| /*============================================================================== |
| Copyright (c) 2016-2018, The Linux Foundation. |
| Copyright (c) 2018-2019, Laurence Lundblade. |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following |
| disclaimer in the documentation and/or other materials provided |
| with the distribution. |
| * Neither the name of The Linux Foundation nor the names of its |
| contributors, nor the name "Laurence Lundblade" may be used to |
| endorse or promote products derived from this software without |
| specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED |
| WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS |
| BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
| OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN |
| IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| ==============================================================================*/ |
| |
| /*=================================================================================== |
| FILE: qcbor_decode.c |
| |
| DESCRIPTION: This file contains the implementation of QCBOR. |
| |
| EDIT HISTORY FOR FILE: |
| |
| This section contains comments describing changes made to the module. |
| Notice that changes are listed in reverse chronological order. |
| |
| when who what, where, why |
| -------- ---- --------------------------------------------------- |
| 02/17/19 llundblade Fixed: QCBORItem.u{Data|Label}Alloc when bAllStrings set |
| 02/16/19 llundblade Redesign MemPool to fix memory access alignment bug |
| 01/10/19 llundblade Clever type and argument decoder is 250 bytes smaller |
| 11/9/18 llundblade Error codes are now enums. |
| 11/2/18 llundblade Simplify float decoding and align with preferred |
| float encoding |
| 10/31/18 llundblade Switch to one license that is almost BSD-3. |
| 10/28/18 llundblade Reworked tag decoding |
| 10/15/18 llundblade Indefinite length maps and arrays supported |
| 10/8/18 llundblade Indefinite length strings supported |
| 02/04/17 llundbla Work on CPUs that don's require pointer alignment |
| by making use of changes in UsefulBuf |
| 03/01/17 llundbla More data types; decoding improvements and fixes |
| 11/13/16 llundbla Integrate most TZ changes back into github version. |
| 09/30/16 gkanike Porting to TZ. |
| 03/15/16 llundbla Initial Version. |
| |
| =====================================================================================*/ |
| |
| #include "qcbor.h" |
| #include "ieee754.h" |
| |
| |
| /* |
| This casts away the const-ness of a pointer, usually so it can be |
| freed or realloced. |
| */ |
| #define UNCONST_POINTER(ptr) ((void *)(ptr)) |
| |
| |
| /* |
| Collection of functions to track the map/array nesting for decoding |
| */ |
| |
| inline static int IsMapOrArray(uint8_t uDataType) |
| { |
| return uDataType == QCBOR_TYPE_MAP || uDataType == QCBOR_TYPE_ARRAY; |
| } |
| |
| inline static int DecodeNesting_IsNested(const QCBORDecodeNesting *pNesting) |
| { |
| return pNesting->pCurrent != &(pNesting->pMapsAndArrays[0]); |
| } |
| |
| inline static int DecodeNesting_IsIndefiniteLength(const QCBORDecodeNesting *pNesting) |
| { |
| return pNesting->pCurrent->uCount == UINT16_MAX; |
| } |
| |
| inline static uint8_t DecodeNesting_GetLevel(QCBORDecodeNesting *pNesting) |
| { |
| return pNesting->pCurrent - &(pNesting->pMapsAndArrays[0]); |
| } |
| |
| inline static int DecodeNesting_TypeIsMap(const QCBORDecodeNesting *pNesting) |
| { |
| if(!DecodeNesting_IsNested(pNesting)) { |
| return 0; |
| } |
| |
| return CBOR_MAJOR_TYPE_MAP == pNesting->pCurrent->uMajorType; |
| } |
| |
| // Process a break. This will either ascend the nesting or error out |
| inline static QCBORError DecodeNesting_BreakAscend(QCBORDecodeNesting *pNesting) |
| { |
| // breaks must always occur when there is nesting |
| if(!DecodeNesting_IsNested(pNesting)) { |
| return QCBOR_ERR_BAD_BREAK; |
| } |
| |
| // breaks can only occur when the map/array is indefinite length |
| if(!DecodeNesting_IsIndefiniteLength(pNesting)) { |
| return QCBOR_ERR_BAD_BREAK; |
| } |
| |
| // if all OK, the break reduces the level of nesting |
| pNesting->pCurrent--; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| // Called on every single item except breaks including the opening of a map/array |
| inline static void DecodeNesting_DecrementCount(QCBORDecodeNesting *pNesting) |
| { |
| if(!DecodeNesting_IsNested(pNesting)) { |
| // at top level where there is no tracking |
| return; |
| } |
| |
| if(DecodeNesting_IsIndefiniteLength(pNesting)) { |
| // There is no count for indefinite length arrays/maps |
| return; |
| } |
| |
| // Decrement the count of items in this array/map |
| pNesting->pCurrent->uCount--; |
| |
| // Pop up nesting levels if the counts at the levels are zero |
| while(DecodeNesting_IsNested(pNesting) && 0 == pNesting->pCurrent->uCount) { |
| pNesting->pCurrent--; |
| if(!DecodeNesting_IsIndefiniteLength(pNesting)) { |
| pNesting->pCurrent->uCount--; |
| } |
| } |
| } |
| |
| // Called on every map/array |
| inline static QCBORError DecodeNesting_Descend(QCBORDecodeNesting *pNesting, QCBORItem *pItem) |
| { |
| QCBORError nReturn = QCBOR_SUCCESS; |
| |
| if(pItem->val.uCount == 0) { |
| // Nothing to do for empty definite lenth arrays. They are just are |
| // effectively the same as an item that is not a map or array |
| goto Done; |
| // Empty indefinite length maps and arrays are handled elsewhere |
| } |
| |
| // Error out if arrays is too long to handle |
| if(pItem->val.uCount != UINT16_MAX && pItem->val.uCount > QCBOR_MAX_ITEMS_IN_ARRAY) { |
| nReturn = QCBOR_ERR_ARRAY_TOO_LONG; |
| goto Done; |
| } |
| |
| // Error out if nesting is too deep |
| if(pNesting->pCurrent >= &(pNesting->pMapsAndArrays[QCBOR_MAX_ARRAY_NESTING])) { |
| nReturn = QCBOR_ERR_ARRAY_NESTING_TOO_DEEP; |
| goto Done; |
| } |
| |
| // The actual descend |
| pNesting->pCurrent++; |
| |
| // Record a few details for this nesting level |
| pNesting->pCurrent->uMajorType = pItem->uDataType; |
| pNesting->pCurrent->uCount = pItem->val.uCount; |
| |
| Done: |
| return nReturn;; |
| } |
| |
| inline static void DecodeNesting_Init(QCBORDecodeNesting *pNesting) |
| { |
| pNesting->pCurrent = &(pNesting->pMapsAndArrays[0]); |
| } |
| |
| |
| |
| /* |
| This list of built-in tags. Only add tags here that are |
| clearly established and useful. Once a tag is added here |
| it can't be taken out as that would break backwards compatibility. |
| There are only 48 slots available forever. |
| */ |
| static const uint16_t spBuiltInTagMap[] = { |
| CBOR_TAG_DATE_STRING, // See TAG_MAPPER_FIRST_FOUR |
| CBOR_TAG_DATE_EPOCH, // See TAG_MAPPER_FIRST_FOUR |
| CBOR_TAG_POS_BIGNUM, // See TAG_MAPPER_FIRST_FOUR |
| CBOR_TAG_NEG_BIGNUM, // See TAG_MAPPER_FIRST_FOUR |
| CBOR_TAG_FRACTION, |
| CBOR_TAG_BIGFLOAT, |
| CBOR_TAG_COSE_ENCRYPTO, |
| CBOR_TAG_COSE_MAC0, |
| CBOR_TAG_COSE_SIGN1, |
| CBOR_TAG_ENC_AS_B64URL, |
| CBOR_TAG_ENC_AS_B64, |
| CBOR_TAG_ENC_AS_B16, |
| CBOR_TAG_CBOR, |
| CBOR_TAG_URI, |
| CBOR_TAG_B64URL, |
| CBOR_TAG_B64, |
| CBOR_TAG_REGEX, |
| CBOR_TAG_MIME, |
| CBOR_TAG_BIN_UUID, |
| CBOR_TAG_CWT, |
| CBOR_TAG_ENCRYPT, |
| CBOR_TAG_MAC, |
| CBOR_TAG_SIGN, |
| CBOR_TAG_GEO_COORD, |
| CBOR_TAG_CBOR_MAGIC |
| }; |
| |
| // This is used in a bit of cleverness in GetNext_TaggedItem() to |
| // keep code size down and switch for the internal processing of |
| // these types. This will break if the first four items in |
| // spBuiltInTagMap don't have values 0,1,2,3. That is the |
| // mapping is 0 to 0, 1 to 1, 2 to 2 and 3 to 3. |
| #define QCBOR_TAGFLAG_DATE_STRING (0x01LL << CBOR_TAG_DATE_STRING) |
| #define QCBOR_TAGFLAG_DATE_EPOCH (0x01LL << CBOR_TAG_DATE_EPOCH) |
| #define QCBOR_TAGFLAG_POS_BIGNUM (0x01LL << CBOR_TAG_POS_BIGNUM) |
| #define QCBOR_TAGFLAG_NEG_BIGNUM (0x01LL << CBOR_TAG_NEG_BIGNUM) |
| |
| #define TAG_MAPPER_FIRST_FOUR (QCBOR_TAGFLAG_DATE_STRING |\ |
| QCBOR_TAGFLAG_DATE_EPOCH |\ |
| QCBOR_TAGFLAG_POS_BIGNUM |\ |
| QCBOR_TAGFLAG_NEG_BIGNUM) |
| |
| #define TAG_MAPPER_TOTAL_TAG_BITS 64 // Number of bits in a uint64_t |
| #define TAG_MAPPER_CUSTOM_TAGS_BASE_INDEX (TAG_MAPPER_TOTAL_TAG_BITS - QCBOR_MAX_CUSTOM_TAGS) // 48 |
| #define TAG_MAPPER_MAX_SIZE_BUILT_IN_TAGS (TAG_MAPPER_TOTAL_TAG_BITS - QCBOR_MAX_CUSTOM_TAGS ) // 48 |
| |
| static inline int TagMapper_LookupBuiltIn(uint64_t uTag) |
| { |
| if(sizeof(spBuiltInTagMap)/sizeof(uint16_t) > TAG_MAPPER_MAX_SIZE_BUILT_IN_TAGS) { |
| // This is a cross-check to make sure the above array doesn't |
| // accidentally get made too big. |
| // In normal conditions the above test should optimize out |
| // as all the values are known at compile time. |
| return -1; |
| } |
| |
| if(uTag > UINT16_MAX) { |
| // This tag map works only on 16-bit tags |
| return -1; |
| } |
| |
| for(int nTagBitIndex = 0; nTagBitIndex < (int)(sizeof(spBuiltInTagMap)/sizeof(uint16_t)); nTagBitIndex++) { |
| if(spBuiltInTagMap[nTagBitIndex] == uTag) { |
| return nTagBitIndex; |
| } |
| } |
| return -1; // Indicates no match |
| } |
| |
| static inline int TagMapper_LookupCallerConfigured(const QCBORTagListIn *pCallerConfiguredTagMap, uint64_t uTag) |
| { |
| for(int nTagBitIndex = 0; nTagBitIndex < pCallerConfiguredTagMap->uNumTags; nTagBitIndex++) { |
| if(pCallerConfiguredTagMap->puTags[nTagBitIndex] == uTag) { |
| return nTagBitIndex + TAG_MAPPER_CUSTOM_TAGS_BASE_INDEX; |
| } |
| } |
| |
| return -1; // Indicates no match |
| } |
| |
| /* |
| Find the tag bit index for a given tag value, or error out |
| |
| This and the above functions could probably be optimized and made |
| clearer and neater. |
| */ |
| static QCBORError TagMapper_Lookup(const QCBORTagListIn *pCallerConfiguredTagMap, uint64_t uTag, uint8_t *puTagBitIndex) |
| { |
| int nTagBitIndex = TagMapper_LookupBuiltIn(uTag); |
| if(nTagBitIndex >= 0) { |
| // Cast is safe because TagMapper_LookupBuiltIn never returns > 47 |
| *puTagBitIndex = (uint8_t)nTagBitIndex; |
| return QCBOR_SUCCESS; |
| } |
| |
| if(pCallerConfiguredTagMap) { |
| if(pCallerConfiguredTagMap->uNumTags > QCBOR_MAX_CUSTOM_TAGS) { |
| return QCBOR_ERR_TOO_MANY_TAGS; |
| } |
| nTagBitIndex = TagMapper_LookupCallerConfigured(pCallerConfiguredTagMap, uTag); |
| if(nTagBitIndex >= 0) { |
| // Cast is safe because TagMapper_LookupBuiltIn never returns > 63 |
| |
| *puTagBitIndex = (uint8_t)nTagBitIndex; |
| return QCBOR_SUCCESS; |
| } |
| } |
| |
| return QCBOR_ERR_BAD_OPT_TAG; |
| } |
| |
| |
| |
| /* =========================================================================== |
| QCBORStringAllocate -- STRING ALLOCATOR INVOCATION |
| |
| The following four functions are pretty wrappers for invocation of |
| the string allocator supplied by the caller. |
| |
| ==============================================================================*/ |
| |
| static inline void StringAllocator_Free(const QCORInternalAllocator *pMe, void *pMem) |
| { |
| (pMe->pfAllocator)(pMe->pAllocateCxt, pMem, 0); |
| } |
| |
| // StringAllocator_Reallocate called with pMem NULL is equal to StringAllocator_Allocate() |
| static inline UsefulBuf StringAllocator_Reallocate(const QCORInternalAllocator *pMe, void *pMem, size_t uSize) |
| { |
| return (pMe->pfAllocator)(pMe->pAllocateCxt, pMem, uSize); |
| } |
| |
| static inline UsefulBuf StringAllocator_Allocate(const QCORInternalAllocator *pMe, size_t uSize) |
| { |
| return (pMe->pfAllocator)(pMe->pAllocateCxt, NULL, uSize); |
| } |
| |
| static inline void StringAllocator_Destruct(const QCORInternalAllocator *pMe) |
| { |
| if(pMe->pfAllocator) { |
| (pMe->pfAllocator)(pMe->pAllocateCxt, NULL, 0); |
| } |
| } |
| |
| |
| |
| |
| /* |
| Public function, see header file |
| */ |
| void QCBORDecode_Init(QCBORDecodeContext *me, UsefulBufC EncodedCBOR, QCBORDecodeMode nDecodeMode) |
| { |
| memset(me, 0, sizeof(QCBORDecodeContext)); |
| UsefulInputBuf_Init(&(me->InBuf), EncodedCBOR); |
| // Don't bother with error check on decode mode. If a bad value is passed it will just act as |
| // if the default normal mode of 0 was set. |
| me->uDecodeMode = nDecodeMode; |
| DecodeNesting_Init(&(me->nesting)); |
| } |
| |
| |
| /* |
| Public function, see header file |
| */ |
| void QCBORDecode_SetUpAllocator(QCBORDecodeContext *pMe, |
| QCBORStringAllocate pfAllocateFunction, |
| void *pAllocateContext, |
| bool bAllStrings) |
| { |
| pMe->StringAllocator.pfAllocator = pfAllocateFunction; |
| pMe->StringAllocator.pAllocateCxt = pAllocateContext; |
| pMe->bStringAllocateAll = bAllStrings; |
| } |
| |
| |
| /* |
| Public function, see header file |
| */ |
| void QCBORDecode_SetCallerConfiguredTagList(QCBORDecodeContext *me, const QCBORTagListIn *pTagList) |
| { |
| me->pCallerConfiguredTagList = pTagList; |
| } |
| |
| |
| /* |
| This decodes the fundamental part of a CBOR data item, the type and number |
| |
| This is the Counterpart to InsertEncodedTypeAndNumber(). |
| |
| This does the network->host byte order conversion. The conversion here |
| also results in the conversion for floats in addition to that for |
| lengths, tags and integer values. |
| |
| This returns: |
| pnMajorType -- the major type for the item |
| puNumber -- the "number" which is used a the value for integers, tags and floats and length for strings and arrays |
| puAdditionalInfo -- Pass this along to know what kind of float or if length is indefinite |
| |
| */ |
| inline static QCBORError DecodeTypeAndNumber(UsefulInputBuf *pUInBuf, |
| int *pnMajorType, |
| uint64_t *puArgument, |
| uint8_t *puAdditionalInfo) |
| { |
| QCBORError nReturn; |
| |
| // Get the initial byte that every CBOR data item has |
| const uint8_t uInitialByte = UsefulInputBuf_GetByte(pUInBuf); |
| |
| // Break down the initial byte |
| const uint8_t uTmpMajorType = uInitialByte >> 5; |
| const uint8_t uAdditionalInfo = uInitialByte & 0x1f; |
| |
| // Where the number or argument accumulates |
| uint64_t uArgument; |
| |
| if(uAdditionalInfo >= LEN_IS_ONE_BYTE && uAdditionalInfo <= LEN_IS_EIGHT_BYTES) { |
| // Need to get 1,2,4 or 8 additional argument bytes |
| // Map LEN_IS_ONE_BYTE.. LEN_IS_EIGHT_BYTES to actual length |
| static const uint8_t aIterate[] = {1,2,4,8}; |
| |
| // Loop getting all the bytes in the argument |
| uArgument = 0; |
| for(int i = aIterate[uAdditionalInfo - LEN_IS_ONE_BYTE]; i; i--) { |
| // This shift and add gives the endian conversion |
| uArgument = (uArgument << 8) + UsefulInputBuf_GetByte(pUInBuf); |
| } |
| } else if(uAdditionalInfo >= ADDINFO_RESERVED1 && uAdditionalInfo <= ADDINFO_RESERVED3) { |
| // The reserved and thus-far unused additional info values |
| nReturn = QCBOR_ERR_UNSUPPORTED; |
| goto Done; |
| } else { |
| // Less than 24, additional info is argument or 31, an indefinite length |
| // No more bytes to get |
| uArgument = uAdditionalInfo; |
| } |
| |
| if(UsefulInputBuf_GetError(pUInBuf)) { |
| nReturn = QCBOR_ERR_HIT_END; |
| goto Done; |
| } |
| |
| // All successful if we got here. |
| nReturn = QCBOR_SUCCESS; |
| *pnMajorType = uTmpMajorType; |
| *puArgument = uArgument; |
| *puAdditionalInfo = uAdditionalInfo; |
| |
| Done: |
| return nReturn; |
| } |
| |
| /* |
| CBOR doesn't explicitly specify two's compliment for integers but all CPUs |
| use it these days and the test vectors in the RFC are so. All integers in the CBOR |
| structure are positive and the major type indicates positive or negative. |
| CBOR can express positive integers up to 2^x - 1 where x is the number of bits |
| and negative integers down to 2^x. Note that negative numbers can be one |
| more away from zero than positive. |
| Stdint, as far as I can tell, uses two's compliment to represent |
| negative integers. |
| |
| See http://www.unix.org/whitepapers/64bit.html for reasons int isn't |
| used here in any way including in the interface |
| */ |
| inline static QCBORError DecodeInteger(int nMajorType, uint64_t uNumber, QCBORItem *pDecodedItem) |
| { |
| // Stack usage: int/ptr 1 -- 8 |
| QCBORError nReturn = QCBOR_SUCCESS; |
| |
| if(nMajorType == CBOR_MAJOR_TYPE_POSITIVE_INT) { |
| if (uNumber <= INT64_MAX) { |
| pDecodedItem->val.int64 = (int64_t)uNumber; |
| pDecodedItem->uDataType = QCBOR_TYPE_INT64; |
| |
| } else { |
| pDecodedItem->val.uint64 = uNumber; |
| pDecodedItem->uDataType = QCBOR_TYPE_UINT64; |
| |
| } |
| } else { |
| if(uNumber <= INT64_MAX) { |
| pDecodedItem->val.int64 = -uNumber-1; |
| pDecodedItem->uDataType = QCBOR_TYPE_INT64; |
| |
| } else { |
| // C can't represent a negative integer in this range |
| // so it is an error. todo -- test this condition |
| nReturn = QCBOR_ERR_INT_OVERFLOW; |
| } |
| } |
| |
| return nReturn; |
| } |
| |
| // Make sure #define value line up as DecodeSimple counts on this. |
| #if QCBOR_TYPE_FALSE != CBOR_SIMPLEV_FALSE |
| #error QCBOR_TYPE_FALSE macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_TRUE != CBOR_SIMPLEV_TRUE |
| #error QCBOR_TYPE_TRUE macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_NULL != CBOR_SIMPLEV_NULL |
| #error QCBOR_TYPE_NULL macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_UNDEF != CBOR_SIMPLEV_UNDEF |
| #error QCBOR_TYPE_UNDEF macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_BREAK != CBOR_SIMPLE_BREAK |
| #error QCBOR_TYPE_BREAK macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_DOUBLE != DOUBLE_PREC_FLOAT |
| #error QCBOR_TYPE_DOUBLE macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_FLOAT != SINGLE_PREC_FLOAT |
| #error QCBOR_TYPE_FLOAT macro value wrong |
| #endif |
| |
| /* |
| Decode true, false, floats, break... |
| */ |
| |
| inline static QCBORError DecodeSimple(uint8_t uAdditionalInfo, uint64_t uNumber, QCBORItem *pDecodedItem) |
| { |
| // Stack usage: 0 |
| QCBORError nReturn = QCBOR_SUCCESS; |
| |
| // uAdditionalInfo is 5 bits from the initial byte |
| // compile time checks above make sure uAdditionalInfo values line up with uDataType values |
| pDecodedItem->uDataType = uAdditionalInfo; |
| |
| switch(uAdditionalInfo) { |
| case ADDINFO_RESERVED1: // 28 |
| case ADDINFO_RESERVED2: // 29 |
| case ADDINFO_RESERVED3: // 30 |
| nReturn = QCBOR_ERR_UNSUPPORTED; |
| break; |
| |
| case HALF_PREC_FLOAT: |
| pDecodedItem->val.dfnum = IEEE754_HalfToDouble((uint16_t)uNumber); |
| pDecodedItem->uDataType = QCBOR_TYPE_DOUBLE; |
| break; |
| case SINGLE_PREC_FLOAT: |
| pDecodedItem->val.dfnum = (double)UsefulBufUtil_CopyUint32ToFloat((uint32_t)uNumber); |
| pDecodedItem->uDataType = QCBOR_TYPE_DOUBLE; |
| break; |
| case DOUBLE_PREC_FLOAT: |
| pDecodedItem->val.dfnum = UsefulBufUtil_CopyUint64ToDouble(uNumber); |
| pDecodedItem->uDataType = QCBOR_TYPE_DOUBLE; |
| break; |
| |
| case CBOR_SIMPLEV_FALSE: // 20 |
| case CBOR_SIMPLEV_TRUE: // 21 |
| case CBOR_SIMPLEV_NULL: // 22 |
| case CBOR_SIMPLEV_UNDEF: // 23 |
| case CBOR_SIMPLE_BREAK: // 31 |
| break; // nothing to do |
| |
| case CBOR_SIMPLEV_ONEBYTE: // 24 |
| if(uNumber <= CBOR_SIMPLE_BREAK) { |
| // This takes out f8 00 ... f8 1f which should be encoded as e0 … f7 |
| nReturn = QCBOR_ERR_BAD_TYPE_7; |
| goto Done; |
| } |
| /* FALLTHROUGH */ |
| // fall through intentionally |
| |
| default: // 0-19 |
| pDecodedItem->uDataType = QCBOR_TYPE_UKNOWN_SIMPLE; |
| // DecodeTypeAndNumber will make uNumber equal to uAdditionalInfo when uAdditionalInfo is < 24 |
| // This cast is safe because the 2, 4 and 8 byte lengths of uNumber are in the double/float cases above |
| pDecodedItem->val.uSimple = (uint8_t)uNumber; |
| break; |
| } |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| |
| /* |
| Decode text and byte strings. Call the string allocator if asked to. |
| */ |
| inline static QCBORError DecodeBytes(const QCORInternalAllocator *pAllocator, |
| int nMajorType, |
| uint64_t uStrLen, |
| UsefulInputBuf *pUInBuf, |
| QCBORItem *pDecodedItem) |
| { |
| // Stack usage: UsefulBuf 2, int/ptr 1 40 |
| QCBORError nReturn = QCBOR_SUCCESS; |
| |
| const UsefulBufC Bytes = UsefulInputBuf_GetUsefulBuf(pUInBuf, uStrLen); |
| if(UsefulBuf_IsNULLC(Bytes)) { |
| // Failed to get the bytes for this string item |
| nReturn = QCBOR_ERR_HIT_END; |
| goto Done; |
| } |
| |
| if(pAllocator) { |
| // We are asked to use string allocator to make a copy |
| UsefulBuf NewMem = StringAllocator_Allocate(pAllocator, uStrLen); |
| if(UsefulBuf_IsNULL(NewMem)) { |
| nReturn = QCBOR_ERR_STRING_ALLOCATE; |
| goto Done; |
| } |
| pDecodedItem->val.string = UsefulBuf_Copy(NewMem, Bytes); |
| pDecodedItem->uDataAlloc = 1; |
| } else { |
| // Normal case with no string allocator |
| pDecodedItem->val.string = Bytes; |
| } |
| pDecodedItem->uDataType = (nMajorType == CBOR_MAJOR_TYPE_BYTE_STRING) ? QCBOR_TYPE_BYTE_STRING : QCBOR_TYPE_TEXT_STRING; |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| /* |
| Mostly just assign the right data type for the date string. |
| */ |
| inline static QCBORError DecodeDateString(QCBORItem *pDecodedItem) |
| { |
| // Stack Use: UsefulBuf 1 16 |
| if(pDecodedItem->uDataType != QCBOR_TYPE_TEXT_STRING) { |
| return QCBOR_ERR_BAD_OPT_TAG; |
| } |
| |
| const UsefulBufC Temp = pDecodedItem->val.string; |
| pDecodedItem->val.dateString = Temp; |
| pDecodedItem->uDataType = QCBOR_TYPE_DATE_STRING; |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /* |
| Mostly just assign the right data type for the bignum. |
| */ |
| inline static QCBORError DecodeBigNum(QCBORItem *pDecodedItem) |
| { |
| // Stack Use: UsefulBuf 1 -- 16 |
| if(pDecodedItem->uDataType != QCBOR_TYPE_BYTE_STRING) { |
| return QCBOR_ERR_BAD_OPT_TAG; |
| } |
| const UsefulBufC Temp = pDecodedItem->val.string; |
| pDecodedItem->val.bigNum = Temp; |
| pDecodedItem->uDataType = pDecodedItem->uTagBits & QCBOR_TAGFLAG_POS_BIGNUM ? QCBOR_TYPE_POSBIGNUM : QCBOR_TYPE_NEGBIGNUM; |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /* |
| The epoch formatted date. Turns lots of different forms of encoding date into uniform one |
| */ |
| static int DecodeDateEpoch(QCBORItem *pDecodedItem) |
| { |
| // Stack usage: 1 |
| QCBORError nReturn = QCBOR_SUCCESS; |
| |
| pDecodedItem->val.epochDate.fSecondsFraction = 0; |
| |
| switch (pDecodedItem->uDataType) { |
| |
| case QCBOR_TYPE_INT64: |
| pDecodedItem->val.epochDate.nSeconds = pDecodedItem->val.int64; |
| break; |
| |
| case QCBOR_TYPE_UINT64: |
| if(pDecodedItem->val.uint64 > INT64_MAX) { |
| nReturn = QCBOR_ERR_DATE_OVERFLOW; |
| goto Done; |
| } |
| pDecodedItem->val.epochDate.nSeconds = pDecodedItem->val.uint64; |
| break; |
| |
| case QCBOR_TYPE_DOUBLE: |
| { |
| const double d = pDecodedItem->val.dfnum; |
| if(d > INT64_MAX) { |
| nReturn = QCBOR_ERR_DATE_OVERFLOW; |
| goto Done; |
| } |
| pDecodedItem->val.epochDate.nSeconds = d; // Float to integer conversion happening here. |
| pDecodedItem->val.epochDate.fSecondsFraction = d - pDecodedItem->val.epochDate.nSeconds; |
| } |
| break; |
| |
| default: |
| nReturn = QCBOR_ERR_BAD_OPT_TAG; |
| goto Done; |
| } |
| pDecodedItem->uDataType = QCBOR_TYPE_DATE_EPOCH; |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| |
| |
| // Make sure the constants align as this is assumed by the GetAnItem() implementation |
| #if QCBOR_TYPE_ARRAY != CBOR_MAJOR_TYPE_ARRAY |
| #error QCBOR_TYPE_ARRAY value not lined up with major type |
| #endif |
| #if QCBOR_TYPE_MAP != CBOR_MAJOR_TYPE_MAP |
| #error QCBOR_TYPE_MAP value not lined up with major type |
| #endif |
| |
| /* |
| This gets a single data item and decodes it including preceding optional tagging. This does not |
| deal with arrays and maps and nesting except to decode the data item introducing them. Arrays and |
| maps are handled at the next level up in GetNext(). |
| |
| Errors detected here include: an array that is too long to decode, hit end of buffer unexpectedly, |
| a few forms of invalid encoded CBOR |
| */ |
| static QCBORError GetNext_Item(UsefulInputBuf *pUInBuf, |
| QCBORItem *pDecodedItem, |
| const QCORInternalAllocator *pAllocator) |
| { |
| // Stack usage: int/ptr 3 -- 24 |
| QCBORError nReturn; |
| |
| // Get the major type and the number. Number could be length of more bytes or the value depending on the major type |
| // nAdditionalInfo is an encoding of the length of the uNumber and is needed to decode floats and doubles |
| int uMajorType; |
| uint64_t uNumber; |
| uint8_t uAdditionalInfo; |
| |
| nReturn = DecodeTypeAndNumber(pUInBuf, &uMajorType, &uNumber, &uAdditionalInfo); |
| |
| // Error out here if we got into trouble on the type and number. |
| // The code after this will not work if the type and number is not good. |
| if(nReturn) |
| goto Done; |
| |
| memset(pDecodedItem, 0, sizeof(QCBORItem)); |
| |
| // At this point the major type and the value are valid. We've got the type and the number that |
| // starts every CBOR data item. |
| switch (uMajorType) { |
| case CBOR_MAJOR_TYPE_POSITIVE_INT: // Major type 0 |
| case CBOR_MAJOR_TYPE_NEGATIVE_INT: // Major type 1 |
| nReturn = DecodeInteger(uMajorType, uNumber, pDecodedItem); |
| break; |
| |
| case CBOR_MAJOR_TYPE_BYTE_STRING: // Major type 2 |
| case CBOR_MAJOR_TYPE_TEXT_STRING: // Major type 3 |
| if(uAdditionalInfo == LEN_IS_INDEFINITE) { |
| pDecodedItem->uDataType = (uMajorType == CBOR_MAJOR_TYPE_BYTE_STRING) ? QCBOR_TYPE_BYTE_STRING : QCBOR_TYPE_TEXT_STRING; |
| pDecodedItem->val.string = (UsefulBufC){NULL, SIZE_MAX}; |
| } else { |
| nReturn = DecodeBytes(pAllocator, uMajorType, uNumber, pUInBuf, pDecodedItem); |
| } |
| break; |
| |
| case CBOR_MAJOR_TYPE_ARRAY: // Major type 4 |
| case CBOR_MAJOR_TYPE_MAP: // Major type 5 |
| // Record the number of items in the array or map |
| if(uNumber > QCBOR_MAX_ITEMS_IN_ARRAY) { |
| nReturn = QCBOR_ERR_ARRAY_TOO_LONG; |
| goto Done; |
| } |
| if(uAdditionalInfo == LEN_IS_INDEFINITE) { |
| pDecodedItem->val.uCount = UINT16_MAX; // Indicate indefinite length |
| } else { |
| pDecodedItem->val.uCount = (uint16_t)uNumber; // type conversion OK because of check above |
| } |
| pDecodedItem->uDataType = uMajorType; // C preproc #if above makes sure constants align |
| break; |
| |
| case CBOR_MAJOR_TYPE_OPTIONAL: // Major type 6, optional prepended tags |
| pDecodedItem->val.uTagV = uNumber; |
| pDecodedItem->uDataType = QCBOR_TYPE_OPTTAG; |
| break; |
| |
| case CBOR_MAJOR_TYPE_SIMPLE: // Major type 7, float, double, true, false, null... |
| nReturn = DecodeSimple(uAdditionalInfo, uNumber, pDecodedItem); |
| break; |
| |
| default: // Should never happen because DecodeTypeAndNumber() should never return > 7 |
| nReturn = QCBOR_ERR_UNSUPPORTED; |
| break; |
| } |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| |
| /* |
| This layer deals with indefinite length strings. It pulls all the |
| individual chunk items together into one QCBORItem using the |
| string allocator. |
| |
| Code Reviewers: THIS FUNCTION DOES A LITTLE POINTER MATH |
| */ |
| static inline QCBORError GetNext_FullItem(QCBORDecodeContext *me, QCBORItem *pDecodedItem) |
| { |
| // Stack usage; int/ptr 2 UsefulBuf 2 QCBORItem -- 96 |
| QCBORError nReturn; |
| const QCORInternalAllocator *pAllocator = me->StringAllocator.pfAllocator ? |
| &(me->StringAllocator) : |
| NULL; |
| UsefulBufC FullString = NULLUsefulBufC; |
| |
| nReturn = GetNext_Item(&(me->InBuf), |
| pDecodedItem, |
| me->bStringAllocateAll ? pAllocator: NULL); |
| if(nReturn) { |
| goto Done; |
| } |
| |
| // To reduce code size by removing support for indefinite length strings, the |
| // code in this function from here down can be eliminated. Run tests, except |
| // indefinite length string tests, to be sure all is OK if this is removed. |
| |
| // Only do indefinite length processing on strings |
| if(pDecodedItem->uDataType != QCBOR_TYPE_BYTE_STRING && pDecodedItem->uDataType != QCBOR_TYPE_TEXT_STRING) { |
| goto Done; // no need to do any work here on non-string types |
| } |
| |
| // Is this a string with an indefinite length? |
| if(pDecodedItem->val.string.len != SIZE_MAX) { |
| goto Done; // length is not indefinite, so no work to do here |
| } |
| |
| // Can't do indefinite length strings without a string allocator |
| if(pAllocator == NULL) { |
| nReturn = QCBOR_ERR_NO_STRING_ALLOCATOR; |
| goto Done; |
| } |
| |
| // There is an indefinite length string to work on... |
| // Track which type of string it is |
| const uint8_t uStringType = pDecodedItem->uDataType; |
| |
| // Loop getting chunk of indefinite string |
| for(;;) { |
| // Get item for next chunk |
| QCBORItem StringChunkItem; |
| // NULL passed to never string alloc chunk of indefinite length strings |
| nReturn = GetNext_Item(&(me->InBuf), &StringChunkItem, NULL); |
| if(nReturn) { |
| break; // Error getting the next chunk |
| } |
| |
| // See if it is a marker at end of indefinite length string |
| if(StringChunkItem.uDataType == QCBOR_TYPE_BREAK) { |
| // String is complete |
| pDecodedItem->val.string = FullString; |
| pDecodedItem->uDataAlloc = 1; |
| break; |
| } |
| |
| // Match data type of chunk to type at beginning. |
| // Also catches error of other non-string types that don't belong. |
| if(StringChunkItem.uDataType != uStringType) { |
| nReturn = QCBOR_ERR_INDEFINITE_STRING_CHUNK; |
| break; |
| } |
| |
| // Alloc new buffer or expand previously allocated buffer so it can fit |
| // The first time throurgh FullString.ptr is NULL and this is |
| // equivalent to StringAllocator_Allocate() |
| UsefulBuf NewMem = StringAllocator_Reallocate(pAllocator, |
| UNCONST_POINTER(FullString.ptr), |
| FullString.len + StringChunkItem.val.string.len); |
| |
| if(UsefulBuf_IsNULL(NewMem)) { |
| // Allocation of memory for the string failed |
| nReturn = QCBOR_ERR_STRING_ALLOCATE; |
| break; |
| } |
| |
| // Copy new string chunk at the end of string so far. |
| FullString = UsefulBuf_CopyOffset(NewMem, FullString.len, StringChunkItem.val.string); |
| } |
| |
| Done: |
| if(nReturn != QCBOR_SUCCESS && !UsefulBuf_IsNULLC(FullString)) { |
| // Getting the item failed, clean up the allocated memory |
| StringAllocator_Free(pAllocator, UNCONST_POINTER(FullString.ptr)); |
| } |
| |
| return nReturn; |
| } |
| |
| |
| /* |
| Returns an error if there was something wrong with the optional item or it couldn't |
| be handled. |
| */ |
| static QCBORError GetNext_TaggedItem(QCBORDecodeContext *me, QCBORItem *pDecodedItem, QCBORTagListOut *pTags) |
| { |
| // Stack usage: int/ptr: 3 -- 24 |
| QCBORError nReturn; |
| uint64_t uTagBits = 0; |
| if(pTags) { |
| pTags->uNumUsed = 0; |
| } |
| |
| for(;;) { |
| nReturn = GetNext_FullItem(me, pDecodedItem); |
| if(nReturn) { |
| goto Done; // Error out of the loop |
| } |
| |
| if(pDecodedItem->uDataType != QCBOR_TYPE_OPTTAG) { |
| // Successful exit from loop; maybe got some tags, maybe not |
| pDecodedItem->uTagBits = uTagBits; |
| break; |
| } |
| |
| uint8_t uTagBitIndex; |
| // Tag was mapped, tag was not mapped, error with tag list |
| switch(TagMapper_Lookup(me->pCallerConfiguredTagList, pDecodedItem->val.uTagV, &uTagBitIndex)) { |
| |
| case QCBOR_SUCCESS: |
| // Successfully mapped the tag |
| uTagBits |= 0x01ULL << uTagBitIndex; |
| break; |
| |
| case QCBOR_ERR_BAD_OPT_TAG: |
| // Tag is not recognized. Do nothing |
| break; |
| |
| default: |
| // Error Condition |
| goto Done; |
| } |
| |
| if(pTags) { |
| // Caller wants all tags recorded in the provided buffer |
| if(pTags->uNumUsed >= pTags->uNumAllocated) { |
| nReturn = QCBOR_ERR_TOO_MANY_TAGS; |
| goto Done; |
| } |
| pTags->puTags[pTags->uNumUsed] = pDecodedItem->val.uTagV; |
| pTags->uNumUsed++; |
| } |
| } |
| |
| switch(pDecodedItem->uTagBits & TAG_MAPPER_FIRST_FOUR) { |
| case 0: |
| // No tags at all or none we know about. Nothing to do. |
| // This is part of the pass-through path of this function |
| // that will mostly be taken when decoding any item. |
| break; |
| |
| case QCBOR_TAGFLAG_DATE_STRING: |
| nReturn = DecodeDateString(pDecodedItem); |
| break; |
| |
| case QCBOR_TAGFLAG_DATE_EPOCH: |
| nReturn = DecodeDateEpoch(pDecodedItem); |
| break; |
| |
| case QCBOR_TAGFLAG_POS_BIGNUM: |
| case QCBOR_TAGFLAG_NEG_BIGNUM: |
| nReturn = DecodeBigNum(pDecodedItem); |
| break; |
| |
| default: |
| // Encountering some mixed up CBOR like something that |
| // is tagged as both a string and integer date. |
| nReturn = QCBOR_ERR_BAD_OPT_TAG; |
| } |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| /* |
| This layer takes care of map entries. It combines the label and data items into one QCBORItem. |
| */ |
| static inline QCBORError GetNext_MapEntry(QCBORDecodeContext *me, QCBORItem *pDecodedItem, QCBORTagListOut *pTags) |
| { |
| // Stack use: int/ptr 1, QCBORItem -- 56 |
| QCBORError nReturn = GetNext_TaggedItem(me, pDecodedItem, pTags); |
| if(nReturn) |
| goto Done; |
| |
| if(pDecodedItem->uDataType == QCBOR_TYPE_BREAK) { |
| // Break can't be a map entry |
| goto Done; |
| } |
| |
| if(me->uDecodeMode != QCBOR_DECODE_MODE_MAP_AS_ARRAY) { |
| // In a map and caller wants maps decoded, not treated as arrays |
| |
| if(DecodeNesting_TypeIsMap(&(me->nesting))) { |
| // If in a map and the right decoding mode, get the label |
| |
| // Get the next item which will be the real data; Item will be the label |
| QCBORItem LabelItem = *pDecodedItem; |
| nReturn = GetNext_TaggedItem(me, pDecodedItem, pTags); |
| if(nReturn) |
| goto Done; |
| |
| pDecodedItem->uLabelAlloc = LabelItem.uDataAlloc; |
| |
| if(LabelItem.uDataType == QCBOR_TYPE_TEXT_STRING) { |
| // strings are always good labels |
| pDecodedItem->label.string = LabelItem.val.string; |
| pDecodedItem->uLabelType = QCBOR_TYPE_TEXT_STRING; |
| } else if (QCBOR_DECODE_MODE_MAP_STRINGS_ONLY == me->uDecodeMode) { |
| // It's not a string and we only want strings, probably for easy translation to JSON |
| nReturn = QCBOR_ERR_MAP_LABEL_TYPE; |
| goto Done; |
| } else if(LabelItem.uDataType == QCBOR_TYPE_INT64) { |
| pDecodedItem->label.int64 = LabelItem.val.int64; |
| pDecodedItem->uLabelType = QCBOR_TYPE_INT64; |
| } else if(LabelItem.uDataType == QCBOR_TYPE_UINT64) { |
| pDecodedItem->label.uint64 = LabelItem.val.uint64; |
| pDecodedItem->uLabelType = QCBOR_TYPE_UINT64; |
| } else if(LabelItem.uDataType == QCBOR_TYPE_BYTE_STRING) { |
| pDecodedItem->label.string = LabelItem.val.string; |
| pDecodedItem->uLabelAlloc = LabelItem.uDataAlloc; |
| pDecodedItem->uLabelType = QCBOR_TYPE_BYTE_STRING; |
| } else { |
| // label is not an int or a string. It is an arrray |
| // or a float or such and this implementation doesn't handle that. |
| // Also, tags on labels are ignored. |
| nReturn = QCBOR_ERR_MAP_LABEL_TYPE; |
| goto Done; |
| } |
| } |
| } else { |
| if(pDecodedItem->uDataType == QCBOR_TYPE_MAP) { |
| // Decoding a map as an array |
| pDecodedItem->uDataType = QCBOR_TYPE_MAP_AS_ARRAY; |
| pDecodedItem->val.uCount *= 2; |
| } |
| } |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| /* |
| Public function, see header qcbor.h file |
| */ |
| QCBORError QCBORDecode_GetNextWithTags(QCBORDecodeContext *me, QCBORItem *pDecodedItem, QCBORTagListOut *pTags) |
| { |
| // Stack ptr/int: 2, QCBORItem : 64 |
| |
| // The public entry point for fetching and parsing the next QCBORItem. |
| // All the CBOR parsing work is here and in subordinate calls. |
| QCBORError nReturn; |
| |
| nReturn = GetNext_MapEntry(me, pDecodedItem, pTags); |
| if(nReturn) { |
| goto Done; |
| } |
| |
| // Break ending arrays/maps are always processed at the end of this function. |
| // They should never show up here. |
| if(pDecodedItem->uDataType == QCBOR_TYPE_BREAK) { |
| nReturn = QCBOR_ERR_BAD_BREAK; |
| goto Done; |
| } |
| |
| // Record the nesting level for this data item before processing any of |
| // decrementing and descending. |
| pDecodedItem->uNestingLevel = DecodeNesting_GetLevel(&(me->nesting)); |
| |
| // Process the item just received for descent or decrement, and |
| // ascent if decrements are enough to close out a definite length array/map |
| if(IsMapOrArray(pDecodedItem->uDataType)) { |
| // If the new item is array or map, the nesting level descends |
| nReturn = DecodeNesting_Descend(&(me->nesting), pDecodedItem); |
| // Maps and arrays do count in as items in the map/array that encloses |
| // them so a decrement needs to be done for them too, but that is done |
| // only when all the items in them have been processed, not when they |
| // are opened. |
| } else { |
| // Decrement the count of items in the enclosing map/array |
| // If the count in the enclosing map/array goes to zero, that |
| // triggers a decrement in the map/array above that and |
| // an ascend in nesting level. |
| DecodeNesting_DecrementCount(&(me->nesting)); |
| } |
| if(nReturn) { |
| goto Done; |
| } |
| |
| // For indefinite length maps/arrays, looking at any and |
| // all breaks that might terminate them. The equivalent |
| // for definite length maps/arrays happens in |
| // DecodeNesting_DecrementCount(). |
| if(DecodeNesting_IsNested(&(me->nesting)) && DecodeNesting_IsIndefiniteLength(&(me->nesting))) { |
| while(UsefulInputBuf_BytesUnconsumed(&(me->InBuf))) { |
| // Peek forward one item to see if it is a break. |
| QCBORItem Peek; |
| size_t uPeek = UsefulInputBuf_Tell(&(me->InBuf)); |
| nReturn = GetNext_Item(&(me->InBuf), &Peek, NULL); |
| if(nReturn) { |
| goto Done; |
| } |
| if(Peek.uDataType != QCBOR_TYPE_BREAK) { |
| // It is not a break, rewind so it can be processed normally. |
| UsefulInputBuf_Seek(&(me->InBuf), uPeek); |
| break; |
| } |
| // It is a break. Ascend one nesting level. |
| // The break is consumed. |
| nReturn = DecodeNesting_BreakAscend(&(me->nesting)); |
| if(nReturn) { |
| // break occured outside of an indefinite length array/map |
| goto Done; |
| } |
| } |
| } |
| |
| // Tell the caller what level is next. This tells them what maps/arrays |
| // were closed out and makes it possible for them to reconstruct |
| // the tree with just the information returned by GetNext |
| pDecodedItem->uNextNestLevel = DecodeNesting_GetLevel(&(me->nesting)); |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| QCBORError QCBORDecode_GetNext(QCBORDecodeContext *me, QCBORItem *pDecodedItem) |
| { |
| return QCBORDecode_GetNextWithTags(me, pDecodedItem, NULL); |
| } |
| |
| |
| /* |
| Decoding items is done in 5 layered functions, one calling the |
| next one down. If a layer has no work to do for a particular item |
| it returns quickly. |
| |
| - QCBORDecode_GetNext -- The top layer manages the beginnings and |
| ends of maps and arrays. It tracks descending into and ascending |
| out of maps/arrays. It processes all breaks that terminate |
| maps and arrays. |
| |
| - GetNext_MapEntry -- This handles the combining of two |
| items, the label and the data, that make up a map entry. |
| It only does work on maps. It combines the label and data |
| items into one labeled item. |
| |
| - GetNext_TaggedItem -- This handles the type 6 tagged items. |
| It accumulates all the tags and combines them with the following |
| non-tagged item. If the tagged item is something that is understood |
| like a date, the decoding of that item is invoked. |
| |
| - GetNext_FullItem -- This assembles the sub items that make up |
| an indefinte length string into one string item. It uses the |
| string allocater to create contiguous space for the item. It |
| processes all breaks that are part of indefinite length strings. |
| |
| - GetNext_Item -- This gets and decodes the most atomic |
| item in CBOR, the thing with an initial byte containing |
| the major type. |
| |
| Roughly this takes 300 bytes of stack for vars. Need to |
| evaluate this more carefully and correctly. |
| |
| */ |
| |
| |
| /* |
| Public function, see header qcbor.h file |
| */ |
| int QCBORDecode_IsTagged(QCBORDecodeContext *me, const QCBORItem *pItem, uint64_t uTag) |
| { |
| const QCBORTagListIn *pCallerConfiguredTagMap = me->pCallerConfiguredTagList; |
| |
| uint8_t uTagBitIndex; |
| // Do not care about errors in pCallerConfiguredTagMap here. They are |
| // caught during GetNext() before this is called. |
| if(TagMapper_Lookup(pCallerConfiguredTagMap, uTag, &uTagBitIndex)) { |
| return 0; |
| } |
| |
| const uint64_t uTagBit = 0x01ULL << uTagBitIndex; |
| return (uTagBit & pItem->uTagBits) != 0; |
| } |
| |
| |
| /* |
| Public function, see header qcbor.h file |
| */ |
| QCBORError QCBORDecode_Finish(QCBORDecodeContext *me) |
| { |
| int nReturn = QCBOR_SUCCESS; |
| |
| // Error out if all the maps/arrays are not closed out |
| if(DecodeNesting_IsNested(&(me->nesting))) { |
| nReturn = QCBOR_ERR_ARRAY_OR_MAP_STILL_OPEN; |
| goto Done; |
| } |
| |
| // Error out if not all the bytes are consumed |
| if(UsefulInputBuf_BytesUnconsumed(&(me->InBuf))) { |
| nReturn = QCBOR_ERR_EXTRA_BYTES; |
| } |
| |
| Done: |
| // Call the destructor for the string allocator if there is one. |
| // Always called, even if there are errors; always have to clean up |
| StringAllocator_Destruct(&(me->StringAllocator)); |
| |
| return nReturn; |
| } |
| |
| |
| |
| /* |
| |
| Decoder errors handled in this file |
| |
| - Hit end of input before it was expected while decoding type and number QCBOR_ERR_HIT_END |
| |
| - negative integer that is too large for C QCBOR_ERR_INT_OVERFLOW |
| |
| - Hit end of input while decoding a text or byte string QCBOR_ERR_HIT_END |
| |
| - Encountered conflicting tags -- e.g., an item is tagged both a date string and an epoch date QCBOR_ERR_UNSUPPORTED |
| |
| - Encontered an array or mapp that has too many items QCBOR_ERR_ARRAY_TOO_LONG |
| |
| - Encountered array/map nesting that is too deep QCBOR_ERR_ARRAY_NESTING_TOO_DEEP |
| |
| - An epoch date > INT64_MAX or < INT64_MIN was encountered QCBOR_ERR_DATE_OVERFLOW |
| |
| - The type of a map label is not a string or int QCBOR_ERR_MAP_LABEL_TYPE |
| |
| - Hit end with arrays or maps still open -- QCBOR_ERR_EXTRA_BYTES |
| |
| */ |
| |
| |
| |
| |
| /* =========================================================================== |
| MemPool -- BUILT-IN SIMPLE STRING ALLOCATOR |
| |
| This implements a simple sting allocator for indefinite length |
| strings that can be enabled by calling QCBORDecode_SetMemPool(). It |
| implements the function type QCBORStringAllocate and allows easy |
| use of it. |
| |
| This particular allocator is built-in for convenience. The caller |
| can implement their own. All of this following code will get |
| dead-stripped if QCBORDecode_SetMemPool() is not called. |
| |
| This is a very primitive memory allocator. It does not track |
| individual allocations, only a high-water mark. A free or |
| reallocation must be of the last chunk allocated. |
| |
| The size of the pool and offset to free memory are packed into the |
| first 8 bytes of the memory pool so we don't have to keep them in |
| the decode context. Since the address of the pool may not be |
| aligned, they have to be packed and unpacked as if they were |
| serialized data of the wire or such. |
| |
| The sizes packed in are uint32_t to be the same on all CPU types |
| and simplify the code. |
| =========================================================================== */ |
| |
| |
| static inline int MemPool_Unpack(const void *pMem, uint32_t *puPoolSize, uint32_t *puFreeOffset) |
| { |
| // Use of UsefulInputBuf is overkill, but it is convenient. |
| UsefulInputBuf UIB; |
| |
| // Just assume the size here. It was checked during SetUp so the assumption is safe. |
| UsefulInputBuf_Init(&UIB, (UsefulBufC){pMem, QCBOR_DECODE_MIN_MEM_POOL_SIZE}); |
| *puPoolSize = UsefulInputBuf_GetUint32(&UIB); |
| *puFreeOffset = UsefulInputBuf_GetUint32(&UIB); |
| return UsefulInputBuf_GetError(&UIB); |
| } |
| |
| |
| static inline int MemPool_Pack(UsefulBuf Pool, uint32_t uFreeOffset) |
| { |
| // Use of UsefulOutBuf is overkill, but convenient. The |
| // length check performed here is useful. |
| UsefulOutBuf UOB; |
| |
| UsefulOutBuf_Init(&UOB, Pool); |
| UsefulOutBuf_AppendUint32(&UOB, (uint32_t)Pool.len); // size of pool |
| UsefulOutBuf_AppendUint32(&UOB, uFreeOffset); // first free position |
| return UsefulOutBuf_GetError(&UOB); |
| } |
| |
| |
| /* |
| Internal function for an allocation, reallocation free and destuct. |
| |
| Having only one function rather than one each per mode saves space in |
| QCBORDecodeContext. |
| |
| Code Reviewers: THIS FUNCTION DOES POINTER MATH |
| */ |
| static UsefulBuf MemPool_Function(void *pPool, void *pMem, size_t uNewSize) |
| { |
| UsefulBuf ReturnValue = NULLUsefulBuf; |
| |
| uint32_t uPoolSize; |
| uint32_t uFreeOffset; |
| |
| if(uNewSize > UINT32_MAX) { |
| // This allocator is only good up to 4GB. This check should |
| // optimize out if sizeof(size_t) == sizeof(uint32_t) |
| goto Done; |
| } |
| const uint32_t uNewSize32 = (uint32_t)uNewSize; |
| |
| if(MemPool_Unpack(pPool, &uPoolSize, &uFreeOffset)) { |
| goto Done; |
| } |
| |
| if(uNewSize) { |
| if(pMem) { |
| // REALLOCATION MODE |
| // Calculate pointer to the end of the memory pool. It is |
| // assumed that pPool + uPoolSize won't wrap around by |
| // assuming the caller won't pass a pool buffer in that is |
| // not in legitimate memory space. |
| const void *pPoolEnd = (uint8_t *)pPool + uPoolSize; |
| |
| // Check that the pointer for reallocation is in the range of the |
| // pool. This also makes sure that pointer math further down |
| // doesn't wrap under or over. |
| if(pMem >= pPool && pMem < pPoolEnd) { |
| // Offset to start of chunk for reallocation. This won't |
| // wrap under because of check that pMem >= pPool. Cast |
| // is safe because the pool is always less than UINT32_MAX |
| // because of check in QCBORDecode_SetMemPool(). |
| const uint32_t uMemOffset = (uint32_t)((uint8_t *)pMem - (uint8_t *)pPool); |
| |
| // Check to see if the allocation will fit. uPoolSize - |
| // uMemOffset will not wrap under because of check that |
| // pMem is in the range of the uPoolSize by check above. |
| if(uNewSize <= uPoolSize - uMemOffset) { |
| ReturnValue.ptr = pMem; |
| ReturnValue.len = uNewSize; |
| |
| // Addition won't wrap around over because uNewSize was |
| // checked to be sure it is less than the pool size. |
| uFreeOffset = uMemOffset + uNewSize32; |
| } |
| } |
| } else { |
| // ALLOCATION MODE |
| // uPoolSize - uFreeOffset will not underflow because this |
| // pool implementation makes sure uFreeOffset is always |
| // smaller than uPoolSize through this check here and |
| // reallocation case. |
| if(uNewSize <= uPoolSize - uFreeOffset) { |
| ReturnValue.len = uNewSize; |
| ReturnValue.ptr = (uint8_t *)pPool + uFreeOffset; |
| uFreeOffset += uNewSize; |
| } |
| } |
| } else { |
| if(pMem) { |
| // FREE MODE |
| // Cast is safe because of limit on pool size in |
| // QCBORDecode_SetMemPool() |
| uFreeOffset = (uint32_t)((uint8_t *)pMem - (uint8_t *)pPool); |
| } else { |
| // DESTRUCT MODE |
| // Nothing to do for this allocator |
| } |
| } |
| |
| UsefulBuf Pool = {pPool, uPoolSize}; |
| MemPool_Pack(Pool, uFreeOffset); |
| |
| Done: |
| return ReturnValue; |
| } |
| |
| |
| /* |
| Public function, see header qcbor.h file |
| */ |
| QCBORError QCBORDecode_SetMemPool(QCBORDecodeContext *pMe, UsefulBuf Pool, bool bAllStrings) |
| { |
| // The pool size and free mem offset are packed into the beginning |
| // of the pool memory. This compile time check make sure the |
| // constant in the header is correct. This check should optimize |
| // down to nothing. |
| if(QCBOR_DECODE_MIN_MEM_POOL_SIZE < 2 * sizeof(uint32_t)) { |
| return QCBOR_ERR_BUFFER_TOO_SMALL; |
| } |
| |
| // The pool size and free offset packed in to the beginning of pool |
| // memory are only 32-bits. This check will optimize out on 32-bit |
| // machines. |
| if(Pool.len > UINT32_MAX) { |
| return QCBOR_ERR_BUFFER_TOO_LARGE; |
| } |
| |
| // This checks that the pool buffer given is big enough. |
| if(MemPool_Pack(Pool, QCBOR_DECODE_MIN_MEM_POOL_SIZE)) { |
| return QCBOR_ERR_BUFFER_TOO_SMALL; |
| } |
| |
| pMe->StringAllocator.pfAllocator = MemPool_Function; |
| pMe->StringAllocator.pAllocateCxt = Pool.ptr; |
| pMe->bStringAllocateAll = bAllStrings; |
| |
| return QCBOR_SUCCESS; |
| } |