| /* ========================================================================== |
| * float_tests.c -- tests for float and conversion to/from half-precision |
| * |
| * Copyright (c) 2018-2024, Laurence Lundblade. All rights reserved. |
| * Copyright (c) 2021, Arm Limited. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| * |
| * See BSD-3-Clause license in README.md |
| * |
| * Created on 9/19/18 |
| * ========================================================================= */ |
| |
| |
| #include "float_tests.h" |
| #include "qcbor/qcbor_encode.h" |
| #include "qcbor/qcbor_decode.h" |
| #include "qcbor/qcbor_spiffy_decode.h" |
| #include <math.h> /* For INFINITY and NAN and isnan() */ |
| |
| |
| |
| /* Make a test results code that includes three components. Return code |
| * is xxxyyyzzz where zz is the error code, yy is the test number and |
| * zz is check being performed |
| */ |
| static inline int32_t |
| MakeTestResultCode(uint32_t uTestCase, |
| uint32_t uTestNumber, |
| QCBORError uErrorCode) |
| { |
| uint32_t uCode = (uTestCase * 1000000) + |
| (uTestNumber * 1000) + |
| (uint32_t)uErrorCode; |
| return (int32_t)uCode; |
| } |
| |
| |
| #ifndef QCBOR_DISABLE_PREFERRED_FLOAT |
| |
| #include "half_to_double_from_rfc7049.h" |
| |
| |
| struct FloatTestCase { |
| double dNumber; |
| float fNumber; |
| UsefulBufC Preferred; |
| UsefulBufC NotPreferred; |
| UsefulBufC CDE; |
| UsefulBufC DCBOR; |
| }; |
| |
| /* Boundaries for destination conversions: |
| * |
| * smallest subnormal single 1.401298464324817e-45 2^^-149 |
| * largest subnormal single 1.1754942106924411e-38 2^^-126 |
| * smallest normal single 1.1754943508222875e-38 |
| * largest single 3.4028234663852886E+38 |
| * |
| * smallest subnormal half 5.9604644775390625E-8 |
| * largest subnormal half 6.097555160522461E-5 |
| * smallest normal half 6.103515625E-5 |
| * largest half 65504.0 |
| * |
| * Boundaries for origin conversions: |
| * smallest subnormal double 5.0e-324 2^^-1074 |
| * largest subnormal double |
| * smallest normal double 2.2250738585072014e-308 2^^-1022 |
| * largest normal double 1.7976931348623157e308 2^^-1023 |
| * |
| * Boundaries for double conversion to 64-bit integer: |
| * exponent 51, 52 significand bits set 4503599627370495 |
| * exponent 52, 52 significand bits set 9007199254740991 |
| * exponent 53, 52 bits set in significand 18014398509481982 |
| */ |
| |
| /* Always four lines per test case so shell scripts can process into |
| * other formats. CDE and DCBOR standards are not complete yet, |
| * encodings are what is expected. C string literals are used because they |
| * are the shortest notation. They are used __with a length__ . Null |
| * termination doesn't work because there are zero bytes. |
| */ |
| static const struct FloatTestCase FloatTestCases[] = { |
| /* Zero */ |
| {0.0, 0.0f, |
| {"\xF9\x00\x00", 3}, {"\xFB\x00\x00\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x00\x00", 3}, {"\x00", 1}}, |
| |
| /* Negative Zero */ |
| {-0.0, -0.0f, |
| {"\xF9\x80\x00", 3}, {"\xFB\x80\x00\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x80\x00", 3}, {"\x00", 1}}, |
| |
| /* NaN */ |
| {NAN, NAN, |
| {"\xF9\x7E\x00", 3}, {"\xFB\x7F\xF8\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x7E\x00", 3}, {"\xF9\x7E\x00", 3}}, |
| |
| /* Infinity */ |
| {INFINITY, INFINITY, |
| {"\xF9\x7C\x00", 3}, {"\xFB\x7F\xF0\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x7C\x00", 3}, {"\xF9\x7C\x00", 3}}, |
| |
| /* Negative Infinity */ |
| {-INFINITY, -INFINITY, |
| {"\xF9\xFC\x00", 3}, {"\xFB\xFF\xF0\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\xFC\x00", 3}, {"\xF9\xFC\x00", 3}}, |
| |
| /* 1.0 */ |
| {1.0, 1.0f, |
| {"\xF9\x3C\x00", 3}, {"\xFB\x3F\xF0\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x3C\x00", 3}, {"\x01", 1}}, |
| |
| /* -2.0 -- a negative */ |
| {-2.0, -2.0f, |
| {"\xF9\xC0\x00", 3}, {"\xFB\xC0\x00\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\xC0\x00", 3}, {"\x21", 1}}, |
| |
| /* 1/3 */ |
| {0.333251953125, 0.333251953125f, |
| {"\xF9\x35\x55", 3}, {"\xFB\x3F\xD5\x54\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x35\x55", 3}, {"\xF9\x35\x55", 3}}, |
| |
| /* 5.9604644775390625E-8 -- smallest half-precision subnormal */ |
| {5.9604644775390625E-8, 0.0f, |
| {"\xF9\x00\x01", 3}, {"\xFB\x3E\x70\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x00\x01", 3}, {"\xF9\x00\x01", 3}}, |
| |
| /* 3.0517578125E-5 -- a half-precision subnormal */ |
| {3.0517578125E-5, 0.0f, |
| {"\xF9\x02\x00", 3}, {"\xFB\x3F\x00\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x02\x00", 3}, {"\xF9\x02\x00", 3}}, |
| |
| /* 6.097555160522461E-5 -- largest half-precision subnormal */ |
| {6.097555160522461E-5, 0.0f, |
| {"\xF9\x03\xFF", 3}, {"\xFB\x3F\x0F\xF8\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x03\xFF", 3}, {"\xF9\x03\xFF", 3}}, |
| |
| /* 6.1035156249999993E-5 -- slightly smaller than smallest half-precision normal */ |
| {6.1035156249999993E-5, 0.0f, |
| {"\xFB\x3F\x0F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\xFB\x3F\x0F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, |
| {"\xFB\x3F\x0F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\xFB\x3F\x0F\xFF\xFF\xFF\xFF\xFF\xFF", 9}}, |
| |
| /* 6.103515625E-5 -- smallest half-precision normal */ |
| {6.103515625E-5, 0.0f, |
| {"\xF9\04\00", 3}, {"\xFB\x3F\x10\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\04\00", 3}, {"\xF9\04\00", 3}}, |
| |
| /* 6.1035156250000014E-5 -- slightly larger than smallest half-precision normal */ |
| {6.1035156250000014E-5, 0.0f, |
| {"\xFB\x3F\x10\x00\x00\x00\x00\x00\x01", 9}, {"\xFB\x3F\x10\x00\x00\x00\x00\x00\x01", 9}, |
| {"\xFB\x3F\x10\x00\x00\x00\x00\x00\x01", 9}, {"\xFB\x3F\x10\x00\x00\x00\x00\x00\x01", 9}}, |
| |
| /* 65504.0 -- largest half-precision */ |
| {65504.0, 0.0f, |
| {"\xF9\x7B\xFF", 3}, {"\xFB\x40\xEF\xFC\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x7B\xFF", 3}, {"\x19\xFF\xE0", 3}}, |
| |
| /* 65504.1 -- exponent too large and too much precision to convert to half */ |
| {65504.1, 0.0f, |
| {"\xFB\x40\xEF\xFC\x03\x33\x33\x33\x33", 9}, {"\xFB\x40\xEF\xFC\x03\x33\x33\x33\x33", 9}, |
| {"\xFB\x40\xEF\xFC\x03\x33\x33\x33\x33", 9}, {"\xFB\x40\xEF\xFC\x03\x33\x33\x33\x33", 9}}, |
| |
| /* 65536.0 -- exponent too large for half but not too much precision for single */ |
| {65536.0, 65536.0f, |
| {"\xFA\x47\x80\x00\x00", 5}, {"\xFB\x40\xF0\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xFA\x47\x80\x00\x00", 5}, {"\x1A\x00\x01\x00\x00", 5}}, |
| |
| /* 1.401298464324817e-45 -- smallest single subnormal */ |
| {1.401298464324817e-45, 1.40129846E-45f, |
| {"\xFA\x00\x00\x00\x01", 5}, {"\xFB\x36\xA0\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xFA\x00\x00\x00\x01", 5}, {"\xFA\x00\x00\x00\x01", 5}}, |
| |
| /* 5.8774717541114375E-39 -- slightly smaller than the smallest single normal */ |
| {5.8774717541114375E-39, 5.87747175E-39f, |
| {"\xFA\x00\x40\x00\x00", 5}, {"\xFB\x38\x00\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xFA\x00\x40\x00\x00", 5}, {"\xFA\x00\x40\x00\x00", 5}}, |
| |
| /* 1.1754942106924411e-38 -- largest single subnormal */ |
| {1.1754942106924411E-38, 1.17549421E-38f, |
| {"\xFA\x00\x7f\xff\xff", 5}, {"\xFB\x38\x0f\xff\xff\xC0\x00\x00\x00", 9}, |
| {"\xFA\x00\x7f\xff\xff", 5}, {"\xFA\x00\x7f\xff\xff", 5} }, |
| |
| /* 1.1754943508222874E-38 -- slightly bigger than smallest single normal */ |
| {1.1754943508222874E-38, 0.0f, |
| {"\xFB\x38\x0f\xff\xff\xff\xff\xff\xff", 9}, {"\xFB\x38\x0f\xff\xff\xff\xff\xff\xff", 9}, |
| {"\xFB\x38\x0f\xff\xff\xff\xff\xff\xff", 9}, {"\xFB\x38\x0f\xff\xff\xff\xff\xff\xff", 9}}, |
| |
| /* 1.1754943508222875e-38 -- smallest single normal */ |
| {1.1754943508222875e-38, 1.17549435E-38f, |
| {"\xFA\x00\x80\x00\x00", 5}, {"\xFB\x38\x10\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xFA\x00\x80\x00\x00", 5}, {"\xFA\x00\x80\x00\x00", 5}}, |
| |
| /* 1.1754943508222875e-38 -- slightly bigger than smallest single normal */ |
| {1.1754943508222878e-38, 0.0f, |
| {"\xFB\x38\x10\x00\x00\x00\x00\x00\x01", 9}, {"\xFB\x38\x10\x00\x00\x00\x00\x00\x01", 9}, |
| {"\xFB\x38\x10\x00\x00\x00\x00\x00\x01", 9}, {"\xFB\x38\x10\x00\x00\x00\x00\x00\x01", 9}}, |
| |
| /* 8388607 -- exponent 22 to test single exponent boundary */ |
| {8388607, 8388607.0f, |
| {"\xFA\x4A\xFF\xFF\xFE", 5}, {"\xFB\x41\x5F\xFF\xFF\xC0\x00\x00\x00", 9}, |
| {"\xFA\x4A\xFF\xFF\xFE", 5}, {"\x1A\x00\x7F\xFF\xFF", 5}}, |
| |
| /* 16777215 -- exponent 23 to test single exponent boundary */ |
| {16777215, 16777215.0f, |
| {"\xFA\x4B\x7F\xFF\xFF", 5}, {"\xFB\x41\x6F\xFF\xFF\xE0\x00\x00\x00", 9}, |
| {"\xFA\x4B\x7F\xFF\xFF", 5}, {"\x1A\x00\xFF\xFF\xFF", 5}}, |
| |
| /* 16777216 -- converts to single without loss */ |
| {16777216, 16777216.0f, |
| {"\xFA\x4B\x80\x00\x00", 5}, {"\xFB\x41\x70\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xFA\x4B\x80\x00\x00", 5}, {"\x1A\x01\x00\x00\x00", 5}}, |
| |
| /* 16777217 -- one more than above and fails conversion to single because of precision */ |
| {16777217, 0.0f, |
| {"\xFB\x41\x70\x00\x00\x10\x00\x00\x00", 9}, {"\xFB\x41\x70\x00\x00\x10\x00\x00\x00", 9}, |
| {"\xFB\x41\x70\x00\x00\x10\x00\x00\x00", 9}, {"\x1A\x01\x00\x00\x01", 5}}, |
| |
| /* 33554430 -- exponent 24 to test single exponent boundary */ |
| {33554430, 33554430.0f, |
| {"\xFA\x4B\xFF\xFF\xFF", 5}, {"\xFB\x41\x7F\xFF\xFF\xE0\x00\x00\x00", 9}, |
| {"\xFA\x4B\xFF\xFF\xFF", 5}, {"\x1A\x01\xFF\xFF\xFE", 5}}, |
| |
| /* 4294967295 -- 2^^32 - 1 UINT32_MAX */ |
| {4294967295, 0, |
| {"\xFB\x41\xEF\xFF\xFF\xFF\xE0\x00\x00", 9}, {"\xFB\x41\xEF\xFF\xFF\xFF\xE0\x00\x00", 9}, |
| {"\xFB\x41\xEF\xFF\xFF\xFF\xE0\x00\x00", 9}, {"\x1A\xFF\xFF\xFF\xFF", 5}}, |
| |
| /* 4294967296 -- 2^^32, UINT32_MAX + 1 */ |
| {4294967296, 4294967296.0f, |
| {"\xFA\x4F\x80\x00\x00", 5}, {"\xFB\x41\xF0\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xFA\x4F\x80\x00\x00", 5}, {"\x1B\x00\x00\x00\x01\x00\x00\x00\x00", 9}}, |
| |
| /* 2251799813685248 -- exponent 51, 0 significand bits set, to test double exponent boundary */ |
| {2251799813685248, 2251799813685248.0f, |
| {"\xFA\x59\x00\x00\x00", 5}, {"\xFB\x43\x20\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xFA\x59\x00\x00\x00", 5}, {"\x1B\x00\x08\x00\x00\x00\x00\x00\x00", 9}}, |
| |
| /* 4503599627370495 -- exponent 51, 52 significand bits set to test double exponent boundary*/ |
| {4503599627370495, 0, |
| {"\xFB\x43\x2F\xFF\xFF\xFF\xFF\xFF\xFE", 9}, {"\xFB\x43\x2F\xFF\xFF\xFF\xFF\xFF\xFE", 9}, |
| {"\xFB\x43\x2F\xFF\xFF\xFF\xFF\xFF\xFE", 9}, {"\x1B\x00\x0F\xFF\xFF\xFF\xFF\xFF\xFF", 9}}, |
| |
| /* 9007199254740991 -- exponent 52, 52 significand bits set to test double exponent boundary */ |
| {9007199254740991, 0, |
| {"\xFB\x43\x3F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\xFB\x43\x3F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, |
| {"\xFB\x43\x3F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\x1B\x00\x1F\xFF\xFF\xFF\xFF\xFF\xFF", 9}}, |
| |
| /* 18014398509481982 -- exponent 53, 52 bits set in significand (double lacks precision to represent 18014398509481983) */ |
| {18014398509481982, 0, |
| {"\xFB\x43\x4F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\xFB\x43\x4F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, |
| {"\xFB\x43\x4F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\x1B\x00\x3F\xFF\xFF\xFF\xFF\xFF\xFE", 9}}, |
| |
| /* 18014398509481984 -- next largest possible double above 18014398509481982 */ |
| {18014398509481984, 18014398509481984.0f, |
| {"\xFA\x5A\x80\x00\x00", 5}, {"\xFB\x43\x50\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xFA\x5A\x80\x00\x00", 5}, {"\x1B\x00\x40\x00\x00\x00\x00\x00\x00", 9}}, |
| |
| /* 18446742974197924000.0.0 -- largest single that can convert to uint64 */ |
| {18446742974197924000.0, 18446742974197924000.0f, |
| {"\xFA\x5F\x7F\xFF\xFF", 5}, {"\xFB\x43\xEF\xFF\xFF\xE0\x00\x00\x00", 9}, |
| {"\xFA\x5F\x7F\xFF\xFF", 5}, {"\x1B\xFF\xFF\xFF\x00\x00\x00\x00\x00", 9}}, |
| |
| /* 18446744073709550000.0 -- largest double that can convert to uint64, almost UINT64_MAX (18446744073709551615) */ |
| {18446744073709550000.0, 0, |
| {"\xFB\x43\xEF\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\xFB\x43\xEF\xFF\xFF\xFF\xFF\xFF\xFF", 9}, |
| {"\xFB\x43\xEF\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\x1B\xFF\xFF\xFF\xFF\xFF\xFF\xF8\x00", 9}}, |
| |
| /* 18446744073709552000.0 -- just too large to convert to uint64, but converts to a single, just over UINT64_MAX */ |
| {18446744073709552000.0, 18446744073709552000.0f, |
| {"\xFA\x5F\x80\x00\x00", 5}, {"\xFB\x43\xF0\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xFA\x5F\x80\x00\x00", 5}, {"\xFA\x5F\x80\x00\x00", 5}}, |
| |
| /* -4294967295 -- negative UINT32_MAX */ |
| {-4294967295.0, 0, |
| {"\xFB\xC1\xEF\xFF\xFF\xFF\xE0\x00\x00", 9}, {"\xFB\xC1\xEF\xFF\xFF\xFF\xE0\x00\x00", 9}, |
| {"\xFB\xC1\xEF\xFF\xFF\xFF\xE0\x00\x00", 9}, {"\x3A\xFF\xFF\xFF\xFE", 5}}, |
| |
| /* -9223372036854774784.0 -- most negative double that converts to int64 */ |
| {-9223372036854774784.0, 0, |
| {"\xFB\xC3\xDF\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\xFB\xC3\xDF\xFF\xFF\xFF\xFF\xFF\xFF", 9}, |
| {"\xFB\xC3\xDF\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\x3B\x7F\xFF\xFF\xFF\xFF\xFF\xFB\xFF", 9}}, |
| |
| /* -18446742974197924000.0.0 -- large negative that converts to float, but too large for int64 */ |
| {-18446742974197924000.0, -18446742974197924000.0f, |
| {"\xFA\xDF\x7F\xFF\xFF", 5}, {"\xFB\xC3\xEF\xFF\xFF\xE0\x00\x00\x00", 9}, |
| {"\xFA\xDF\x7F\xFF\xFF", 5}, {"\xFA\xDF\x7F\xFF\xFF", 5}}, |
| |
| /* 3.4028234663852886E+38 -- largest possible single */ |
| {3.4028234663852886E+38, 3.40282347E+38f, |
| {"\xFA\x7F\x7F\xFF\xFF", 5}, {"\xFB\x47\xEF\xFF\xFF\xE0\x00\x00\x00", 9}, |
| {"\xFA\x7F\x7F\xFF\xFF", 5}, {"\xFA\x7F\x7F\xFF\xFF", 5}}, |
| |
| /* 3.402823466385289E+38 -- slightly larger than largest possible single */ |
| {3.402823466385289E+38, 0.0f, |
| {"\xFB\x47\xEF\xFF\xFF\xE0\x00\x00\x01", 9}, {"\xFB\x47\xEF\xFF\xFF\xE0\x00\x00\x01", 9}, |
| {"\xFB\x47\xEF\xFF\xFF\xE0\x00\x00\x01", 9}, {"\xFB\x47\xEF\xFF\xFF\xE0\x00\x00\x01", 9}}, |
| |
| /* 3.402823669209385e+38 -- exponent larger by one than largest possible single */ |
| {3.402823669209385e+38, 0.0f, |
| {"\xFB\x47\xF0\x00\x00\x00\x00\x00\x00", 9}, {"\xFB\x47\xF0\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xFB\x47\xF0\x00\x00\x00\x00\x00\x00", 9}, {"\xFB\x47\xF0\x00\x00\x00\x00\x00\x00", 9}}, |
| |
| /* 5.0e-324 -- smallest double subnormal normal */ |
| {5.0e-324, 0.0f, |
| {"\xFB\x00\x00\x00\x00\x00\x00\x00\x01", 9}, {"\xFB\x00\x00\x00\x00\x00\x00\x00\x01", 9}, |
| {"\xFB\x00\x00\x00\x00\x00\x00\x00\x01", 9}, {"\xFB\x00\x00\x00\x00\x00\x00\x00\x01", 9}}, |
| |
| /* 2.2250738585072009E−308 -- largest double subnormal */ |
| {2.2250738585072009e-308, 0.0f, |
| {"\xFB\x00\x0F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\xFB\x00\x0F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, |
| {"\xFB\x00\x0F\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\xFB\x00\x0F\xFF\xFF\xFF\xFF\xFF\xFF", 9}}, |
| |
| /* 2.2250738585072014e-308 -- smallest double normal */ |
| {2.2250738585072014e-308, 0.0f, |
| {"\xFB\x00\x10\x00\x00\x00\x00\x00\x00", 9}, {"\xFB\x00\x10\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xFB\x00\x10\x00\x00\x00\x00\x00\x00", 9}, {"\xFB\x00\x10\x00\x00\x00\x00\x00\x00", 9}}, |
| |
| /* 1.7976931348623157E308 -- largest double normal */ |
| {1.7976931348623157e308, 0.0f, |
| {"\xFB\x7F\xEF\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\xFB\x7F\xEF\xFF\xFF\xFF\xFF\xFF\xFF", 9}, |
| {"\xFB\x7F\xEF\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\xFB\x7F\xEF\xFF\xFF\xFF\xFF\xFF\xFF", 9}}, |
| |
| /* List terminator */ |
| {0.0, 0.0f, {NULL, 0}, {NULL, 0}, {NULL, 0}, {NULL, 0} } |
| }; |
| |
| |
| /* Can't use types double and float here because there's no way in C to |
| * construct arbitrary payloads for those types. |
| */ |
| struct NaNTestCase { |
| uint64_t uDouble; /* Converted to double in test */ |
| uint32_t uSingle; /* Converted to single in test */ |
| UsefulBufC Preferred; |
| UsefulBufC NotPreferred; |
| UsefulBufC CDE; |
| UsefulBufC DCBOR; |
| }; |
| |
| /* Always four lines per test case so shell scripts can process into |
| * other formats. CDE and DCBOR standards are not complete yet, |
| * encodings are a guess. C string literals are used because they |
| * are the shortest notation. They are used __with a length__ . Null |
| * termination doesn't work because there are zero bytes. |
| */ |
| static const struct NaNTestCase NaNTestCases[] = { |
| |
| /* Payload with most significant bit set, a qNaN by most implementations */ |
| {0x7ff8000000000000, 0x00000000, |
| {"\xF9\x7E\x00", 3}, {"\xFB\x7F\xF8\x00\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x7E\x00", 3}, {"\xF9\x7E\x00", 3}}, |
| |
| /* Payload with single rightmost set */ |
| {0x7ff8000000000001, 0x00000000, |
| {"\xFB\x7F\xF8\x00\x00\x00\x00\x00\x01", 9}, {"\xFB\x7F\xF8\x00\x00\x00\x00\x00\x01", 9}, |
| {"\xF9\x7E\x00", 3}, {"\xF9\x7E\x00", 3}}, |
| |
| /* Payload with 10 leftmost bits set -- converts to half */ |
| {0x7ffffc0000000000, 0x00000000, |
| {"\xF9\x7F\xFF", 3}, {"\xFB\x7F\xFF\xFC\x00\x00\x00\x00\x00", 9}, |
| {"\xF9\x7E\x00", 3}, {"\xF9\x7E\x00", 3}}, |
| |
| /* Payload with 10 rightmost bits set -- cannot convert to half */ |
| {0x7ff80000000003ff, 0x00000000, |
| {"\xFB\x7F\xF8\x00\x00\x00\x00\x03\xFF", 9}, {"\xFB\x7F\xF8\x00\x00\x00\x00\x03\xFF", 9}, |
| {"\xF9\x7E\x00", 3}, {"\xF9\x7E\x00", 3}}, |
| |
| /* Payload with 23 leftmost bits set -- converts to a single */ |
| {0x7ffFFFFFE0000000, 0x7fffffff, |
| {"\xFA\x7F\xFF\xFF\xFF", 5}, {"\xFB\x7F\xFF\xFF\xFF\xE0\x00\x00\x00", 9}, |
| {"\xF9\x7E\x00", 3}, {"\xF9\x7E\x00", 3}}, |
| |
| /* Payload with 24 leftmost bits set -- fails to convert to a single */ |
| {0x7ffFFFFFF0000000, 0x00000000, |
| {"\xFB\x7F\xFF\xFF\xFF\xF0\x00\x00\x00", 9}, {"\xFB\x7F\xFF\xFF\xFF\xF0\x00\x00\x00", 9}, |
| {"\xF9\x7E\x00", 3}, {"\xF9\x7E\x00", 3}}, |
| |
| /* Payload with all bits set */ |
| {0x7fffffffffffffff, 0x00000000, |
| {"\xFB\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 9}, {"\xFB\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 9}, |
| {"\xF9\x7E\x00", 3}, {"\xF9\x7E\x00", 3}}, |
| |
| /* List terminator */ |
| {0, 0, {NULL, 0}, {NULL, 0}, {NULL, 0}, {NULL, 0} } |
| }; |
| |
| |
| /* Public function. See float_tests.h |
| * |
| * This is the main test of floating-point encoding / decoding. It is |
| * data-driven by the above tables. It works better than tests below that |
| * it mostly replaces because it tests one number at a time, rather than |
| * putting them all in a map. It is much easier to debug test failures |
| * and to add new tests. */ |
| int32_t |
| FloatValuesTests(void) |
| { |
| unsigned int uTestIndex; |
| const struct FloatTestCase *pTestCase; |
| const struct NaNTestCase *pNaNTestCase; |
| MakeUsefulBufOnStack( TestOutBuffer, 20); |
| UsefulBufC TestOutput; |
| QCBOREncodeContext EnCtx; |
| QCBORError uErr; |
| QCBORDecodeContext DCtx; |
| QCBORItem Item; |
| uint64_t uDecoded; |
| #ifdef QCBOR_DISABLE_FLOAT_HW_USE |
| uint32_t uDecoded2; |
| #endif |
| |
| /* Test a variety of doubles */ |
| for(uTestIndex = 0; FloatTestCases[uTestIndex].Preferred.len != 0; uTestIndex++) { |
| pTestCase = &FloatTestCases[uTestIndex]; |
| |
| if(uTestIndex == 34) { |
| uDecoded = 1; |
| } |
| |
| /* Number Encode of Preferred */ |
| QCBOREncode_Init(&EnCtx, TestOutBuffer); |
| QCBOREncode_AddDouble(&EnCtx, pTestCase->dNumber); |
| uErr = QCBOREncode_Finish(&EnCtx, &TestOutput); |
| |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex, 1, uErr);; |
| } |
| if(UsefulBuf_Compare(TestOutput, pTestCase->Preferred)) { |
| return MakeTestResultCode(uTestIndex, 1, 200); |
| } |
| |
| /* Number Encode of Not Preferred */ |
| QCBOREncode_Init(&EnCtx, TestOutBuffer); |
| QCBOREncode_AddDoubleNoPreferred(&EnCtx, pTestCase->dNumber); |
| uErr = QCBOREncode_Finish(&EnCtx, &TestOutput); |
| |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex, 2, uErr);; |
| } |
| if(UsefulBuf_Compare(TestOutput, pTestCase->NotPreferred)) { |
| return MakeTestResultCode(uTestIndex, 2, 200); |
| } |
| |
| /* Number Encode of CDE */ |
| QCBOREncode_Init(&EnCtx, TestOutBuffer); |
| QCBOREncode_SerializationCDE(&EnCtx); |
| QCBOREncode_AddDouble(&EnCtx, pTestCase->dNumber); |
| uErr = QCBOREncode_Finish(&EnCtx, &TestOutput); |
| |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex, 20, uErr);; |
| } |
| if(UsefulBuf_Compare(TestOutput, pTestCase->CDE)) { |
| return MakeTestResultCode(uTestIndex, 21, 200); |
| } |
| |
| /* Number Encode of dCBOR */ |
| QCBOREncode_Init(&EnCtx, TestOutBuffer); |
| QCBOREncode_SerializationdCBOR(&EnCtx); |
| QCBOREncode_AddDouble(&EnCtx, pTestCase->dNumber); |
| uErr = QCBOREncode_Finish(&EnCtx, &TestOutput); |
| |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex, 22, uErr);; |
| } |
| if(UsefulBuf_Compare(TestOutput, pTestCase->DCBOR)) { |
| return MakeTestResultCode(uTestIndex, 23, 200); |
| } |
| |
| if(pTestCase->fNumber != 0) { |
| QCBOREncode_Init(&EnCtx, TestOutBuffer); |
| QCBOREncode_SerializationdCBOR(&EnCtx); |
| QCBOREncode_AddFloat(&EnCtx, pTestCase->fNumber); |
| uErr = QCBOREncode_Finish(&EnCtx, &TestOutput); |
| |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex, 24, uErr);; |
| } |
| if(UsefulBuf_Compare(TestOutput, pTestCase->DCBOR)) { |
| return MakeTestResultCode(uTestIndex, 25, 200); |
| } |
| } |
| |
| |
| /* Number Decode of Preferred */ |
| QCBORDecode_Init(&DCtx, pTestCase->Preferred, 0); |
| uErr = QCBORDecode_GetNext(&DCtx, &Item); |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex, 3, uErr);; |
| } |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| if(Item.uDataType != QCBOR_TYPE_DOUBLE) { |
| return MakeTestResultCode(uTestIndex, 4, 0); |
| } |
| if(isnan(pTestCase->dNumber)) { |
| if(!isnan(Item.val.dfnum)) { |
| return MakeTestResultCode(uTestIndex, 5, 0); |
| } |
| } else { |
| if(Item.val.dfnum != pTestCase->dNumber) { |
| return MakeTestResultCode(uTestIndex, 6, 0); |
| } |
| } |
| #else /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| /* When QCBOR_DISABLE_FLOAT_HW_USE is set, single-precision is not |
| * converted to double when decoding, so test differently. len == 5 |
| * indicates single-precision in the encoded CBOR. */ |
| if(pTestCase->Preferred.len == 5) { |
| if(Item.uDataType != QCBOR_TYPE_FLOAT) { |
| return MakeTestResultCode(uTestIndex, 41, 0); |
| } |
| if(isnan(pTestCase->dNumber)) { |
| if(!isnan(Item.val.fnum)) { |
| return MakeTestResultCode(uTestIndex, 51, 0); |
| } |
| } else { |
| if(Item.val.fnum != pTestCase->fNumber) { |
| return MakeTestResultCode(uTestIndex, 61, 0); |
| } |
| } |
| } else { |
| if(Item.uDataType != QCBOR_TYPE_DOUBLE) { |
| return MakeTestResultCode(uTestIndex, 42, 0); |
| } |
| if(isnan(pTestCase->dNumber)) { |
| if(!isnan(Item.val.dfnum)) { |
| return MakeTestResultCode(uTestIndex, 52, 0); |
| } |
| } else { |
| if(Item.val.dfnum != pTestCase->dNumber) { |
| return MakeTestResultCode(uTestIndex, 62, 0); |
| } |
| } |
| } |
| #endif /* ! QCBOR_DISABLE_FLOAT_HW_USE */ |
| |
| /* Number Decode of Not Preferred */ |
| QCBORDecode_Init(&DCtx, pTestCase->NotPreferred, 0); |
| uErr = QCBORDecode_GetNext(&DCtx, &Item); |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex, 7, uErr);; |
| } |
| if(Item.uDataType != QCBOR_TYPE_DOUBLE) { |
| return MakeTestResultCode(uTestIndex, 8, 0); |
| } |
| if(isnan(pTestCase->dNumber)) { |
| if(!isnan(Item.val.dfnum)) { |
| return MakeTestResultCode(uTestIndex, 9, 0); |
| } |
| } else { |
| if(Item.val.dfnum != pTestCase->dNumber) { |
| return MakeTestResultCode(uTestIndex, 10, 0); |
| } |
| } |
| |
| } |
| |
| /* Test a variety of NaNs with payloads */ |
| for(uTestIndex = 0; NaNTestCases[uTestIndex].Preferred.len != 0; uTestIndex++) { |
| pNaNTestCase = &NaNTestCases[uTestIndex]; |
| |
| |
| if(uTestIndex == 4) { |
| uErr = 99; /* For setting break points for particular tests */ |
| } |
| |
| /* NaN Encode of Preferred */ |
| QCBOREncode_Init(&EnCtx, TestOutBuffer); |
| QCBOREncode_Allow(&EnCtx, QCBOR_ENCODE_ALLOW_NAN_PAYLOAD); |
| QCBOREncode_AddDouble(&EnCtx, UsefulBufUtil_CopyUint64ToDouble(pNaNTestCase->uDouble)); |
| uErr = QCBOREncode_Finish(&EnCtx, &TestOutput); |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex+100, 10, uErr);; |
| } |
| if(UsefulBuf_Compare(TestOutput, pNaNTestCase->Preferred)) { |
| return MakeTestResultCode(uTestIndex+100, 10, 200); |
| } |
| |
| #ifdef QCBOR_COMPARE_TO_HW_NAN_CONVERSION |
| { |
| /* This test is off by default. It's purpose is to check |
| * QCBOR's mask-n-shift implementation against the HW/CPU |
| * instructions that do conversion between double and single. |
| * It is off because it is only used on occasion to verify |
| * QCBOR and because it is suspected that some HW/CPU does |
| * implement this correctly. NaN payloads are an obscure |
| * feature. */ |
| float f; |
| double d, d2; |
| |
| d = UsefulBufUtil_CopyUint64ToDouble(pNaNTestCase->uNumber); |
| |
| /* Cast the double to a single and then back to a double and |
| * see if they are equal. If so, then the NaN payload doesn't |
| * have any bits that are lost when converting to single and |
| * it can be safely converted. |
| * |
| * This test can't be done for half-precision because it is |
| * not widely supported. |
| */ |
| f = (float)d; |
| d2 = (double)f; |
| |
| /* The length of encoded doubles is 9, singles 5 and halves |
| * 3. If there are NaN payload bits that can't be converted, |
| * then the length must be 9. |
| */ |
| if((uint64_t)d != (uint64_t)d2 && pNaNTestCase->Preferred.len != 9) { |
| /* QCBOR conversion not the same as HW conversion */ |
| return MakeTestResultCode(uTestIndex, 9, 200); |
| } |
| } |
| #endif /* QCBOR_COMPARE_TO_HW_NAN_CONVERSION */ |
| |
| |
| /* NaN Encode of Not Preferred */ |
| QCBOREncode_Init(&EnCtx, TestOutBuffer); |
| QCBOREncode_Allow(&EnCtx, QCBOR_ENCODE_ALLOW_NAN_PAYLOAD); |
| QCBOREncode_AddDoubleNoPreferred(&EnCtx, UsefulBufUtil_CopyUint64ToDouble(pNaNTestCase->uDouble)); |
| uErr = QCBOREncode_Finish(&EnCtx, &TestOutput); |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex+100, 11, uErr);; |
| } |
| if(UsefulBuf_Compare(TestOutput, pNaNTestCase->NotPreferred)) { |
| return MakeTestResultCode(uTestIndex+100, 11, 200); |
| } |
| |
| /* NaN Decode of Not Preferred */ |
| QCBORDecode_Init(&DCtx, pNaNTestCase->Preferred, 0); |
| QCBOREncode_Allow(&EnCtx, QCBOR_ENCODE_ALLOW_NAN_PAYLOAD); |
| uErr = QCBORDecode_GetNext(&DCtx, &Item); |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex+100, 12, uErr); |
| } |
| |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| |
| uDecoded = UsefulBufUtil_CopyDoubleToUint64(Item.val.dfnum); |
| if(uDecoded != pNaNTestCase->uDouble) { |
| return MakeTestResultCode(uTestIndex+100, 12, 200); |
| } |
| #else /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| if(pNaNTestCase->Preferred.len == 5) { |
| if(Item.uDataType != QCBOR_TYPE_FLOAT) { |
| return MakeTestResultCode(uTestIndex, 4, 0); |
| } |
| |
| uDecoded2 = UsefulBufUtil_CopyFloatToUint32(Item.val.fnum); |
| |
| if(uDecoded2 != pNaNTestCase->uSingle) { |
| return MakeTestResultCode(uTestIndex, 4, 0); |
| } |
| } else { |
| if(Item.uDataType != QCBOR_TYPE_DOUBLE) { |
| return MakeTestResultCode(uTestIndex, 4, 0); |
| } |
| uDecoded = UsefulBufUtil_CopyDoubleToUint64(Item.val.dfnum); |
| if(uDecoded != pNaNTestCase->uDouble) { |
| return MakeTestResultCode(uTestIndex+100, 12, 200); |
| } |
| } |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| |
| /* NaN Decode of Not Preferred */ |
| QCBORDecode_Init(&DCtx, pNaNTestCase->NotPreferred, 0); |
| QCBOREncode_Allow(&EnCtx, QCBOR_ENCODE_ALLOW_NAN_PAYLOAD); |
| uErr = QCBORDecode_GetNext(&DCtx, &Item); |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex+100, 13, uErr); |
| } |
| uDecoded = UsefulBufUtil_CopyDoubleToUint64(Item.val.dfnum); |
| if(uDecoded != pNaNTestCase->uDouble) { |
| return MakeTestResultCode(uTestIndex+100, 13, 200); |
| } |
| |
| |
| /* NaN Encode of DCBOR */ |
| QCBOREncode_Init(&EnCtx, TestOutBuffer); |
| QCBOREncode_Allow(&EnCtx, QCBOR_ENCODE_ALLOW_NAN_PAYLOAD); |
| QCBOREncode_SerializationdCBOR(&EnCtx); |
| QCBOREncode_AddDouble(&EnCtx, UsefulBufUtil_CopyUint64ToDouble(pNaNTestCase->uDouble)); |
| uErr = QCBOREncode_Finish(&EnCtx, &TestOutput); |
| if(uErr != QCBOR_SUCCESS) { |
| return MakeTestResultCode(uTestIndex+100, 14, uErr);; |
| } |
| if(UsefulBuf_Compare(TestOutput, pNaNTestCase->DCBOR)) { |
| return MakeTestResultCode(uTestIndex+100, 14, 200); |
| } |
| |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| /* Public function. See float_tests.h */ |
| int32_t |
| HalfPrecisionAgainstRFCCodeTest(void) |
| { |
| QCBORItem Item; |
| QCBORDecodeContext DC; |
| unsigned char pbHalfBytes[2]; |
| uint8_t uHalfPrecInitialByte; |
| double d; |
| UsefulBuf_MAKE_STACK_UB(EncodedBytes, 3); |
| UsefulOutBuf UOB; |
| uint32_t uHalfP; |
| |
| |
| for(uHalfP = 0; uHalfP < 0xffff; uHalfP += 60) { |
| pbHalfBytes[1] = (uint8_t)(uHalfP & 0xff); |
| pbHalfBytes[0] = (uint8_t)(uHalfP >> 8); /* uHalfP is always less than 0xffff */ |
| d = decode_half(pbHalfBytes); |
| |
| /* Construct the CBOR for the half-precision float by hand */ |
| UsefulOutBuf_Init(&UOB, EncodedBytes); |
| |
| uHalfPrecInitialByte = (uint8_t)(HALF_PREC_FLOAT + (CBOR_MAJOR_TYPE_SIMPLE << 5)); /* 0xf9 */ |
| UsefulOutBuf_AppendByte(&UOB, uHalfPrecInitialByte); /* initial byte */ |
| UsefulOutBuf_AppendUint16(&UOB, (uint16_t)uHalfP); /* argument */ |
| |
| /* Now parse the hand-constructed CBOR. This will invoke the |
| * conversion to a float |
| */ |
| QCBORDecode_Init(&DC, UsefulOutBuf_OutUBuf(&UOB), 0); |
| QCBORDecode_GetNext(&DC, &Item); |
| if(Item.uDataType != QCBOR_TYPE_DOUBLE) { |
| return -1; |
| } |
| |
| if(isnan(d)) { |
| /* The RFC code uses the native instructions which may or may not |
| * handle sNaN, qNaN and NaN payloads correctly. This test just |
| * makes sure it is a NaN and doesn't worry about the type of NaN |
| */ |
| if(!isnan(Item.val.dfnum)) { |
| return -3; |
| } |
| } else { |
| if(Item.val.dfnum != d) { |
| return -2; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| #endif /* QCBOR_DISABLE_PREFERRED_FLOAT */ |
| |
| |
| /* |
| * Some encoded floating point numbers that are used for both |
| * encode and decode tests. |
| * |
| * [0.0, // Half |
| * 3.14, // Double |
| * 0.0, // Double |
| * NaN, // Double |
| * Infinity, // Double |
| * 0.0, // Half (Duplicate because of use in encode tests) |
| * 3.140000104904175, // Single |
| * 0.0, // Single |
| * NaN, // Single |
| * Infinity, // Single |
| * {100: 0.0, 101: 3.1415926, "euler": 2.718281828459045, 105: 0.0, |
| * 102: 0.0, 103: 3.141592502593994, "euler2": 2.7182817459106445, 106: 0.0}] |
| */ |
| static const uint8_t spExpectedFloats[] = { |
| 0x8B, |
| 0xF9, 0x00, 0x00, |
| 0xFB, 0x40, 0x09, 0x1E, 0xB8, 0x51, 0xEB, 0x85, 0x1F, |
| 0xFB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0xFB, 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0xFB, 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0xF9, 0x00, 0x00, |
| 0xFA, 0x40, 0x48, 0xF5, 0xC3, |
| 0xFA, 0x00, 0x00, 0x00, 0x00, |
| 0xFA, 0x7F, 0xC0, 0x00, 0x00, |
| 0xFA, 0x7F, 0x80, 0x00, 0x00, |
| 0xA8, |
| 0x18, 0x64, |
| 0xF9, 0x00, 0x00, |
| 0x18, 0x65, |
| 0xFB, 0x40, 0x09, 0x21, 0xFB, 0x4D, 0x12, 0xD8, 0x4A, |
| 0x65, 0x65, 0x75, 0x6C, 0x65, 0x72, |
| 0xFB, 0x40, 0x05, 0xBF, 0x0A, 0x8B, 0x14, 0x57, 0x69, |
| 0x18, 0x69, |
| 0xFB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x18, 0x66, |
| 0xF9, 0x00, 0x00, |
| 0x18, 0x67, |
| 0xFA, 0x40, 0x49, 0x0F, 0xDA, |
| 0x66, 0x65, 0x75, 0x6C, 0x65, 0x72, 0x32, |
| 0xFA, 0x40, 0x2D, 0xF8, 0x54, |
| 0x18, 0x6A, |
| 0xFA, 0x00, 0x00, 0x00, 0x00}; |
| |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| static const uint8_t spExpectedFloatsNoHalf[] = { |
| 0x8B, |
| 0xFB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0xFB, 0x40, 0x09, 0x1E, 0xB8, 0x51, 0xEB, 0x85, 0x1F, |
| 0xFB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0xFB, 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0xFB, 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0xFA, 0x00, 0x00, 0x00, 0x00, |
| 0xFA, 0x40, 0x48, 0xF5, 0xC3, |
| 0xFA, 0x00, 0x00, 0x00, 0x00, |
| 0xFA, 0x7F, 0xC0, 0x00, 0x00, |
| 0xFA, 0x7F, 0x80, 0x00, 0x00, |
| 0xA8, |
| 0x18, 0x64, |
| 0xFB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x18, 0x65, |
| 0xFB, 0x40, 0x09, 0x21, 0xFB, 0x4D, 0x12, 0xD8, 0x4A, |
| 0x65, 0x65, 0x75, 0x6C, 0x65, 0x72, |
| 0xFB, 0x40, 0x05, 0xBF, 0x0A, 0x8B, 0x14, 0x57, 0x69, |
| 0x18, 0x69, |
| 0xFB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x18, 0x66, |
| 0xFA, 0x00, 0x00, 0x00, 0x00, |
| 0x18, 0x67, |
| 0xFA, 0x40, 0x49, 0x0F, 0xDA, |
| 0x66, 0x65, 0x75, 0x6C, 0x65, 0x72, 0x32, |
| 0xFA, 0x40, 0x2D, 0xF8, 0x54, |
| 0x18, 0x6A, |
| 0xFA, 0x00, 0x00, 0x00, 0x00}; |
| |
| |
| /* Public function. See float_tests.h */ |
| int32_t |
| GeneralFloatEncodeTests(void) |
| { |
| /* See FloatNumberTests() for tests that really cover lots of float values. |
| * Add new tests for new values or decode modes there. |
| * This test is primarily to cover all the float encode methods. */ |
| |
| UsefulBufC Encoded; |
| UsefulBufC ExpectedFloats; |
| QCBORError uErr; |
| |
| #ifndef QCBOR_DISABLE_PREFERRED_FLOAT |
| UsefulBuf_MAKE_STACK_UB(OutBuffer, sizeof(spExpectedFloats)); |
| ExpectedFloats = UsefulBuf_FROM_BYTE_ARRAY_LITERAL(spExpectedFloats); |
| (void)spExpectedFloatsNoHalf; /* Avoid unused variable error */ |
| #else |
| UsefulBuf_MAKE_STACK_UB(OutBuffer, sizeof(spExpectedFloatsNoHalf)); |
| ExpectedFloats = UsefulBuf_FROM_BYTE_ARRAY_LITERAL(spExpectedFloatsNoHalf); |
| (void)spExpectedFloats; /* Avoid unused variable error */ |
| #endif /* QCBOR_DISABLE_PREFERRED_FLOAT */ |
| |
| QCBOREncodeContext EC; |
| QCBOREncode_Init(&EC, OutBuffer); |
| QCBOREncode_OpenArray(&EC); |
| |
| QCBOREncode_AddDouble(&EC, 0.0); |
| QCBOREncode_AddDouble(&EC, 3.14); |
| QCBOREncode_AddDoubleNoPreferred(&EC, 0.0); |
| QCBOREncode_AddDoubleNoPreferred(&EC, NAN); |
| QCBOREncode_AddDoubleNoPreferred(&EC, INFINITY); |
| |
| QCBOREncode_AddFloat(&EC, 0.0); |
| QCBOREncode_AddFloat(&EC, 3.14f); |
| QCBOREncode_AddFloatNoPreferred(&EC, 0.0f); |
| QCBOREncode_AddFloatNoPreferred(&EC, NAN); |
| QCBOREncode_AddFloatNoPreferred(&EC, INFINITY); |
| |
| QCBOREncode_OpenMap(&EC); |
| |
| QCBOREncode_AddDoubleToMapN(&EC, 100, 0.0); |
| QCBOREncode_AddDoubleToMapN(&EC, 101, 3.1415926); |
| QCBOREncode_AddDoubleToMap(&EC, "euler", 2.71828182845904523536); |
| QCBOREncode_AddDoubleNoPreferredToMapN(&EC, 105, 0.0); |
| |
| QCBOREncode_AddFloatToMapN(&EC, 102, 0.0f); |
| QCBOREncode_AddFloatToMapN(&EC, 103, 3.1415926f); |
| QCBOREncode_AddFloatToMap(&EC, "euler2", 2.71828182845904523536f); |
| QCBOREncode_AddFloatNoPreferredToMapN(&EC, 106, 0.0f); |
| |
| QCBOREncode_CloseMap(&EC); |
| QCBOREncode_CloseArray(&EC); |
| |
| uErr = QCBOREncode_Finish(&EC, &Encoded); |
| if(uErr) { |
| return -1; |
| } |
| |
| if(UsefulBuf_Compare(Encoded, ExpectedFloats)) { |
| return -3; |
| } |
| |
| return 0; |
| } |
| |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| |
| |
| /* Public function. See float_tests.h */ |
| int32_t |
| GeneralFloatDecodeTests(void) |
| { |
| /* See FloatNumberTests() for tests that really cover lots of float values */ |
| |
| QCBORItem Item; |
| QCBORError uErr; |
| QCBORDecodeContext DC; |
| |
| UsefulBufC TestData = UsefulBuf_FROM_BYTE_ARRAY_LITERAL(spExpectedFloats); |
| QCBORDecode_Init(&DC, TestData, 0); |
| |
| QCBORDecode_GetNext(&DC, &Item); |
| if(Item.uDataType != QCBOR_TYPE_ARRAY) { |
| return MakeTestResultCode(0, 1, 0); |
| } |
| |
| /* 0.0 half-precision */ |
| uErr = QCBORDecode_GetNext(&DC, &Item); |
| if(uErr != FLOAT_ERR_CODE_NO_HALF_PREC(QCBOR_SUCCESS) |
| #ifndef QCBOR_DISABLE_PREFERRED_FLOAT |
| || Item.uDataType != QCBOR_TYPE_DOUBLE |
| || Item.val.dfnum != 0.0 |
| #else /* QCBOR_DISABLE_PREFERRED_FLOAT */ |
| || Item.uDataType != QCBOR_TYPE_NONE |
| #endif /* QCBOR_DISABLE_PREFERRED_FLOAT */ |
| ) { |
| return MakeTestResultCode(0, 2, uErr); |
| } |
| |
| /* 3.14 double-precision */ |
| uErr = QCBORDecode_GetNext(&DC, &Item); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT(QCBOR_SUCCESS) |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| || Item.uDataType != QCBOR_TYPE_DOUBLE |
| || Item.val.dfnum != 3.14 |
| #else /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| || Item.uDataType != QCBOR_TYPE_NONE |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| ) { |
| return MakeTestResultCode(0, 3, uErr); |
| } |
| |
| /* 0.0 double-precision */ |
| uErr = QCBORDecode_GetNext(&DC, &Item); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT(QCBOR_SUCCESS) |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| || Item.uDataType != QCBOR_TYPE_DOUBLE |
| || Item.val.dfnum != 0.0 |
| #else /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| || Item.uDataType != QCBOR_TYPE_NONE |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| ) { |
| return MakeTestResultCode(0, 4, uErr); |
| } |
| |
| /* NaN double-precision */ |
| uErr = QCBORDecode_GetNext(&DC, &Item); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT(QCBOR_SUCCESS) |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| || Item.uDataType != QCBOR_TYPE_DOUBLE |
| || !isnan(Item.val.dfnum) |
| #else /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| || Item.uDataType != QCBOR_TYPE_NONE |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| ) { |
| return MakeTestResultCode(0, 5, uErr); |
| } |
| |
| /* Infinity double-precision */ |
| uErr = QCBORDecode_GetNext(&DC, &Item); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT(QCBOR_SUCCESS) |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| || Item.uDataType != QCBOR_TYPE_DOUBLE |
| || Item.val.dfnum != INFINITY |
| #else /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| || Item.uDataType != QCBOR_TYPE_NONE |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| ) { |
| return MakeTestResultCode(0, 6, uErr); |
| } |
| |
| /* 0.0 half-precision (again) */ |
| uErr = QCBORDecode_GetNext(&DC, &Item); |
| if(uErr != FLOAT_ERR_CODE_NO_HALF_PREC(QCBOR_SUCCESS) |
| #ifndef QCBOR_DISABLE_PREFERRED_FLOAT |
| || Item.uDataType != QCBOR_TYPE_DOUBLE |
| || Item.val.dfnum != 0.0 |
| #else /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| || Item.uDataType != QCBOR_TYPE_NONE |
| #endif /* QCBOR_DISABLE_PREFERRED_FLOAT */ |
| ) { |
| return MakeTestResultCode(0, 7, uErr); |
| } |
| |
| /* 3.140000104904175 single-precision */ |
| uErr = QCBORDecode_GetNext(&DC, &Item); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT(QCBOR_SUCCESS) |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| || Item.uDataType != QCBOR_TYPE_DOUBLE |
| || 3.1400001049041748 != Item.val.dfnum |
| #else /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| || Item.uDataType != QCBOR_TYPE_FLOAT |
| || 3.140000f != Item.val.fnum |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| #else /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| || Item.uDataType != QCBOR_TYPE_NONE |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| ) { |
| return MakeTestResultCode(0, 8, uErr); |
| } |
| |
| /* 0.0 single-precision */ |
| uErr = QCBORDecode_GetNext(&DC, &Item); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT(QCBOR_SUCCESS) |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| || Item.uDataType != QCBOR_TYPE_DOUBLE |
| || Item.val.dfnum != 0.0 |
| #else /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| || Item.uDataType != QCBOR_TYPE_FLOAT |
| || Item.val.fnum != 0.0f |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| #else /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| || Item.uDataType != QCBOR_TYPE_NONE |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| ) { |
| return MakeTestResultCode(0, 9, uErr); |
| } |
| |
| /* NaN single-precision */ |
| uErr = QCBORDecode_GetNext(&DC, &Item); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT(QCBOR_SUCCESS) |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| || Item.uDataType != QCBOR_TYPE_DOUBLE |
| || !isnan(Item.val.dfnum) |
| #else /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| || Item.uDataType != QCBOR_TYPE_FLOAT |
| || !isnan(Item.val.fnum) |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| #else /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| || Item.uDataType != QCBOR_TYPE_NONE |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| ) { |
| return MakeTestResultCode(0, 10, uErr); |
| } |
| |
| /* Infinity single-precision */ |
| uErr = QCBORDecode_GetNext(&DC, &Item); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT(QCBOR_SUCCESS) |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| || Item.uDataType != QCBOR_TYPE_DOUBLE |
| || Item.val.dfnum != INFINITY |
| #else /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| || Item.uDataType != QCBOR_TYPE_FLOAT |
| || Item.val.fnum != INFINITY |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| #else /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| || Item.uDataType != QCBOR_TYPE_NONE |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| ) { |
| return MakeTestResultCode(0, 11, uErr); |
| } |
| /* Sufficent test coverage. Don't need to decode the rest. */ |
| |
| |
| #ifndef USEFULBUF_DISABLE_ALL_FLOAT |
| /* Now tests for spiffy decode main function */ |
| TestData = UsefulBuf_FROM_BYTE_ARRAY_LITERAL(spExpectedFloats); |
| double d; |
| QCBORDecode_Init(&DC, TestData, 0); |
| QCBORDecode_EnterArray(&DC, NULL); |
| |
| /* 0.0 half-precision */ |
| QCBORDecode_GetDouble(&DC, &d); |
| uErr = QCBORDecode_GetAndResetError(&DC); |
| if(uErr != FLOAT_ERR_CODE_NO_HALF_PREC(QCBOR_SUCCESS) |
| #ifndef QCBOR_DISABLE_PREFERRED_FLOAT |
| || d != 0.0 |
| #endif /* QCBOR_DISABLE_PREFERRED_FLOAT */ |
| ) { |
| return MakeTestResultCode(1, 1, uErr); |
| } |
| |
| /* 3.14 double-precision */ |
| QCBORDecode_GetDouble(&DC, &d); |
| uErr = QCBORDecode_GetAndResetError(&DC); |
| if(uErr != QCBOR_SUCCESS || d != 3.14) { |
| return MakeTestResultCode(1, 2, uErr); |
| } |
| |
| /* 0.0 double-precision */ |
| QCBORDecode_GetDouble(&DC, &d); |
| uErr = QCBORDecode_GetAndResetError(&DC); |
| if(uErr != QCBOR_SUCCESS || d != 0.0) { |
| return MakeTestResultCode(1, 3, uErr); |
| } |
| |
| /* NaN double-precision */ |
| QCBORDecode_GetDouble(&DC, &d); |
| uErr = QCBORDecode_GetAndResetError(&DC); |
| if(uErr != QCBOR_SUCCESS || !isnan(d)) { |
| return MakeTestResultCode(1, 4, uErr); |
| } |
| |
| /* Infinity double-precision */ |
| QCBORDecode_GetDouble(&DC, &d); |
| uErr = QCBORDecode_GetAndResetError(&DC); |
| if(uErr != QCBOR_SUCCESS || d != INFINITY) { |
| return MakeTestResultCode(1, 5, uErr); |
| } |
| |
| /* 0.0 half-precision */ |
| QCBORDecode_GetDouble(&DC, &d); |
| uErr = QCBORDecode_GetAndResetError(&DC); |
| if(uErr != FLOAT_ERR_CODE_NO_HALF_PREC(QCBOR_SUCCESS) |
| #ifndef QCBOR_DISABLE_PREFERRED_FLOAT |
| || d != 0.0 |
| #endif /* QCBOR_DISABLE_PREFERRED_FLOAT */ |
| ) { |
| return MakeTestResultCode(1, 6, uErr); |
| } |
| |
| /* 3.140000104904175 single-precision */ |
| QCBORDecode_GetDouble(&DC, &d); |
| uErr = QCBORDecode_GetAndResetError(&DC); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT_HW(QCBOR_SUCCESS) |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| || d != 3.140000104904175 |
| #endif |
| ) { |
| return MakeTestResultCode(1, 7, uErr); |
| } |
| |
| /* 0.0 single-precision */ |
| QCBORDecode_GetDouble(&DC, &d); |
| uErr = QCBORDecode_GetAndResetError(&DC); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT_HW(QCBOR_SUCCESS) |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| || d != 0.0 |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| ) { |
| return MakeTestResultCode(1, 8, uErr); |
| } |
| |
| /* NaN single-precision */ |
| QCBORDecode_GetDouble(&DC, &d); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT_HW(QCBOR_SUCCESS) |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| || !isnan(d) |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| ) { |
| return MakeTestResultCode(1, 9, uErr); |
| } |
| |
| /* Infinity single-precision */ |
| QCBORDecode_GetDouble(&DC, &d); |
| uErr = QCBORDecode_GetAndResetError(&DC); |
| if(uErr != FLOAT_ERR_CODE_NO_FLOAT_HW(QCBOR_SUCCESS) |
| #ifndef QCBOR_DISABLE_FLOAT_HW_USE |
| || d != INFINITY |
| #endif /* QCBOR_DISABLE_FLOAT_HW_USE */ |
| ) { |
| return MakeTestResultCode(1, 10, uErr); |
| } |
| |
| #endif /* USEFULBUF_DISABLE_ALL_FLOAT */ |
| |
| return 0; |
| } |
| |
| |
| |
| #ifdef NAN_EXPERIMENT |
| /* |
| Code for checking what the double to float cast does with |
| NaNs. Not run as part of tests. Keep it around to |
| be able to check various platforms and CPUs. |
| */ |
| |
| #define DOUBLE_NUM_SIGNIFICAND_BITS (52) |
| #define DOUBLE_NUM_EXPONENT_BITS (11) |
| #define DOUBLE_NUM_SIGN_BITS (1) |
| |
| #define DOUBLE_SIGNIFICAND_SHIFT (0) |
| #define DOUBLE_EXPONENT_SHIFT (DOUBLE_NUM_SIGNIFICAND_BITS) |
| #define DOUBLE_SIGN_SHIFT (DOUBLE_NUM_SIGNIFICAND_BITS + DOUBLE_NUM_EXPONENT_BITS) |
| |
| #define DOUBLE_SIGNIFICAND_MASK (0xfffffffffffffULL) // The lower 52 bits |
| #define DOUBLE_EXPONENT_MASK (0x7ffULL << DOUBLE_EXPONENT_SHIFT) // 11 bits of exponent |
| #define DOUBLE_SIGN_MASK (0x01ULL << DOUBLE_SIGN_SHIFT) // 1 bit of sign |
| #define DOUBLE_QUIET_NAN_BIT (0x01ULL << (DOUBLE_NUM_SIGNIFICAND_BITS-1)) |
| |
| |
| static int NaNExperiments() { |
| double dqNaN = UsefulBufUtil_CopyUint64ToDouble(DOUBLE_EXPONENT_MASK | DOUBLE_QUIET_NAN_BIT); |
| double dsNaN = UsefulBufUtil_CopyUint64ToDouble(DOUBLE_EXPONENT_MASK | 0x01); |
| double dqNaNPayload = UsefulBufUtil_CopyUint64ToDouble(DOUBLE_EXPONENT_MASK | DOUBLE_QUIET_NAN_BIT | 0xf00f); |
| |
| float f1 = (float)dqNaN; |
| float f2 = (float)dsNaN; |
| float f3 = (float)dqNaNPayload; |
| |
| |
| uint32_t uqNaN = UsefulBufUtil_CopyFloatToUint32((float)dqNaN); |
| uint32_t usNaN = UsefulBufUtil_CopyFloatToUint32((float)dsNaN); |
| uint32_t uqNaNPayload = UsefulBufUtil_CopyFloatToUint32((float)dqNaNPayload); |
| |
| // Result of this on x86 is that every NaN is a qNaN. The intel |
| // CVTSD2SS instruction ignores the NaN payload and even converts |
| // a sNaN to a qNaN. |
| |
| return 0; |
| } |
| #endif /* NAN_EXPERIMENT */ |