough. Don't try to |
| // distinguish between the various exceptions because it seems |
| // they vary by CPU, compiler and OS. |
| return QCBOR_ERR_FLOAT_EXCEPTION; |
| } |
| |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| #else |
| return QCBOR_ERR_HW_FLOAT_DISABLED; |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| break; |
| |
| case QCBOR_TYPE_INT64: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_XINT64) { |
| if(pItem->val.int64 >= 0) { |
| *puValue = (uint64_t)pItem->val.int64; |
| } else { |
| return QCBOR_ERR_NUMBER_SIGN_CONVERSION; |
| } |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_UINT64: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_XINT64) { |
| *puValue = pItem->val.uint64; |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| default: |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| void QCBORDecode_GetUInt64ConvertInternal(QCBORDecodeContext *pMe, |
| uint32_t uConvertTypes, |
| uint64_t *puValue, |
| QCBORItem *pItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| |
| QCBORError uError = QCBORDecode_GetNext(pMe, &Item); |
| if(uError) { |
| pMe->uLastError = (uint8_t)uError; |
| return; |
| } |
| |
| if(pItem) { |
| *pItem = Item; |
| } |
| |
| pMe->uLastError = (uint8_t)ConvertUInt64(&Item, uConvertTypes, puValue); |
| } |
| |
| |
| void QCBORDecode_GetUInt64ConvertInternalInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint32_t uConvertTypes, |
| uint64_t *puValue, |
| QCBORItem *pItem) |
| { |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, pItem); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)ConvertUInt64(pItem, uConvertTypes, puValue); |
| } |
| |
| |
| void QCBORDecode_GetUInt64ConvertInternalInMapSZ(QCBORDecodeContext *pMe, |
| const char * szLabel, |
| uint32_t uConvertTypes, |
| uint64_t *puValue, |
| QCBORItem *pItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, pItem); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)ConvertUInt64(pItem, uConvertTypes, puValue); |
| } |
| |
| |
| |
| static QCBORError |
| UInt64ConvertAll(const QCBORItem *pItem, uint32_t uConvertTypes, uint64_t *puValue) |
| { |
| switch(pItem->uDataType) { |
| |
| case QCBOR_TYPE_POSBIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| return ConvertPositiveBigNumToUnsigned(pItem->val.bigNum, puValue); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_NEGBIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| return QCBOR_ERR_NUMBER_SIGN_CONVERSION; |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| #ifndef QCBOR_DISABLE_EXP_AND_MANTISSA |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| return ExponentitateNU(pItem->val.expAndMantissa.Mantissa.nInt, |
| pItem->val.expAndMantissa.nExponent, |
| puValue, |
| Exponentitate10); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_BIGFLOAT) { |
| return ExponentitateNU(pItem->val.expAndMantissa.Mantissa.nInt, |
| pItem->val.expAndMantissa.nExponent, |
| puValue, |
| Exponentitate2); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| uint64_t uMantissa; |
| QCBORError uErr; |
| uErr = ConvertPositiveBigNumToUnsigned(pItem->val.expAndMantissa.Mantissa.bigNum, &uMantissa); |
| if(uErr != QCBOR_SUCCESS) { |
| return uErr; |
| } |
| return ExponentitateUU(uMantissa, |
| pItem->val.expAndMantissa.nExponent, |
| puValue, |
| Exponentitate10); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| return QCBOR_ERR_NUMBER_SIGN_CONVERSION; |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_POS_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| uint64_t uMantissa; |
| QCBORError uErr; |
| uErr = ConvertPositiveBigNumToUnsigned(pItem->val.expAndMantissa.Mantissa.bigNum, &uMantissa); |
| if(uErr != QCBOR_SUCCESS) { |
| return uErr; |
| } |
| return ExponentitateUU(uMantissa, |
| pItem->val.expAndMantissa.nExponent, |
| puValue, |
| Exponentitate2); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| return QCBOR_ERR_NUMBER_SIGN_CONVERSION; |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| #endif /* QCBOR_DISABLE_EXP_AND_MANTISSA */ |
| default: |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetUInt64ConvertAll(QCBORDecodeContext *pMe, uint32_t uConvertTypes, uint64_t *puValue) |
| { |
| QCBORItem Item; |
| |
| QCBORDecode_GetUInt64ConvertInternal(pMe, uConvertTypes, puValue, &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)UInt64ConvertAll(&Item, uConvertTypes, puValue); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetUInt64ConvertAllInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint32_t uConvertTypes, |
| uint64_t *puValue) |
| { |
| QCBORItem Item; |
| |
| QCBORDecode_GetUInt64ConvertInternalInMapN(pMe, |
| nLabel, |
| uConvertTypes, |
| puValue, |
| &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)UInt64ConvertAll(&Item, uConvertTypes, puValue); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetUInt64ConvertAllInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint32_t uConvertTypes, |
| uint64_t *puValue) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetUInt64ConvertInternalInMapSZ(pMe, |
| szLabel, |
| uConvertTypes, |
| puValue, |
| &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)UInt64ConvertAll(&Item, uConvertTypes, puValue); |
| } |
| |
| |
| |
| |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| static QCBORError ConvertDouble(const QCBORItem *pItem, |
| uint32_t uConvertTypes, |
| double *pdValue) |
| { |
| switch(pItem->uDataType) { |
| case QCBOR_TYPE_FLOAT: |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_FLOAT) { |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_FLOAT) { |
| // Simple cast does the job. |
| *pdValue = (double)pItem->val.fnum; |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| } |
| #else /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| return QCBOR_ERR_HW_FLOAT_DISABLED; |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| break; |
| |
| case QCBOR_TYPE_DOUBLE: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_FLOAT) { |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_FLOAT) { |
| *pdValue = pItem->val.dfnum; |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| } |
| break; |
| |
| case QCBOR_TYPE_INT64: |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_XINT64) { |
| // A simple cast seems to do the job with no worry of exceptions. |
| // There will be precision loss for some values. |
| *pdValue = (double)pItem->val.int64; |
| |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| #else |
| return QCBOR_ERR_HW_FLOAT_DISABLED; |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| break; |
| |
| case QCBOR_TYPE_UINT64: |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_XINT64) { |
| // A simple cast seems to do the job with no worry of exceptions. |
| // There will be precision loss for some values. |
| *pdValue = (double)pItem->val.uint64; |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| #else |
| return QCBOR_ERR_HW_FLOAT_DISABLED; |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| |
| default: |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| void QCBORDecode_GetDoubleConvertInternal(QCBORDecodeContext *pMe, |
| uint32_t uConvertTypes, |
| double *pdValue, |
| QCBORItem *pItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| |
| QCBORError uError = QCBORDecode_GetNext(pMe, &Item); |
| if(uError) { |
| pMe->uLastError = (uint8_t)uError; |
| return; |
| } |
| |
| if(pItem) { |
| *pItem = Item; |
| } |
| |
| pMe->uLastError = (uint8_t)ConvertDouble(&Item, uConvertTypes, pdValue); |
| } |
| |
| |
| void QCBORDecode_GetDoubleConvertInternalInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint32_t uConvertTypes, |
| double *pdValue, |
| QCBORItem *pItem) |
| { |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, pItem); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)ConvertDouble(pItem, uConvertTypes, pdValue); |
| } |
| |
| |
| void QCBORDecode_GetDoubleConvertInternalInMapSZ(QCBORDecodeContext *pMe, |
| const char * szLabel, |
| uint32_t uConvertTypes, |
| double *pdValue, |
| QCBORItem *pItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, pItem); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)ConvertDouble(pItem, uConvertTypes, pdValue); |
| } |
| |
| |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| static double ConvertBigNumToDouble(const UsefulBufC BigNum) |
| { |
| double dResult; |
| |
| dResult = 0.0; |
| const uint8_t *pByte = BigNum.ptr; |
| size_t uLen = BigNum.len; |
| /* This will overflow and become the float value INFINITY if the number |
| is too large to fit. */ |
| while(uLen--) { |
| dResult = (dResult * 256.0) + (double)*pByte++; |
| } |
| |
| return dResult; |
| } |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| |
| |
| static QCBORError |
| DoubleConvertAll(const QCBORItem *pItem, uint32_t uConvertTypes, double *pdValue) |
| { |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| /* |
| * What Every Computer Scientist Should Know About Floating-Point Arithmetic |
| * https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html |
| */ |
| switch(pItem->uDataType) { |
| |
| #ifndef QCBOR_DISABLE_EXP_AND_MANTISSA |
| case QCBOR_TYPE_DECIMAL_FRACTION: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| // Underflow gives 0, overflow gives infinity |
| *pdValue = (double)pItem->val.expAndMantissa.Mantissa.nInt * |
| pow(10.0, (double)pItem->val.expAndMantissa.nExponent); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_BIGFLOAT ) { |
| // Underflow gives 0, overflow gives infinity |
| *pdValue = (double)pItem->val.expAndMantissa.Mantissa.nInt * |
| exp2((double)pItem->val.expAndMantissa.nExponent); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| #endif /* ndef QCBOR_DISABLE_EXP_AND_MANTISSA */ |
| |
| case QCBOR_TYPE_POSBIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| *pdValue = ConvertBigNumToDouble(pItem->val.bigNum); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_NEGBIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| *pdValue = -1-ConvertBigNumToDouble(pItem->val.bigNum); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| #ifndef QCBOR_DISABLE_EXP_AND_MANTISSA |
| case QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| double dMantissa = ConvertBigNumToDouble(pItem->val.expAndMantissa.Mantissa.bigNum); |
| *pdValue = dMantissa * pow(10, (double)pItem->val.expAndMantissa.nExponent); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| double dMantissa = -ConvertBigNumToDouble(pItem->val.expAndMantissa.Mantissa.bigNum); |
| *pdValue = dMantissa * pow(10, (double)pItem->val.expAndMantissa.nExponent); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_POS_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_BIGFLOAT) { |
| double dMantissa = ConvertBigNumToDouble(pItem->val.expAndMantissa.Mantissa.bigNum); |
| *pdValue = dMantissa * exp2((double)pItem->val.expAndMantissa.nExponent); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM: |
| if(uConvertTypes & QCBOR_CONVERT_TYPE_BIGFLOAT) { |
| double dMantissa = -1-ConvertBigNumToDouble(pItem->val.expAndMantissa.Mantissa.bigNum); |
| *pdValue = dMantissa * exp2((double)pItem->val.expAndMantissa.nExponent); |
| } else { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| break; |
| #endif /* ndef QCBOR_DISABLE_EXP_AND_MANTISSA */ |
| |
| default: |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| return QCBOR_SUCCESS; |
| |
| #else |
| (void)pItem; |
| (void)uConvertTypes; |
| (void)pdValue; |
| return QCBOR_ERR_HW_FLOAT_DISABLED; |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetDoubleConvertAll(QCBORDecodeContext *pMe, |
| uint32_t uConvertTypes, |
| double *pdValue) |
| { |
| |
| QCBORItem Item; |
| |
| QCBORDecode_GetDoubleConvertInternal(pMe, uConvertTypes, pdValue, &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)DoubleConvertAll(&Item, uConvertTypes, pdValue); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetDoubleConvertAllInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint32_t uConvertTypes, |
| double *pdValue) |
| { |
| QCBORItem Item; |
| |
| QCBORDecode_GetDoubleConvertInternalInMapN(pMe, nLabel, uConvertTypes, pdValue, &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)DoubleConvertAll(&Item, uConvertTypes, pdValue); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetDoubleConvertAllInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint32_t uConvertTypes, |
| double *pdValue) |
| { |
| QCBORItem Item; |
| QCBORDecode_GetDoubleConvertInternalInMapSZ(pMe, szLabel, uConvertTypes, pdValue, &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| pMe->uLastError = (uint8_t)DoubleConvertAll(&Item, uConvertTypes, pdValue); |
| } |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| |
| |
| |
| |
| #ifndef QCBOR_DISABLE_EXP_AND_MANTISSA |
| static inline UsefulBufC ConvertIntToBigNum(uint64_t uInt, UsefulBuf Buffer) |
| { |
| while((uInt & 0xff00000000000000UL) == 0) { |
| uInt = uInt << 8; |
| }; |
| |
| UsefulOutBuf UOB; |
| |
| UsefulOutBuf_Init(&UOB, Buffer); |
| |
| while(uInt) { |
| const uint64_t xx = uInt & 0xff00000000000000UL; |
| UsefulOutBuf_AppendByte(&UOB, (uint8_t)((uInt & 0xff00000000000000UL) >> 56)); |
| uInt = uInt << 8; |
| (void)xx; |
| } |
| |
| return UsefulOutBuf_OutUBuf(&UOB); |
| } |
| |
| |
| /** |
| * @brief Check and/or complete mantissa and exponent item. |
| * |
| * @param[in] pMe The decoder context |
| * @param[in] TagSpec Expected type(s) |
| * @param[in,out] pItem See below |
| * |
| * This is for decimal fractions and big floats, both of which are a |
| * mantissa and exponent. |
| * |
| * The input item is either a fully decoded decimal faction or big |
| * float, or a just the decoded first item of a decimal fraction or |
| * big float. |
| * |
| * On output, the item is always a fully decoded decimal fraction or |
| * big float. |
| * |
| * This errors out if the input type does not meet the TagSpec. |
| */ |
| // TODO: document and see tests for the bug that was fixed by this rewrite |
| static QCBORError |
| MantissaAndExponentTypeHandler(QCBORDecodeContext *pMe, |
| const TagSpecification TagSpec, |
| QCBORItem *pItem) |
| { |
| QCBORError uErr; |
| |
| /* pItem could either be an auto-decoded mantissa and exponent or |
| * the opening array of an undecoded mantissa and exponent. This |
| * check will succeed on either, but doesn't say which it was. |
| */ |
| uErr = CheckTagRequirement(TagSpec, pItem); |
| if(uErr != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| if(pItem->uDataType == QCBOR_TYPE_ARRAY) { |
| /* The item is an array, which means is is an undecoded mantissa |
| * and exponent. This call consumes the items in the array and |
| * results in a decoded mantissa and exponent in pItem. This is |
| * the case where there was no tag. |
| */ |
| uErr = QCBORDecode_MantissaAndExponent(pMe, pItem); |
| if(uErr != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| /* The above decode didn't determine whether it is a decimal |
| * fraction or big num. Which of these two depends on what the |
| * caller wants it decoded as since there is no tag, so fish the |
| * type out of the TagSpec. */ |
| pItem->uDataType = MantissaExponentDataType(TagSpec.uTaggedTypes[0], pItem); |
| |
| /* No need to check the type again. All that we need to know was |
| * that it decoded correctly as a mantissa and exponent. The |
| * QCBOR type is set out by what was requested. |
| */ |
| } |
| |
| /* If the item was not an array and the check passed, then |
| * it is a fully decoded big float or decimal fraction and |
| * matches what is requested. |
| */ |
| |
| Done: |
| return uErr; |
| } |
| |
| |
| /* Some notes from the work to disable tags. |
| * |
| * The API for big floats and decimal fractions seems good. |
| * If there's any issue with it it's that the code size to |
| * implement is a bit large because of the conversion |
| * to/from int and bignum that is required. There is no API |
| * that doesn't do the conversion so dead stripping will never |
| * leave that code out. |
| * |
| * The implementation itself seems correct, but not as clean |
| * and neat as it could be. It could probably be smaller too. |
| * |
| * The implementation has three main parts / functions |
| * - The decoding of the array of two |
| * - All the tag and type checking for the various API functions |
| * - Conversion to/from bignum and int |
| * |
| * The type checking seems like it wastes the most code for |
| * what it needs to do. |
| * |
| * The inlining for the conversion is probably making the |
| * overall code base larger. |
| * |
| * The tests cases could be organized a lot better and be |
| * more thorough. |
| * |
| * Seems also like there could be more common code in the |
| * first tier part of the public API. Some functions only |
| * vary by a TagSpec. |
| */ |
| static void ProcessMantissaAndExponent(QCBORDecodeContext *pMe, |
| TagSpecification TagSpec, |
| QCBORItem *pItem, |
| int64_t *pnMantissa, |
| int64_t *pnExponent) |
| { |
| QCBORError uErr; |
| |
| uErr = MantissaAndExponentTypeHandler(pMe, TagSpec, pItem); |
| if(uErr != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| switch (pItem->uDataType) { |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION: |
| case QCBOR_TYPE_BIGFLOAT: |
| *pnExponent = pItem->val.expAndMantissa.nExponent; |
| *pnMantissa = pItem->val.expAndMantissa.Mantissa.nInt; |
| break; |
| |
| #ifndef QCBOR_DISABLE_TAGS |
| /* If tags are disabled, mantissas can never be big nums */ |
| case QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM: |
| case QCBOR_TYPE_BIGFLOAT_POS_BIGNUM: |
| *pnExponent = pItem->val.expAndMantissa.nExponent; |
| uErr = ConvertPositiveBigNumToSigned(pItem->val.expAndMantissa.Mantissa.bigNum, pnMantissa); |
| break; |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM: |
| case QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM: |
| *pnExponent = pItem->val.expAndMantissa.nExponent; |
| uErr = ConvertNegativeBigNumToSigned(pItem->val.expAndMantissa.Mantissa.bigNum, pnMantissa); |
| break; |
| #endif /* QCBOR_DISABLE_TAGS */ |
| |
| default: |
| uErr = QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| Done: |
| pMe->uLastError = (uint8_t)uErr; |
| } |
| |
| |
| static void ProcessMantissaAndExponentBig(QCBORDecodeContext *pMe, |
| TagSpecification TagSpec, |
| QCBORItem *pItem, |
| UsefulBuf BufferForMantissa, |
| UsefulBufC *pMantissa, |
| bool *pbIsNegative, |
| int64_t *pnExponent) |
| { |
| QCBORError uErr; |
| |
| uErr = MantissaAndExponentTypeHandler(pMe, TagSpec, pItem); |
| if(uErr != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| uint64_t uMantissa; |
| |
| switch (pItem->uDataType) { |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION: |
| case QCBOR_TYPE_BIGFLOAT: |
| /* See comments in ExponentiateNN() on handling INT64_MIN */ |
| if(pItem->val.expAndMantissa.Mantissa.nInt >= 0) { |
| uMantissa = (uint64_t)pItem->val.expAndMantissa.Mantissa.nInt; |
| *pbIsNegative = false; |
| } else if(pItem->val.expAndMantissa.Mantissa.nInt != INT64_MIN) { |
| uMantissa = (uint64_t)-pItem->val.expAndMantissa.Mantissa.nInt; |
| *pbIsNegative = true; |
| } else { |
| uMantissa = (uint64_t)INT64_MAX+1; |
| *pbIsNegative = true; |
| } |
| *pMantissa = ConvertIntToBigNum(uMantissa, BufferForMantissa); |
| *pnExponent = pItem->val.expAndMantissa.nExponent; |
| break; |
| |
| #ifndef QCBOR_DISABLE_TAGS |
| /* If tags are disabled, mantissas can never be big nums */ |
| case QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM: |
| case QCBOR_TYPE_BIGFLOAT_POS_BIGNUM: |
| *pnExponent = pItem->val.expAndMantissa.nExponent; |
| *pMantissa = pItem->val.expAndMantissa.Mantissa.bigNum; |
| *pbIsNegative = false; |
| break; |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM: |
| case QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM: |
| *pnExponent = pItem->val.expAndMantissa.nExponent; |
| *pMantissa = pItem->val.expAndMantissa.Mantissa.bigNum; |
| *pbIsNegative = true; |
| break; |
| #endif /* QCBOR_DISABLE_TAGS */ |
| |
| default: |
| uErr = QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| Done: |
| pMe->uLastError = (uint8_t)uErr; |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetDecimalFraction(QCBORDecodeContext *pMe, |
| uint8_t uTagRequirement, |
| int64_t *pnMantissa, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORError uError = QCBORDecode_GetNext(pMe, &Item); |
| if(uError) { |
| pMe->uLastError = (uint8_t)uError; |
| return; |
| } |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_DECIMAL_FRACTION, QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM, |
| QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponent(pMe, TagSpec, &Item, pnMantissa, pnExponent); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetDecimalFractionInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint8_t uTagRequirement, |
| int64_t *pnMantissa, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, &Item); |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_DECIMAL_FRACTION, QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM, |
| QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponent(pMe, TagSpec, &Item, pnMantissa, pnExponent); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetDecimalFractionInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint8_t uTagRequirement, |
| int64_t *pnMantissa, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, &Item); |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_DECIMAL_FRACTION, QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM, |
| QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponent(pMe, TagSpec, &Item, pnMantissa, pnExponent); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetDecimalFractionBig(QCBORDecodeContext *pMe, |
| uint8_t uTagRequirement, |
| UsefulBuf MantissaBuffer, |
| UsefulBufC *pMantissa, |
| bool *pbMantissaIsNegative, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORError uError = QCBORDecode_GetNext(pMe, &Item); |
| if(uError) { |
| pMe->uLastError = (uint8_t)uError; |
| return; |
| } |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_DECIMAL_FRACTION, QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM, |
| QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponentBig(pMe, |
| TagSpec, |
| &Item, |
| MantissaBuffer, |
| pMantissa, |
| pbMantissaIsNegative, |
| pnExponent); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetDecimalFractionBigInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint8_t uTagRequirement, |
| UsefulBuf BufferForMantissa, |
| UsefulBufC *pMantissa, |
| bool *pbIsNegative, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, &Item); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_DECIMAL_FRACTION, QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM, |
| QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponentBig(pMe, |
| TagSpec, |
| &Item, |
| BufferForMantissa, |
| pMantissa, |
| pbIsNegative, |
| pnExponent); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetDecimalFractionBigInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint8_t uTagRequirement, |
| UsefulBuf BufferForMantissa, |
| UsefulBufC *pMantissa, |
| bool *pbIsNegative, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, &Item); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_DECIMAL_FRACTION, QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM, |
| QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponentBig(pMe, TagSpec, &Item, BufferForMantissa, pMantissa, pbIsNegative, pnExponent); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetBigFloat(QCBORDecodeContext *pMe, |
| uint8_t uTagRequirement, |
| int64_t *pnMantissa, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORError uError = QCBORDecode_GetNext(pMe, &Item); |
| if(uError) { |
| pMe->uLastError = (uint8_t)uError; |
| return; |
| } |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_BIGFLOAT, QCBOR_TYPE_BIGFLOAT_POS_BIGNUM, |
| QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponent(pMe, TagSpec, &Item, pnMantissa, pnExponent); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetBigFloatInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint8_t uTagRequirement, |
| int64_t *pnMantissa, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, &Item); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_BIGFLOAT, QCBOR_TYPE_BIGFLOAT_POS_BIGNUM, |
| QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponent(pMe, TagSpec, &Item, pnMantissa, pnExponent); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetBigFloatInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint8_t uTagRequirement, |
| int64_t *pnMantissa, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, &Item); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_BIGFLOAT, QCBOR_TYPE_BIGFLOAT_POS_BIGNUM, |
| QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponent(pMe, TagSpec, &Item, pnMantissa, pnExponent); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetBigFloatBig(QCBORDecodeContext *pMe, |
| uint8_t uTagRequirement, |
| UsefulBuf MantissaBuffer, |
| UsefulBufC *pMantissa, |
| bool *pbMantissaIsNegative, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORError uError = QCBORDecode_GetNext(pMe, &Item); |
| if(uError) { |
| pMe->uLastError = (uint8_t)uError; |
| return; |
| } |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_BIGFLOAT, QCBOR_TYPE_BIGFLOAT_POS_BIGNUM, |
| QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponentBig(pMe, TagSpec, &Item, MantissaBuffer, pMantissa, pbMantissaIsNegative, pnExponent); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetBigFloatBigInMapN(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint8_t uTagRequirement, |
| UsefulBuf BufferForMantissa, |
| UsefulBufC *pMantissa, |
| bool *pbIsNegative, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapN(pMe, nLabel, QCBOR_TYPE_ANY, &Item); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_BIGFLOAT, QCBOR_TYPE_BIGFLOAT_POS_BIGNUM, |
| QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponentBig(pMe, |
| TagSpec, |
| &Item, |
| BufferForMantissa, |
| pMantissa, |
| pbIsNegative, |
| pnExponent); |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| void QCBORDecode_GetBigFloatBigInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint8_t uTagRequirement, |
| UsefulBuf BufferForMantissa, |
| UsefulBufC *pMantissa, |
| bool *pbIsNegative, |
| int64_t *pnExponent) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_ANY, &Item); |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| const TagSpecification TagSpec = |
| { |
| uTagRequirement, |
| {QCBOR_TYPE_BIGFLOAT, QCBOR_TYPE_BIGFLOAT_POS_BIGNUM, |
| QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM, QCBOR_TYPE_NONE}, |
| {QCBOR_TYPE_ARRAY, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE, QCBOR_TYPE_NONE} |
| }; |
| |
| ProcessMantissaAndExponentBig(pMe, |
| TagSpec, |
| &Item, |
| BufferForMantissa, |
| pMantissa, |
| pbIsNegative, |
| pnExponent); |
| } |
| |
| #endif /* QCBOR_DISABLE_EXP_AND_MANTISSA */ |