blob: 0f26d6c31ce504932d4d0367539ee7f68c451d65 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0+
2//
3// soc-ops.c -- Generic ASoC operations
4//
5// Copyright 2005 Wolfson Microelectronics PLC.
6// Copyright 2005 Openedhand Ltd.
7// Copyright (C) 2010 Slimlogic Ltd.
8// Copyright (C) 2010 Texas Instruments Inc.
9//
10// Author: Liam Girdwood <lrg@slimlogic.co.uk>
11// with code, comments and ideas from :-
12// Richard Purdie <richard@openedhand.com>
13
14#include <linux/module.h>
15#include <linux/moduleparam.h>
16#include <linux/init.h>
17#include <linux/delay.h>
18#include <linux/pm.h>
19#include <linux/bitops.h>
20#include <linux/ctype.h>
21#include <linux/slab.h>
22#include <sound/core.h>
23#include <sound/jack.h>
24#include <sound/pcm.h>
25#include <sound/pcm_params.h>
26#include <sound/soc.h>
27#include <sound/soc-dpcm.h>
28#include <sound/initval.h>
29
30/**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
34 *
35 * Callback to provide information about a double enumerated
36 * mixer control.
37 *
38 * Returns 0 for success.
39 */
40int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
42{
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 e->items, e->texts);
47}
48EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49
50/**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
54 *
55 * Callback to get the value of a double enumerated mixer.
56 *
57 * Returns 0 for success.
58 */
59int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
61{
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
65 unsigned int reg_val;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000066
Olivier Deprez157378f2022-04-04 15:47:50 +020067 reg_val = snd_soc_component_read(component, e->reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000068 val = (reg_val >> e->shift_l) & e->mask;
69 item = snd_soc_enum_val_to_item(e, val);
70 ucontrol->value.enumerated.item[0] = item;
71 if (e->shift_l != e->shift_r) {
72 val = (reg_val >> e->shift_r) & e->mask;
73 item = snd_soc_enum_val_to_item(e, val);
74 ucontrol->value.enumerated.item[1] = item;
75 }
76
77 return 0;
78}
79EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80
81/**
82 * snd_soc_put_enum_double - enumerated double mixer put callback
83 * @kcontrol: mixer control
84 * @ucontrol: control element information
85 *
86 * Callback to set the value of a double enumerated mixer.
87 *
88 * Returns 0 for success.
89 */
90int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 struct snd_ctl_elem_value *ucontrol)
92{
93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 unsigned int *item = ucontrol->value.enumerated.item;
96 unsigned int val;
97 unsigned int mask;
98
99 if (item[0] >= e->items)
100 return -EINVAL;
101 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 mask = e->mask << e->shift_l;
103 if (e->shift_l != e->shift_r) {
104 if (item[1] >= e->items)
105 return -EINVAL;
106 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 mask |= e->mask << e->shift_r;
108 }
109
110 return snd_soc_component_update_bits(component, e->reg, mask, val);
111}
112EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113
114/**
115 * snd_soc_read_signed - Read a codec register and interpret as signed value
116 * @component: component
117 * @reg: Register to read
118 * @mask: Mask to use after shifting the register value
119 * @shift: Right shift of register value
120 * @sign_bit: Bit that describes if a number is negative or not.
121 * @signed_val: Pointer to where the read value should be stored
122 *
123 * This functions reads a codec register. The register value is shifted right
124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125 * the given registervalue into a signed integer if sign_bit is non-zero.
126 *
127 * Returns 0 on sucess, otherwise an error value
128 */
129static int snd_soc_read_signed(struct snd_soc_component *component,
130 unsigned int reg, unsigned int mask, unsigned int shift,
131 unsigned int sign_bit, int *signed_val)
132{
133 int ret;
134 unsigned int val;
135
Olivier Deprez157378f2022-04-04 15:47:50 +0200136 val = snd_soc_component_read(component, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000137 val = (val >> shift) & mask;
138
139 if (!sign_bit) {
140 *signed_val = val;
141 return 0;
142 }
143
144 /* non-negative number */
145 if (!(val & BIT(sign_bit))) {
146 *signed_val = val;
147 return 0;
148 }
149
150 ret = val;
151
152 /*
153 * The register most probably does not contain a full-sized int.
154 * Instead we have an arbitrary number of bits in a signed
155 * representation which has to be translated into a full-sized int.
156 * This is done by filling up all bits above the sign-bit.
157 */
158 ret |= ~((int)(BIT(sign_bit) - 1));
159
160 *signed_val = ret;
161
162 return 0;
163}
164
165/**
166 * snd_soc_info_volsw - single mixer info callback
167 * @kcontrol: mixer control
168 * @uinfo: control element information
169 *
170 * Callback to provide information about a single mixer control, or a double
171 * mixer control that spans 2 registers.
172 *
173 * Returns 0 for success.
174 */
175int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 struct snd_ctl_elem_info *uinfo)
177{
178 struct soc_mixer_control *mc =
179 (struct soc_mixer_control *)kcontrol->private_value;
180 int platform_max;
181
182 if (!mc->platform_max)
183 mc->platform_max = mc->max;
184 platform_max = mc->platform_max;
185
186 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 else
189 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190
191 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 uinfo->value.integer.min = 0;
193 uinfo->value.integer.max = platform_max - mc->min;
194 return 0;
195}
196EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197
198/**
199 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200 * @kcontrol: mixer control
201 * @uinfo: control element information
202 *
203 * Callback to provide information about a single mixer control, or a double
204 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205 * have a range that represents both positive and negative values either side
206 * of zero but without a sign bit.
207 *
208 * Returns 0 for success.
209 */
210int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 struct snd_ctl_elem_info *uinfo)
212{
213 struct soc_mixer_control *mc =
214 (struct soc_mixer_control *)kcontrol->private_value;
215
216 snd_soc_info_volsw(kcontrol, uinfo);
217 /* Max represents the number of levels in an SX control not the
218 * maximum value, so add the minimum value back on
219 */
220 uinfo->value.integer.max += mc->min;
221
222 return 0;
223}
224EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225
226/**
227 * snd_soc_get_volsw - single mixer get callback
228 * @kcontrol: mixer control
229 * @ucontrol: control element information
230 *
231 * Callback to get the value of a single mixer control, or a double mixer
232 * control that spans 2 registers.
233 *
234 * Returns 0 for success.
235 */
236int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 struct snd_ctl_elem_value *ucontrol)
238{
239 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 struct soc_mixer_control *mc =
241 (struct soc_mixer_control *)kcontrol->private_value;
242 unsigned int reg = mc->reg;
243 unsigned int reg2 = mc->rreg;
244 unsigned int shift = mc->shift;
245 unsigned int rshift = mc->rshift;
246 int max = mc->max;
247 int min = mc->min;
248 int sign_bit = mc->sign_bit;
249 unsigned int mask = (1 << fls(max)) - 1;
250 unsigned int invert = mc->invert;
251 int val;
252 int ret;
253
254 if (sign_bit)
255 mask = BIT(sign_bit + 1) - 1;
256
257 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 if (ret)
259 return ret;
260
261 ucontrol->value.integer.value[0] = val - min;
262 if (invert)
263 ucontrol->value.integer.value[0] =
264 max - ucontrol->value.integer.value[0];
265
266 if (snd_soc_volsw_is_stereo(mc)) {
267 if (reg == reg2)
268 ret = snd_soc_read_signed(component, reg, mask, rshift,
269 sign_bit, &val);
270 else
271 ret = snd_soc_read_signed(component, reg2, mask, shift,
272 sign_bit, &val);
273 if (ret)
274 return ret;
275
276 ucontrol->value.integer.value[1] = val - min;
277 if (invert)
278 ucontrol->value.integer.value[1] =
279 max - ucontrol->value.integer.value[1];
280 }
281
282 return 0;
283}
284EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285
286/**
287 * snd_soc_put_volsw - single mixer put callback
288 * @kcontrol: mixer control
289 * @ucontrol: control element information
290 *
291 * Callback to set the value of a single mixer control, or a double mixer
292 * control that spans 2 registers.
293 *
294 * Returns 0 for success.
295 */
296int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 struct snd_ctl_elem_value *ucontrol)
298{
299 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 struct soc_mixer_control *mc =
301 (struct soc_mixer_control *)kcontrol->private_value;
302 unsigned int reg = mc->reg;
303 unsigned int reg2 = mc->rreg;
304 unsigned int shift = mc->shift;
305 unsigned int rshift = mc->rshift;
306 int max = mc->max;
307 int min = mc->min;
308 unsigned int sign_bit = mc->sign_bit;
309 unsigned int mask = (1 << fls(max)) - 1;
310 unsigned int invert = mc->invert;
Olivier Deprez157378f2022-04-04 15:47:50 +0200311 int err, ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000312 bool type_2r = false;
313 unsigned int val2 = 0;
314 unsigned int val, val_mask;
315
316 if (sign_bit)
317 mask = BIT(sign_bit + 1) - 1;
318
Olivier Deprez157378f2022-04-04 15:47:50 +0200319 val = ucontrol->value.integer.value[0];
320 if (mc->platform_max && ((int)val + min) > mc->platform_max)
321 return -EINVAL;
322 if (val > max - min)
323 return -EINVAL;
324 if (val < 0)
325 return -EINVAL;
326 val = (val + min) & mask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000327 if (invert)
328 val = max - val;
329 val_mask = mask << shift;
330 val = val << shift;
331 if (snd_soc_volsw_is_stereo(mc)) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200332 val2 = ucontrol->value.integer.value[1];
333 if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
334 return -EINVAL;
335 if (val2 > max - min)
336 return -EINVAL;
337 if (val2 < 0)
338 return -EINVAL;
339 val2 = (val2 + min) & mask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000340 if (invert)
341 val2 = max - val2;
342 if (reg == reg2) {
343 val_mask |= mask << rshift;
344 val |= val2 << rshift;
345 } else {
346 val2 = val2 << shift;
347 type_2r = true;
348 }
349 }
350 err = snd_soc_component_update_bits(component, reg, val_mask, val);
351 if (err < 0)
352 return err;
Olivier Deprez157378f2022-04-04 15:47:50 +0200353 ret = err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000354
Olivier Deprez157378f2022-04-04 15:47:50 +0200355 if (type_2r) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000356 err = snd_soc_component_update_bits(component, reg2, val_mask,
Olivier Deprez157378f2022-04-04 15:47:50 +0200357 val2);
358 /* Don't discard any error code or drop change flag */
359 if (ret == 0 || err < 0) {
360 ret = err;
361 }
362 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000363
Olivier Deprez157378f2022-04-04 15:47:50 +0200364 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000365}
366EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
367
368/**
369 * snd_soc_get_volsw_sx - single mixer get callback
370 * @kcontrol: mixer control
371 * @ucontrol: control element information
372 *
373 * Callback to get the value of a single mixer control, or a double mixer
374 * control that spans 2 registers.
375 *
376 * Returns 0 for success.
377 */
378int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
379 struct snd_ctl_elem_value *ucontrol)
380{
381 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
382 struct soc_mixer_control *mc =
383 (struct soc_mixer_control *)kcontrol->private_value;
384 unsigned int reg = mc->reg;
385 unsigned int reg2 = mc->rreg;
386 unsigned int shift = mc->shift;
387 unsigned int rshift = mc->rshift;
388 int max = mc->max;
389 int min = mc->min;
David Brazdil0f672f62019-12-10 10:32:29 +0000390 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000391 unsigned int val;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000392
Olivier Deprez157378f2022-04-04 15:47:50 +0200393 val = snd_soc_component_read(component, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000394 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
395
396 if (snd_soc_volsw_is_stereo(mc)) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200397 val = snd_soc_component_read(component, reg2);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000398 val = ((val >> rshift) - min) & mask;
399 ucontrol->value.integer.value[1] = val;
400 }
401
402 return 0;
403}
404EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
405
406/**
407 * snd_soc_put_volsw_sx - double mixer set callback
408 * @kcontrol: mixer control
409 * @ucontrol: control element information
410 *
411 * Callback to set the value of a double mixer control that spans 2 registers.
412 *
413 * Returns 0 for success.
414 */
415int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
416 struct snd_ctl_elem_value *ucontrol)
417{
418 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
419 struct soc_mixer_control *mc =
420 (struct soc_mixer_control *)kcontrol->private_value;
421
422 unsigned int reg = mc->reg;
423 unsigned int reg2 = mc->rreg;
424 unsigned int shift = mc->shift;
425 unsigned int rshift = mc->rshift;
426 int max = mc->max;
427 int min = mc->min;
David Brazdil0f672f62019-12-10 10:32:29 +0000428 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000429 int err = 0;
430 unsigned int val, val_mask, val2 = 0;
431
Olivier Deprez157378f2022-04-04 15:47:50 +0200432 val = ucontrol->value.integer.value[0];
433 if (mc->platform_max && val > mc->platform_max)
434 return -EINVAL;
435 if (val > max - min)
436 return -EINVAL;
437 if (val < 0)
438 return -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000439 val_mask = mask << shift;
Olivier Deprez157378f2022-04-04 15:47:50 +0200440 val = (val + min) & mask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000441 val = val << shift;
442
443 err = snd_soc_component_update_bits(component, reg, val_mask, val);
444 if (err < 0)
445 return err;
446
447 if (snd_soc_volsw_is_stereo(mc)) {
448 val_mask = mask << rshift;
449 val2 = (ucontrol->value.integer.value[1] + min) & mask;
450 val2 = val2 << rshift;
451
452 err = snd_soc_component_update_bits(component, reg2, val_mask,
453 val2);
454 }
455 return err;
456}
457EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
458
459/**
460 * snd_soc_info_volsw_range - single mixer info callback with range.
461 * @kcontrol: mixer control
462 * @uinfo: control element information
463 *
464 * Callback to provide information, within a range, about a single
465 * mixer control.
466 *
467 * returns 0 for success.
468 */
469int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
470 struct snd_ctl_elem_info *uinfo)
471{
472 struct soc_mixer_control *mc =
473 (struct soc_mixer_control *)kcontrol->private_value;
474 int platform_max;
475 int min = mc->min;
476
477 if (!mc->platform_max)
478 mc->platform_max = mc->max;
479 platform_max = mc->platform_max;
480
481 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
482 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
483 uinfo->value.integer.min = 0;
484 uinfo->value.integer.max = platform_max - min;
485
486 return 0;
487}
488EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
489
490/**
491 * snd_soc_put_volsw_range - single mixer put value callback with range.
492 * @kcontrol: mixer control
493 * @ucontrol: control element information
494 *
495 * Callback to set the value, within a range, for a single mixer control.
496 *
497 * Returns 0 for success.
498 */
499int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
500 struct snd_ctl_elem_value *ucontrol)
501{
502 struct soc_mixer_control *mc =
503 (struct soc_mixer_control *)kcontrol->private_value;
504 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
505 unsigned int reg = mc->reg;
506 unsigned int rreg = mc->rreg;
507 unsigned int shift = mc->shift;
508 int min = mc->min;
509 int max = mc->max;
510 unsigned int mask = (1 << fls(max)) - 1;
511 unsigned int invert = mc->invert;
512 unsigned int val, val_mask;
Olivier Deprez92d4c212022-12-06 15:05:30 +0100513 int err, ret, tmp;
514
515 tmp = ucontrol->value.integer.value[0];
516 if (tmp < 0)
517 return -EINVAL;
518 if (mc->platform_max && tmp > mc->platform_max)
519 return -EINVAL;
520 if (tmp > mc->max - mc->min)
521 return -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000522
523 if (invert)
524 val = (max - ucontrol->value.integer.value[0]) & mask;
525 else
526 val = ((ucontrol->value.integer.value[0] + min) & mask);
527 val_mask = mask << shift;
528 val = val << shift;
529
Olivier Deprez157378f2022-04-04 15:47:50 +0200530 err = snd_soc_component_update_bits(component, reg, val_mask, val);
531 if (err < 0)
532 return err;
533 ret = err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000534
535 if (snd_soc_volsw_is_stereo(mc)) {
Olivier Deprez92d4c212022-12-06 15:05:30 +0100536 tmp = ucontrol->value.integer.value[1];
537 if (tmp < 0)
538 return -EINVAL;
539 if (mc->platform_max && tmp > mc->platform_max)
540 return -EINVAL;
541 if (tmp > mc->max - mc->min)
542 return -EINVAL;
543
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000544 if (invert)
545 val = (max - ucontrol->value.integer.value[1]) & mask;
546 else
547 val = ((ucontrol->value.integer.value[1] + min) & mask);
548 val_mask = mask << shift;
549 val = val << shift;
550
Olivier Deprez157378f2022-04-04 15:47:50 +0200551 err = snd_soc_component_update_bits(component, rreg, val_mask,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000552 val);
Olivier Deprez157378f2022-04-04 15:47:50 +0200553 /* Don't discard any error code or drop change flag */
554 if (ret == 0 || err < 0) {
555 ret = err;
556 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000557 }
558
559 return ret;
560}
561EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
562
563/**
564 * snd_soc_get_volsw_range - single mixer get callback with range
565 * @kcontrol: mixer control
566 * @ucontrol: control element information
567 *
568 * Callback to get the value, within a range, of a single mixer control.
569 *
570 * Returns 0 for success.
571 */
572int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
573 struct snd_ctl_elem_value *ucontrol)
574{
575 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
576 struct soc_mixer_control *mc =
577 (struct soc_mixer_control *)kcontrol->private_value;
578 unsigned int reg = mc->reg;
579 unsigned int rreg = mc->rreg;
580 unsigned int shift = mc->shift;
581 int min = mc->min;
582 int max = mc->max;
583 unsigned int mask = (1 << fls(max)) - 1;
584 unsigned int invert = mc->invert;
585 unsigned int val;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000586
Olivier Deprez157378f2022-04-04 15:47:50 +0200587 val = snd_soc_component_read(component, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000588 ucontrol->value.integer.value[0] = (val >> shift) & mask;
589 if (invert)
590 ucontrol->value.integer.value[0] =
591 max - ucontrol->value.integer.value[0];
592 else
593 ucontrol->value.integer.value[0] =
594 ucontrol->value.integer.value[0] - min;
595
596 if (snd_soc_volsw_is_stereo(mc)) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200597 val = snd_soc_component_read(component, rreg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000598 ucontrol->value.integer.value[1] = (val >> shift) & mask;
599 if (invert)
600 ucontrol->value.integer.value[1] =
601 max - ucontrol->value.integer.value[1];
602 else
603 ucontrol->value.integer.value[1] =
604 ucontrol->value.integer.value[1] - min;
605 }
606
607 return 0;
608}
609EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
610
611/**
612 * snd_soc_limit_volume - Set new limit to an existing volume control.
613 *
614 * @card: where to look for the control
615 * @name: Name of the control
616 * @max: new maximum limit
617 *
618 * Return 0 for success, else error.
619 */
620int snd_soc_limit_volume(struct snd_soc_card *card,
621 const char *name, int max)
622{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000623 struct snd_kcontrol *kctl;
624 struct soc_mixer_control *mc;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000625 int ret = -EINVAL;
626
627 /* Sanity check for name and max */
628 if (unlikely(!name || max <= 0))
629 return -EINVAL;
630
Olivier Deprez157378f2022-04-04 15:47:50 +0200631 kctl = snd_soc_card_get_kcontrol(card, name);
632 if (kctl) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000633 mc = (struct soc_mixer_control *)kctl->private_value;
634 if (max <= mc->max) {
635 mc->platform_max = max;
636 ret = 0;
637 }
638 }
639 return ret;
640}
641EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
642
643int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
644 struct snd_ctl_elem_info *uinfo)
645{
646 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
647 struct soc_bytes *params = (void *)kcontrol->private_value;
648
649 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
650 uinfo->count = params->num_regs * component->val_bytes;
651
652 return 0;
653}
654EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
655
656int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
657 struct snd_ctl_elem_value *ucontrol)
658{
659 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
660 struct soc_bytes *params = (void *)kcontrol->private_value;
661 int ret;
662
663 if (component->regmap)
664 ret = regmap_raw_read(component->regmap, params->base,
665 ucontrol->value.bytes.data,
666 params->num_regs * component->val_bytes);
667 else
668 ret = -EINVAL;
669
670 /* Hide any masked bytes to ensure consistent data reporting */
671 if (ret == 0 && params->mask) {
672 switch (component->val_bytes) {
673 case 1:
674 ucontrol->value.bytes.data[0] &= ~params->mask;
675 break;
676 case 2:
677 ((u16 *)(&ucontrol->value.bytes.data))[0]
678 &= cpu_to_be16(~params->mask);
679 break;
680 case 4:
681 ((u32 *)(&ucontrol->value.bytes.data))[0]
682 &= cpu_to_be32(~params->mask);
683 break;
684 default:
685 return -EINVAL;
686 }
687 }
688
689 return ret;
690}
691EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
692
693int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
694 struct snd_ctl_elem_value *ucontrol)
695{
696 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
697 struct soc_bytes *params = (void *)kcontrol->private_value;
698 int ret, len;
699 unsigned int val, mask;
700 void *data;
701
702 if (!component->regmap || !params->num_regs)
703 return -EINVAL;
704
705 len = params->num_regs * component->val_bytes;
706
707 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
708 if (!data)
709 return -ENOMEM;
710
711 /*
712 * If we've got a mask then we need to preserve the register
713 * bits. We shouldn't modify the incoming data so take a
714 * copy.
715 */
716 if (params->mask) {
717 ret = regmap_read(component->regmap, params->base, &val);
718 if (ret != 0)
719 goto out;
720
721 val &= params->mask;
722
723 switch (component->val_bytes) {
724 case 1:
725 ((u8 *)data)[0] &= ~params->mask;
726 ((u8 *)data)[0] |= val;
727 break;
728 case 2:
729 mask = ~params->mask;
730 ret = regmap_parse_val(component->regmap,
731 &mask, &mask);
732 if (ret != 0)
733 goto out;
734
735 ((u16 *)data)[0] &= mask;
736
737 ret = regmap_parse_val(component->regmap,
738 &val, &val);
739 if (ret != 0)
740 goto out;
741
742 ((u16 *)data)[0] |= val;
743 break;
744 case 4:
745 mask = ~params->mask;
746 ret = regmap_parse_val(component->regmap,
747 &mask, &mask);
748 if (ret != 0)
749 goto out;
750
751 ((u32 *)data)[0] &= mask;
752
753 ret = regmap_parse_val(component->regmap,
754 &val, &val);
755 if (ret != 0)
756 goto out;
757
758 ((u32 *)data)[0] |= val;
759 break;
760 default:
761 ret = -EINVAL;
762 goto out;
763 }
764 }
765
766 ret = regmap_raw_write(component->regmap, params->base,
767 data, len);
768
769out:
770 kfree(data);
771
772 return ret;
773}
774EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
775
776int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
777 struct snd_ctl_elem_info *ucontrol)
778{
779 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
780
781 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
782 ucontrol->count = params->max;
783
784 return 0;
785}
786EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
787
788int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
789 unsigned int size, unsigned int __user *tlv)
790{
791 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
792 unsigned int count = size < params->max ? size : params->max;
793 int ret = -ENXIO;
794
795 switch (op_flag) {
796 case SNDRV_CTL_TLV_OP_READ:
797 if (params->get)
798 ret = params->get(kcontrol, tlv, count);
799 break;
800 case SNDRV_CTL_TLV_OP_WRITE:
801 if (params->put)
802 ret = params->put(kcontrol, tlv, count);
803 break;
804 }
805 return ret;
806}
807EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
808
809/**
810 * snd_soc_info_xr_sx - signed multi register info callback
811 * @kcontrol: mreg control
812 * @uinfo: control element information
813 *
814 * Callback to provide information of a control that can
815 * span multiple codec registers which together
816 * forms a single signed value in a MSB/LSB manner.
817 *
818 * Returns 0 for success.
819 */
820int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
821 struct snd_ctl_elem_info *uinfo)
822{
823 struct soc_mreg_control *mc =
824 (struct soc_mreg_control *)kcontrol->private_value;
825 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
826 uinfo->count = 1;
827 uinfo->value.integer.min = mc->min;
828 uinfo->value.integer.max = mc->max;
829
830 return 0;
831}
832EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
833
834/**
835 * snd_soc_get_xr_sx - signed multi register get callback
836 * @kcontrol: mreg control
837 * @ucontrol: control element information
838 *
839 * Callback to get the value of a control that can span
840 * multiple codec registers which together forms a single
841 * signed value in a MSB/LSB manner. The control supports
842 * specifying total no of bits used to allow for bitfields
843 * across the multiple codec registers.
844 *
845 * Returns 0 for success.
846 */
847int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
848 struct snd_ctl_elem_value *ucontrol)
849{
850 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
851 struct soc_mreg_control *mc =
852 (struct soc_mreg_control *)kcontrol->private_value;
853 unsigned int regbase = mc->regbase;
854 unsigned int regcount = mc->regcount;
855 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
Olivier Deprez0e641232021-09-23 10:07:05 +0200856 unsigned int regwmask = (1UL<<regwshift)-1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000857 unsigned int invert = mc->invert;
858 unsigned long mask = (1UL<<mc->nbits)-1;
859 long min = mc->min;
860 long max = mc->max;
861 long val = 0;
862 unsigned int regval;
863 unsigned int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000864
865 for (i = 0; i < regcount; i++) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200866 regval = snd_soc_component_read(component, regbase+i);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000867 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
868 }
869 val &= mask;
870 if (min < 0 && val > max)
871 val |= ~mask;
872 if (invert)
873 val = max - val;
874 ucontrol->value.integer.value[0] = val;
875
876 return 0;
877}
878EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
879
880/**
881 * snd_soc_put_xr_sx - signed multi register get callback
882 * @kcontrol: mreg control
883 * @ucontrol: control element information
884 *
885 * Callback to set the value of a control that can span
886 * multiple codec registers which together forms a single
887 * signed value in a MSB/LSB manner. The control supports
888 * specifying total no of bits used to allow for bitfields
889 * across the multiple codec registers.
890 *
891 * Returns 0 for success.
892 */
893int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
894 struct snd_ctl_elem_value *ucontrol)
895{
896 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
897 struct soc_mreg_control *mc =
898 (struct soc_mreg_control *)kcontrol->private_value;
899 unsigned int regbase = mc->regbase;
900 unsigned int regcount = mc->regcount;
901 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
Olivier Deprez0e641232021-09-23 10:07:05 +0200902 unsigned int regwmask = (1UL<<regwshift)-1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000903 unsigned int invert = mc->invert;
904 unsigned long mask = (1UL<<mc->nbits)-1;
905 long max = mc->max;
906 long val = ucontrol->value.integer.value[0];
907 unsigned int i, regval, regmask;
908 int err;
909
Olivier Deprez157378f2022-04-04 15:47:50 +0200910 if (val < mc->min || val > mc->max)
911 return -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000912 if (invert)
913 val = max - val;
914 val &= mask;
915 for (i = 0; i < regcount; i++) {
916 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
917 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
918 err = snd_soc_component_update_bits(component, regbase+i,
919 regmask, regval);
920 if (err < 0)
921 return err;
922 }
923
924 return 0;
925}
926EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
927
928/**
929 * snd_soc_get_strobe - strobe get callback
930 * @kcontrol: mixer control
931 * @ucontrol: control element information
932 *
933 * Callback get the value of a strobe mixer control.
934 *
935 * Returns 0 for success.
936 */
937int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
938 struct snd_ctl_elem_value *ucontrol)
939{
940 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
941 struct soc_mixer_control *mc =
942 (struct soc_mixer_control *)kcontrol->private_value;
943 unsigned int reg = mc->reg;
944 unsigned int shift = mc->shift;
945 unsigned int mask = 1 << shift;
946 unsigned int invert = mc->invert != 0;
947 unsigned int val;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000948
Olivier Deprez157378f2022-04-04 15:47:50 +0200949 val = snd_soc_component_read(component, reg);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000950 val &= mask;
951
952 if (shift != 0 && val != 0)
953 val = val >> shift;
954 ucontrol->value.enumerated.item[0] = val ^ invert;
955
956 return 0;
957}
958EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
959
960/**
961 * snd_soc_put_strobe - strobe put callback
962 * @kcontrol: mixer control
963 * @ucontrol: control element information
964 *
965 * Callback strobe a register bit to high then low (or the inverse)
966 * in one pass of a single mixer enum control.
967 *
968 * Returns 1 for success.
969 */
970int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
971 struct snd_ctl_elem_value *ucontrol)
972{
973 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
974 struct soc_mixer_control *mc =
975 (struct soc_mixer_control *)kcontrol->private_value;
976 unsigned int reg = mc->reg;
977 unsigned int shift = mc->shift;
978 unsigned int mask = 1 << shift;
979 unsigned int invert = mc->invert != 0;
980 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
981 unsigned int val1 = (strobe ^ invert) ? mask : 0;
982 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
983 int err;
984
985 err = snd_soc_component_update_bits(component, reg, mask, val1);
986 if (err < 0)
987 return err;
988
989 return snd_soc_component_update_bits(component, reg, mask, val2);
990}
991EXPORT_SYMBOL_GPL(snd_soc_put_strobe);