| /*============================================================================== |
| ieee754.c -- floating-point conversion between half, double & single-precision |
| |
| Copyright (c) 2018-2020, Laurence Lundblade. All rights reserved. |
| |
| SPDX-License-Identifier: BSD-3-Clause |
| |
| See BSD-3-Clause license in README.md |
| |
| Created on 7/23/18 |
| =============================================================================*/ |
| |
| #ifndef QCBOR_DISABLE_PREFERRED_FLOAT |
| |
| #include "ieee754.h" |
| #include <string.h> // For memcpy() |
| |
| |
| /* |
| This code is written for clarity and verifiability, not for size, on |
| the assumption that the optimizer will do a good job. The LLVM |
| optimizer, -Os, does seem to do the job and the resulting object code |
| is smaller from combining code for the many different cases (normal, |
| subnormal, infinity, zero...) for the conversions. GCC is no where near |
| as good. |
| |
| This code has really long lines and is much easier to read because of |
| them. Some coding guidelines prefer 80 column lines (can they not afford |
| big displays?). It would make this code much worse even to wrap at 120 |
| columns. |
| |
| Dead stripping is also really helpful to get code size down when |
| floating-point encoding is not needed. (If this is put in a library |
| and linking is against the library, then dead stripping is automatic). |
| |
| This code works solely using shifts and masks and thus has no |
| dependency on any math libraries. It can even work if the CPU doesn't |
| have any floating-point support, though that isn't the most useful |
| thing to do. |
| |
| The memcpy() dependency is only for CopyFloatToUint32() and friends |
| which only is needed to avoid type punning when converting the actual |
| float bits to an unsigned value so the bit shifts and masks can work. |
| */ |
| |
| /* |
| The references used to write this code: |
| |
| - IEEE 754-2008, particularly section 3.6 and 6.2.1 |
| |
| - https://en.wikipedia.org/wiki/IEEE_754 and subordinate pages |
| |
| - https://stackoverflow.com/questions/19800415/why-does-ieee-754-reserve-so-many-nan-values |
| |
| - https://stackoverflow.com/questions/46073295/implicit-type-promotion-rules |
| |
| - https://stackoverflow.com/questions/589575/what-does-the-c-standard-state-the-size-of-int-long-type-to-be |
| */ |
| |
| |
| // ----- Half Precsion ----------- |
| #define HALF_NUM_SIGNIFICAND_BITS (10) |
| #define HALF_NUM_EXPONENT_BITS (5) |
| #define HALF_NUM_SIGN_BITS (1) |
| |
| #define HALF_SIGNIFICAND_SHIFT (0) |
| #define HALF_EXPONENT_SHIFT (HALF_NUM_SIGNIFICAND_BITS) |
| #define HALF_SIGN_SHIFT (HALF_NUM_SIGNIFICAND_BITS + HALF_NUM_EXPONENT_BITS) |
| |
| #define HALF_SIGNIFICAND_MASK (0x3ffU) // The lower 10 bits // 0x03ff |
| #define HALF_EXPONENT_MASK (0x1fU << HALF_EXPONENT_SHIFT) // 0x7c00 5 bits of exponent |
| #define HALF_SIGN_MASK (0x01U << HALF_SIGN_SHIFT) // // 0x8000 1 bit of sign |
| #define HALF_QUIET_NAN_BIT (0x01U << (HALF_NUM_SIGNIFICAND_BITS-1)) // 0x0200 |
| |
| /* Biased Biased Unbiased Use |
| 0x00 0 -15 0 and subnormal |
| 0x01 1 -14 Smallest normal exponent |
| 0x1e 30 15 Largest normal exponent |
| 0x1F 31 16 NaN and Infinity */ |
| #define HALF_EXPONENT_BIAS (15) |
| #define HALF_EXPONENT_MAX (HALF_EXPONENT_BIAS) // 15 Unbiased |
| #define HALF_EXPONENT_MIN (-HALF_EXPONENT_BIAS+1) // -14 Unbiased |
| #define HALF_EXPONENT_ZERO (-HALF_EXPONENT_BIAS) // -15 Unbiased |
| #define HALF_EXPONENT_INF_OR_NAN (HALF_EXPONENT_BIAS+1) // 16 Unbiased |
| |
| |
| // ------ Single-Precision -------- |
| #define SINGLE_NUM_SIGNIFICAND_BITS (23) |
| #define SINGLE_NUM_EXPONENT_BITS (8) |
| #define SINGLE_NUM_SIGN_BITS (1) |
| |
| #define SINGLE_SIGNIFICAND_SHIFT (0) |
| #define SINGLE_EXPONENT_SHIFT (SINGLE_NUM_SIGNIFICAND_BITS) |
| #define SINGLE_SIGN_SHIFT (SINGLE_NUM_SIGNIFICAND_BITS + SINGLE_NUM_EXPONENT_BITS) |
| |
| #define SINGLE_SIGNIFICAND_MASK (0x7fffffU) // The lower 23 bits |
| #define SINGLE_EXPONENT_MASK (0xffU << SINGLE_EXPONENT_SHIFT) // 8 bits of exponent |
| #define SINGLE_SIGN_MASK (0x01U << SINGLE_SIGN_SHIFT) // 1 bit of sign |
| #define SINGLE_QUIET_NAN_BIT (0x01U << (SINGLE_NUM_SIGNIFICAND_BITS-1)) |
| |
| /* Biased Biased Unbiased Use |
| 0x0000 0 -127 0 and subnormal |
| 0x0001 1 -126 Smallest normal exponent |
| 0x7f 127 0 1 |
| 0xfe 254 127 Largest normal exponent |
| 0xff 255 128 NaN and Infinity */ |
| #define SINGLE_EXPONENT_BIAS (127) |
| #define SINGLE_EXPONENT_MAX (SINGLE_EXPONENT_BIAS) // 127 unbiased |
| #define SINGLE_EXPONENT_MIN (-SINGLE_EXPONENT_BIAS+1) // -126 unbiased |
| #define SINGLE_EXPONENT_ZERO (-SINGLE_EXPONENT_BIAS) // -127 unbiased |
| #define SINGLE_EXPONENT_INF_OR_NAN (SINGLE_EXPONENT_BIAS+1) // 128 unbiased |
| |
| |
| // --------- Double-Precision ---------- |
| #define DOUBLE_NUM_SIGNIFICAND_BITS (52) |
| #define DOUBLE_NUM_EXPONENT_BITS (11) |
| #define DOUBLE_NUM_SIGN_BITS (1) |
| |
| #define DOUBLE_SIGNIFICAND_SHIFT (0) |
| #define DOUBLE_EXPONENT_SHIFT (DOUBLE_NUM_SIGNIFICAND_BITS) |
| #define DOUBLE_SIGN_SHIFT (DOUBLE_NUM_SIGNIFICAND_BITS + DOUBLE_NUM_EXPONENT_BITS) |
| |
| #define DOUBLE_SIGNIFICAND_MASK (0xfffffffffffffULL) // The lower 52 bits |
| #define DOUBLE_EXPONENT_MASK (0x7ffULL << DOUBLE_EXPONENT_SHIFT) // 11 bits of exponent |
| #define DOUBLE_SIGN_MASK (0x01ULL << DOUBLE_SIGN_SHIFT) // 1 bit of sign |
| #define DOUBLE_QUIET_NAN_BIT (0x01ULL << (DOUBLE_NUM_SIGNIFICAND_BITS-1)) |
| |
| |
| /* Biased Biased Unbiased Use |
| 0x00000000 0 -1023 0 and subnormal |
| 0x00000001 1 -1022 Smallest normal exponent |
| 0x000007fe 2046 1023 Largest normal exponent |
| 0x000007ff 2047 1024 NaN and Infinity */ |
| #define DOUBLE_EXPONENT_BIAS (1023) |
| #define DOUBLE_EXPONENT_MAX (DOUBLE_EXPONENT_BIAS) // unbiased |
| #define DOUBLE_EXPONENT_MIN (-DOUBLE_EXPONENT_BIAS+1) // unbiased |
| #define DOUBLE_EXPONENT_ZERO (-DOUBLE_EXPONENT_BIAS) // unbiased |
| #define DOUBLE_EXPONENT_INF_OR_NAN (DOUBLE_EXPONENT_BIAS+1) // unbiased |
| |
| |
| |
| /* |
| Convenient functions to avoid type punning, compiler warnings and |
| such. The optimizer reduces them to a simple assignment. This is a |
| crusty corner of C. It shouldn't be this hard. |
| |
| These are also in UsefulBuf.h under a different name. They are copied |
| here to avoid a dependency on UsefulBuf.h. There is no object code |
| size impact because these always optimze down to a simple assignment. |
| */ |
| static inline uint32_t CopyFloatToUint32(float f) |
| { |
| uint32_t u32; |
| memcpy(&u32, &f, sizeof(uint32_t)); |
| return u32; |
| } |
| |
| static inline uint64_t CopyDoubleToUint64(double d) |
| { |
| uint64_t u64; |
| memcpy(&u64, &d, sizeof(uint64_t)); |
| return u64; |
| } |
| |
| static inline double CopyUint64ToDouble(uint64_t u64) |
| { |
| double d; |
| memcpy(&d, &u64, sizeof(uint64_t)); |
| return d; |
| } |
| |
| |
| // Public function; see ieee754.h |
| uint16_t IEEE754_FloatToHalf(float f) |
| { |
| // Pull the three parts out of the single-precision float |
| const uint32_t uSingle = CopyFloatToUint32(f); |
| const int32_t nSingleUnbiasedExponent = (int32_t)((uSingle & SINGLE_EXPONENT_MASK) >> SINGLE_EXPONENT_SHIFT) - SINGLE_EXPONENT_BIAS; |
| const uint32_t uSingleSign = (uSingle & SINGLE_SIGN_MASK) >> SINGLE_SIGN_SHIFT; |
| const uint32_t uSingleSignificand = uSingle & SINGLE_SIGNIFICAND_MASK; |
| |
| |
| // Now convert the three parts to half-precision. |
| |
| // All works is done on uint32_t with conversion to uint16_t at |
| // the end. This avoids integer promotions that static analyzers |
| // complain about and reduces code size. |
| uint32_t uHalfSign, uHalfSignificand, uHalfBiasedExponent; |
| |
| if(nSingleUnbiasedExponent == SINGLE_EXPONENT_INF_OR_NAN) { |
| // +/- Infinity and NaNs -- single biased exponent is 0xff |
| uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS; |
| if(!uSingleSignificand) { |
| // Infinity |
| uHalfSignificand = 0; |
| } else { |
| // Copy the LSBs of the NaN payload that will fit from the |
| // single to the half |
| uHalfSignificand = uSingleSignificand & (HALF_SIGNIFICAND_MASK & ~HALF_QUIET_NAN_BIT); |
| if(uSingleSignificand & SINGLE_QUIET_NAN_BIT) { |
| // It's a qNaN; copy the qNaN bit |
| uHalfSignificand |= HALF_QUIET_NAN_BIT; |
| } else { |
| // It's an sNaN; make sure the significand is not zero |
| // so it stays a NaN This is needed because not all |
| // significand bits are copied from single |
| if(!uHalfSignificand) { |
| // Set the LSB. This is what wikipedia shows for |
| // sNAN. |
| uHalfSignificand |= 0x01; |
| } |
| } |
| } |
| } else if(nSingleUnbiasedExponent == SINGLE_EXPONENT_ZERO) { |
| // 0 or a subnormal number -- singled biased exponent is 0 |
| uHalfBiasedExponent = 0; |
| uHalfSignificand = 0; // Any subnormal single will be too small to express as a half precision |
| } else if(nSingleUnbiasedExponent > HALF_EXPONENT_MAX) { |
| // Exponent is too large to express in half-precision; round |
| // up to infinity |
| uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS; |
| uHalfSignificand = 0; |
| } else if(nSingleUnbiasedExponent < HALF_EXPONENT_MIN) { |
| // Exponent is too small to express in half-precision normal; |
| // make it a half-precision subnormal |
| uHalfBiasedExponent = HALF_EXPONENT_ZERO + HALF_EXPONENT_BIAS; |
| uHalfSignificand = 0; |
| // Could convert some of these values to a half-precision |
| // subnormal, but the layer above this will never use it. See |
| // layer above. There is code to do this in github history |
| // for this file, but it was removed because it was never |
| // invoked. |
| } else { |
| // The normal case, exponent is in range for half-precision |
| uHalfBiasedExponent = (uint32_t)(nSingleUnbiasedExponent + HALF_EXPONENT_BIAS); |
| uHalfSignificand = uSingleSignificand >> (SINGLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS); |
| } |
| uHalfSign = uSingleSign; |
| |
| // Put the 3 values in the right place for a half precision |
| const uint32_t uHalfPrecision = uHalfSignificand | |
| (uHalfBiasedExponent << HALF_EXPONENT_SHIFT) | |
| (uHalfSign << HALF_SIGN_SHIFT); |
| // Cast is safe because all the masks and shifts above work to |
| // make a half precision value which is only 16 bits. |
| return (uint16_t)uHalfPrecision; |
| } |
| |
| |
| // Public function; see ieee754.h |
| uint16_t IEEE754_DoubleToHalf(double d) |
| { |
| // Pull the three parts out of the double-precision float |
| const uint64_t uDouble = CopyDoubleToUint64(d); |
| const int64_t nDoubleUnbiasedExponent = (int64_t)((uDouble & DOUBLE_EXPONENT_MASK) >> DOUBLE_EXPONENT_SHIFT) - DOUBLE_EXPONENT_BIAS; |
| const uint64_t uDoubleSign = (uDouble & DOUBLE_SIGN_MASK) >> DOUBLE_SIGN_SHIFT; |
| const uint64_t uDoubleSignificand = uDouble & DOUBLE_SIGNIFICAND_MASK; |
| |
| // Now convert the three parts to half-precision. |
| |
| // All works is done on uint64_t with conversion to uint16_t at |
| // the end. This avoids integer promotions that static analyzers |
| // complain about. Other options are for these to be unsigned int |
| // or fast_int16_t. Code size doesn't vary much between all these |
| // options for 64-bit LLVM, 64-bit GCC and 32-bit Armv7 LLVM. |
| uint64_t uHalfSign, uHalfSignificand, uHalfBiasedExponent; |
| |
| if(nDoubleUnbiasedExponent == DOUBLE_EXPONENT_INF_OR_NAN) { |
| // +/- Infinity and NaNs -- single biased exponent is 0xff |
| uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS; |
| if(!uDoubleSignificand) { |
| // Infinity |
| uHalfSignificand = 0; |
| } else { |
| // Copy the LSBs of the NaN payload that will fit from the |
| // double to the half |
| uHalfSignificand = uDoubleSignificand & (HALF_SIGNIFICAND_MASK & ~HALF_QUIET_NAN_BIT); |
| if(uDoubleSignificand & DOUBLE_QUIET_NAN_BIT) { |
| // It's a qNaN; copy the qNaN bit |
| uHalfSignificand |= HALF_QUIET_NAN_BIT; |
| } else { |
| // It's an sNaN; make sure the significand is not zero |
| // so it stays a NaN This is needed because not all |
| // significand bits are copied from single |
| if(!uHalfSignificand) { |
| // Set the LSB. This is what wikipedia shows for |
| // sNAN. |
| uHalfSignificand |= 0x01; |
| } |
| } |
| } |
| } else if(nDoubleUnbiasedExponent == DOUBLE_EXPONENT_ZERO) { |
| // 0 or a subnormal number -- double biased exponent is 0 |
| uHalfBiasedExponent = 0; |
| uHalfSignificand = 0; // Any subnormal single will be too small to express as a half precision; TODO, is this really true? |
| } else if(nDoubleUnbiasedExponent > HALF_EXPONENT_MAX) { |
| // Exponent is too large to express in half-precision; round |
| // up to infinity; TODO, is this really true? |
| uHalfBiasedExponent = HALF_EXPONENT_INF_OR_NAN + HALF_EXPONENT_BIAS; |
| uHalfSignificand = 0; |
| } else if(nDoubleUnbiasedExponent < HALF_EXPONENT_MIN) { |
| // Exponent is too small to express in half-precision; round |
| // down to zero |
| uHalfBiasedExponent = HALF_EXPONENT_ZERO + HALF_EXPONENT_BIAS; |
| uHalfSignificand = 0; |
| // Could convert some of these values to a half-precision |
| // subnormal, but the layer above this will never use it. See |
| // layer above. There is code to do this in github history |
| // for this file, but it was removed because it was never |
| // invoked. |
| } else { |
| // The normal case, exponent is in range for half-precision |
| uHalfBiasedExponent = (uint32_t)(nDoubleUnbiasedExponent + HALF_EXPONENT_BIAS); |
| uHalfSignificand = uDoubleSignificand >> (DOUBLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS); |
| } |
| uHalfSign = uDoubleSign; |
| |
| |
| // Put the 3 values in the right place for a half precision |
| const uint64_t uHalfPrecision = uHalfSignificand | |
| (uHalfBiasedExponent << HALF_EXPONENT_SHIFT) | |
| (uHalfSign << HALF_SIGN_SHIFT); |
| // Cast is safe because all the masks and shifts above work to |
| // make a half precision value which is only 16 bits. |
| return (uint16_t)uHalfPrecision; |
| } |
| |
| |
| /* |
| EEE754_HalfToFloat() was created but is not needed. It can be retrieved from |
| github history if needed. |
| */ |
| |
| |
| // Public function; see ieee754.h |
| double IEEE754_HalfToDouble(uint16_t uHalfPrecision) |
| { |
| // Pull out the three parts of the half-precision float. Do all |
| // the work in 64 bits because that is what the end result is. It |
| // may give smaller code size and will keep static analyzers |
| // happier. |
| const uint64_t uHalfSignificand = uHalfPrecision & HALF_SIGNIFICAND_MASK; |
| const int64_t nHalfUnBiasedExponent = (int64_t)((uHalfPrecision & HALF_EXPONENT_MASK) >> HALF_EXPONENT_SHIFT) - HALF_EXPONENT_BIAS; |
| const uint64_t uHalfSign = (uHalfPrecision & HALF_SIGN_MASK) >> HALF_SIGN_SHIFT; |
| |
| |
| // Make the three parts of hte single-precision number |
| uint64_t uDoubleSignificand, uDoubleSign, uDoubleBiasedExponent; |
| if(nHalfUnBiasedExponent == HALF_EXPONENT_ZERO) { |
| // 0 or subnormal |
| uDoubleBiasedExponent = DOUBLE_EXPONENT_ZERO + DOUBLE_EXPONENT_BIAS; |
| if(uHalfSignificand) { |
| // Subnormal case |
| uDoubleBiasedExponent = -HALF_EXPONENT_BIAS + DOUBLE_EXPONENT_BIAS +1; |
| // A half-precision subnormal can always be converted to a |
| // normal double-precision float because the ranges line |
| // up |
| uDoubleSignificand = uHalfSignificand; |
| // Shift bits from right of the decimal to left, reducing |
| // the exponent by 1 each time |
| do { |
| uDoubleSignificand <<= 1; |
| uDoubleBiasedExponent--; |
| } while ((uDoubleSignificand & 0x400) == 0); |
| uDoubleSignificand &= HALF_SIGNIFICAND_MASK; |
| uDoubleSignificand <<= (DOUBLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS); |
| } else { |
| // Just zero |
| uDoubleSignificand = 0; |
| } |
| } else if(nHalfUnBiasedExponent == HALF_EXPONENT_INF_OR_NAN) { |
| // NaN or Inifinity |
| uDoubleBiasedExponent = DOUBLE_EXPONENT_INF_OR_NAN + DOUBLE_EXPONENT_BIAS; |
| if(uHalfSignificand) { |
| // NaN |
| // First preserve the NaN payload from half to single |
| uDoubleSignificand = uHalfSignificand & ~HALF_QUIET_NAN_BIT; |
| if(uHalfSignificand & HALF_QUIET_NAN_BIT) { |
| // Next, set qNaN if needed since half qNaN bit is not |
| // copied above |
| uDoubleSignificand |= DOUBLE_QUIET_NAN_BIT; |
| } |
| } else { |
| // Infinity |
| uDoubleSignificand = 0; |
| } |
| } else { |
| // Normal number |
| uDoubleBiasedExponent = (uint64_t)(nHalfUnBiasedExponent + DOUBLE_EXPONENT_BIAS); |
| uDoubleSignificand = uHalfSignificand << (DOUBLE_NUM_SIGNIFICAND_BITS - HALF_NUM_SIGNIFICAND_BITS); |
| } |
| uDoubleSign = uHalfSign; |
| |
| |
| // Shift the 3 parts into place as a double-precision |
| const uint64_t uDouble = uDoubleSignificand | |
| (uDoubleBiasedExponent << DOUBLE_EXPONENT_SHIFT) | |
| (uDoubleSign << DOUBLE_SIGN_SHIFT); |
| return CopyUint64ToDouble(uDouble); |
| } |
| |
| |
| |
| /* |
| IEEE754_FloatToDouble(uint32_t uFloat) was created but is not needed. It can be retrieved from |
| github history if needed. |
| */ |
| |
| |
| |
| // Public function; see ieee754.h |
| IEEE754_union IEEE754_FloatToSmallest(float f) |
| { |
| IEEE754_union result; |
| |
| // Pull the neeed two parts out of the single-precision float |
| const uint32_t uSingle = CopyFloatToUint32(f); |
| const int32_t nSingleExponent = (int32_t)((uSingle & SINGLE_EXPONENT_MASK) >> SINGLE_EXPONENT_SHIFT) - SINGLE_EXPONENT_BIAS; |
| const uint32_t uSingleSignificand = uSingle & SINGLE_SIGNIFICAND_MASK; |
| |
| // Bit mask that is the significand bits that would be lost when |
| // converting from single-precision to half-precision |
| const uint64_t uDroppedSingleBits = SINGLE_SIGNIFICAND_MASK >> HALF_NUM_SIGNIFICAND_BITS; |
| |
| // Optimizer will re organize so there is only one call to |
| // IEEE754_FloatToHalf() in the final code. |
| if(uSingle == 0) { |
| // Value is 0.0000, not a a subnormal |
| result.uSize = IEEE754_UNION_IS_HALF; |
| result.uValue = IEEE754_FloatToHalf(f); |
| } else if(nSingleExponent == SINGLE_EXPONENT_INF_OR_NAN) { |
| // NaN, +/- infinity |
| result.uSize = IEEE754_UNION_IS_HALF; |
| result.uValue = IEEE754_FloatToHalf(f); |
| } else if((nSingleExponent >= HALF_EXPONENT_MIN) && nSingleExponent <= HALF_EXPONENT_MAX && (!(uSingleSignificand & uDroppedSingleBits))) { |
| // Normal number in exponent range and precision won't be lost |
| result.uSize = IEEE754_UNION_IS_HALF; |
| result.uValue = IEEE754_FloatToHalf(f); |
| } else { |
| // Subnormal, exponent out of range, or precision will be lost |
| result.uSize = IEEE754_UNION_IS_SINGLE; |
| result.uValue = uSingle; |
| } |
| |
| return result; |
| } |
| |
| // Public function; see ieee754.h |
| IEEE754_union IEEE754_DoubleToSmallestInternal(double d, int bAllowHalfPrecision) |
| { |
| IEEE754_union result; |
| |
| // Pull the needed two parts out of the double-precision float |
| const uint64_t uDouble = CopyDoubleToUint64(d); |
| const int64_t nDoubleExponent = (int64_t)((uDouble & DOUBLE_EXPONENT_MASK) >> DOUBLE_EXPONENT_SHIFT) - DOUBLE_EXPONENT_BIAS; |
| const uint64_t uDoubleSignificand = uDouble & DOUBLE_SIGNIFICAND_MASK; |
| |
| // Masks to check whether dropped significand bits are zero or not |
| const uint64_t uDroppedHalfBits = DOUBLE_SIGNIFICAND_MASK >> HALF_NUM_SIGNIFICAND_BITS; |
| const uint64_t uDroppedSingleBits = DOUBLE_SIGNIFICAND_MASK >> SINGLE_NUM_SIGNIFICAND_BITS; |
| |
| // This will not convert to half-precion or single-precision |
| // subnormals. Values that could be converted will be output as |
| // the double they are or occasionally to a normal single. This |
| // could be implemented, but it is more code and would rarely be |
| // used and rarely reduce the output size. |
| |
| // The various cases |
| if(d == 0.0) { // Take care of positive and negative zero |
| // Value is 0.0000, not a a subnormal |
| result.uSize = IEEE754_UNION_IS_HALF; |
| result.uValue = IEEE754_DoubleToHalf(d); |
| } else if(nDoubleExponent == DOUBLE_EXPONENT_INF_OR_NAN) { |
| // NaN, +/- infinity |
| result.uSize = IEEE754_UNION_IS_HALF; |
| result.uValue = IEEE754_DoubleToHalf(d); |
| } else if(bAllowHalfPrecision && (nDoubleExponent >= HALF_EXPONENT_MIN) && nDoubleExponent <= HALF_EXPONENT_MAX && (!(uDoubleSignificand & uDroppedHalfBits))) { |
| // Can convert to half without precision loss |
| result.uSize = IEEE754_UNION_IS_HALF; |
| result.uValue = IEEE754_DoubleToHalf(d); |
| } else if((nDoubleExponent >= SINGLE_EXPONENT_MIN) && nDoubleExponent <= SINGLE_EXPONENT_MAX && (!(uDoubleSignificand & uDroppedSingleBits))) { |
| // Can convert to single without precision loss |
| result.uSize = IEEE754_UNION_IS_SINGLE; |
| result.uValue = CopyFloatToUint32((float)d); |
| } else { |
| // Can't convert without precision loss |
| result.uSize = IEEE754_UNION_IS_DOUBLE; |
| result.uValue = uDouble; |
| } |
| |
| return result; |
| } |
| |
| #else |
| |
| int x; |
| |
| #endif /* QCBOR_DISABLE_PREFERRED_FLOAT */ |