David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Generic hugetlb support. |
| 4 | * (C) Nadia Yvette Chambers, April 2004 |
| 5 | */ |
| 6 | #include <linux/list.h> |
| 7 | #include <linux/init.h> |
| 8 | #include <linux/mm.h> |
| 9 | #include <linux/seq_file.h> |
| 10 | #include <linux/sysctl.h> |
| 11 | #include <linux/highmem.h> |
| 12 | #include <linux/mmu_notifier.h> |
| 13 | #include <linux/nodemask.h> |
| 14 | #include <linux/pagemap.h> |
| 15 | #include <linux/mempolicy.h> |
| 16 | #include <linux/compiler.h> |
| 17 | #include <linux/cpuset.h> |
| 18 | #include <linux/mutex.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 19 | #include <linux/memblock.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 20 | #include <linux/sysfs.h> |
| 21 | #include <linux/slab.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 22 | #include <linux/sched/mm.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 23 | #include <linux/mmdebug.h> |
| 24 | #include <linux/sched/signal.h> |
| 25 | #include <linux/rmap.h> |
| 26 | #include <linux/string_helpers.h> |
| 27 | #include <linux/swap.h> |
| 28 | #include <linux/swapops.h> |
| 29 | #include <linux/jhash.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 30 | #include <linux/numa.h> |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 31 | #include <linux/llist.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 32 | #include <linux/cma.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 33 | |
| 34 | #include <asm/page.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 35 | #include <asm/pgalloc.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 36 | #include <asm/tlb.h> |
| 37 | |
| 38 | #include <linux/io.h> |
| 39 | #include <linux/hugetlb.h> |
| 40 | #include <linux/hugetlb_cgroup.h> |
| 41 | #include <linux/node.h> |
| 42 | #include <linux/userfaultfd_k.h> |
| 43 | #include <linux/page_owner.h> |
| 44 | #include "internal.h" |
| 45 | |
| 46 | int hugetlb_max_hstate __read_mostly; |
| 47 | unsigned int default_hstate_idx; |
| 48 | struct hstate hstates[HUGE_MAX_HSTATE]; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 49 | |
| 50 | #ifdef CONFIG_CMA |
| 51 | static struct cma *hugetlb_cma[MAX_NUMNODES]; |
| 52 | #endif |
| 53 | static unsigned long hugetlb_cma_size __initdata; |
| 54 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 55 | /* |
| 56 | * Minimum page order among possible hugepage sizes, set to a proper value |
| 57 | * at boot time. |
| 58 | */ |
| 59 | static unsigned int minimum_order __read_mostly = UINT_MAX; |
| 60 | |
| 61 | __initdata LIST_HEAD(huge_boot_pages); |
| 62 | |
| 63 | /* for command line parsing */ |
| 64 | static struct hstate * __initdata parsed_hstate; |
| 65 | static unsigned long __initdata default_hstate_max_huge_pages; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 66 | static bool __initdata parsed_valid_hugepagesz = true; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 67 | static bool __initdata parsed_default_hugepagesz; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 68 | |
| 69 | /* |
| 70 | * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, |
| 71 | * free_huge_pages, and surplus_huge_pages. |
| 72 | */ |
| 73 | DEFINE_SPINLOCK(hugetlb_lock); |
| 74 | |
| 75 | /* |
| 76 | * Serializes faults on the same logical page. This is used to |
| 77 | * prevent spurious OOMs when the hugepage pool is fully utilized. |
| 78 | */ |
| 79 | static int num_fault_mutexes; |
| 80 | struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; |
| 81 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 82 | static inline bool PageHugeFreed(struct page *head) |
| 83 | { |
| 84 | return page_private(head + 4) == -1UL; |
| 85 | } |
| 86 | |
| 87 | static inline void SetPageHugeFreed(struct page *head) |
| 88 | { |
| 89 | set_page_private(head + 4, -1UL); |
| 90 | } |
| 91 | |
| 92 | static inline void ClearPageHugeFreed(struct page *head) |
| 93 | { |
| 94 | set_page_private(head + 4, 0); |
| 95 | } |
| 96 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 97 | /* Forward declaration */ |
| 98 | static int hugetlb_acct_memory(struct hstate *h, long delta); |
| 99 | |
| 100 | static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) |
| 101 | { |
| 102 | bool free = (spool->count == 0) && (spool->used_hpages == 0); |
| 103 | |
| 104 | spin_unlock(&spool->lock); |
| 105 | |
| 106 | /* If no pages are used, and no other handles to the subpool |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 107 | * remain, give up any reservations based on minimum size and |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 108 | * free the subpool */ |
| 109 | if (free) { |
| 110 | if (spool->min_hpages != -1) |
| 111 | hugetlb_acct_memory(spool->hstate, |
| 112 | -spool->min_hpages); |
| 113 | kfree(spool); |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, |
| 118 | long min_hpages) |
| 119 | { |
| 120 | struct hugepage_subpool *spool; |
| 121 | |
| 122 | spool = kzalloc(sizeof(*spool), GFP_KERNEL); |
| 123 | if (!spool) |
| 124 | return NULL; |
| 125 | |
| 126 | spin_lock_init(&spool->lock); |
| 127 | spool->count = 1; |
| 128 | spool->max_hpages = max_hpages; |
| 129 | spool->hstate = h; |
| 130 | spool->min_hpages = min_hpages; |
| 131 | |
| 132 | if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { |
| 133 | kfree(spool); |
| 134 | return NULL; |
| 135 | } |
| 136 | spool->rsv_hpages = min_hpages; |
| 137 | |
| 138 | return spool; |
| 139 | } |
| 140 | |
| 141 | void hugepage_put_subpool(struct hugepage_subpool *spool) |
| 142 | { |
| 143 | spin_lock(&spool->lock); |
| 144 | BUG_ON(!spool->count); |
| 145 | spool->count--; |
| 146 | unlock_or_release_subpool(spool); |
| 147 | } |
| 148 | |
| 149 | /* |
| 150 | * Subpool accounting for allocating and reserving pages. |
| 151 | * Return -ENOMEM if there are not enough resources to satisfy the |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 152 | * request. Otherwise, return the number of pages by which the |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 153 | * global pools must be adjusted (upward). The returned value may |
| 154 | * only be different than the passed value (delta) in the case where |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 155 | * a subpool minimum size must be maintained. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 156 | */ |
| 157 | static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, |
| 158 | long delta) |
| 159 | { |
| 160 | long ret = delta; |
| 161 | |
| 162 | if (!spool) |
| 163 | return ret; |
| 164 | |
| 165 | spin_lock(&spool->lock); |
| 166 | |
| 167 | if (spool->max_hpages != -1) { /* maximum size accounting */ |
| 168 | if ((spool->used_hpages + delta) <= spool->max_hpages) |
| 169 | spool->used_hpages += delta; |
| 170 | else { |
| 171 | ret = -ENOMEM; |
| 172 | goto unlock_ret; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | /* minimum size accounting */ |
| 177 | if (spool->min_hpages != -1 && spool->rsv_hpages) { |
| 178 | if (delta > spool->rsv_hpages) { |
| 179 | /* |
| 180 | * Asking for more reserves than those already taken on |
| 181 | * behalf of subpool. Return difference. |
| 182 | */ |
| 183 | ret = delta - spool->rsv_hpages; |
| 184 | spool->rsv_hpages = 0; |
| 185 | } else { |
| 186 | ret = 0; /* reserves already accounted for */ |
| 187 | spool->rsv_hpages -= delta; |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | unlock_ret: |
| 192 | spin_unlock(&spool->lock); |
| 193 | return ret; |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * Subpool accounting for freeing and unreserving pages. |
| 198 | * Return the number of global page reservations that must be dropped. |
| 199 | * The return value may only be different than the passed value (delta) |
| 200 | * in the case where a subpool minimum size must be maintained. |
| 201 | */ |
| 202 | static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, |
| 203 | long delta) |
| 204 | { |
| 205 | long ret = delta; |
| 206 | |
| 207 | if (!spool) |
| 208 | return delta; |
| 209 | |
| 210 | spin_lock(&spool->lock); |
| 211 | |
| 212 | if (spool->max_hpages != -1) /* maximum size accounting */ |
| 213 | spool->used_hpages -= delta; |
| 214 | |
| 215 | /* minimum size accounting */ |
| 216 | if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { |
| 217 | if (spool->rsv_hpages + delta <= spool->min_hpages) |
| 218 | ret = 0; |
| 219 | else |
| 220 | ret = spool->rsv_hpages + delta - spool->min_hpages; |
| 221 | |
| 222 | spool->rsv_hpages += delta; |
| 223 | if (spool->rsv_hpages > spool->min_hpages) |
| 224 | spool->rsv_hpages = spool->min_hpages; |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * If hugetlbfs_put_super couldn't free spool due to an outstanding |
| 229 | * quota reference, free it now. |
| 230 | */ |
| 231 | unlock_or_release_subpool(spool); |
| 232 | |
| 233 | return ret; |
| 234 | } |
| 235 | |
| 236 | static inline struct hugepage_subpool *subpool_inode(struct inode *inode) |
| 237 | { |
| 238 | return HUGETLBFS_SB(inode->i_sb)->spool; |
| 239 | } |
| 240 | |
| 241 | static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) |
| 242 | { |
| 243 | return subpool_inode(file_inode(vma->vm_file)); |
| 244 | } |
| 245 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 246 | /* Helper that removes a struct file_region from the resv_map cache and returns |
| 247 | * it for use. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 248 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 249 | static struct file_region * |
| 250 | get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 251 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 252 | struct file_region *nrg = NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 253 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 254 | VM_BUG_ON(resv->region_cache_count <= 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 255 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 256 | resv->region_cache_count--; |
| 257 | nrg = list_first_entry(&resv->region_cache, struct file_region, link); |
| 258 | list_del(&nrg->link); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 259 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 260 | nrg->from = from; |
| 261 | nrg->to = to; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 262 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 263 | return nrg; |
| 264 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 265 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 266 | static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, |
| 267 | struct file_region *rg) |
| 268 | { |
| 269 | #ifdef CONFIG_CGROUP_HUGETLB |
| 270 | nrg->reservation_counter = rg->reservation_counter; |
| 271 | nrg->css = rg->css; |
| 272 | if (rg->css) |
| 273 | css_get(rg->css); |
| 274 | #endif |
| 275 | } |
| 276 | |
| 277 | /* Helper that records hugetlb_cgroup uncharge info. */ |
| 278 | static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, |
| 279 | struct hstate *h, |
| 280 | struct resv_map *resv, |
| 281 | struct file_region *nrg) |
| 282 | { |
| 283 | #ifdef CONFIG_CGROUP_HUGETLB |
| 284 | if (h_cg) { |
| 285 | nrg->reservation_counter = |
| 286 | &h_cg->rsvd_hugepage[hstate_index(h)]; |
| 287 | nrg->css = &h_cg->css; |
| 288 | /* |
| 289 | * The caller will hold exactly one h_cg->css reference for the |
| 290 | * whole contiguous reservation region. But this area might be |
| 291 | * scattered when there are already some file_regions reside in |
| 292 | * it. As a result, many file_regions may share only one css |
| 293 | * reference. In order to ensure that one file_region must hold |
| 294 | * exactly one h_cg->css reference, we should do css_get for |
| 295 | * each file_region and leave the reference held by caller |
| 296 | * untouched. |
| 297 | */ |
| 298 | css_get(&h_cg->css); |
| 299 | if (!resv->pages_per_hpage) |
| 300 | resv->pages_per_hpage = pages_per_huge_page(h); |
| 301 | /* pages_per_hpage should be the same for all entries in |
| 302 | * a resv_map. |
| 303 | */ |
| 304 | VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); |
| 305 | } else { |
| 306 | nrg->reservation_counter = NULL; |
| 307 | nrg->css = NULL; |
| 308 | } |
| 309 | #endif |
| 310 | } |
| 311 | |
| 312 | static void put_uncharge_info(struct file_region *rg) |
| 313 | { |
| 314 | #ifdef CONFIG_CGROUP_HUGETLB |
| 315 | if (rg->css) |
| 316 | css_put(rg->css); |
| 317 | #endif |
| 318 | } |
| 319 | |
| 320 | static bool has_same_uncharge_info(struct file_region *rg, |
| 321 | struct file_region *org) |
| 322 | { |
| 323 | #ifdef CONFIG_CGROUP_HUGETLB |
| 324 | return rg && org && |
| 325 | rg->reservation_counter == org->reservation_counter && |
| 326 | rg->css == org->css; |
| 327 | |
| 328 | #else |
| 329 | return true; |
| 330 | #endif |
| 331 | } |
| 332 | |
| 333 | static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) |
| 334 | { |
| 335 | struct file_region *nrg = NULL, *prg = NULL; |
| 336 | |
| 337 | prg = list_prev_entry(rg, link); |
| 338 | if (&prg->link != &resv->regions && prg->to == rg->from && |
| 339 | has_same_uncharge_info(prg, rg)) { |
| 340 | prg->to = rg->to; |
| 341 | |
| 342 | list_del(&rg->link); |
| 343 | put_uncharge_info(rg); |
| 344 | kfree(rg); |
| 345 | |
| 346 | rg = prg; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 347 | } |
| 348 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 349 | nrg = list_next_entry(rg, link); |
| 350 | if (&nrg->link != &resv->regions && nrg->from == rg->to && |
| 351 | has_same_uncharge_info(nrg, rg)) { |
| 352 | nrg->from = rg->from; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 353 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 354 | list_del(&rg->link); |
| 355 | put_uncharge_info(rg); |
| 356 | kfree(rg); |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * Must be called with resv->lock held. |
| 362 | * |
| 363 | * Calling this with regions_needed != NULL will count the number of pages |
| 364 | * to be added but will not modify the linked list. And regions_needed will |
| 365 | * indicate the number of file_regions needed in the cache to carry out to add |
| 366 | * the regions for this range. |
| 367 | */ |
| 368 | static long add_reservation_in_range(struct resv_map *resv, long f, long t, |
| 369 | struct hugetlb_cgroup *h_cg, |
| 370 | struct hstate *h, long *regions_needed) |
| 371 | { |
| 372 | long add = 0; |
| 373 | struct list_head *head = &resv->regions; |
| 374 | long last_accounted_offset = f; |
| 375 | struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; |
| 376 | |
| 377 | if (regions_needed) |
| 378 | *regions_needed = 0; |
| 379 | |
| 380 | /* In this loop, we essentially handle an entry for the range |
| 381 | * [last_accounted_offset, rg->from), at every iteration, with some |
| 382 | * bounds checking. |
| 383 | */ |
| 384 | list_for_each_entry_safe(rg, trg, head, link) { |
| 385 | /* Skip irrelevant regions that start before our range. */ |
| 386 | if (rg->from < f) { |
| 387 | /* If this region ends after the last accounted offset, |
| 388 | * then we need to update last_accounted_offset. |
| 389 | */ |
| 390 | if (rg->to > last_accounted_offset) |
| 391 | last_accounted_offset = rg->to; |
| 392 | continue; |
| 393 | } |
| 394 | |
| 395 | /* When we find a region that starts beyond our range, we've |
| 396 | * finished. |
| 397 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 398 | if (rg->from > t) |
| 399 | break; |
| 400 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 401 | /* Add an entry for last_accounted_offset -> rg->from, and |
| 402 | * update last_accounted_offset. |
| 403 | */ |
| 404 | if (rg->from > last_accounted_offset) { |
| 405 | add += rg->from - last_accounted_offset; |
| 406 | if (!regions_needed) { |
| 407 | nrg = get_file_region_entry_from_cache( |
| 408 | resv, last_accounted_offset, rg->from); |
| 409 | record_hugetlb_cgroup_uncharge_info(h_cg, h, |
| 410 | resv, nrg); |
| 411 | list_add(&nrg->link, rg->link.prev); |
| 412 | coalesce_file_region(resv, nrg); |
| 413 | } else |
| 414 | *regions_needed += 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 415 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 416 | |
| 417 | last_accounted_offset = rg->to; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 418 | } |
| 419 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 420 | /* Handle the case where our range extends beyond |
| 421 | * last_accounted_offset. |
| 422 | */ |
| 423 | if (last_accounted_offset < t) { |
| 424 | add += t - last_accounted_offset; |
| 425 | if (!regions_needed) { |
| 426 | nrg = get_file_region_entry_from_cache( |
| 427 | resv, last_accounted_offset, t); |
| 428 | record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); |
| 429 | list_add(&nrg->link, rg->link.prev); |
| 430 | coalesce_file_region(resv, nrg); |
| 431 | } else |
| 432 | *regions_needed += 1; |
| 433 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 434 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 435 | VM_BUG_ON(add < 0); |
| 436 | return add; |
| 437 | } |
| 438 | |
| 439 | /* Must be called with resv->lock acquired. Will drop lock to allocate entries. |
| 440 | */ |
| 441 | static int allocate_file_region_entries(struct resv_map *resv, |
| 442 | int regions_needed) |
| 443 | __must_hold(&resv->lock) |
| 444 | { |
| 445 | struct list_head allocated_regions; |
| 446 | int to_allocate = 0, i = 0; |
| 447 | struct file_region *trg = NULL, *rg = NULL; |
| 448 | |
| 449 | VM_BUG_ON(regions_needed < 0); |
| 450 | |
| 451 | INIT_LIST_HEAD(&allocated_regions); |
| 452 | |
| 453 | /* |
| 454 | * Check for sufficient descriptors in the cache to accommodate |
| 455 | * the number of in progress add operations plus regions_needed. |
| 456 | * |
| 457 | * This is a while loop because when we drop the lock, some other call |
| 458 | * to region_add or region_del may have consumed some region_entries, |
| 459 | * so we keep looping here until we finally have enough entries for |
| 460 | * (adds_in_progress + regions_needed). |
| 461 | */ |
| 462 | while (resv->region_cache_count < |
| 463 | (resv->adds_in_progress + regions_needed)) { |
| 464 | to_allocate = resv->adds_in_progress + regions_needed - |
| 465 | resv->region_cache_count; |
| 466 | |
| 467 | /* At this point, we should have enough entries in the cache |
| 468 | * for all the existings adds_in_progress. We should only be |
| 469 | * needing to allocate for regions_needed. |
| 470 | */ |
| 471 | VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); |
| 472 | |
| 473 | spin_unlock(&resv->lock); |
| 474 | for (i = 0; i < to_allocate; i++) { |
| 475 | trg = kmalloc(sizeof(*trg), GFP_KERNEL); |
| 476 | if (!trg) |
| 477 | goto out_of_memory; |
| 478 | list_add(&trg->link, &allocated_regions); |
| 479 | } |
| 480 | |
| 481 | spin_lock(&resv->lock); |
| 482 | |
| 483 | list_splice(&allocated_regions, &resv->region_cache); |
| 484 | resv->region_cache_count += to_allocate; |
| 485 | } |
| 486 | |
| 487 | return 0; |
| 488 | |
| 489 | out_of_memory: |
| 490 | list_for_each_entry_safe(rg, trg, &allocated_regions, link) { |
| 491 | list_del(&rg->link); |
| 492 | kfree(rg); |
| 493 | } |
| 494 | return -ENOMEM; |
| 495 | } |
| 496 | |
| 497 | /* |
| 498 | * Add the huge page range represented by [f, t) to the reserve |
| 499 | * map. Regions will be taken from the cache to fill in this range. |
| 500 | * Sufficient regions should exist in the cache due to the previous |
| 501 | * call to region_chg with the same range, but in some cases the cache will not |
| 502 | * have sufficient entries due to races with other code doing region_add or |
| 503 | * region_del. The extra needed entries will be allocated. |
| 504 | * |
| 505 | * regions_needed is the out value provided by a previous call to region_chg. |
| 506 | * |
| 507 | * Return the number of new huge pages added to the map. This number is greater |
| 508 | * than or equal to zero. If file_region entries needed to be allocated for |
| 509 | * this operation and we were not able to allocate, it returns -ENOMEM. |
| 510 | * region_add of regions of length 1 never allocate file_regions and cannot |
| 511 | * fail; region_chg will always allocate at least 1 entry and a region_add for |
| 512 | * 1 page will only require at most 1 entry. |
| 513 | */ |
| 514 | static long region_add(struct resv_map *resv, long f, long t, |
| 515 | long in_regions_needed, struct hstate *h, |
| 516 | struct hugetlb_cgroup *h_cg) |
| 517 | { |
| 518 | long add = 0, actual_regions_needed = 0; |
| 519 | |
| 520 | spin_lock(&resv->lock); |
| 521 | retry: |
| 522 | |
| 523 | /* Count how many regions are actually needed to execute this add. */ |
| 524 | add_reservation_in_range(resv, f, t, NULL, NULL, |
| 525 | &actual_regions_needed); |
| 526 | |
| 527 | /* |
| 528 | * Check for sufficient descriptors in the cache to accommodate |
| 529 | * this add operation. Note that actual_regions_needed may be greater |
| 530 | * than in_regions_needed, as the resv_map may have been modified since |
| 531 | * the region_chg call. In this case, we need to make sure that we |
| 532 | * allocate extra entries, such that we have enough for all the |
| 533 | * existing adds_in_progress, plus the excess needed for this |
| 534 | * operation. |
| 535 | */ |
| 536 | if (actual_regions_needed > in_regions_needed && |
| 537 | resv->region_cache_count < |
| 538 | resv->adds_in_progress + |
| 539 | (actual_regions_needed - in_regions_needed)) { |
| 540 | /* region_add operation of range 1 should never need to |
| 541 | * allocate file_region entries. |
| 542 | */ |
| 543 | VM_BUG_ON(t - f <= 1); |
| 544 | |
| 545 | if (allocate_file_region_entries( |
| 546 | resv, actual_regions_needed - in_regions_needed)) { |
| 547 | return -ENOMEM; |
| 548 | } |
| 549 | |
| 550 | goto retry; |
| 551 | } |
| 552 | |
| 553 | add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); |
| 554 | |
| 555 | resv->adds_in_progress -= in_regions_needed; |
| 556 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 557 | spin_unlock(&resv->lock); |
| 558 | VM_BUG_ON(add < 0); |
| 559 | return add; |
| 560 | } |
| 561 | |
| 562 | /* |
| 563 | * Examine the existing reserve map and determine how many |
| 564 | * huge pages in the specified range [f, t) are NOT currently |
| 565 | * represented. This routine is called before a subsequent |
| 566 | * call to region_add that will actually modify the reserve |
| 567 | * map to add the specified range [f, t). region_chg does |
| 568 | * not change the number of huge pages represented by the |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 569 | * map. A number of new file_region structures is added to the cache as a |
| 570 | * placeholder, for the subsequent region_add call to use. At least 1 |
| 571 | * file_region structure is added. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 572 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 573 | * out_regions_needed is the number of regions added to the |
| 574 | * resv->adds_in_progress. This value needs to be provided to a follow up call |
| 575 | * to region_add or region_abort for proper accounting. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 576 | * |
| 577 | * Returns the number of huge pages that need to be added to the existing |
| 578 | * reservation map for the range [f, t). This number is greater or equal to |
| 579 | * zero. -ENOMEM is returned if a new file_region structure or cache entry |
| 580 | * is needed and can not be allocated. |
| 581 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 582 | static long region_chg(struct resv_map *resv, long f, long t, |
| 583 | long *out_regions_needed) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 584 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 585 | long chg = 0; |
| 586 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 587 | spin_lock(&resv->lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 588 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 589 | /* Count how many hugepages in this range are NOT represented. */ |
| 590 | chg = add_reservation_in_range(resv, f, t, NULL, NULL, |
| 591 | out_regions_needed); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 592 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 593 | if (*out_regions_needed == 0) |
| 594 | *out_regions_needed = 1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 595 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 596 | if (allocate_file_region_entries(resv, *out_regions_needed)) |
| 597 | return -ENOMEM; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 598 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 599 | resv->adds_in_progress += *out_regions_needed; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 600 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 601 | spin_unlock(&resv->lock); |
| 602 | return chg; |
| 603 | } |
| 604 | |
| 605 | /* |
| 606 | * Abort the in progress add operation. The adds_in_progress field |
| 607 | * of the resv_map keeps track of the operations in progress between |
| 608 | * calls to region_chg and region_add. Operations are sometimes |
| 609 | * aborted after the call to region_chg. In such cases, region_abort |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 610 | * is called to decrement the adds_in_progress counter. regions_needed |
| 611 | * is the value returned by the region_chg call, it is used to decrement |
| 612 | * the adds_in_progress counter. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 613 | * |
| 614 | * NOTE: The range arguments [f, t) are not needed or used in this |
| 615 | * routine. They are kept to make reading the calling code easier as |
| 616 | * arguments will match the associated region_chg call. |
| 617 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 618 | static void region_abort(struct resv_map *resv, long f, long t, |
| 619 | long regions_needed) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 620 | { |
| 621 | spin_lock(&resv->lock); |
| 622 | VM_BUG_ON(!resv->region_cache_count); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 623 | resv->adds_in_progress -= regions_needed; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 624 | spin_unlock(&resv->lock); |
| 625 | } |
| 626 | |
| 627 | /* |
| 628 | * Delete the specified range [f, t) from the reserve map. If the |
| 629 | * t parameter is LONG_MAX, this indicates that ALL regions after f |
| 630 | * should be deleted. Locate the regions which intersect [f, t) |
| 631 | * and either trim, delete or split the existing regions. |
| 632 | * |
| 633 | * Returns the number of huge pages deleted from the reserve map. |
| 634 | * In the normal case, the return value is zero or more. In the |
| 635 | * case where a region must be split, a new region descriptor must |
| 636 | * be allocated. If the allocation fails, -ENOMEM will be returned. |
| 637 | * NOTE: If the parameter t == LONG_MAX, then we will never split |
| 638 | * a region and possibly return -ENOMEM. Callers specifying |
| 639 | * t == LONG_MAX do not need to check for -ENOMEM error. |
| 640 | */ |
| 641 | static long region_del(struct resv_map *resv, long f, long t) |
| 642 | { |
| 643 | struct list_head *head = &resv->regions; |
| 644 | struct file_region *rg, *trg; |
| 645 | struct file_region *nrg = NULL; |
| 646 | long del = 0; |
| 647 | |
| 648 | retry: |
| 649 | spin_lock(&resv->lock); |
| 650 | list_for_each_entry_safe(rg, trg, head, link) { |
| 651 | /* |
| 652 | * Skip regions before the range to be deleted. file_region |
| 653 | * ranges are normally of the form [from, to). However, there |
| 654 | * may be a "placeholder" entry in the map which is of the form |
| 655 | * (from, to) with from == to. Check for placeholder entries |
| 656 | * at the beginning of the range to be deleted. |
| 657 | */ |
| 658 | if (rg->to <= f && (rg->to != rg->from || rg->to != f)) |
| 659 | continue; |
| 660 | |
| 661 | if (rg->from >= t) |
| 662 | break; |
| 663 | |
| 664 | if (f > rg->from && t < rg->to) { /* Must split region */ |
| 665 | /* |
| 666 | * Check for an entry in the cache before dropping |
| 667 | * lock and attempting allocation. |
| 668 | */ |
| 669 | if (!nrg && |
| 670 | resv->region_cache_count > resv->adds_in_progress) { |
| 671 | nrg = list_first_entry(&resv->region_cache, |
| 672 | struct file_region, |
| 673 | link); |
| 674 | list_del(&nrg->link); |
| 675 | resv->region_cache_count--; |
| 676 | } |
| 677 | |
| 678 | if (!nrg) { |
| 679 | spin_unlock(&resv->lock); |
| 680 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); |
| 681 | if (!nrg) |
| 682 | return -ENOMEM; |
| 683 | goto retry; |
| 684 | } |
| 685 | |
| 686 | del += t - f; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 687 | hugetlb_cgroup_uncharge_file_region( |
| 688 | resv, rg, t - f, false); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 689 | |
| 690 | /* New entry for end of split region */ |
| 691 | nrg->from = t; |
| 692 | nrg->to = rg->to; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 693 | |
| 694 | copy_hugetlb_cgroup_uncharge_info(nrg, rg); |
| 695 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 696 | INIT_LIST_HEAD(&nrg->link); |
| 697 | |
| 698 | /* Original entry is trimmed */ |
| 699 | rg->to = f; |
| 700 | |
| 701 | list_add(&nrg->link, &rg->link); |
| 702 | nrg = NULL; |
| 703 | break; |
| 704 | } |
| 705 | |
| 706 | if (f <= rg->from && t >= rg->to) { /* Remove entire region */ |
| 707 | del += rg->to - rg->from; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 708 | hugetlb_cgroup_uncharge_file_region(resv, rg, |
| 709 | rg->to - rg->from, true); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 710 | list_del(&rg->link); |
| 711 | kfree(rg); |
| 712 | continue; |
| 713 | } |
| 714 | |
| 715 | if (f <= rg->from) { /* Trim beginning of region */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 716 | hugetlb_cgroup_uncharge_file_region(resv, rg, |
| 717 | t - rg->from, false); |
| 718 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 719 | del += t - rg->from; |
| 720 | rg->from = t; |
| 721 | } else { /* Trim end of region */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 722 | hugetlb_cgroup_uncharge_file_region(resv, rg, |
| 723 | rg->to - f, false); |
| 724 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 725 | del += rg->to - f; |
| 726 | rg->to = f; |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | spin_unlock(&resv->lock); |
| 731 | kfree(nrg); |
| 732 | return del; |
| 733 | } |
| 734 | |
| 735 | /* |
| 736 | * A rare out of memory error was encountered which prevented removal of |
| 737 | * the reserve map region for a page. The huge page itself was free'ed |
| 738 | * and removed from the page cache. This routine will adjust the subpool |
| 739 | * usage count, and the global reserve count if needed. By incrementing |
| 740 | * these counts, the reserve map entry which could not be deleted will |
| 741 | * appear as a "reserved" entry instead of simply dangling with incorrect |
| 742 | * counts. |
| 743 | */ |
| 744 | void hugetlb_fix_reserve_counts(struct inode *inode) |
| 745 | { |
| 746 | struct hugepage_subpool *spool = subpool_inode(inode); |
| 747 | long rsv_adjust; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 748 | bool reserved = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 749 | |
| 750 | rsv_adjust = hugepage_subpool_get_pages(spool, 1); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 751 | if (rsv_adjust > 0) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 752 | struct hstate *h = hstate_inode(inode); |
| 753 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 754 | if (!hugetlb_acct_memory(h, 1)) |
| 755 | reserved = true; |
| 756 | } else if (!rsv_adjust) { |
| 757 | reserved = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 758 | } |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 759 | |
| 760 | if (!reserved) |
| 761 | pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 762 | } |
| 763 | |
| 764 | /* |
| 765 | * Count and return the number of huge pages in the reserve map |
| 766 | * that intersect with the range [f, t). |
| 767 | */ |
| 768 | static long region_count(struct resv_map *resv, long f, long t) |
| 769 | { |
| 770 | struct list_head *head = &resv->regions; |
| 771 | struct file_region *rg; |
| 772 | long chg = 0; |
| 773 | |
| 774 | spin_lock(&resv->lock); |
| 775 | /* Locate each segment we overlap with, and count that overlap. */ |
| 776 | list_for_each_entry(rg, head, link) { |
| 777 | long seg_from; |
| 778 | long seg_to; |
| 779 | |
| 780 | if (rg->to <= f) |
| 781 | continue; |
| 782 | if (rg->from >= t) |
| 783 | break; |
| 784 | |
| 785 | seg_from = max(rg->from, f); |
| 786 | seg_to = min(rg->to, t); |
| 787 | |
| 788 | chg += seg_to - seg_from; |
| 789 | } |
| 790 | spin_unlock(&resv->lock); |
| 791 | |
| 792 | return chg; |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * Convert the address within this vma to the page offset within |
| 797 | * the mapping, in pagecache page units; huge pages here. |
| 798 | */ |
| 799 | static pgoff_t vma_hugecache_offset(struct hstate *h, |
| 800 | struct vm_area_struct *vma, unsigned long address) |
| 801 | { |
| 802 | return ((address - vma->vm_start) >> huge_page_shift(h)) + |
| 803 | (vma->vm_pgoff >> huge_page_order(h)); |
| 804 | } |
| 805 | |
| 806 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, |
| 807 | unsigned long address) |
| 808 | { |
| 809 | return vma_hugecache_offset(hstate_vma(vma), vma, address); |
| 810 | } |
| 811 | EXPORT_SYMBOL_GPL(linear_hugepage_index); |
| 812 | |
| 813 | /* |
| 814 | * Return the size of the pages allocated when backing a VMA. In the majority |
| 815 | * cases this will be same size as used by the page table entries. |
| 816 | */ |
| 817 | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) |
| 818 | { |
| 819 | if (vma->vm_ops && vma->vm_ops->pagesize) |
| 820 | return vma->vm_ops->pagesize(vma); |
| 821 | return PAGE_SIZE; |
| 822 | } |
| 823 | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); |
| 824 | |
| 825 | /* |
| 826 | * Return the page size being used by the MMU to back a VMA. In the majority |
| 827 | * of cases, the page size used by the kernel matches the MMU size. On |
| 828 | * architectures where it differs, an architecture-specific 'strong' |
| 829 | * version of this symbol is required. |
| 830 | */ |
| 831 | __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) |
| 832 | { |
| 833 | return vma_kernel_pagesize(vma); |
| 834 | } |
| 835 | |
| 836 | /* |
| 837 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom |
| 838 | * bits of the reservation map pointer, which are always clear due to |
| 839 | * alignment. |
| 840 | */ |
| 841 | #define HPAGE_RESV_OWNER (1UL << 0) |
| 842 | #define HPAGE_RESV_UNMAPPED (1UL << 1) |
| 843 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) |
| 844 | |
| 845 | /* |
| 846 | * These helpers are used to track how many pages are reserved for |
| 847 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() |
| 848 | * is guaranteed to have their future faults succeed. |
| 849 | * |
| 850 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), |
| 851 | * the reserve counters are updated with the hugetlb_lock held. It is safe |
| 852 | * to reset the VMA at fork() time as it is not in use yet and there is no |
| 853 | * chance of the global counters getting corrupted as a result of the values. |
| 854 | * |
| 855 | * The private mapping reservation is represented in a subtly different |
| 856 | * manner to a shared mapping. A shared mapping has a region map associated |
| 857 | * with the underlying file, this region map represents the backing file |
| 858 | * pages which have ever had a reservation assigned which this persists even |
| 859 | * after the page is instantiated. A private mapping has a region map |
| 860 | * associated with the original mmap which is attached to all VMAs which |
| 861 | * reference it, this region map represents those offsets which have consumed |
| 862 | * reservation ie. where pages have been instantiated. |
| 863 | */ |
| 864 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) |
| 865 | { |
| 866 | return (unsigned long)vma->vm_private_data; |
| 867 | } |
| 868 | |
| 869 | static void set_vma_private_data(struct vm_area_struct *vma, |
| 870 | unsigned long value) |
| 871 | { |
| 872 | vma->vm_private_data = (void *)value; |
| 873 | } |
| 874 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 875 | static void |
| 876 | resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, |
| 877 | struct hugetlb_cgroup *h_cg, |
| 878 | struct hstate *h) |
| 879 | { |
| 880 | #ifdef CONFIG_CGROUP_HUGETLB |
| 881 | if (!h_cg || !h) { |
| 882 | resv_map->reservation_counter = NULL; |
| 883 | resv_map->pages_per_hpage = 0; |
| 884 | resv_map->css = NULL; |
| 885 | } else { |
| 886 | resv_map->reservation_counter = |
| 887 | &h_cg->rsvd_hugepage[hstate_index(h)]; |
| 888 | resv_map->pages_per_hpage = pages_per_huge_page(h); |
| 889 | resv_map->css = &h_cg->css; |
| 890 | } |
| 891 | #endif |
| 892 | } |
| 893 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 894 | struct resv_map *resv_map_alloc(void) |
| 895 | { |
| 896 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); |
| 897 | struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); |
| 898 | |
| 899 | if (!resv_map || !rg) { |
| 900 | kfree(resv_map); |
| 901 | kfree(rg); |
| 902 | return NULL; |
| 903 | } |
| 904 | |
| 905 | kref_init(&resv_map->refs); |
| 906 | spin_lock_init(&resv_map->lock); |
| 907 | INIT_LIST_HEAD(&resv_map->regions); |
| 908 | |
| 909 | resv_map->adds_in_progress = 0; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 910 | /* |
| 911 | * Initialize these to 0. On shared mappings, 0's here indicate these |
| 912 | * fields don't do cgroup accounting. On private mappings, these will be |
| 913 | * re-initialized to the proper values, to indicate that hugetlb cgroup |
| 914 | * reservations are to be un-charged from here. |
| 915 | */ |
| 916 | resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 917 | |
| 918 | INIT_LIST_HEAD(&resv_map->region_cache); |
| 919 | list_add(&rg->link, &resv_map->region_cache); |
| 920 | resv_map->region_cache_count = 1; |
| 921 | |
| 922 | return resv_map; |
| 923 | } |
| 924 | |
| 925 | void resv_map_release(struct kref *ref) |
| 926 | { |
| 927 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); |
| 928 | struct list_head *head = &resv_map->region_cache; |
| 929 | struct file_region *rg, *trg; |
| 930 | |
| 931 | /* Clear out any active regions before we release the map. */ |
| 932 | region_del(resv_map, 0, LONG_MAX); |
| 933 | |
| 934 | /* ... and any entries left in the cache */ |
| 935 | list_for_each_entry_safe(rg, trg, head, link) { |
| 936 | list_del(&rg->link); |
| 937 | kfree(rg); |
| 938 | } |
| 939 | |
| 940 | VM_BUG_ON(resv_map->adds_in_progress); |
| 941 | |
| 942 | kfree(resv_map); |
| 943 | } |
| 944 | |
| 945 | static inline struct resv_map *inode_resv_map(struct inode *inode) |
| 946 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 947 | /* |
| 948 | * At inode evict time, i_mapping may not point to the original |
| 949 | * address space within the inode. This original address space |
| 950 | * contains the pointer to the resv_map. So, always use the |
| 951 | * address space embedded within the inode. |
| 952 | * The VERY common case is inode->mapping == &inode->i_data but, |
| 953 | * this may not be true for device special inodes. |
| 954 | */ |
| 955 | return (struct resv_map *)(&inode->i_data)->private_data; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 956 | } |
| 957 | |
| 958 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) |
| 959 | { |
| 960 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
| 961 | if (vma->vm_flags & VM_MAYSHARE) { |
| 962 | struct address_space *mapping = vma->vm_file->f_mapping; |
| 963 | struct inode *inode = mapping->host; |
| 964 | |
| 965 | return inode_resv_map(inode); |
| 966 | |
| 967 | } else { |
| 968 | return (struct resv_map *)(get_vma_private_data(vma) & |
| 969 | ~HPAGE_RESV_MASK); |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) |
| 974 | { |
| 975 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
| 976 | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); |
| 977 | |
| 978 | set_vma_private_data(vma, (get_vma_private_data(vma) & |
| 979 | HPAGE_RESV_MASK) | (unsigned long)map); |
| 980 | } |
| 981 | |
| 982 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) |
| 983 | { |
| 984 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
| 985 | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); |
| 986 | |
| 987 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); |
| 988 | } |
| 989 | |
| 990 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) |
| 991 | { |
| 992 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
| 993 | |
| 994 | return (get_vma_private_data(vma) & flag) != 0; |
| 995 | } |
| 996 | |
| 997 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ |
| 998 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) |
| 999 | { |
| 1000 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
| 1001 | if (!(vma->vm_flags & VM_MAYSHARE)) |
| 1002 | vma->vm_private_data = (void *)0; |
| 1003 | } |
| 1004 | |
| 1005 | /* Returns true if the VMA has associated reserve pages */ |
| 1006 | static bool vma_has_reserves(struct vm_area_struct *vma, long chg) |
| 1007 | { |
| 1008 | if (vma->vm_flags & VM_NORESERVE) { |
| 1009 | /* |
| 1010 | * This address is already reserved by other process(chg == 0), |
| 1011 | * so, we should decrement reserved count. Without decrementing, |
| 1012 | * reserve count remains after releasing inode, because this |
| 1013 | * allocated page will go into page cache and is regarded as |
| 1014 | * coming from reserved pool in releasing step. Currently, we |
| 1015 | * don't have any other solution to deal with this situation |
| 1016 | * properly, so add work-around here. |
| 1017 | */ |
| 1018 | if (vma->vm_flags & VM_MAYSHARE && chg == 0) |
| 1019 | return true; |
| 1020 | else |
| 1021 | return false; |
| 1022 | } |
| 1023 | |
| 1024 | /* Shared mappings always use reserves */ |
| 1025 | if (vma->vm_flags & VM_MAYSHARE) { |
| 1026 | /* |
| 1027 | * We know VM_NORESERVE is not set. Therefore, there SHOULD |
| 1028 | * be a region map for all pages. The only situation where |
| 1029 | * there is no region map is if a hole was punched via |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1030 | * fallocate. In this case, there really are no reserves to |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1031 | * use. This situation is indicated if chg != 0. |
| 1032 | */ |
| 1033 | if (chg) |
| 1034 | return false; |
| 1035 | else |
| 1036 | return true; |
| 1037 | } |
| 1038 | |
| 1039 | /* |
| 1040 | * Only the process that called mmap() has reserves for |
| 1041 | * private mappings. |
| 1042 | */ |
| 1043 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
| 1044 | /* |
| 1045 | * Like the shared case above, a hole punch or truncate |
| 1046 | * could have been performed on the private mapping. |
| 1047 | * Examine the value of chg to determine if reserves |
| 1048 | * actually exist or were previously consumed. |
| 1049 | * Very Subtle - The value of chg comes from a previous |
| 1050 | * call to vma_needs_reserves(). The reserve map for |
| 1051 | * private mappings has different (opposite) semantics |
| 1052 | * than that of shared mappings. vma_needs_reserves() |
| 1053 | * has already taken this difference in semantics into |
| 1054 | * account. Therefore, the meaning of chg is the same |
| 1055 | * as in the shared case above. Code could easily be |
| 1056 | * combined, but keeping it separate draws attention to |
| 1057 | * subtle differences. |
| 1058 | */ |
| 1059 | if (chg) |
| 1060 | return false; |
| 1061 | else |
| 1062 | return true; |
| 1063 | } |
| 1064 | |
| 1065 | return false; |
| 1066 | } |
| 1067 | |
| 1068 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
| 1069 | { |
| 1070 | int nid = page_to_nid(page); |
| 1071 | list_move(&page->lru, &h->hugepage_freelists[nid]); |
| 1072 | h->free_huge_pages++; |
| 1073 | h->free_huge_pages_node[nid]++; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1074 | SetPageHugeFreed(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1075 | } |
| 1076 | |
| 1077 | static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) |
| 1078 | { |
| 1079 | struct page *page; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1080 | bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1081 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1082 | list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { |
| 1083 | if (nocma && is_migrate_cma_page(page)) |
| 1084 | continue; |
| 1085 | |
| 1086 | if (PageHWPoison(page)) |
| 1087 | continue; |
| 1088 | |
| 1089 | list_move(&page->lru, &h->hugepage_activelist); |
| 1090 | set_page_refcounted(page); |
| 1091 | ClearPageHugeFreed(page); |
| 1092 | h->free_huge_pages--; |
| 1093 | h->free_huge_pages_node[nid]--; |
| 1094 | return page; |
| 1095 | } |
| 1096 | |
| 1097 | return NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1098 | } |
| 1099 | |
| 1100 | static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, |
| 1101 | nodemask_t *nmask) |
| 1102 | { |
| 1103 | unsigned int cpuset_mems_cookie; |
| 1104 | struct zonelist *zonelist; |
| 1105 | struct zone *zone; |
| 1106 | struct zoneref *z; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1107 | int node = NUMA_NO_NODE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1108 | |
| 1109 | zonelist = node_zonelist(nid, gfp_mask); |
| 1110 | |
| 1111 | retry_cpuset: |
| 1112 | cpuset_mems_cookie = read_mems_allowed_begin(); |
| 1113 | for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { |
| 1114 | struct page *page; |
| 1115 | |
| 1116 | if (!cpuset_zone_allowed(zone, gfp_mask)) |
| 1117 | continue; |
| 1118 | /* |
| 1119 | * no need to ask again on the same node. Pool is node rather than |
| 1120 | * zone aware |
| 1121 | */ |
| 1122 | if (zone_to_nid(zone) == node) |
| 1123 | continue; |
| 1124 | node = zone_to_nid(zone); |
| 1125 | |
| 1126 | page = dequeue_huge_page_node_exact(h, node); |
| 1127 | if (page) |
| 1128 | return page; |
| 1129 | } |
| 1130 | if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) |
| 1131 | goto retry_cpuset; |
| 1132 | |
| 1133 | return NULL; |
| 1134 | } |
| 1135 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1136 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
| 1137 | struct vm_area_struct *vma, |
| 1138 | unsigned long address, int avoid_reserve, |
| 1139 | long chg) |
| 1140 | { |
| 1141 | struct page *page; |
| 1142 | struct mempolicy *mpol; |
| 1143 | gfp_t gfp_mask; |
| 1144 | nodemask_t *nodemask; |
| 1145 | int nid; |
| 1146 | |
| 1147 | /* |
| 1148 | * A child process with MAP_PRIVATE mappings created by their parent |
| 1149 | * have no page reserves. This check ensures that reservations are |
| 1150 | * not "stolen". The child may still get SIGKILLed |
| 1151 | */ |
| 1152 | if (!vma_has_reserves(vma, chg) && |
| 1153 | h->free_huge_pages - h->resv_huge_pages == 0) |
| 1154 | goto err; |
| 1155 | |
| 1156 | /* If reserves cannot be used, ensure enough pages are in the pool */ |
| 1157 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) |
| 1158 | goto err; |
| 1159 | |
| 1160 | gfp_mask = htlb_alloc_mask(h); |
| 1161 | nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); |
| 1162 | page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); |
| 1163 | if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { |
| 1164 | SetPagePrivate(page); |
| 1165 | h->resv_huge_pages--; |
| 1166 | } |
| 1167 | |
| 1168 | mpol_cond_put(mpol); |
| 1169 | return page; |
| 1170 | |
| 1171 | err: |
| 1172 | return NULL; |
| 1173 | } |
| 1174 | |
| 1175 | /* |
| 1176 | * common helper functions for hstate_next_node_to_{alloc|free}. |
| 1177 | * We may have allocated or freed a huge page based on a different |
| 1178 | * nodes_allowed previously, so h->next_node_to_{alloc|free} might |
| 1179 | * be outside of *nodes_allowed. Ensure that we use an allowed |
| 1180 | * node for alloc or free. |
| 1181 | */ |
| 1182 | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) |
| 1183 | { |
| 1184 | nid = next_node_in(nid, *nodes_allowed); |
| 1185 | VM_BUG_ON(nid >= MAX_NUMNODES); |
| 1186 | |
| 1187 | return nid; |
| 1188 | } |
| 1189 | |
| 1190 | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) |
| 1191 | { |
| 1192 | if (!node_isset(nid, *nodes_allowed)) |
| 1193 | nid = next_node_allowed(nid, nodes_allowed); |
| 1194 | return nid; |
| 1195 | } |
| 1196 | |
| 1197 | /* |
| 1198 | * returns the previously saved node ["this node"] from which to |
| 1199 | * allocate a persistent huge page for the pool and advance the |
| 1200 | * next node from which to allocate, handling wrap at end of node |
| 1201 | * mask. |
| 1202 | */ |
| 1203 | static int hstate_next_node_to_alloc(struct hstate *h, |
| 1204 | nodemask_t *nodes_allowed) |
| 1205 | { |
| 1206 | int nid; |
| 1207 | |
| 1208 | VM_BUG_ON(!nodes_allowed); |
| 1209 | |
| 1210 | nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); |
| 1211 | h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); |
| 1212 | |
| 1213 | return nid; |
| 1214 | } |
| 1215 | |
| 1216 | /* |
| 1217 | * helper for free_pool_huge_page() - return the previously saved |
| 1218 | * node ["this node"] from which to free a huge page. Advance the |
| 1219 | * next node id whether or not we find a free huge page to free so |
| 1220 | * that the next attempt to free addresses the next node. |
| 1221 | */ |
| 1222 | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) |
| 1223 | { |
| 1224 | int nid; |
| 1225 | |
| 1226 | VM_BUG_ON(!nodes_allowed); |
| 1227 | |
| 1228 | nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); |
| 1229 | h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); |
| 1230 | |
| 1231 | return nid; |
| 1232 | } |
| 1233 | |
| 1234 | #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ |
| 1235 | for (nr_nodes = nodes_weight(*mask); \ |
| 1236 | nr_nodes > 0 && \ |
| 1237 | ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ |
| 1238 | nr_nodes--) |
| 1239 | |
| 1240 | #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ |
| 1241 | for (nr_nodes = nodes_weight(*mask); \ |
| 1242 | nr_nodes > 0 && \ |
| 1243 | ((node = hstate_next_node_to_free(hs, mask)) || 1); \ |
| 1244 | nr_nodes--) |
| 1245 | |
| 1246 | #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE |
| 1247 | static void destroy_compound_gigantic_page(struct page *page, |
| 1248 | unsigned int order) |
| 1249 | { |
| 1250 | int i; |
| 1251 | int nr_pages = 1 << order; |
| 1252 | struct page *p = page + 1; |
| 1253 | |
| 1254 | atomic_set(compound_mapcount_ptr(page), 0); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1255 | atomic_set(compound_pincount_ptr(page), 0); |
| 1256 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1257 | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { |
| 1258 | clear_compound_head(p); |
| 1259 | set_page_refcounted(p); |
| 1260 | } |
| 1261 | |
| 1262 | set_compound_order(page, 0); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1263 | page[1].compound_nr = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1264 | __ClearPageHead(page); |
| 1265 | } |
| 1266 | |
| 1267 | static void free_gigantic_page(struct page *page, unsigned int order) |
| 1268 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1269 | /* |
| 1270 | * If the page isn't allocated using the cma allocator, |
| 1271 | * cma_release() returns false. |
| 1272 | */ |
| 1273 | #ifdef CONFIG_CMA |
| 1274 | if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) |
| 1275 | return; |
| 1276 | #endif |
| 1277 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1278 | free_contig_range(page_to_pfn(page), 1 << order); |
| 1279 | } |
| 1280 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1281 | #ifdef CONFIG_CONTIG_ALLOC |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1282 | static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, |
| 1283 | int nid, nodemask_t *nodemask) |
| 1284 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1285 | unsigned long nr_pages = 1UL << huge_page_order(h); |
| 1286 | if (nid == NUMA_NO_NODE) |
| 1287 | nid = numa_mem_id(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1288 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1289 | #ifdef CONFIG_CMA |
| 1290 | { |
| 1291 | struct page *page; |
| 1292 | int node; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1293 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1294 | if (hugetlb_cma[nid]) { |
| 1295 | page = cma_alloc(hugetlb_cma[nid], nr_pages, |
| 1296 | huge_page_order(h), true); |
| 1297 | if (page) |
| 1298 | return page; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1299 | } |
| 1300 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1301 | if (!(gfp_mask & __GFP_THISNODE)) { |
| 1302 | for_each_node_mask(node, *nodemask) { |
| 1303 | if (node == nid || !hugetlb_cma[node]) |
| 1304 | continue; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1305 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1306 | page = cma_alloc(hugetlb_cma[node], nr_pages, |
| 1307 | huge_page_order(h), true); |
| 1308 | if (page) |
| 1309 | return page; |
| 1310 | } |
| 1311 | } |
| 1312 | } |
| 1313 | #endif |
| 1314 | |
| 1315 | return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1316 | } |
| 1317 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1318 | #else /* !CONFIG_CONTIG_ALLOC */ |
| 1319 | static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, |
| 1320 | int nid, nodemask_t *nodemask) |
| 1321 | { |
| 1322 | return NULL; |
| 1323 | } |
| 1324 | #endif /* CONFIG_CONTIG_ALLOC */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1325 | |
| 1326 | #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1327 | static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1328 | int nid, nodemask_t *nodemask) |
| 1329 | { |
| 1330 | return NULL; |
| 1331 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1332 | static inline void free_gigantic_page(struct page *page, unsigned int order) { } |
| 1333 | static inline void destroy_compound_gigantic_page(struct page *page, |
| 1334 | unsigned int order) { } |
| 1335 | #endif |
| 1336 | |
| 1337 | static void update_and_free_page(struct hstate *h, struct page *page) |
| 1338 | { |
| 1339 | int i; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1340 | struct page *subpage = page; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1341 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1342 | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1343 | return; |
| 1344 | |
| 1345 | h->nr_huge_pages--; |
| 1346 | h->nr_huge_pages_node[page_to_nid(page)]--; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1347 | for (i = 0; i < pages_per_huge_page(h); |
| 1348 | i++, subpage = mem_map_next(subpage, page, i)) { |
| 1349 | subpage->flags &= ~(1 << PG_locked | 1 << PG_error | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1350 | 1 << PG_referenced | 1 << PG_dirty | |
| 1351 | 1 << PG_active | 1 << PG_private | |
| 1352 | 1 << PG_writeback); |
| 1353 | } |
| 1354 | VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1355 | VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1356 | set_compound_page_dtor(page, NULL_COMPOUND_DTOR); |
| 1357 | set_page_refcounted(page); |
| 1358 | if (hstate_is_gigantic(h)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1359 | /* |
| 1360 | * Temporarily drop the hugetlb_lock, because |
| 1361 | * we might block in free_gigantic_page(). |
| 1362 | */ |
| 1363 | spin_unlock(&hugetlb_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1364 | destroy_compound_gigantic_page(page, huge_page_order(h)); |
| 1365 | free_gigantic_page(page, huge_page_order(h)); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1366 | spin_lock(&hugetlb_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1367 | } else { |
| 1368 | __free_pages(page, huge_page_order(h)); |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | struct hstate *size_to_hstate(unsigned long size) |
| 1373 | { |
| 1374 | struct hstate *h; |
| 1375 | |
| 1376 | for_each_hstate(h) { |
| 1377 | if (huge_page_size(h) == size) |
| 1378 | return h; |
| 1379 | } |
| 1380 | return NULL; |
| 1381 | } |
| 1382 | |
| 1383 | /* |
| 1384 | * Test to determine whether the hugepage is "active/in-use" (i.e. being linked |
| 1385 | * to hstate->hugepage_activelist.) |
| 1386 | * |
| 1387 | * This function can be called for tail pages, but never returns true for them. |
| 1388 | */ |
| 1389 | bool page_huge_active(struct page *page) |
| 1390 | { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1391 | return PageHeadHuge(page) && PagePrivate(&page[1]); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1392 | } |
| 1393 | |
| 1394 | /* never called for tail page */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1395 | void set_page_huge_active(struct page *page) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1396 | { |
| 1397 | VM_BUG_ON_PAGE(!PageHeadHuge(page), page); |
| 1398 | SetPagePrivate(&page[1]); |
| 1399 | } |
| 1400 | |
| 1401 | static void clear_page_huge_active(struct page *page) |
| 1402 | { |
| 1403 | VM_BUG_ON_PAGE(!PageHeadHuge(page), page); |
| 1404 | ClearPagePrivate(&page[1]); |
| 1405 | } |
| 1406 | |
| 1407 | /* |
| 1408 | * Internal hugetlb specific page flag. Do not use outside of the hugetlb |
| 1409 | * code |
| 1410 | */ |
| 1411 | static inline bool PageHugeTemporary(struct page *page) |
| 1412 | { |
| 1413 | if (!PageHuge(page)) |
| 1414 | return false; |
| 1415 | |
| 1416 | return (unsigned long)page[2].mapping == -1U; |
| 1417 | } |
| 1418 | |
| 1419 | static inline void SetPageHugeTemporary(struct page *page) |
| 1420 | { |
| 1421 | page[2].mapping = (void *)-1U; |
| 1422 | } |
| 1423 | |
| 1424 | static inline void ClearPageHugeTemporary(struct page *page) |
| 1425 | { |
| 1426 | page[2].mapping = NULL; |
| 1427 | } |
| 1428 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1429 | static void __free_huge_page(struct page *page) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1430 | { |
| 1431 | /* |
| 1432 | * Can't pass hstate in here because it is called from the |
| 1433 | * compound page destructor. |
| 1434 | */ |
| 1435 | struct hstate *h = page_hstate(page); |
| 1436 | int nid = page_to_nid(page); |
| 1437 | struct hugepage_subpool *spool = |
| 1438 | (struct hugepage_subpool *)page_private(page); |
| 1439 | bool restore_reserve; |
| 1440 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1441 | VM_BUG_ON_PAGE(page_count(page), page); |
| 1442 | VM_BUG_ON_PAGE(page_mapcount(page), page); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1443 | |
| 1444 | set_page_private(page, 0); |
| 1445 | page->mapping = NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1446 | restore_reserve = PagePrivate(page); |
| 1447 | ClearPagePrivate(page); |
| 1448 | |
| 1449 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1450 | * If PagePrivate() was set on page, page allocation consumed a |
| 1451 | * reservation. If the page was associated with a subpool, there |
| 1452 | * would have been a page reserved in the subpool before allocation |
| 1453 | * via hugepage_subpool_get_pages(). Since we are 'restoring' the |
| 1454 | * reservtion, do not call hugepage_subpool_put_pages() as this will |
| 1455 | * remove the reserved page from the subpool. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1456 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1457 | if (!restore_reserve) { |
| 1458 | /* |
| 1459 | * A return code of zero implies that the subpool will be |
| 1460 | * under its minimum size if the reservation is not restored |
| 1461 | * after page is free. Therefore, force restore_reserve |
| 1462 | * operation. |
| 1463 | */ |
| 1464 | if (hugepage_subpool_put_pages(spool, 1) == 0) |
| 1465 | restore_reserve = true; |
| 1466 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1467 | |
| 1468 | spin_lock(&hugetlb_lock); |
| 1469 | clear_page_huge_active(page); |
| 1470 | hugetlb_cgroup_uncharge_page(hstate_index(h), |
| 1471 | pages_per_huge_page(h), page); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1472 | hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), |
| 1473 | pages_per_huge_page(h), page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1474 | if (restore_reserve) |
| 1475 | h->resv_huge_pages++; |
| 1476 | |
| 1477 | if (PageHugeTemporary(page)) { |
| 1478 | list_del(&page->lru); |
| 1479 | ClearPageHugeTemporary(page); |
| 1480 | update_and_free_page(h, page); |
| 1481 | } else if (h->surplus_huge_pages_node[nid]) { |
| 1482 | /* remove the page from active list */ |
| 1483 | list_del(&page->lru); |
| 1484 | update_and_free_page(h, page); |
| 1485 | h->surplus_huge_pages--; |
| 1486 | h->surplus_huge_pages_node[nid]--; |
| 1487 | } else { |
| 1488 | arch_clear_hugepage_flags(page); |
| 1489 | enqueue_huge_page(h, page); |
| 1490 | } |
| 1491 | spin_unlock(&hugetlb_lock); |
| 1492 | } |
| 1493 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1494 | /* |
| 1495 | * As free_huge_page() can be called from a non-task context, we have |
| 1496 | * to defer the actual freeing in a workqueue to prevent potential |
| 1497 | * hugetlb_lock deadlock. |
| 1498 | * |
| 1499 | * free_hpage_workfn() locklessly retrieves the linked list of pages to |
| 1500 | * be freed and frees them one-by-one. As the page->mapping pointer is |
| 1501 | * going to be cleared in __free_huge_page() anyway, it is reused as the |
| 1502 | * llist_node structure of a lockless linked list of huge pages to be freed. |
| 1503 | */ |
| 1504 | static LLIST_HEAD(hpage_freelist); |
| 1505 | |
| 1506 | static void free_hpage_workfn(struct work_struct *work) |
| 1507 | { |
| 1508 | struct llist_node *node; |
| 1509 | struct page *page; |
| 1510 | |
| 1511 | node = llist_del_all(&hpage_freelist); |
| 1512 | |
| 1513 | while (node) { |
| 1514 | page = container_of((struct address_space **)node, |
| 1515 | struct page, mapping); |
| 1516 | node = node->next; |
| 1517 | __free_huge_page(page); |
| 1518 | } |
| 1519 | } |
| 1520 | static DECLARE_WORK(free_hpage_work, free_hpage_workfn); |
| 1521 | |
| 1522 | void free_huge_page(struct page *page) |
| 1523 | { |
| 1524 | /* |
| 1525 | * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. |
| 1526 | */ |
| 1527 | if (!in_task()) { |
| 1528 | /* |
| 1529 | * Only call schedule_work() if hpage_freelist is previously |
| 1530 | * empty. Otherwise, schedule_work() had been called but the |
| 1531 | * workfn hasn't retrieved the list yet. |
| 1532 | */ |
| 1533 | if (llist_add((struct llist_node *)&page->mapping, |
| 1534 | &hpage_freelist)) |
| 1535 | schedule_work(&free_hpage_work); |
| 1536 | return; |
| 1537 | } |
| 1538 | |
| 1539 | __free_huge_page(page); |
| 1540 | } |
| 1541 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1542 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
| 1543 | { |
| 1544 | INIT_LIST_HEAD(&page->lru); |
| 1545 | set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1546 | set_hugetlb_cgroup(page, NULL); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1547 | set_hugetlb_cgroup_rsvd(page, NULL); |
| 1548 | spin_lock(&hugetlb_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1549 | h->nr_huge_pages++; |
| 1550 | h->nr_huge_pages_node[nid]++; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1551 | ClearPageHugeFreed(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1552 | spin_unlock(&hugetlb_lock); |
| 1553 | } |
| 1554 | |
| 1555 | static void prep_compound_gigantic_page(struct page *page, unsigned int order) |
| 1556 | { |
| 1557 | int i; |
| 1558 | int nr_pages = 1 << order; |
| 1559 | struct page *p = page + 1; |
| 1560 | |
| 1561 | /* we rely on prep_new_huge_page to set the destructor */ |
| 1562 | set_compound_order(page, order); |
| 1563 | __ClearPageReserved(page); |
| 1564 | __SetPageHead(page); |
| 1565 | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { |
| 1566 | /* |
| 1567 | * For gigantic hugepages allocated through bootmem at |
| 1568 | * boot, it's safer to be consistent with the not-gigantic |
| 1569 | * hugepages and clear the PG_reserved bit from all tail pages |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1570 | * too. Otherwise drivers using get_user_pages() to access tail |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1571 | * pages may get the reference counting wrong if they see |
| 1572 | * PG_reserved set on a tail page (despite the head page not |
| 1573 | * having PG_reserved set). Enforcing this consistency between |
| 1574 | * head and tail pages allows drivers to optimize away a check |
| 1575 | * on the head page when they need know if put_page() is needed |
| 1576 | * after get_user_pages(). |
| 1577 | */ |
| 1578 | __ClearPageReserved(p); |
| 1579 | set_page_count(p, 0); |
| 1580 | set_compound_head(p, page); |
| 1581 | } |
| 1582 | atomic_set(compound_mapcount_ptr(page), -1); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1583 | atomic_set(compound_pincount_ptr(page), 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1584 | } |
| 1585 | |
| 1586 | /* |
| 1587 | * PageHuge() only returns true for hugetlbfs pages, but not for normal or |
| 1588 | * transparent huge pages. See the PageTransHuge() documentation for more |
| 1589 | * details. |
| 1590 | */ |
| 1591 | int PageHuge(struct page *page) |
| 1592 | { |
| 1593 | if (!PageCompound(page)) |
| 1594 | return 0; |
| 1595 | |
| 1596 | page = compound_head(page); |
| 1597 | return page[1].compound_dtor == HUGETLB_PAGE_DTOR; |
| 1598 | } |
| 1599 | EXPORT_SYMBOL_GPL(PageHuge); |
| 1600 | |
| 1601 | /* |
| 1602 | * PageHeadHuge() only returns true for hugetlbfs head page, but not for |
| 1603 | * normal or transparent huge pages. |
| 1604 | */ |
| 1605 | int PageHeadHuge(struct page *page_head) |
| 1606 | { |
| 1607 | if (!PageHead(page_head)) |
| 1608 | return 0; |
| 1609 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1610 | return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; |
| 1611 | } |
| 1612 | |
| 1613 | /* |
| 1614 | * Find and lock address space (mapping) in write mode. |
| 1615 | * |
| 1616 | * Upon entry, the page is locked which means that page_mapping() is |
| 1617 | * stable. Due to locking order, we can only trylock_write. If we can |
| 1618 | * not get the lock, simply return NULL to caller. |
| 1619 | */ |
| 1620 | struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) |
| 1621 | { |
| 1622 | struct address_space *mapping = page_mapping(hpage); |
| 1623 | |
| 1624 | if (!mapping) |
| 1625 | return mapping; |
| 1626 | |
| 1627 | if (i_mmap_trylock_write(mapping)) |
| 1628 | return mapping; |
| 1629 | |
| 1630 | return NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1631 | } |
| 1632 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1633 | pgoff_t hugetlb_basepage_index(struct page *page) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1634 | { |
| 1635 | struct page *page_head = compound_head(page); |
| 1636 | pgoff_t index = page_index(page_head); |
| 1637 | unsigned long compound_idx; |
| 1638 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1639 | if (compound_order(page_head) >= MAX_ORDER) |
| 1640 | compound_idx = page_to_pfn(page) - page_to_pfn(page_head); |
| 1641 | else |
| 1642 | compound_idx = page - page_head; |
| 1643 | |
| 1644 | return (index << compound_order(page_head)) + compound_idx; |
| 1645 | } |
| 1646 | |
| 1647 | static struct page *alloc_buddy_huge_page(struct hstate *h, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1648 | gfp_t gfp_mask, int nid, nodemask_t *nmask, |
| 1649 | nodemask_t *node_alloc_noretry) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1650 | { |
| 1651 | int order = huge_page_order(h); |
| 1652 | struct page *page; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1653 | bool alloc_try_hard = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1654 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1655 | /* |
| 1656 | * By default we always try hard to allocate the page with |
| 1657 | * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in |
| 1658 | * a loop (to adjust global huge page counts) and previous allocation |
| 1659 | * failed, do not continue to try hard on the same node. Use the |
| 1660 | * node_alloc_noretry bitmap to manage this state information. |
| 1661 | */ |
| 1662 | if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) |
| 1663 | alloc_try_hard = false; |
| 1664 | gfp_mask |= __GFP_COMP|__GFP_NOWARN; |
| 1665 | if (alloc_try_hard) |
| 1666 | gfp_mask |= __GFP_RETRY_MAYFAIL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1667 | if (nid == NUMA_NO_NODE) |
| 1668 | nid = numa_mem_id(); |
| 1669 | page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); |
| 1670 | if (page) |
| 1671 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
| 1672 | else |
| 1673 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
| 1674 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1675 | /* |
| 1676 | * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this |
| 1677 | * indicates an overall state change. Clear bit so that we resume |
| 1678 | * normal 'try hard' allocations. |
| 1679 | */ |
| 1680 | if (node_alloc_noretry && page && !alloc_try_hard) |
| 1681 | node_clear(nid, *node_alloc_noretry); |
| 1682 | |
| 1683 | /* |
| 1684 | * If we tried hard to get a page but failed, set bit so that |
| 1685 | * subsequent attempts will not try as hard until there is an |
| 1686 | * overall state change. |
| 1687 | */ |
| 1688 | if (node_alloc_noretry && !page && alloc_try_hard) |
| 1689 | node_set(nid, *node_alloc_noretry); |
| 1690 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1691 | return page; |
| 1692 | } |
| 1693 | |
| 1694 | /* |
| 1695 | * Common helper to allocate a fresh hugetlb page. All specific allocators |
| 1696 | * should use this function to get new hugetlb pages |
| 1697 | */ |
| 1698 | static struct page *alloc_fresh_huge_page(struct hstate *h, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1699 | gfp_t gfp_mask, int nid, nodemask_t *nmask, |
| 1700 | nodemask_t *node_alloc_noretry) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1701 | { |
| 1702 | struct page *page; |
| 1703 | |
| 1704 | if (hstate_is_gigantic(h)) |
| 1705 | page = alloc_gigantic_page(h, gfp_mask, nid, nmask); |
| 1706 | else |
| 1707 | page = alloc_buddy_huge_page(h, gfp_mask, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1708 | nid, nmask, node_alloc_noretry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1709 | if (!page) |
| 1710 | return NULL; |
| 1711 | |
| 1712 | if (hstate_is_gigantic(h)) |
| 1713 | prep_compound_gigantic_page(page, huge_page_order(h)); |
| 1714 | prep_new_huge_page(h, page, page_to_nid(page)); |
| 1715 | |
| 1716 | return page; |
| 1717 | } |
| 1718 | |
| 1719 | /* |
| 1720 | * Allocates a fresh page to the hugetlb allocator pool in the node interleaved |
| 1721 | * manner. |
| 1722 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1723 | static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, |
| 1724 | nodemask_t *node_alloc_noretry) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1725 | { |
| 1726 | struct page *page; |
| 1727 | int nr_nodes, node; |
| 1728 | gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; |
| 1729 | |
| 1730 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1731 | page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, |
| 1732 | node_alloc_noretry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1733 | if (page) |
| 1734 | break; |
| 1735 | } |
| 1736 | |
| 1737 | if (!page) |
| 1738 | return 0; |
| 1739 | |
| 1740 | put_page(page); /* free it into the hugepage allocator */ |
| 1741 | |
| 1742 | return 1; |
| 1743 | } |
| 1744 | |
| 1745 | /* |
| 1746 | * Free huge page from pool from next node to free. |
| 1747 | * Attempt to keep persistent huge pages more or less |
| 1748 | * balanced over allowed nodes. |
| 1749 | * Called with hugetlb_lock locked. |
| 1750 | */ |
| 1751 | static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, |
| 1752 | bool acct_surplus) |
| 1753 | { |
| 1754 | int nr_nodes, node; |
| 1755 | int ret = 0; |
| 1756 | |
| 1757 | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { |
| 1758 | /* |
| 1759 | * If we're returning unused surplus pages, only examine |
| 1760 | * nodes with surplus pages. |
| 1761 | */ |
| 1762 | if ((!acct_surplus || h->surplus_huge_pages_node[node]) && |
| 1763 | !list_empty(&h->hugepage_freelists[node])) { |
| 1764 | struct page *page = |
| 1765 | list_entry(h->hugepage_freelists[node].next, |
| 1766 | struct page, lru); |
| 1767 | list_del(&page->lru); |
| 1768 | h->free_huge_pages--; |
| 1769 | h->free_huge_pages_node[node]--; |
| 1770 | if (acct_surplus) { |
| 1771 | h->surplus_huge_pages--; |
| 1772 | h->surplus_huge_pages_node[node]--; |
| 1773 | } |
| 1774 | update_and_free_page(h, page); |
| 1775 | ret = 1; |
| 1776 | break; |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | return ret; |
| 1781 | } |
| 1782 | |
| 1783 | /* |
| 1784 | * Dissolve a given free hugepage into free buddy pages. This function does |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1785 | * nothing for in-use hugepages and non-hugepages. |
| 1786 | * This function returns values like below: |
| 1787 | * |
| 1788 | * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use |
| 1789 | * (allocated or reserved.) |
| 1790 | * 0: successfully dissolved free hugepages or the page is not a |
| 1791 | * hugepage (considered as already dissolved) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1792 | */ |
| 1793 | int dissolve_free_huge_page(struct page *page) |
| 1794 | { |
| 1795 | int rc = -EBUSY; |
| 1796 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1797 | retry: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1798 | /* Not to disrupt normal path by vainly holding hugetlb_lock */ |
| 1799 | if (!PageHuge(page)) |
| 1800 | return 0; |
| 1801 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1802 | spin_lock(&hugetlb_lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1803 | if (!PageHuge(page)) { |
| 1804 | rc = 0; |
| 1805 | goto out; |
| 1806 | } |
| 1807 | |
| 1808 | if (!page_count(page)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1809 | struct page *head = compound_head(page); |
| 1810 | struct hstate *h = page_hstate(head); |
| 1811 | int nid = page_to_nid(head); |
| 1812 | if (h->free_huge_pages - h->resv_huge_pages == 0) |
| 1813 | goto out; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1814 | |
| 1815 | /* |
| 1816 | * We should make sure that the page is already on the free list |
| 1817 | * when it is dissolved. |
| 1818 | */ |
| 1819 | if (unlikely(!PageHugeFreed(head))) { |
| 1820 | spin_unlock(&hugetlb_lock); |
| 1821 | cond_resched(); |
| 1822 | |
| 1823 | /* |
| 1824 | * Theoretically, we should return -EBUSY when we |
| 1825 | * encounter this race. In fact, we have a chance |
| 1826 | * to successfully dissolve the page if we do a |
| 1827 | * retry. Because the race window is quite small. |
| 1828 | * If we seize this opportunity, it is an optimization |
| 1829 | * for increasing the success rate of dissolving page. |
| 1830 | */ |
| 1831 | goto retry; |
| 1832 | } |
| 1833 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1834 | /* |
| 1835 | * Move PageHWPoison flag from head page to the raw error page, |
| 1836 | * which makes any subpages rather than the error page reusable. |
| 1837 | */ |
| 1838 | if (PageHWPoison(head) && page != head) { |
| 1839 | SetPageHWPoison(page); |
| 1840 | ClearPageHWPoison(head); |
| 1841 | } |
| 1842 | list_del(&head->lru); |
| 1843 | h->free_huge_pages--; |
| 1844 | h->free_huge_pages_node[nid]--; |
| 1845 | h->max_huge_pages--; |
| 1846 | update_and_free_page(h, head); |
| 1847 | rc = 0; |
| 1848 | } |
| 1849 | out: |
| 1850 | spin_unlock(&hugetlb_lock); |
| 1851 | return rc; |
| 1852 | } |
| 1853 | |
| 1854 | /* |
| 1855 | * Dissolve free hugepages in a given pfn range. Used by memory hotplug to |
| 1856 | * make specified memory blocks removable from the system. |
| 1857 | * Note that this will dissolve a free gigantic hugepage completely, if any |
| 1858 | * part of it lies within the given range. |
| 1859 | * Also note that if dissolve_free_huge_page() returns with an error, all |
| 1860 | * free hugepages that were dissolved before that error are lost. |
| 1861 | */ |
| 1862 | int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) |
| 1863 | { |
| 1864 | unsigned long pfn; |
| 1865 | struct page *page; |
| 1866 | int rc = 0; |
| 1867 | |
| 1868 | if (!hugepages_supported()) |
| 1869 | return rc; |
| 1870 | |
| 1871 | for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { |
| 1872 | page = pfn_to_page(pfn); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1873 | rc = dissolve_free_huge_page(page); |
| 1874 | if (rc) |
| 1875 | break; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1876 | } |
| 1877 | |
| 1878 | return rc; |
| 1879 | } |
| 1880 | |
| 1881 | /* |
| 1882 | * Allocates a fresh surplus page from the page allocator. |
| 1883 | */ |
| 1884 | static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, |
| 1885 | int nid, nodemask_t *nmask) |
| 1886 | { |
| 1887 | struct page *page = NULL; |
| 1888 | |
| 1889 | if (hstate_is_gigantic(h)) |
| 1890 | return NULL; |
| 1891 | |
| 1892 | spin_lock(&hugetlb_lock); |
| 1893 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) |
| 1894 | goto out_unlock; |
| 1895 | spin_unlock(&hugetlb_lock); |
| 1896 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1897 | page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1898 | if (!page) |
| 1899 | return NULL; |
| 1900 | |
| 1901 | spin_lock(&hugetlb_lock); |
| 1902 | /* |
| 1903 | * We could have raced with the pool size change. |
| 1904 | * Double check that and simply deallocate the new page |
| 1905 | * if we would end up overcommiting the surpluses. Abuse |
| 1906 | * temporary page to workaround the nasty free_huge_page |
| 1907 | * codeflow |
| 1908 | */ |
| 1909 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
| 1910 | SetPageHugeTemporary(page); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1911 | spin_unlock(&hugetlb_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1912 | put_page(page); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1913 | return NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1914 | } else { |
| 1915 | h->surplus_huge_pages++; |
| 1916 | h->surplus_huge_pages_node[page_to_nid(page)]++; |
| 1917 | } |
| 1918 | |
| 1919 | out_unlock: |
| 1920 | spin_unlock(&hugetlb_lock); |
| 1921 | |
| 1922 | return page; |
| 1923 | } |
| 1924 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1925 | static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1926 | int nid, nodemask_t *nmask) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1927 | { |
| 1928 | struct page *page; |
| 1929 | |
| 1930 | if (hstate_is_gigantic(h)) |
| 1931 | return NULL; |
| 1932 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1933 | page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1934 | if (!page) |
| 1935 | return NULL; |
| 1936 | |
| 1937 | /* |
| 1938 | * We do not account these pages as surplus because they are only |
| 1939 | * temporary and will be released properly on the last reference |
| 1940 | */ |
| 1941 | SetPageHugeTemporary(page); |
| 1942 | |
| 1943 | return page; |
| 1944 | } |
| 1945 | |
| 1946 | /* |
| 1947 | * Use the VMA's mpolicy to allocate a huge page from the buddy. |
| 1948 | */ |
| 1949 | static |
| 1950 | struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, |
| 1951 | struct vm_area_struct *vma, unsigned long addr) |
| 1952 | { |
| 1953 | struct page *page; |
| 1954 | struct mempolicy *mpol; |
| 1955 | gfp_t gfp_mask = htlb_alloc_mask(h); |
| 1956 | int nid; |
| 1957 | nodemask_t *nodemask; |
| 1958 | |
| 1959 | nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); |
| 1960 | page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); |
| 1961 | mpol_cond_put(mpol); |
| 1962 | |
| 1963 | return page; |
| 1964 | } |
| 1965 | |
| 1966 | /* page migration callback function */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1967 | struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1968 | nodemask_t *nmask, gfp_t gfp_mask) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1969 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1970 | spin_lock(&hugetlb_lock); |
| 1971 | if (h->free_huge_pages - h->resv_huge_pages > 0) { |
| 1972 | struct page *page; |
| 1973 | |
| 1974 | page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); |
| 1975 | if (page) { |
| 1976 | spin_unlock(&hugetlb_lock); |
| 1977 | return page; |
| 1978 | } |
| 1979 | } |
| 1980 | spin_unlock(&hugetlb_lock); |
| 1981 | |
| 1982 | return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); |
| 1983 | } |
| 1984 | |
| 1985 | /* mempolicy aware migration callback */ |
| 1986 | struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, |
| 1987 | unsigned long address) |
| 1988 | { |
| 1989 | struct mempolicy *mpol; |
| 1990 | nodemask_t *nodemask; |
| 1991 | struct page *page; |
| 1992 | gfp_t gfp_mask; |
| 1993 | int node; |
| 1994 | |
| 1995 | gfp_mask = htlb_alloc_mask(h); |
| 1996 | node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1997 | page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1998 | mpol_cond_put(mpol); |
| 1999 | |
| 2000 | return page; |
| 2001 | } |
| 2002 | |
| 2003 | /* |
| 2004 | * Increase the hugetlb pool such that it can accommodate a reservation |
| 2005 | * of size 'delta'. |
| 2006 | */ |
| 2007 | static int gather_surplus_pages(struct hstate *h, int delta) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2008 | __must_hold(&hugetlb_lock) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2009 | { |
| 2010 | struct list_head surplus_list; |
| 2011 | struct page *page, *tmp; |
| 2012 | int ret, i; |
| 2013 | int needed, allocated; |
| 2014 | bool alloc_ok = true; |
| 2015 | |
| 2016 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
| 2017 | if (needed <= 0) { |
| 2018 | h->resv_huge_pages += delta; |
| 2019 | return 0; |
| 2020 | } |
| 2021 | |
| 2022 | allocated = 0; |
| 2023 | INIT_LIST_HEAD(&surplus_list); |
| 2024 | |
| 2025 | ret = -ENOMEM; |
| 2026 | retry: |
| 2027 | spin_unlock(&hugetlb_lock); |
| 2028 | for (i = 0; i < needed; i++) { |
| 2029 | page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), |
| 2030 | NUMA_NO_NODE, NULL); |
| 2031 | if (!page) { |
| 2032 | alloc_ok = false; |
| 2033 | break; |
| 2034 | } |
| 2035 | list_add(&page->lru, &surplus_list); |
| 2036 | cond_resched(); |
| 2037 | } |
| 2038 | allocated += i; |
| 2039 | |
| 2040 | /* |
| 2041 | * After retaking hugetlb_lock, we need to recalculate 'needed' |
| 2042 | * because either resv_huge_pages or free_huge_pages may have changed. |
| 2043 | */ |
| 2044 | spin_lock(&hugetlb_lock); |
| 2045 | needed = (h->resv_huge_pages + delta) - |
| 2046 | (h->free_huge_pages + allocated); |
| 2047 | if (needed > 0) { |
| 2048 | if (alloc_ok) |
| 2049 | goto retry; |
| 2050 | /* |
| 2051 | * We were not able to allocate enough pages to |
| 2052 | * satisfy the entire reservation so we free what |
| 2053 | * we've allocated so far. |
| 2054 | */ |
| 2055 | goto free; |
| 2056 | } |
| 2057 | /* |
| 2058 | * The surplus_list now contains _at_least_ the number of extra pages |
| 2059 | * needed to accommodate the reservation. Add the appropriate number |
| 2060 | * of pages to the hugetlb pool and free the extras back to the buddy |
| 2061 | * allocator. Commit the entire reservation here to prevent another |
| 2062 | * process from stealing the pages as they are added to the pool but |
| 2063 | * before they are reserved. |
| 2064 | */ |
| 2065 | needed += allocated; |
| 2066 | h->resv_huge_pages += delta; |
| 2067 | ret = 0; |
| 2068 | |
| 2069 | /* Free the needed pages to the hugetlb pool */ |
| 2070 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
| 2071 | if ((--needed) < 0) |
| 2072 | break; |
| 2073 | /* |
| 2074 | * This page is now managed by the hugetlb allocator and has |
| 2075 | * no users -- drop the buddy allocator's reference. |
| 2076 | */ |
| 2077 | put_page_testzero(page); |
| 2078 | VM_BUG_ON_PAGE(page_count(page), page); |
| 2079 | enqueue_huge_page(h, page); |
| 2080 | } |
| 2081 | free: |
| 2082 | spin_unlock(&hugetlb_lock); |
| 2083 | |
| 2084 | /* Free unnecessary surplus pages to the buddy allocator */ |
| 2085 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) |
| 2086 | put_page(page); |
| 2087 | spin_lock(&hugetlb_lock); |
| 2088 | |
| 2089 | return ret; |
| 2090 | } |
| 2091 | |
| 2092 | /* |
| 2093 | * This routine has two main purposes: |
| 2094 | * 1) Decrement the reservation count (resv_huge_pages) by the value passed |
| 2095 | * in unused_resv_pages. This corresponds to the prior adjustments made |
| 2096 | * to the associated reservation map. |
| 2097 | * 2) Free any unused surplus pages that may have been allocated to satisfy |
| 2098 | * the reservation. As many as unused_resv_pages may be freed. |
| 2099 | * |
| 2100 | * Called with hugetlb_lock held. However, the lock could be dropped (and |
| 2101 | * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, |
| 2102 | * we must make sure nobody else can claim pages we are in the process of |
| 2103 | * freeing. Do this by ensuring resv_huge_page always is greater than the |
| 2104 | * number of huge pages we plan to free when dropping the lock. |
| 2105 | */ |
| 2106 | static void return_unused_surplus_pages(struct hstate *h, |
| 2107 | unsigned long unused_resv_pages) |
| 2108 | { |
| 2109 | unsigned long nr_pages; |
| 2110 | |
| 2111 | /* Cannot return gigantic pages currently */ |
| 2112 | if (hstate_is_gigantic(h)) |
| 2113 | goto out; |
| 2114 | |
| 2115 | /* |
| 2116 | * Part (or even all) of the reservation could have been backed |
| 2117 | * by pre-allocated pages. Only free surplus pages. |
| 2118 | */ |
| 2119 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); |
| 2120 | |
| 2121 | /* |
| 2122 | * We want to release as many surplus pages as possible, spread |
| 2123 | * evenly across all nodes with memory. Iterate across these nodes |
| 2124 | * until we can no longer free unreserved surplus pages. This occurs |
| 2125 | * when the nodes with surplus pages have no free pages. |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2126 | * free_pool_huge_page() will balance the freed pages across the |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2127 | * on-line nodes with memory and will handle the hstate accounting. |
| 2128 | * |
| 2129 | * Note that we decrement resv_huge_pages as we free the pages. If |
| 2130 | * we drop the lock, resv_huge_pages will still be sufficiently large |
| 2131 | * to cover subsequent pages we may free. |
| 2132 | */ |
| 2133 | while (nr_pages--) { |
| 2134 | h->resv_huge_pages--; |
| 2135 | unused_resv_pages--; |
| 2136 | if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) |
| 2137 | goto out; |
| 2138 | cond_resched_lock(&hugetlb_lock); |
| 2139 | } |
| 2140 | |
| 2141 | out: |
| 2142 | /* Fully uncommit the reservation */ |
| 2143 | h->resv_huge_pages -= unused_resv_pages; |
| 2144 | } |
| 2145 | |
| 2146 | |
| 2147 | /* |
| 2148 | * vma_needs_reservation, vma_commit_reservation and vma_end_reservation |
| 2149 | * are used by the huge page allocation routines to manage reservations. |
| 2150 | * |
| 2151 | * vma_needs_reservation is called to determine if the huge page at addr |
| 2152 | * within the vma has an associated reservation. If a reservation is |
| 2153 | * needed, the value 1 is returned. The caller is then responsible for |
| 2154 | * managing the global reservation and subpool usage counts. After |
| 2155 | * the huge page has been allocated, vma_commit_reservation is called |
| 2156 | * to add the page to the reservation map. If the page allocation fails, |
| 2157 | * the reservation must be ended instead of committed. vma_end_reservation |
| 2158 | * is called in such cases. |
| 2159 | * |
| 2160 | * In the normal case, vma_commit_reservation returns the same value |
| 2161 | * as the preceding vma_needs_reservation call. The only time this |
| 2162 | * is not the case is if a reserve map was changed between calls. It |
| 2163 | * is the responsibility of the caller to notice the difference and |
| 2164 | * take appropriate action. |
| 2165 | * |
| 2166 | * vma_add_reservation is used in error paths where a reservation must |
| 2167 | * be restored when a newly allocated huge page must be freed. It is |
| 2168 | * to be called after calling vma_needs_reservation to determine if a |
| 2169 | * reservation exists. |
| 2170 | */ |
| 2171 | enum vma_resv_mode { |
| 2172 | VMA_NEEDS_RESV, |
| 2173 | VMA_COMMIT_RESV, |
| 2174 | VMA_END_RESV, |
| 2175 | VMA_ADD_RESV, |
| 2176 | }; |
| 2177 | static long __vma_reservation_common(struct hstate *h, |
| 2178 | struct vm_area_struct *vma, unsigned long addr, |
| 2179 | enum vma_resv_mode mode) |
| 2180 | { |
| 2181 | struct resv_map *resv; |
| 2182 | pgoff_t idx; |
| 2183 | long ret; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2184 | long dummy_out_regions_needed; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2185 | |
| 2186 | resv = vma_resv_map(vma); |
| 2187 | if (!resv) |
| 2188 | return 1; |
| 2189 | |
| 2190 | idx = vma_hugecache_offset(h, vma, addr); |
| 2191 | switch (mode) { |
| 2192 | case VMA_NEEDS_RESV: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2193 | ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); |
| 2194 | /* We assume that vma_reservation_* routines always operate on |
| 2195 | * 1 page, and that adding to resv map a 1 page entry can only |
| 2196 | * ever require 1 region. |
| 2197 | */ |
| 2198 | VM_BUG_ON(dummy_out_regions_needed != 1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2199 | break; |
| 2200 | case VMA_COMMIT_RESV: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2201 | ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); |
| 2202 | /* region_add calls of range 1 should never fail. */ |
| 2203 | VM_BUG_ON(ret < 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2204 | break; |
| 2205 | case VMA_END_RESV: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2206 | region_abort(resv, idx, idx + 1, 1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2207 | ret = 0; |
| 2208 | break; |
| 2209 | case VMA_ADD_RESV: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2210 | if (vma->vm_flags & VM_MAYSHARE) { |
| 2211 | ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); |
| 2212 | /* region_add calls of range 1 should never fail. */ |
| 2213 | VM_BUG_ON(ret < 0); |
| 2214 | } else { |
| 2215 | region_abort(resv, idx, idx + 1, 1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2216 | ret = region_del(resv, idx, idx + 1); |
| 2217 | } |
| 2218 | break; |
| 2219 | default: |
| 2220 | BUG(); |
| 2221 | } |
| 2222 | |
| 2223 | if (vma->vm_flags & VM_MAYSHARE) |
| 2224 | return ret; |
| 2225 | else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { |
| 2226 | /* |
| 2227 | * In most cases, reserves always exist for private mappings. |
| 2228 | * However, a file associated with mapping could have been |
| 2229 | * hole punched or truncated after reserves were consumed. |
| 2230 | * As subsequent fault on such a range will not use reserves. |
| 2231 | * Subtle - The reserve map for private mappings has the |
| 2232 | * opposite meaning than that of shared mappings. If NO |
| 2233 | * entry is in the reserve map, it means a reservation exists. |
| 2234 | * If an entry exists in the reserve map, it means the |
| 2235 | * reservation has already been consumed. As a result, the |
| 2236 | * return value of this routine is the opposite of the |
| 2237 | * value returned from reserve map manipulation routines above. |
| 2238 | */ |
| 2239 | if (ret) |
| 2240 | return 0; |
| 2241 | else |
| 2242 | return 1; |
| 2243 | } |
| 2244 | else |
| 2245 | return ret < 0 ? ret : 0; |
| 2246 | } |
| 2247 | |
| 2248 | static long vma_needs_reservation(struct hstate *h, |
| 2249 | struct vm_area_struct *vma, unsigned long addr) |
| 2250 | { |
| 2251 | return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); |
| 2252 | } |
| 2253 | |
| 2254 | static long vma_commit_reservation(struct hstate *h, |
| 2255 | struct vm_area_struct *vma, unsigned long addr) |
| 2256 | { |
| 2257 | return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); |
| 2258 | } |
| 2259 | |
| 2260 | static void vma_end_reservation(struct hstate *h, |
| 2261 | struct vm_area_struct *vma, unsigned long addr) |
| 2262 | { |
| 2263 | (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); |
| 2264 | } |
| 2265 | |
| 2266 | static long vma_add_reservation(struct hstate *h, |
| 2267 | struct vm_area_struct *vma, unsigned long addr) |
| 2268 | { |
| 2269 | return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); |
| 2270 | } |
| 2271 | |
| 2272 | /* |
| 2273 | * This routine is called to restore a reservation on error paths. In the |
| 2274 | * specific error paths, a huge page was allocated (via alloc_huge_page) |
| 2275 | * and is about to be freed. If a reservation for the page existed, |
| 2276 | * alloc_huge_page would have consumed the reservation and set PagePrivate |
| 2277 | * in the newly allocated page. When the page is freed via free_huge_page, |
| 2278 | * the global reservation count will be incremented if PagePrivate is set. |
| 2279 | * However, free_huge_page can not adjust the reserve map. Adjust the |
| 2280 | * reserve map here to be consistent with global reserve count adjustments |
| 2281 | * to be made by free_huge_page. |
| 2282 | */ |
| 2283 | static void restore_reserve_on_error(struct hstate *h, |
| 2284 | struct vm_area_struct *vma, unsigned long address, |
| 2285 | struct page *page) |
| 2286 | { |
| 2287 | if (unlikely(PagePrivate(page))) { |
| 2288 | long rc = vma_needs_reservation(h, vma, address); |
| 2289 | |
| 2290 | if (unlikely(rc < 0)) { |
| 2291 | /* |
| 2292 | * Rare out of memory condition in reserve map |
| 2293 | * manipulation. Clear PagePrivate so that |
| 2294 | * global reserve count will not be incremented |
| 2295 | * by free_huge_page. This will make it appear |
| 2296 | * as though the reservation for this page was |
| 2297 | * consumed. This may prevent the task from |
| 2298 | * faulting in the page at a later time. This |
| 2299 | * is better than inconsistent global huge page |
| 2300 | * accounting of reserve counts. |
| 2301 | */ |
| 2302 | ClearPagePrivate(page); |
| 2303 | } else if (rc) { |
| 2304 | rc = vma_add_reservation(h, vma, address); |
| 2305 | if (unlikely(rc < 0)) |
| 2306 | /* |
| 2307 | * See above comment about rare out of |
| 2308 | * memory condition. |
| 2309 | */ |
| 2310 | ClearPagePrivate(page); |
| 2311 | } else |
| 2312 | vma_end_reservation(h, vma, address); |
| 2313 | } |
| 2314 | } |
| 2315 | |
| 2316 | struct page *alloc_huge_page(struct vm_area_struct *vma, |
| 2317 | unsigned long addr, int avoid_reserve) |
| 2318 | { |
| 2319 | struct hugepage_subpool *spool = subpool_vma(vma); |
| 2320 | struct hstate *h = hstate_vma(vma); |
| 2321 | struct page *page; |
| 2322 | long map_chg, map_commit; |
| 2323 | long gbl_chg; |
| 2324 | int ret, idx; |
| 2325 | struct hugetlb_cgroup *h_cg; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2326 | bool deferred_reserve; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2327 | |
| 2328 | idx = hstate_index(h); |
| 2329 | /* |
| 2330 | * Examine the region/reserve map to determine if the process |
| 2331 | * has a reservation for the page to be allocated. A return |
| 2332 | * code of zero indicates a reservation exists (no change). |
| 2333 | */ |
| 2334 | map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); |
| 2335 | if (map_chg < 0) |
| 2336 | return ERR_PTR(-ENOMEM); |
| 2337 | |
| 2338 | /* |
| 2339 | * Processes that did not create the mapping will have no |
| 2340 | * reserves as indicated by the region/reserve map. Check |
| 2341 | * that the allocation will not exceed the subpool limit. |
| 2342 | * Allocations for MAP_NORESERVE mappings also need to be |
| 2343 | * checked against any subpool limit. |
| 2344 | */ |
| 2345 | if (map_chg || avoid_reserve) { |
| 2346 | gbl_chg = hugepage_subpool_get_pages(spool, 1); |
| 2347 | if (gbl_chg < 0) { |
| 2348 | vma_end_reservation(h, vma, addr); |
| 2349 | return ERR_PTR(-ENOSPC); |
| 2350 | } |
| 2351 | |
| 2352 | /* |
| 2353 | * Even though there was no reservation in the region/reserve |
| 2354 | * map, there could be reservations associated with the |
| 2355 | * subpool that can be used. This would be indicated if the |
| 2356 | * return value of hugepage_subpool_get_pages() is zero. |
| 2357 | * However, if avoid_reserve is specified we still avoid even |
| 2358 | * the subpool reservations. |
| 2359 | */ |
| 2360 | if (avoid_reserve) |
| 2361 | gbl_chg = 1; |
| 2362 | } |
| 2363 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2364 | /* If this allocation is not consuming a reservation, charge it now. |
| 2365 | */ |
| 2366 | deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma); |
| 2367 | if (deferred_reserve) { |
| 2368 | ret = hugetlb_cgroup_charge_cgroup_rsvd( |
| 2369 | idx, pages_per_huge_page(h), &h_cg); |
| 2370 | if (ret) |
| 2371 | goto out_subpool_put; |
| 2372 | } |
| 2373 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2374 | ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); |
| 2375 | if (ret) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2376 | goto out_uncharge_cgroup_reservation; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2377 | |
| 2378 | spin_lock(&hugetlb_lock); |
| 2379 | /* |
| 2380 | * glb_chg is passed to indicate whether or not a page must be taken |
| 2381 | * from the global free pool (global change). gbl_chg == 0 indicates |
| 2382 | * a reservation exists for the allocation. |
| 2383 | */ |
| 2384 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); |
| 2385 | if (!page) { |
| 2386 | spin_unlock(&hugetlb_lock); |
| 2387 | page = alloc_buddy_huge_page_with_mpol(h, vma, addr); |
| 2388 | if (!page) |
| 2389 | goto out_uncharge_cgroup; |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 2390 | spin_lock(&hugetlb_lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2391 | if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { |
| 2392 | SetPagePrivate(page); |
| 2393 | h->resv_huge_pages--; |
| 2394 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2395 | list_add(&page->lru, &h->hugepage_activelist); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2396 | /* Fall through */ |
| 2397 | } |
| 2398 | hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2399 | /* If allocation is not consuming a reservation, also store the |
| 2400 | * hugetlb_cgroup pointer on the page. |
| 2401 | */ |
| 2402 | if (deferred_reserve) { |
| 2403 | hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), |
| 2404 | h_cg, page); |
| 2405 | } |
| 2406 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2407 | spin_unlock(&hugetlb_lock); |
| 2408 | |
| 2409 | set_page_private(page, (unsigned long)spool); |
| 2410 | |
| 2411 | map_commit = vma_commit_reservation(h, vma, addr); |
| 2412 | if (unlikely(map_chg > map_commit)) { |
| 2413 | /* |
| 2414 | * The page was added to the reservation map between |
| 2415 | * vma_needs_reservation and vma_commit_reservation. |
| 2416 | * This indicates a race with hugetlb_reserve_pages. |
| 2417 | * Adjust for the subpool count incremented above AND |
| 2418 | * in hugetlb_reserve_pages for the same page. Also, |
| 2419 | * the reservation count added in hugetlb_reserve_pages |
| 2420 | * no longer applies. |
| 2421 | */ |
| 2422 | long rsv_adjust; |
| 2423 | |
| 2424 | rsv_adjust = hugepage_subpool_put_pages(spool, 1); |
| 2425 | hugetlb_acct_memory(h, -rsv_adjust); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2426 | if (deferred_reserve) |
| 2427 | hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), |
| 2428 | pages_per_huge_page(h), page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2429 | } |
| 2430 | return page; |
| 2431 | |
| 2432 | out_uncharge_cgroup: |
| 2433 | hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2434 | out_uncharge_cgroup_reservation: |
| 2435 | if (deferred_reserve) |
| 2436 | hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), |
| 2437 | h_cg); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2438 | out_subpool_put: |
| 2439 | if (map_chg || avoid_reserve) |
| 2440 | hugepage_subpool_put_pages(spool, 1); |
| 2441 | vma_end_reservation(h, vma, addr); |
| 2442 | return ERR_PTR(-ENOSPC); |
| 2443 | } |
| 2444 | |
| 2445 | int alloc_bootmem_huge_page(struct hstate *h) |
| 2446 | __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); |
| 2447 | int __alloc_bootmem_huge_page(struct hstate *h) |
| 2448 | { |
| 2449 | struct huge_bootmem_page *m; |
| 2450 | int nr_nodes, node; |
| 2451 | |
| 2452 | for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { |
| 2453 | void *addr; |
| 2454 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2455 | addr = memblock_alloc_try_nid_raw( |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2456 | huge_page_size(h), huge_page_size(h), |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2457 | 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2458 | if (addr) { |
| 2459 | /* |
| 2460 | * Use the beginning of the huge page to store the |
| 2461 | * huge_bootmem_page struct (until gather_bootmem |
| 2462 | * puts them into the mem_map). |
| 2463 | */ |
| 2464 | m = addr; |
| 2465 | goto found; |
| 2466 | } |
| 2467 | } |
| 2468 | return 0; |
| 2469 | |
| 2470 | found: |
| 2471 | BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); |
| 2472 | /* Put them into a private list first because mem_map is not up yet */ |
| 2473 | INIT_LIST_HEAD(&m->list); |
| 2474 | list_add(&m->list, &huge_boot_pages); |
| 2475 | m->hstate = h; |
| 2476 | return 1; |
| 2477 | } |
| 2478 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2479 | /* |
| 2480 | * Put bootmem huge pages into the standard lists after mem_map is up. |
| 2481 | * Note: This only applies to gigantic (order > MAX_ORDER) pages. |
| 2482 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2483 | static void __init gather_bootmem_prealloc(void) |
| 2484 | { |
| 2485 | struct huge_bootmem_page *m; |
| 2486 | |
| 2487 | list_for_each_entry(m, &huge_boot_pages, list) { |
| 2488 | struct page *page = virt_to_page(m); |
| 2489 | struct hstate *h = m->hstate; |
| 2490 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2491 | VM_BUG_ON(!hstate_is_gigantic(h)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2492 | WARN_ON(page_count(page) != 1); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2493 | prep_compound_gigantic_page(page, huge_page_order(h)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2494 | WARN_ON(PageReserved(page)); |
| 2495 | prep_new_huge_page(h, page, page_to_nid(page)); |
| 2496 | put_page(page); /* free it into the hugepage allocator */ |
| 2497 | |
| 2498 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2499 | * We need to restore the 'stolen' pages to totalram_pages |
| 2500 | * in order to fix confusing memory reports from free(1) and |
| 2501 | * other side-effects, like CommitLimit going negative. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2502 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2503 | adjust_managed_page_count(page, pages_per_huge_page(h)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2504 | cond_resched(); |
| 2505 | } |
| 2506 | } |
| 2507 | |
| 2508 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
| 2509 | { |
| 2510 | unsigned long i; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2511 | nodemask_t *node_alloc_noretry; |
| 2512 | |
| 2513 | if (!hstate_is_gigantic(h)) { |
| 2514 | /* |
| 2515 | * Bit mask controlling how hard we retry per-node allocations. |
| 2516 | * Ignore errors as lower level routines can deal with |
| 2517 | * node_alloc_noretry == NULL. If this kmalloc fails at boot |
| 2518 | * time, we are likely in bigger trouble. |
| 2519 | */ |
| 2520 | node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), |
| 2521 | GFP_KERNEL); |
| 2522 | } else { |
| 2523 | /* allocations done at boot time */ |
| 2524 | node_alloc_noretry = NULL; |
| 2525 | } |
| 2526 | |
| 2527 | /* bit mask controlling how hard we retry per-node allocations */ |
| 2528 | if (node_alloc_noretry) |
| 2529 | nodes_clear(*node_alloc_noretry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2530 | |
| 2531 | for (i = 0; i < h->max_huge_pages; ++i) { |
| 2532 | if (hstate_is_gigantic(h)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2533 | if (hugetlb_cma_size) { |
| 2534 | pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); |
| 2535 | goto free; |
| 2536 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2537 | if (!alloc_bootmem_huge_page(h)) |
| 2538 | break; |
| 2539 | } else if (!alloc_pool_huge_page(h, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2540 | &node_states[N_MEMORY], |
| 2541 | node_alloc_noretry)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2542 | break; |
| 2543 | cond_resched(); |
| 2544 | } |
| 2545 | if (i < h->max_huge_pages) { |
| 2546 | char buf[32]; |
| 2547 | |
| 2548 | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); |
| 2549 | pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", |
| 2550 | h->max_huge_pages, buf, i); |
| 2551 | h->max_huge_pages = i; |
| 2552 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2553 | free: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2554 | kfree(node_alloc_noretry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2555 | } |
| 2556 | |
| 2557 | static void __init hugetlb_init_hstates(void) |
| 2558 | { |
| 2559 | struct hstate *h; |
| 2560 | |
| 2561 | for_each_hstate(h) { |
| 2562 | if (minimum_order > huge_page_order(h)) |
| 2563 | minimum_order = huge_page_order(h); |
| 2564 | |
| 2565 | /* oversize hugepages were init'ed in early boot */ |
| 2566 | if (!hstate_is_gigantic(h)) |
| 2567 | hugetlb_hstate_alloc_pages(h); |
| 2568 | } |
| 2569 | VM_BUG_ON(minimum_order == UINT_MAX); |
| 2570 | } |
| 2571 | |
| 2572 | static void __init report_hugepages(void) |
| 2573 | { |
| 2574 | struct hstate *h; |
| 2575 | |
| 2576 | for_each_hstate(h) { |
| 2577 | char buf[32]; |
| 2578 | |
| 2579 | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); |
| 2580 | pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", |
| 2581 | buf, h->free_huge_pages); |
| 2582 | } |
| 2583 | } |
| 2584 | |
| 2585 | #ifdef CONFIG_HIGHMEM |
| 2586 | static void try_to_free_low(struct hstate *h, unsigned long count, |
| 2587 | nodemask_t *nodes_allowed) |
| 2588 | { |
| 2589 | int i; |
| 2590 | |
| 2591 | if (hstate_is_gigantic(h)) |
| 2592 | return; |
| 2593 | |
| 2594 | for_each_node_mask(i, *nodes_allowed) { |
| 2595 | struct page *page, *next; |
| 2596 | struct list_head *freel = &h->hugepage_freelists[i]; |
| 2597 | list_for_each_entry_safe(page, next, freel, lru) { |
| 2598 | if (count >= h->nr_huge_pages) |
| 2599 | return; |
| 2600 | if (PageHighMem(page)) |
| 2601 | continue; |
| 2602 | list_del(&page->lru); |
| 2603 | update_and_free_page(h, page); |
| 2604 | h->free_huge_pages--; |
| 2605 | h->free_huge_pages_node[page_to_nid(page)]--; |
| 2606 | } |
| 2607 | } |
| 2608 | } |
| 2609 | #else |
| 2610 | static inline void try_to_free_low(struct hstate *h, unsigned long count, |
| 2611 | nodemask_t *nodes_allowed) |
| 2612 | { |
| 2613 | } |
| 2614 | #endif |
| 2615 | |
| 2616 | /* |
| 2617 | * Increment or decrement surplus_huge_pages. Keep node-specific counters |
| 2618 | * balanced by operating on them in a round-robin fashion. |
| 2619 | * Returns 1 if an adjustment was made. |
| 2620 | */ |
| 2621 | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, |
| 2622 | int delta) |
| 2623 | { |
| 2624 | int nr_nodes, node; |
| 2625 | |
| 2626 | VM_BUG_ON(delta != -1 && delta != 1); |
| 2627 | |
| 2628 | if (delta < 0) { |
| 2629 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { |
| 2630 | if (h->surplus_huge_pages_node[node]) |
| 2631 | goto found; |
| 2632 | } |
| 2633 | } else { |
| 2634 | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { |
| 2635 | if (h->surplus_huge_pages_node[node] < |
| 2636 | h->nr_huge_pages_node[node]) |
| 2637 | goto found; |
| 2638 | } |
| 2639 | } |
| 2640 | return 0; |
| 2641 | |
| 2642 | found: |
| 2643 | h->surplus_huge_pages += delta; |
| 2644 | h->surplus_huge_pages_node[node] += delta; |
| 2645 | return 1; |
| 2646 | } |
| 2647 | |
| 2648 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2649 | static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, |
| 2650 | nodemask_t *nodes_allowed) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2651 | { |
| 2652 | unsigned long min_count, ret; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2653 | NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2654 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2655 | /* |
| 2656 | * Bit mask controlling how hard we retry per-node allocations. |
| 2657 | * If we can not allocate the bit mask, do not attempt to allocate |
| 2658 | * the requested huge pages. |
| 2659 | */ |
| 2660 | if (node_alloc_noretry) |
| 2661 | nodes_clear(*node_alloc_noretry); |
| 2662 | else |
| 2663 | return -ENOMEM; |
| 2664 | |
| 2665 | spin_lock(&hugetlb_lock); |
| 2666 | |
| 2667 | /* |
| 2668 | * Check for a node specific request. |
| 2669 | * Changing node specific huge page count may require a corresponding |
| 2670 | * change to the global count. In any case, the passed node mask |
| 2671 | * (nodes_allowed) will restrict alloc/free to the specified node. |
| 2672 | */ |
| 2673 | if (nid != NUMA_NO_NODE) { |
| 2674 | unsigned long old_count = count; |
| 2675 | |
| 2676 | count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; |
| 2677 | /* |
| 2678 | * User may have specified a large count value which caused the |
| 2679 | * above calculation to overflow. In this case, they wanted |
| 2680 | * to allocate as many huge pages as possible. Set count to |
| 2681 | * largest possible value to align with their intention. |
| 2682 | */ |
| 2683 | if (count < old_count) |
| 2684 | count = ULONG_MAX; |
| 2685 | } |
| 2686 | |
| 2687 | /* |
| 2688 | * Gigantic pages runtime allocation depend on the capability for large |
| 2689 | * page range allocation. |
| 2690 | * If the system does not provide this feature, return an error when |
| 2691 | * the user tries to allocate gigantic pages but let the user free the |
| 2692 | * boottime allocated gigantic pages. |
| 2693 | */ |
| 2694 | if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { |
| 2695 | if (count > persistent_huge_pages(h)) { |
| 2696 | spin_unlock(&hugetlb_lock); |
| 2697 | NODEMASK_FREE(node_alloc_noretry); |
| 2698 | return -EINVAL; |
| 2699 | } |
| 2700 | /* Fall through to decrease pool */ |
| 2701 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2702 | |
| 2703 | /* |
| 2704 | * Increase the pool size |
| 2705 | * First take pages out of surplus state. Then make up the |
| 2706 | * remaining difference by allocating fresh huge pages. |
| 2707 | * |
| 2708 | * We might race with alloc_surplus_huge_page() here and be unable |
| 2709 | * to convert a surplus huge page to a normal huge page. That is |
| 2710 | * not critical, though, it just means the overall size of the |
| 2711 | * pool might be one hugepage larger than it needs to be, but |
| 2712 | * within all the constraints specified by the sysctls. |
| 2713 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2714 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
| 2715 | if (!adjust_pool_surplus(h, nodes_allowed, -1)) |
| 2716 | break; |
| 2717 | } |
| 2718 | |
| 2719 | while (count > persistent_huge_pages(h)) { |
| 2720 | /* |
| 2721 | * If this allocation races such that we no longer need the |
| 2722 | * page, free_huge_page will handle it by freeing the page |
| 2723 | * and reducing the surplus. |
| 2724 | */ |
| 2725 | spin_unlock(&hugetlb_lock); |
| 2726 | |
| 2727 | /* yield cpu to avoid soft lockup */ |
| 2728 | cond_resched(); |
| 2729 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2730 | ret = alloc_pool_huge_page(h, nodes_allowed, |
| 2731 | node_alloc_noretry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2732 | spin_lock(&hugetlb_lock); |
| 2733 | if (!ret) |
| 2734 | goto out; |
| 2735 | |
| 2736 | /* Bail for signals. Probably ctrl-c from user */ |
| 2737 | if (signal_pending(current)) |
| 2738 | goto out; |
| 2739 | } |
| 2740 | |
| 2741 | /* |
| 2742 | * Decrease the pool size |
| 2743 | * First return free pages to the buddy allocator (being careful |
| 2744 | * to keep enough around to satisfy reservations). Then place |
| 2745 | * pages into surplus state as needed so the pool will shrink |
| 2746 | * to the desired size as pages become free. |
| 2747 | * |
| 2748 | * By placing pages into the surplus state independent of the |
| 2749 | * overcommit value, we are allowing the surplus pool size to |
| 2750 | * exceed overcommit. There are few sane options here. Since |
| 2751 | * alloc_surplus_huge_page() is checking the global counter, |
| 2752 | * though, we'll note that we're not allowed to exceed surplus |
| 2753 | * and won't grow the pool anywhere else. Not until one of the |
| 2754 | * sysctls are changed, or the surplus pages go out of use. |
| 2755 | */ |
| 2756 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
| 2757 | min_count = max(count, min_count); |
| 2758 | try_to_free_low(h, min_count, nodes_allowed); |
| 2759 | while (min_count < persistent_huge_pages(h)) { |
| 2760 | if (!free_pool_huge_page(h, nodes_allowed, 0)) |
| 2761 | break; |
| 2762 | cond_resched_lock(&hugetlb_lock); |
| 2763 | } |
| 2764 | while (count < persistent_huge_pages(h)) { |
| 2765 | if (!adjust_pool_surplus(h, nodes_allowed, 1)) |
| 2766 | break; |
| 2767 | } |
| 2768 | out: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2769 | h->max_huge_pages = persistent_huge_pages(h); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2770 | spin_unlock(&hugetlb_lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2771 | |
| 2772 | NODEMASK_FREE(node_alloc_noretry); |
| 2773 | |
| 2774 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2775 | } |
| 2776 | |
| 2777 | #define HSTATE_ATTR_RO(_name) \ |
| 2778 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) |
| 2779 | |
| 2780 | #define HSTATE_ATTR(_name) \ |
| 2781 | static struct kobj_attribute _name##_attr = \ |
| 2782 | __ATTR(_name, 0644, _name##_show, _name##_store) |
| 2783 | |
| 2784 | static struct kobject *hugepages_kobj; |
| 2785 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; |
| 2786 | |
| 2787 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); |
| 2788 | |
| 2789 | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) |
| 2790 | { |
| 2791 | int i; |
| 2792 | |
| 2793 | for (i = 0; i < HUGE_MAX_HSTATE; i++) |
| 2794 | if (hstate_kobjs[i] == kobj) { |
| 2795 | if (nidp) |
| 2796 | *nidp = NUMA_NO_NODE; |
| 2797 | return &hstates[i]; |
| 2798 | } |
| 2799 | |
| 2800 | return kobj_to_node_hstate(kobj, nidp); |
| 2801 | } |
| 2802 | |
| 2803 | static ssize_t nr_hugepages_show_common(struct kobject *kobj, |
| 2804 | struct kobj_attribute *attr, char *buf) |
| 2805 | { |
| 2806 | struct hstate *h; |
| 2807 | unsigned long nr_huge_pages; |
| 2808 | int nid; |
| 2809 | |
| 2810 | h = kobj_to_hstate(kobj, &nid); |
| 2811 | if (nid == NUMA_NO_NODE) |
| 2812 | nr_huge_pages = h->nr_huge_pages; |
| 2813 | else |
| 2814 | nr_huge_pages = h->nr_huge_pages_node[nid]; |
| 2815 | |
| 2816 | return sprintf(buf, "%lu\n", nr_huge_pages); |
| 2817 | } |
| 2818 | |
| 2819 | static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, |
| 2820 | struct hstate *h, int nid, |
| 2821 | unsigned long count, size_t len) |
| 2822 | { |
| 2823 | int err; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2824 | nodemask_t nodes_allowed, *n_mask; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2825 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2826 | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) |
| 2827 | return -EINVAL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2828 | |
| 2829 | if (nid == NUMA_NO_NODE) { |
| 2830 | /* |
| 2831 | * global hstate attribute |
| 2832 | */ |
| 2833 | if (!(obey_mempolicy && |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2834 | init_nodemask_of_mempolicy(&nodes_allowed))) |
| 2835 | n_mask = &node_states[N_MEMORY]; |
| 2836 | else |
| 2837 | n_mask = &nodes_allowed; |
| 2838 | } else { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2839 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2840 | * Node specific request. count adjustment happens in |
| 2841 | * set_max_huge_pages() after acquiring hugetlb_lock. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2842 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2843 | init_nodemask_of_node(&nodes_allowed, nid); |
| 2844 | n_mask = &nodes_allowed; |
| 2845 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2846 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2847 | err = set_max_huge_pages(h, count, nid, n_mask); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2848 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2849 | return err ? err : len; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2850 | } |
| 2851 | |
| 2852 | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, |
| 2853 | struct kobject *kobj, const char *buf, |
| 2854 | size_t len) |
| 2855 | { |
| 2856 | struct hstate *h; |
| 2857 | unsigned long count; |
| 2858 | int nid; |
| 2859 | int err; |
| 2860 | |
| 2861 | err = kstrtoul(buf, 10, &count); |
| 2862 | if (err) |
| 2863 | return err; |
| 2864 | |
| 2865 | h = kobj_to_hstate(kobj, &nid); |
| 2866 | return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); |
| 2867 | } |
| 2868 | |
| 2869 | static ssize_t nr_hugepages_show(struct kobject *kobj, |
| 2870 | struct kobj_attribute *attr, char *buf) |
| 2871 | { |
| 2872 | return nr_hugepages_show_common(kobj, attr, buf); |
| 2873 | } |
| 2874 | |
| 2875 | static ssize_t nr_hugepages_store(struct kobject *kobj, |
| 2876 | struct kobj_attribute *attr, const char *buf, size_t len) |
| 2877 | { |
| 2878 | return nr_hugepages_store_common(false, kobj, buf, len); |
| 2879 | } |
| 2880 | HSTATE_ATTR(nr_hugepages); |
| 2881 | |
| 2882 | #ifdef CONFIG_NUMA |
| 2883 | |
| 2884 | /* |
| 2885 | * hstate attribute for optionally mempolicy-based constraint on persistent |
| 2886 | * huge page alloc/free. |
| 2887 | */ |
| 2888 | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, |
| 2889 | struct kobj_attribute *attr, char *buf) |
| 2890 | { |
| 2891 | return nr_hugepages_show_common(kobj, attr, buf); |
| 2892 | } |
| 2893 | |
| 2894 | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, |
| 2895 | struct kobj_attribute *attr, const char *buf, size_t len) |
| 2896 | { |
| 2897 | return nr_hugepages_store_common(true, kobj, buf, len); |
| 2898 | } |
| 2899 | HSTATE_ATTR(nr_hugepages_mempolicy); |
| 2900 | #endif |
| 2901 | |
| 2902 | |
| 2903 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, |
| 2904 | struct kobj_attribute *attr, char *buf) |
| 2905 | { |
| 2906 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
| 2907 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); |
| 2908 | } |
| 2909 | |
| 2910 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, |
| 2911 | struct kobj_attribute *attr, const char *buf, size_t count) |
| 2912 | { |
| 2913 | int err; |
| 2914 | unsigned long input; |
| 2915 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
| 2916 | |
| 2917 | if (hstate_is_gigantic(h)) |
| 2918 | return -EINVAL; |
| 2919 | |
| 2920 | err = kstrtoul(buf, 10, &input); |
| 2921 | if (err) |
| 2922 | return err; |
| 2923 | |
| 2924 | spin_lock(&hugetlb_lock); |
| 2925 | h->nr_overcommit_huge_pages = input; |
| 2926 | spin_unlock(&hugetlb_lock); |
| 2927 | |
| 2928 | return count; |
| 2929 | } |
| 2930 | HSTATE_ATTR(nr_overcommit_hugepages); |
| 2931 | |
| 2932 | static ssize_t free_hugepages_show(struct kobject *kobj, |
| 2933 | struct kobj_attribute *attr, char *buf) |
| 2934 | { |
| 2935 | struct hstate *h; |
| 2936 | unsigned long free_huge_pages; |
| 2937 | int nid; |
| 2938 | |
| 2939 | h = kobj_to_hstate(kobj, &nid); |
| 2940 | if (nid == NUMA_NO_NODE) |
| 2941 | free_huge_pages = h->free_huge_pages; |
| 2942 | else |
| 2943 | free_huge_pages = h->free_huge_pages_node[nid]; |
| 2944 | |
| 2945 | return sprintf(buf, "%lu\n", free_huge_pages); |
| 2946 | } |
| 2947 | HSTATE_ATTR_RO(free_hugepages); |
| 2948 | |
| 2949 | static ssize_t resv_hugepages_show(struct kobject *kobj, |
| 2950 | struct kobj_attribute *attr, char *buf) |
| 2951 | { |
| 2952 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
| 2953 | return sprintf(buf, "%lu\n", h->resv_huge_pages); |
| 2954 | } |
| 2955 | HSTATE_ATTR_RO(resv_hugepages); |
| 2956 | |
| 2957 | static ssize_t surplus_hugepages_show(struct kobject *kobj, |
| 2958 | struct kobj_attribute *attr, char *buf) |
| 2959 | { |
| 2960 | struct hstate *h; |
| 2961 | unsigned long surplus_huge_pages; |
| 2962 | int nid; |
| 2963 | |
| 2964 | h = kobj_to_hstate(kobj, &nid); |
| 2965 | if (nid == NUMA_NO_NODE) |
| 2966 | surplus_huge_pages = h->surplus_huge_pages; |
| 2967 | else |
| 2968 | surplus_huge_pages = h->surplus_huge_pages_node[nid]; |
| 2969 | |
| 2970 | return sprintf(buf, "%lu\n", surplus_huge_pages); |
| 2971 | } |
| 2972 | HSTATE_ATTR_RO(surplus_hugepages); |
| 2973 | |
| 2974 | static struct attribute *hstate_attrs[] = { |
| 2975 | &nr_hugepages_attr.attr, |
| 2976 | &nr_overcommit_hugepages_attr.attr, |
| 2977 | &free_hugepages_attr.attr, |
| 2978 | &resv_hugepages_attr.attr, |
| 2979 | &surplus_hugepages_attr.attr, |
| 2980 | #ifdef CONFIG_NUMA |
| 2981 | &nr_hugepages_mempolicy_attr.attr, |
| 2982 | #endif |
| 2983 | NULL, |
| 2984 | }; |
| 2985 | |
| 2986 | static const struct attribute_group hstate_attr_group = { |
| 2987 | .attrs = hstate_attrs, |
| 2988 | }; |
| 2989 | |
| 2990 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, |
| 2991 | struct kobject **hstate_kobjs, |
| 2992 | const struct attribute_group *hstate_attr_group) |
| 2993 | { |
| 2994 | int retval; |
| 2995 | int hi = hstate_index(h); |
| 2996 | |
| 2997 | hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); |
| 2998 | if (!hstate_kobjs[hi]) |
| 2999 | return -ENOMEM; |
| 3000 | |
| 3001 | retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 3002 | if (retval) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3003 | kobject_put(hstate_kobjs[hi]); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 3004 | hstate_kobjs[hi] = NULL; |
| 3005 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3006 | |
| 3007 | return retval; |
| 3008 | } |
| 3009 | |
| 3010 | static void __init hugetlb_sysfs_init(void) |
| 3011 | { |
| 3012 | struct hstate *h; |
| 3013 | int err; |
| 3014 | |
| 3015 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); |
| 3016 | if (!hugepages_kobj) |
| 3017 | return; |
| 3018 | |
| 3019 | for_each_hstate(h) { |
| 3020 | err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, |
| 3021 | hstate_kobjs, &hstate_attr_group); |
| 3022 | if (err) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3023 | pr_err("HugeTLB: Unable to add hstate %s", h->name); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3024 | } |
| 3025 | } |
| 3026 | |
| 3027 | #ifdef CONFIG_NUMA |
| 3028 | |
| 3029 | /* |
| 3030 | * node_hstate/s - associate per node hstate attributes, via their kobjects, |
| 3031 | * with node devices in node_devices[] using a parallel array. The array |
| 3032 | * index of a node device or _hstate == node id. |
| 3033 | * This is here to avoid any static dependency of the node device driver, in |
| 3034 | * the base kernel, on the hugetlb module. |
| 3035 | */ |
| 3036 | struct node_hstate { |
| 3037 | struct kobject *hugepages_kobj; |
| 3038 | struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; |
| 3039 | }; |
| 3040 | static struct node_hstate node_hstates[MAX_NUMNODES]; |
| 3041 | |
| 3042 | /* |
| 3043 | * A subset of global hstate attributes for node devices |
| 3044 | */ |
| 3045 | static struct attribute *per_node_hstate_attrs[] = { |
| 3046 | &nr_hugepages_attr.attr, |
| 3047 | &free_hugepages_attr.attr, |
| 3048 | &surplus_hugepages_attr.attr, |
| 3049 | NULL, |
| 3050 | }; |
| 3051 | |
| 3052 | static const struct attribute_group per_node_hstate_attr_group = { |
| 3053 | .attrs = per_node_hstate_attrs, |
| 3054 | }; |
| 3055 | |
| 3056 | /* |
| 3057 | * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. |
| 3058 | * Returns node id via non-NULL nidp. |
| 3059 | */ |
| 3060 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) |
| 3061 | { |
| 3062 | int nid; |
| 3063 | |
| 3064 | for (nid = 0; nid < nr_node_ids; nid++) { |
| 3065 | struct node_hstate *nhs = &node_hstates[nid]; |
| 3066 | int i; |
| 3067 | for (i = 0; i < HUGE_MAX_HSTATE; i++) |
| 3068 | if (nhs->hstate_kobjs[i] == kobj) { |
| 3069 | if (nidp) |
| 3070 | *nidp = nid; |
| 3071 | return &hstates[i]; |
| 3072 | } |
| 3073 | } |
| 3074 | |
| 3075 | BUG(); |
| 3076 | return NULL; |
| 3077 | } |
| 3078 | |
| 3079 | /* |
| 3080 | * Unregister hstate attributes from a single node device. |
| 3081 | * No-op if no hstate attributes attached. |
| 3082 | */ |
| 3083 | static void hugetlb_unregister_node(struct node *node) |
| 3084 | { |
| 3085 | struct hstate *h; |
| 3086 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
| 3087 | |
| 3088 | if (!nhs->hugepages_kobj) |
| 3089 | return; /* no hstate attributes */ |
| 3090 | |
| 3091 | for_each_hstate(h) { |
| 3092 | int idx = hstate_index(h); |
| 3093 | if (nhs->hstate_kobjs[idx]) { |
| 3094 | kobject_put(nhs->hstate_kobjs[idx]); |
| 3095 | nhs->hstate_kobjs[idx] = NULL; |
| 3096 | } |
| 3097 | } |
| 3098 | |
| 3099 | kobject_put(nhs->hugepages_kobj); |
| 3100 | nhs->hugepages_kobj = NULL; |
| 3101 | } |
| 3102 | |
| 3103 | |
| 3104 | /* |
| 3105 | * Register hstate attributes for a single node device. |
| 3106 | * No-op if attributes already registered. |
| 3107 | */ |
| 3108 | static void hugetlb_register_node(struct node *node) |
| 3109 | { |
| 3110 | struct hstate *h; |
| 3111 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
| 3112 | int err; |
| 3113 | |
| 3114 | if (nhs->hugepages_kobj) |
| 3115 | return; /* already allocated */ |
| 3116 | |
| 3117 | nhs->hugepages_kobj = kobject_create_and_add("hugepages", |
| 3118 | &node->dev.kobj); |
| 3119 | if (!nhs->hugepages_kobj) |
| 3120 | return; |
| 3121 | |
| 3122 | for_each_hstate(h) { |
| 3123 | err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, |
| 3124 | nhs->hstate_kobjs, |
| 3125 | &per_node_hstate_attr_group); |
| 3126 | if (err) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3127 | pr_err("HugeTLB: Unable to add hstate %s for node %d\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3128 | h->name, node->dev.id); |
| 3129 | hugetlb_unregister_node(node); |
| 3130 | break; |
| 3131 | } |
| 3132 | } |
| 3133 | } |
| 3134 | |
| 3135 | /* |
| 3136 | * hugetlb init time: register hstate attributes for all registered node |
| 3137 | * devices of nodes that have memory. All on-line nodes should have |
| 3138 | * registered their associated device by this time. |
| 3139 | */ |
| 3140 | static void __init hugetlb_register_all_nodes(void) |
| 3141 | { |
| 3142 | int nid; |
| 3143 | |
| 3144 | for_each_node_state(nid, N_MEMORY) { |
| 3145 | struct node *node = node_devices[nid]; |
| 3146 | if (node->dev.id == nid) |
| 3147 | hugetlb_register_node(node); |
| 3148 | } |
| 3149 | |
| 3150 | /* |
| 3151 | * Let the node device driver know we're here so it can |
| 3152 | * [un]register hstate attributes on node hotplug. |
| 3153 | */ |
| 3154 | register_hugetlbfs_with_node(hugetlb_register_node, |
| 3155 | hugetlb_unregister_node); |
| 3156 | } |
| 3157 | #else /* !CONFIG_NUMA */ |
| 3158 | |
| 3159 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) |
| 3160 | { |
| 3161 | BUG(); |
| 3162 | if (nidp) |
| 3163 | *nidp = -1; |
| 3164 | return NULL; |
| 3165 | } |
| 3166 | |
| 3167 | static void hugetlb_register_all_nodes(void) { } |
| 3168 | |
| 3169 | #endif |
| 3170 | |
| 3171 | static int __init hugetlb_init(void) |
| 3172 | { |
| 3173 | int i; |
| 3174 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3175 | if (!hugepages_supported()) { |
| 3176 | if (hugetlb_max_hstate || default_hstate_max_huge_pages) |
| 3177 | pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3178 | return 0; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3179 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3180 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3181 | /* |
| 3182 | * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some |
| 3183 | * architectures depend on setup being done here. |
| 3184 | */ |
| 3185 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); |
| 3186 | if (!parsed_default_hugepagesz) { |
| 3187 | /* |
| 3188 | * If we did not parse a default huge page size, set |
| 3189 | * default_hstate_idx to HPAGE_SIZE hstate. And, if the |
| 3190 | * number of huge pages for this default size was implicitly |
| 3191 | * specified, set that here as well. |
| 3192 | * Note that the implicit setting will overwrite an explicit |
| 3193 | * setting. A warning will be printed in this case. |
| 3194 | */ |
| 3195 | default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); |
| 3196 | if (default_hstate_max_huge_pages) { |
| 3197 | if (default_hstate.max_huge_pages) { |
| 3198 | char buf[32]; |
| 3199 | |
| 3200 | string_get_size(huge_page_size(&default_hstate), |
| 3201 | 1, STRING_UNITS_2, buf, 32); |
| 3202 | pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", |
| 3203 | default_hstate.max_huge_pages, buf); |
| 3204 | pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", |
| 3205 | default_hstate_max_huge_pages); |
| 3206 | } |
| 3207 | default_hstate.max_huge_pages = |
| 3208 | default_hstate_max_huge_pages; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3209 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3210 | } |
| 3211 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3212 | hugetlb_cma_check(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3213 | hugetlb_init_hstates(); |
| 3214 | gather_bootmem_prealloc(); |
| 3215 | report_hugepages(); |
| 3216 | |
| 3217 | hugetlb_sysfs_init(); |
| 3218 | hugetlb_register_all_nodes(); |
| 3219 | hugetlb_cgroup_file_init(); |
| 3220 | |
| 3221 | #ifdef CONFIG_SMP |
| 3222 | num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); |
| 3223 | #else |
| 3224 | num_fault_mutexes = 1; |
| 3225 | #endif |
| 3226 | hugetlb_fault_mutex_table = |
| 3227 | kmalloc_array(num_fault_mutexes, sizeof(struct mutex), |
| 3228 | GFP_KERNEL); |
| 3229 | BUG_ON(!hugetlb_fault_mutex_table); |
| 3230 | |
| 3231 | for (i = 0; i < num_fault_mutexes; i++) |
| 3232 | mutex_init(&hugetlb_fault_mutex_table[i]); |
| 3233 | return 0; |
| 3234 | } |
| 3235 | subsys_initcall(hugetlb_init); |
| 3236 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3237 | /* Overwritten by architectures with more huge page sizes */ |
| 3238 | bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3239 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3240 | return size == HPAGE_SIZE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3241 | } |
| 3242 | |
| 3243 | void __init hugetlb_add_hstate(unsigned int order) |
| 3244 | { |
| 3245 | struct hstate *h; |
| 3246 | unsigned long i; |
| 3247 | |
| 3248 | if (size_to_hstate(PAGE_SIZE << order)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3249 | return; |
| 3250 | } |
| 3251 | BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); |
| 3252 | BUG_ON(order == 0); |
| 3253 | h = &hstates[hugetlb_max_hstate++]; |
| 3254 | h->order = order; |
| 3255 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); |
| 3256 | h->nr_huge_pages = 0; |
| 3257 | h->free_huge_pages = 0; |
| 3258 | for (i = 0; i < MAX_NUMNODES; ++i) |
| 3259 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); |
| 3260 | INIT_LIST_HEAD(&h->hugepage_activelist); |
| 3261 | h->next_nid_to_alloc = first_memory_node; |
| 3262 | h->next_nid_to_free = first_memory_node; |
| 3263 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", |
| 3264 | huge_page_size(h)/1024); |
| 3265 | |
| 3266 | parsed_hstate = h; |
| 3267 | } |
| 3268 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3269 | /* |
| 3270 | * hugepages command line processing |
| 3271 | * hugepages normally follows a valid hugepagsz or default_hugepagsz |
| 3272 | * specification. If not, ignore the hugepages value. hugepages can also |
| 3273 | * be the first huge page command line option in which case it implicitly |
| 3274 | * specifies the number of huge pages for the default size. |
| 3275 | */ |
| 3276 | static int __init hugepages_setup(char *s) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3277 | { |
| 3278 | unsigned long *mhp; |
| 3279 | static unsigned long *last_mhp; |
| 3280 | |
| 3281 | if (!parsed_valid_hugepagesz) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3282 | pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3283 | parsed_valid_hugepagesz = true; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3284 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3285 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3286 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3287 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3288 | * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter |
| 3289 | * yet, so this hugepages= parameter goes to the "default hstate". |
| 3290 | * Otherwise, it goes with the previously parsed hugepagesz or |
| 3291 | * default_hugepagesz. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3292 | */ |
| 3293 | else if (!hugetlb_max_hstate) |
| 3294 | mhp = &default_hstate_max_huge_pages; |
| 3295 | else |
| 3296 | mhp = &parsed_hstate->max_huge_pages; |
| 3297 | |
| 3298 | if (mhp == last_mhp) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3299 | pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); |
| 3300 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3301 | } |
| 3302 | |
| 3303 | if (sscanf(s, "%lu", mhp) <= 0) |
| 3304 | *mhp = 0; |
| 3305 | |
| 3306 | /* |
| 3307 | * Global state is always initialized later in hugetlb_init. |
| 3308 | * But we need to allocate >= MAX_ORDER hstates here early to still |
| 3309 | * use the bootmem allocator. |
| 3310 | */ |
| 3311 | if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) |
| 3312 | hugetlb_hstate_alloc_pages(parsed_hstate); |
| 3313 | |
| 3314 | last_mhp = mhp; |
| 3315 | |
| 3316 | return 1; |
| 3317 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3318 | __setup("hugepages=", hugepages_setup); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3319 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3320 | /* |
| 3321 | * hugepagesz command line processing |
| 3322 | * A specific huge page size can only be specified once with hugepagesz. |
| 3323 | * hugepagesz is followed by hugepages on the command line. The global |
| 3324 | * variable 'parsed_valid_hugepagesz' is used to determine if prior |
| 3325 | * hugepagesz argument was valid. |
| 3326 | */ |
| 3327 | static int __init hugepagesz_setup(char *s) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3328 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3329 | unsigned long size; |
| 3330 | struct hstate *h; |
| 3331 | |
| 3332 | parsed_valid_hugepagesz = false; |
| 3333 | size = (unsigned long)memparse(s, NULL); |
| 3334 | |
| 3335 | if (!arch_hugetlb_valid_size(size)) { |
| 3336 | pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); |
| 3337 | return 0; |
| 3338 | } |
| 3339 | |
| 3340 | h = size_to_hstate(size); |
| 3341 | if (h) { |
| 3342 | /* |
| 3343 | * hstate for this size already exists. This is normally |
| 3344 | * an error, but is allowed if the existing hstate is the |
| 3345 | * default hstate. More specifically, it is only allowed if |
| 3346 | * the number of huge pages for the default hstate was not |
| 3347 | * previously specified. |
| 3348 | */ |
| 3349 | if (!parsed_default_hugepagesz || h != &default_hstate || |
| 3350 | default_hstate.max_huge_pages) { |
| 3351 | pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); |
| 3352 | return 0; |
| 3353 | } |
| 3354 | |
| 3355 | /* |
| 3356 | * No need to call hugetlb_add_hstate() as hstate already |
| 3357 | * exists. But, do set parsed_hstate so that a following |
| 3358 | * hugepages= parameter will be applied to this hstate. |
| 3359 | */ |
| 3360 | parsed_hstate = h; |
| 3361 | parsed_valid_hugepagesz = true; |
| 3362 | return 1; |
| 3363 | } |
| 3364 | |
| 3365 | hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); |
| 3366 | parsed_valid_hugepagesz = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3367 | return 1; |
| 3368 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3369 | __setup("hugepagesz=", hugepagesz_setup); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3370 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3371 | /* |
| 3372 | * default_hugepagesz command line input |
| 3373 | * Only one instance of default_hugepagesz allowed on command line. |
| 3374 | */ |
| 3375 | static int __init default_hugepagesz_setup(char *s) |
| 3376 | { |
| 3377 | unsigned long size; |
| 3378 | |
| 3379 | parsed_valid_hugepagesz = false; |
| 3380 | if (parsed_default_hugepagesz) { |
| 3381 | pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); |
| 3382 | return 0; |
| 3383 | } |
| 3384 | |
| 3385 | size = (unsigned long)memparse(s, NULL); |
| 3386 | |
| 3387 | if (!arch_hugetlb_valid_size(size)) { |
| 3388 | pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); |
| 3389 | return 0; |
| 3390 | } |
| 3391 | |
| 3392 | hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); |
| 3393 | parsed_valid_hugepagesz = true; |
| 3394 | parsed_default_hugepagesz = true; |
| 3395 | default_hstate_idx = hstate_index(size_to_hstate(size)); |
| 3396 | |
| 3397 | /* |
| 3398 | * The number of default huge pages (for this size) could have been |
| 3399 | * specified as the first hugetlb parameter: hugepages=X. If so, |
| 3400 | * then default_hstate_max_huge_pages is set. If the default huge |
| 3401 | * page size is gigantic (>= MAX_ORDER), then the pages must be |
| 3402 | * allocated here from bootmem allocator. |
| 3403 | */ |
| 3404 | if (default_hstate_max_huge_pages) { |
| 3405 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; |
| 3406 | if (hstate_is_gigantic(&default_hstate)) |
| 3407 | hugetlb_hstate_alloc_pages(&default_hstate); |
| 3408 | default_hstate_max_huge_pages = 0; |
| 3409 | } |
| 3410 | |
| 3411 | return 1; |
| 3412 | } |
| 3413 | __setup("default_hugepagesz=", default_hugepagesz_setup); |
| 3414 | |
| 3415 | static unsigned int allowed_mems_nr(struct hstate *h) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3416 | { |
| 3417 | int node; |
| 3418 | unsigned int nr = 0; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3419 | nodemask_t *mpol_allowed; |
| 3420 | unsigned int *array = h->free_huge_pages_node; |
| 3421 | gfp_t gfp_mask = htlb_alloc_mask(h); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3422 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3423 | mpol_allowed = policy_nodemask_current(gfp_mask); |
| 3424 | |
| 3425 | for_each_node_mask(node, cpuset_current_mems_allowed) { |
| 3426 | if (!mpol_allowed || |
| 3427 | (mpol_allowed && node_isset(node, *mpol_allowed))) |
| 3428 | nr += array[node]; |
| 3429 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3430 | |
| 3431 | return nr; |
| 3432 | } |
| 3433 | |
| 3434 | #ifdef CONFIG_SYSCTL |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 3435 | static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, |
| 3436 | void *buffer, size_t *length, |
| 3437 | loff_t *ppos, unsigned long *out) |
| 3438 | { |
| 3439 | struct ctl_table dup_table; |
| 3440 | |
| 3441 | /* |
| 3442 | * In order to avoid races with __do_proc_doulongvec_minmax(), we |
| 3443 | * can duplicate the @table and alter the duplicate of it. |
| 3444 | */ |
| 3445 | dup_table = *table; |
| 3446 | dup_table.data = out; |
| 3447 | |
| 3448 | return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); |
| 3449 | } |
| 3450 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3451 | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, |
| 3452 | struct ctl_table *table, int write, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3453 | void *buffer, size_t *length, loff_t *ppos) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3454 | { |
| 3455 | struct hstate *h = &default_hstate; |
| 3456 | unsigned long tmp = h->max_huge_pages; |
| 3457 | int ret; |
| 3458 | |
| 3459 | if (!hugepages_supported()) |
| 3460 | return -EOPNOTSUPP; |
| 3461 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 3462 | ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, |
| 3463 | &tmp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3464 | if (ret) |
| 3465 | goto out; |
| 3466 | |
| 3467 | if (write) |
| 3468 | ret = __nr_hugepages_store_common(obey_mempolicy, h, |
| 3469 | NUMA_NO_NODE, tmp, *length); |
| 3470 | out: |
| 3471 | return ret; |
| 3472 | } |
| 3473 | |
| 3474 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3475 | void *buffer, size_t *length, loff_t *ppos) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3476 | { |
| 3477 | |
| 3478 | return hugetlb_sysctl_handler_common(false, table, write, |
| 3479 | buffer, length, ppos); |
| 3480 | } |
| 3481 | |
| 3482 | #ifdef CONFIG_NUMA |
| 3483 | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3484 | void *buffer, size_t *length, loff_t *ppos) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3485 | { |
| 3486 | return hugetlb_sysctl_handler_common(true, table, write, |
| 3487 | buffer, length, ppos); |
| 3488 | } |
| 3489 | #endif /* CONFIG_NUMA */ |
| 3490 | |
| 3491 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3492 | void *buffer, size_t *length, loff_t *ppos) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3493 | { |
| 3494 | struct hstate *h = &default_hstate; |
| 3495 | unsigned long tmp; |
| 3496 | int ret; |
| 3497 | |
| 3498 | if (!hugepages_supported()) |
| 3499 | return -EOPNOTSUPP; |
| 3500 | |
| 3501 | tmp = h->nr_overcommit_huge_pages; |
| 3502 | |
| 3503 | if (write && hstate_is_gigantic(h)) |
| 3504 | return -EINVAL; |
| 3505 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 3506 | ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, |
| 3507 | &tmp); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3508 | if (ret) |
| 3509 | goto out; |
| 3510 | |
| 3511 | if (write) { |
| 3512 | spin_lock(&hugetlb_lock); |
| 3513 | h->nr_overcommit_huge_pages = tmp; |
| 3514 | spin_unlock(&hugetlb_lock); |
| 3515 | } |
| 3516 | out: |
| 3517 | return ret; |
| 3518 | } |
| 3519 | |
| 3520 | #endif /* CONFIG_SYSCTL */ |
| 3521 | |
| 3522 | void hugetlb_report_meminfo(struct seq_file *m) |
| 3523 | { |
| 3524 | struct hstate *h; |
| 3525 | unsigned long total = 0; |
| 3526 | |
| 3527 | if (!hugepages_supported()) |
| 3528 | return; |
| 3529 | |
| 3530 | for_each_hstate(h) { |
| 3531 | unsigned long count = h->nr_huge_pages; |
| 3532 | |
| 3533 | total += (PAGE_SIZE << huge_page_order(h)) * count; |
| 3534 | |
| 3535 | if (h == &default_hstate) |
| 3536 | seq_printf(m, |
| 3537 | "HugePages_Total: %5lu\n" |
| 3538 | "HugePages_Free: %5lu\n" |
| 3539 | "HugePages_Rsvd: %5lu\n" |
| 3540 | "HugePages_Surp: %5lu\n" |
| 3541 | "Hugepagesize: %8lu kB\n", |
| 3542 | count, |
| 3543 | h->free_huge_pages, |
| 3544 | h->resv_huge_pages, |
| 3545 | h->surplus_huge_pages, |
| 3546 | (PAGE_SIZE << huge_page_order(h)) / 1024); |
| 3547 | } |
| 3548 | |
| 3549 | seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); |
| 3550 | } |
| 3551 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3552 | int hugetlb_report_node_meminfo(char *buf, int len, int nid) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3553 | { |
| 3554 | struct hstate *h = &default_hstate; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3555 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3556 | if (!hugepages_supported()) |
| 3557 | return 0; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3558 | |
| 3559 | return sysfs_emit_at(buf, len, |
| 3560 | "Node %d HugePages_Total: %5u\n" |
| 3561 | "Node %d HugePages_Free: %5u\n" |
| 3562 | "Node %d HugePages_Surp: %5u\n", |
| 3563 | nid, h->nr_huge_pages_node[nid], |
| 3564 | nid, h->free_huge_pages_node[nid], |
| 3565 | nid, h->surplus_huge_pages_node[nid]); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3566 | } |
| 3567 | |
| 3568 | void hugetlb_show_meminfo(void) |
| 3569 | { |
| 3570 | struct hstate *h; |
| 3571 | int nid; |
| 3572 | |
| 3573 | if (!hugepages_supported()) |
| 3574 | return; |
| 3575 | |
| 3576 | for_each_node_state(nid, N_MEMORY) |
| 3577 | for_each_hstate(h) |
| 3578 | pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", |
| 3579 | nid, |
| 3580 | h->nr_huge_pages_node[nid], |
| 3581 | h->free_huge_pages_node[nid], |
| 3582 | h->surplus_huge_pages_node[nid], |
| 3583 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); |
| 3584 | } |
| 3585 | |
| 3586 | void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) |
| 3587 | { |
| 3588 | seq_printf(m, "HugetlbPages:\t%8lu kB\n", |
| 3589 | atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); |
| 3590 | } |
| 3591 | |
| 3592 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
| 3593 | unsigned long hugetlb_total_pages(void) |
| 3594 | { |
| 3595 | struct hstate *h; |
| 3596 | unsigned long nr_total_pages = 0; |
| 3597 | |
| 3598 | for_each_hstate(h) |
| 3599 | nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); |
| 3600 | return nr_total_pages; |
| 3601 | } |
| 3602 | |
| 3603 | static int hugetlb_acct_memory(struct hstate *h, long delta) |
| 3604 | { |
| 3605 | int ret = -ENOMEM; |
| 3606 | |
| 3607 | spin_lock(&hugetlb_lock); |
| 3608 | /* |
| 3609 | * When cpuset is configured, it breaks the strict hugetlb page |
| 3610 | * reservation as the accounting is done on a global variable. Such |
| 3611 | * reservation is completely rubbish in the presence of cpuset because |
| 3612 | * the reservation is not checked against page availability for the |
| 3613 | * current cpuset. Application can still potentially OOM'ed by kernel |
| 3614 | * with lack of free htlb page in cpuset that the task is in. |
| 3615 | * Attempt to enforce strict accounting with cpuset is almost |
| 3616 | * impossible (or too ugly) because cpuset is too fluid that |
| 3617 | * task or memory node can be dynamically moved between cpusets. |
| 3618 | * |
| 3619 | * The change of semantics for shared hugetlb mapping with cpuset is |
| 3620 | * undesirable. However, in order to preserve some of the semantics, |
| 3621 | * we fall back to check against current free page availability as |
| 3622 | * a best attempt and hopefully to minimize the impact of changing |
| 3623 | * semantics that cpuset has. |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3624 | * |
| 3625 | * Apart from cpuset, we also have memory policy mechanism that |
| 3626 | * also determines from which node the kernel will allocate memory |
| 3627 | * in a NUMA system. So similar to cpuset, we also should consider |
| 3628 | * the memory policy of the current task. Similar to the description |
| 3629 | * above. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3630 | */ |
| 3631 | if (delta > 0) { |
| 3632 | if (gather_surplus_pages(h, delta) < 0) |
| 3633 | goto out; |
| 3634 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3635 | if (delta > allowed_mems_nr(h)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3636 | return_unused_surplus_pages(h, delta); |
| 3637 | goto out; |
| 3638 | } |
| 3639 | } |
| 3640 | |
| 3641 | ret = 0; |
| 3642 | if (delta < 0) |
| 3643 | return_unused_surplus_pages(h, (unsigned long) -delta); |
| 3644 | |
| 3645 | out: |
| 3646 | spin_unlock(&hugetlb_lock); |
| 3647 | return ret; |
| 3648 | } |
| 3649 | |
| 3650 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) |
| 3651 | { |
| 3652 | struct resv_map *resv = vma_resv_map(vma); |
| 3653 | |
| 3654 | /* |
| 3655 | * This new VMA should share its siblings reservation map if present. |
| 3656 | * The VMA will only ever have a valid reservation map pointer where |
| 3657 | * it is being copied for another still existing VMA. As that VMA |
| 3658 | * has a reference to the reservation map it cannot disappear until |
| 3659 | * after this open call completes. It is therefore safe to take a |
| 3660 | * new reference here without additional locking. |
| 3661 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3662 | if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
| 3663 | resv_map_dup_hugetlb_cgroup_uncharge_info(resv); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3664 | kref_get(&resv->refs); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3665 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3666 | } |
| 3667 | |
| 3668 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) |
| 3669 | { |
| 3670 | struct hstate *h = hstate_vma(vma); |
| 3671 | struct resv_map *resv = vma_resv_map(vma); |
| 3672 | struct hugepage_subpool *spool = subpool_vma(vma); |
| 3673 | unsigned long reserve, start, end; |
| 3674 | long gbl_reserve; |
| 3675 | |
| 3676 | if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
| 3677 | return; |
| 3678 | |
| 3679 | start = vma_hugecache_offset(h, vma, vma->vm_start); |
| 3680 | end = vma_hugecache_offset(h, vma, vma->vm_end); |
| 3681 | |
| 3682 | reserve = (end - start) - region_count(resv, start, end); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3683 | hugetlb_cgroup_uncharge_counter(resv, start, end); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3684 | if (reserve) { |
| 3685 | /* |
| 3686 | * Decrement reserve counts. The global reserve count may be |
| 3687 | * adjusted if the subpool has a minimum size. |
| 3688 | */ |
| 3689 | gbl_reserve = hugepage_subpool_put_pages(spool, reserve); |
| 3690 | hugetlb_acct_memory(h, -gbl_reserve); |
| 3691 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3692 | |
| 3693 | kref_put(&resv->refs, resv_map_release); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3694 | } |
| 3695 | |
| 3696 | static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) |
| 3697 | { |
| 3698 | if (addr & ~(huge_page_mask(hstate_vma(vma)))) |
| 3699 | return -EINVAL; |
| 3700 | return 0; |
| 3701 | } |
| 3702 | |
| 3703 | static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) |
| 3704 | { |
| 3705 | struct hstate *hstate = hstate_vma(vma); |
| 3706 | |
| 3707 | return 1UL << huge_page_shift(hstate); |
| 3708 | } |
| 3709 | |
| 3710 | /* |
| 3711 | * We cannot handle pagefaults against hugetlb pages at all. They cause |
| 3712 | * handle_mm_fault() to try to instantiate regular-sized pages in the |
| 3713 | * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get |
| 3714 | * this far. |
| 3715 | */ |
| 3716 | static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) |
| 3717 | { |
| 3718 | BUG(); |
| 3719 | return 0; |
| 3720 | } |
| 3721 | |
| 3722 | /* |
| 3723 | * When a new function is introduced to vm_operations_struct and added |
| 3724 | * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. |
| 3725 | * This is because under System V memory model, mappings created via |
| 3726 | * shmget/shmat with "huge page" specified are backed by hugetlbfs files, |
| 3727 | * their original vm_ops are overwritten with shm_vm_ops. |
| 3728 | */ |
| 3729 | const struct vm_operations_struct hugetlb_vm_ops = { |
| 3730 | .fault = hugetlb_vm_op_fault, |
| 3731 | .open = hugetlb_vm_op_open, |
| 3732 | .close = hugetlb_vm_op_close, |
| 3733 | .split = hugetlb_vm_op_split, |
| 3734 | .pagesize = hugetlb_vm_op_pagesize, |
| 3735 | }; |
| 3736 | |
| 3737 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
| 3738 | int writable) |
| 3739 | { |
| 3740 | pte_t entry; |
| 3741 | |
| 3742 | if (writable) { |
| 3743 | entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, |
| 3744 | vma->vm_page_prot))); |
| 3745 | } else { |
| 3746 | entry = huge_pte_wrprotect(mk_huge_pte(page, |
| 3747 | vma->vm_page_prot)); |
| 3748 | } |
| 3749 | entry = pte_mkyoung(entry); |
| 3750 | entry = pte_mkhuge(entry); |
| 3751 | entry = arch_make_huge_pte(entry, vma, page, writable); |
| 3752 | |
| 3753 | return entry; |
| 3754 | } |
| 3755 | |
| 3756 | static void set_huge_ptep_writable(struct vm_area_struct *vma, |
| 3757 | unsigned long address, pte_t *ptep) |
| 3758 | { |
| 3759 | pte_t entry; |
| 3760 | |
| 3761 | entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); |
| 3762 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) |
| 3763 | update_mmu_cache(vma, address, ptep); |
| 3764 | } |
| 3765 | |
| 3766 | bool is_hugetlb_entry_migration(pte_t pte) |
| 3767 | { |
| 3768 | swp_entry_t swp; |
| 3769 | |
| 3770 | if (huge_pte_none(pte) || pte_present(pte)) |
| 3771 | return false; |
| 3772 | swp = pte_to_swp_entry(pte); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3773 | if (is_migration_entry(swp)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3774 | return true; |
| 3775 | else |
| 3776 | return false; |
| 3777 | } |
| 3778 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3779 | static bool is_hugetlb_entry_hwpoisoned(pte_t pte) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3780 | { |
| 3781 | swp_entry_t swp; |
| 3782 | |
| 3783 | if (huge_pte_none(pte) || pte_present(pte)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3784 | return false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3785 | swp = pte_to_swp_entry(pte); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3786 | if (is_hwpoison_entry(swp)) |
| 3787 | return true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3788 | else |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3789 | return false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3790 | } |
| 3791 | |
| 3792 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, |
| 3793 | struct vm_area_struct *vma) |
| 3794 | { |
| 3795 | pte_t *src_pte, *dst_pte, entry, dst_entry; |
| 3796 | struct page *ptepage; |
| 3797 | unsigned long addr; |
| 3798 | int cow; |
| 3799 | struct hstate *h = hstate_vma(vma); |
| 3800 | unsigned long sz = huge_page_size(h); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3801 | struct address_space *mapping = vma->vm_file->f_mapping; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3802 | struct mmu_notifier_range range; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3803 | int ret = 0; |
| 3804 | |
| 3805 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
| 3806 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3807 | if (cow) { |
| 3808 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, |
| 3809 | vma->vm_start, |
| 3810 | vma->vm_end); |
| 3811 | mmu_notifier_invalidate_range_start(&range); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3812 | } else { |
| 3813 | /* |
| 3814 | * For shared mappings i_mmap_rwsem must be held to call |
| 3815 | * huge_pte_alloc, otherwise the returned ptep could go |
| 3816 | * away if part of a shared pmd and another thread calls |
| 3817 | * huge_pmd_unshare. |
| 3818 | */ |
| 3819 | i_mmap_lock_read(mapping); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3820 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3821 | |
| 3822 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
| 3823 | spinlock_t *src_ptl, *dst_ptl; |
| 3824 | src_pte = huge_pte_offset(src, addr, sz); |
| 3825 | if (!src_pte) |
| 3826 | continue; |
| 3827 | dst_pte = huge_pte_alloc(dst, addr, sz); |
| 3828 | if (!dst_pte) { |
| 3829 | ret = -ENOMEM; |
| 3830 | break; |
| 3831 | } |
| 3832 | |
| 3833 | /* |
| 3834 | * If the pagetables are shared don't copy or take references. |
| 3835 | * dst_pte == src_pte is the common case of src/dest sharing. |
| 3836 | * |
| 3837 | * However, src could have 'unshared' and dst shares with |
| 3838 | * another vma. If dst_pte !none, this implies sharing. |
| 3839 | * Check here before taking page table lock, and once again |
| 3840 | * after taking the lock below. |
| 3841 | */ |
| 3842 | dst_entry = huge_ptep_get(dst_pte); |
| 3843 | if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) |
| 3844 | continue; |
| 3845 | |
| 3846 | dst_ptl = huge_pte_lock(h, dst, dst_pte); |
| 3847 | src_ptl = huge_pte_lockptr(h, src, src_pte); |
| 3848 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
| 3849 | entry = huge_ptep_get(src_pte); |
| 3850 | dst_entry = huge_ptep_get(dst_pte); |
| 3851 | if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { |
| 3852 | /* |
| 3853 | * Skip if src entry none. Also, skip in the |
| 3854 | * unlikely case dst entry !none as this implies |
| 3855 | * sharing with another vma. |
| 3856 | */ |
| 3857 | ; |
| 3858 | } else if (unlikely(is_hugetlb_entry_migration(entry) || |
| 3859 | is_hugetlb_entry_hwpoisoned(entry))) { |
| 3860 | swp_entry_t swp_entry = pte_to_swp_entry(entry); |
| 3861 | |
| 3862 | if (is_write_migration_entry(swp_entry) && cow) { |
| 3863 | /* |
| 3864 | * COW mappings require pages in both |
| 3865 | * parent and child to be set to read. |
| 3866 | */ |
| 3867 | make_migration_entry_read(&swp_entry); |
| 3868 | entry = swp_entry_to_pte(swp_entry); |
| 3869 | set_huge_swap_pte_at(src, addr, src_pte, |
| 3870 | entry, sz); |
| 3871 | } |
| 3872 | set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); |
| 3873 | } else { |
| 3874 | if (cow) { |
| 3875 | /* |
| 3876 | * No need to notify as we are downgrading page |
| 3877 | * table protection not changing it to point |
| 3878 | * to a new page. |
| 3879 | * |
| 3880 | * See Documentation/vm/mmu_notifier.rst |
| 3881 | */ |
| 3882 | huge_ptep_set_wrprotect(src, addr, src_pte); |
| 3883 | } |
| 3884 | entry = huge_ptep_get(src_pte); |
| 3885 | ptepage = pte_page(entry); |
| 3886 | get_page(ptepage); |
| 3887 | page_dup_rmap(ptepage, true); |
| 3888 | set_huge_pte_at(dst, addr, dst_pte, entry); |
| 3889 | hugetlb_count_add(pages_per_huge_page(h), dst); |
| 3890 | } |
| 3891 | spin_unlock(src_ptl); |
| 3892 | spin_unlock(dst_ptl); |
| 3893 | } |
| 3894 | |
| 3895 | if (cow) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3896 | mmu_notifier_invalidate_range_end(&range); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3897 | else |
| 3898 | i_mmap_unlock_read(mapping); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3899 | |
| 3900 | return ret; |
| 3901 | } |
| 3902 | |
| 3903 | void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| 3904 | unsigned long start, unsigned long end, |
| 3905 | struct page *ref_page) |
| 3906 | { |
| 3907 | struct mm_struct *mm = vma->vm_mm; |
| 3908 | unsigned long address; |
| 3909 | pte_t *ptep; |
| 3910 | pte_t pte; |
| 3911 | spinlock_t *ptl; |
| 3912 | struct page *page; |
| 3913 | struct hstate *h = hstate_vma(vma); |
| 3914 | unsigned long sz = huge_page_size(h); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3915 | struct mmu_notifier_range range; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3916 | bool force_flush = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3917 | |
| 3918 | WARN_ON(!is_vm_hugetlb_page(vma)); |
| 3919 | BUG_ON(start & ~huge_page_mask(h)); |
| 3920 | BUG_ON(end & ~huge_page_mask(h)); |
| 3921 | |
| 3922 | /* |
| 3923 | * This is a hugetlb vma, all the pte entries should point |
| 3924 | * to huge page. |
| 3925 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3926 | tlb_change_page_size(tlb, sz); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3927 | tlb_start_vma(tlb, vma); |
| 3928 | |
| 3929 | /* |
| 3930 | * If sharing possible, alert mmu notifiers of worst case. |
| 3931 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 3932 | mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, |
| 3933 | end); |
| 3934 | adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); |
| 3935 | mmu_notifier_invalidate_range_start(&range); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3936 | address = start; |
| 3937 | for (; address < end; address += sz) { |
| 3938 | ptep = huge_pte_offset(mm, address, sz); |
| 3939 | if (!ptep) |
| 3940 | continue; |
| 3941 | |
| 3942 | ptl = huge_pte_lock(h, mm, ptep); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3943 | if (huge_pmd_unshare(mm, vma, &address, ptep)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3944 | spin_unlock(ptl); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 3945 | tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); |
| 3946 | force_flush = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3947 | continue; |
| 3948 | } |
| 3949 | |
| 3950 | pte = huge_ptep_get(ptep); |
| 3951 | if (huge_pte_none(pte)) { |
| 3952 | spin_unlock(ptl); |
| 3953 | continue; |
| 3954 | } |
| 3955 | |
| 3956 | /* |
| 3957 | * Migrating hugepage or HWPoisoned hugepage is already |
| 3958 | * unmapped and its refcount is dropped, so just clear pte here. |
| 3959 | */ |
| 3960 | if (unlikely(!pte_present(pte))) { |
| 3961 | huge_pte_clear(mm, address, ptep, sz); |
| 3962 | spin_unlock(ptl); |
| 3963 | continue; |
| 3964 | } |
| 3965 | |
| 3966 | page = pte_page(pte); |
| 3967 | /* |
| 3968 | * If a reference page is supplied, it is because a specific |
| 3969 | * page is being unmapped, not a range. Ensure the page we |
| 3970 | * are about to unmap is the actual page of interest. |
| 3971 | */ |
| 3972 | if (ref_page) { |
| 3973 | if (page != ref_page) { |
| 3974 | spin_unlock(ptl); |
| 3975 | continue; |
| 3976 | } |
| 3977 | /* |
| 3978 | * Mark the VMA as having unmapped its page so that |
| 3979 | * future faults in this VMA will fail rather than |
| 3980 | * looking like data was lost |
| 3981 | */ |
| 3982 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); |
| 3983 | } |
| 3984 | |
| 3985 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
| 3986 | tlb_remove_huge_tlb_entry(h, tlb, ptep, address); |
| 3987 | if (huge_pte_dirty(pte)) |
| 3988 | set_page_dirty(page); |
| 3989 | |
| 3990 | hugetlb_count_sub(pages_per_huge_page(h), mm); |
| 3991 | page_remove_rmap(page, true); |
| 3992 | |
| 3993 | spin_unlock(ptl); |
| 3994 | tlb_remove_page_size(tlb, page, huge_page_size(h)); |
| 3995 | /* |
| 3996 | * Bail out after unmapping reference page if supplied |
| 3997 | */ |
| 3998 | if (ref_page) |
| 3999 | break; |
| 4000 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4001 | mmu_notifier_invalidate_range_end(&range); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4002 | tlb_end_vma(tlb, vma); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4003 | |
| 4004 | /* |
| 4005 | * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We |
| 4006 | * could defer the flush until now, since by holding i_mmap_rwsem we |
| 4007 | * guaranteed that the last refernece would not be dropped. But we must |
| 4008 | * do the flushing before we return, as otherwise i_mmap_rwsem will be |
| 4009 | * dropped and the last reference to the shared PMDs page might be |
| 4010 | * dropped as well. |
| 4011 | * |
| 4012 | * In theory we could defer the freeing of the PMD pages as well, but |
| 4013 | * huge_pmd_unshare() relies on the exact page_count for the PMD page to |
| 4014 | * detect sharing, so we cannot defer the release of the page either. |
| 4015 | * Instead, do flush now. |
| 4016 | */ |
| 4017 | if (force_flush) |
| 4018 | tlb_flush_mmu_tlbonly(tlb); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4019 | } |
| 4020 | |
| 4021 | void __unmap_hugepage_range_final(struct mmu_gather *tlb, |
| 4022 | struct vm_area_struct *vma, unsigned long start, |
| 4023 | unsigned long end, struct page *ref_page) |
| 4024 | { |
| 4025 | __unmap_hugepage_range(tlb, vma, start, end, ref_page); |
| 4026 | |
| 4027 | /* |
| 4028 | * Clear this flag so that x86's huge_pmd_share page_table_shareable |
| 4029 | * test will fail on a vma being torn down, and not grab a page table |
| 4030 | * on its way out. We're lucky that the flag has such an appropriate |
| 4031 | * name, and can in fact be safely cleared here. We could clear it |
| 4032 | * before the __unmap_hugepage_range above, but all that's necessary |
| 4033 | * is to clear it before releasing the i_mmap_rwsem. This works |
| 4034 | * because in the context this is called, the VMA is about to be |
| 4035 | * destroyed and the i_mmap_rwsem is held. |
| 4036 | */ |
| 4037 | vma->vm_flags &= ~VM_MAYSHARE; |
| 4038 | } |
| 4039 | |
| 4040 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
| 4041 | unsigned long end, struct page *ref_page) |
| 4042 | { |
| 4043 | struct mm_struct *mm; |
| 4044 | struct mmu_gather tlb; |
| 4045 | unsigned long tlb_start = start; |
| 4046 | unsigned long tlb_end = end; |
| 4047 | |
| 4048 | /* |
| 4049 | * If shared PMDs were possibly used within this vma range, adjust |
| 4050 | * start/end for worst case tlb flushing. |
| 4051 | * Note that we can not be sure if PMDs are shared until we try to |
| 4052 | * unmap pages. However, we want to make sure TLB flushing covers |
| 4053 | * the largest possible range. |
| 4054 | */ |
| 4055 | adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); |
| 4056 | |
| 4057 | mm = vma->vm_mm; |
| 4058 | |
| 4059 | tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); |
| 4060 | __unmap_hugepage_range(&tlb, vma, start, end, ref_page); |
| 4061 | tlb_finish_mmu(&tlb, tlb_start, tlb_end); |
| 4062 | } |
| 4063 | |
| 4064 | /* |
| 4065 | * This is called when the original mapper is failing to COW a MAP_PRIVATE |
| 4066 | * mappping it owns the reserve page for. The intention is to unmap the page |
| 4067 | * from other VMAs and let the children be SIGKILLed if they are faulting the |
| 4068 | * same region. |
| 4069 | */ |
| 4070 | static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, |
| 4071 | struct page *page, unsigned long address) |
| 4072 | { |
| 4073 | struct hstate *h = hstate_vma(vma); |
| 4074 | struct vm_area_struct *iter_vma; |
| 4075 | struct address_space *mapping; |
| 4076 | pgoff_t pgoff; |
| 4077 | |
| 4078 | /* |
| 4079 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation |
| 4080 | * from page cache lookup which is in HPAGE_SIZE units. |
| 4081 | */ |
| 4082 | address = address & huge_page_mask(h); |
| 4083 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + |
| 4084 | vma->vm_pgoff; |
| 4085 | mapping = vma->vm_file->f_mapping; |
| 4086 | |
| 4087 | /* |
| 4088 | * Take the mapping lock for the duration of the table walk. As |
| 4089 | * this mapping should be shared between all the VMAs, |
| 4090 | * __unmap_hugepage_range() is called as the lock is already held |
| 4091 | */ |
| 4092 | i_mmap_lock_write(mapping); |
| 4093 | vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { |
| 4094 | /* Do not unmap the current VMA */ |
| 4095 | if (iter_vma == vma) |
| 4096 | continue; |
| 4097 | |
| 4098 | /* |
| 4099 | * Shared VMAs have their own reserves and do not affect |
| 4100 | * MAP_PRIVATE accounting but it is possible that a shared |
| 4101 | * VMA is using the same page so check and skip such VMAs. |
| 4102 | */ |
| 4103 | if (iter_vma->vm_flags & VM_MAYSHARE) |
| 4104 | continue; |
| 4105 | |
| 4106 | /* |
| 4107 | * Unmap the page from other VMAs without their own reserves. |
| 4108 | * They get marked to be SIGKILLed if they fault in these |
| 4109 | * areas. This is because a future no-page fault on this VMA |
| 4110 | * could insert a zeroed page instead of the data existing |
| 4111 | * from the time of fork. This would look like data corruption |
| 4112 | */ |
| 4113 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) |
| 4114 | unmap_hugepage_range(iter_vma, address, |
| 4115 | address + huge_page_size(h), page); |
| 4116 | } |
| 4117 | i_mmap_unlock_write(mapping); |
| 4118 | } |
| 4119 | |
| 4120 | /* |
| 4121 | * Hugetlb_cow() should be called with page lock of the original hugepage held. |
| 4122 | * Called with hugetlb_instantiation_mutex held and pte_page locked so we |
| 4123 | * cannot race with other handlers or page migration. |
| 4124 | * Keep the pte_same checks anyway to make transition from the mutex easier. |
| 4125 | */ |
| 4126 | static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
| 4127 | unsigned long address, pte_t *ptep, |
| 4128 | struct page *pagecache_page, spinlock_t *ptl) |
| 4129 | { |
| 4130 | pte_t pte; |
| 4131 | struct hstate *h = hstate_vma(vma); |
| 4132 | struct page *old_page, *new_page; |
| 4133 | int outside_reserve = 0; |
| 4134 | vm_fault_t ret = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4135 | unsigned long haddr = address & huge_page_mask(h); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4136 | struct mmu_notifier_range range; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4137 | |
| 4138 | pte = huge_ptep_get(ptep); |
| 4139 | old_page = pte_page(pte); |
| 4140 | |
| 4141 | retry_avoidcopy: |
| 4142 | /* If no-one else is actually using this page, avoid the copy |
| 4143 | * and just make the page writable */ |
| 4144 | if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { |
| 4145 | page_move_anon_rmap(old_page, vma); |
| 4146 | set_huge_ptep_writable(vma, haddr, ptep); |
| 4147 | return 0; |
| 4148 | } |
| 4149 | |
| 4150 | /* |
| 4151 | * If the process that created a MAP_PRIVATE mapping is about to |
| 4152 | * perform a COW due to a shared page count, attempt to satisfy |
| 4153 | * the allocation without using the existing reserves. The pagecache |
| 4154 | * page is used to determine if the reserve at this address was |
| 4155 | * consumed or not. If reserves were used, a partial faulted mapping |
| 4156 | * at the time of fork() could consume its reserves on COW instead |
| 4157 | * of the full address range. |
| 4158 | */ |
| 4159 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && |
| 4160 | old_page != pagecache_page) |
| 4161 | outside_reserve = 1; |
| 4162 | |
| 4163 | get_page(old_page); |
| 4164 | |
| 4165 | /* |
| 4166 | * Drop page table lock as buddy allocator may be called. It will |
| 4167 | * be acquired again before returning to the caller, as expected. |
| 4168 | */ |
| 4169 | spin_unlock(ptl); |
| 4170 | new_page = alloc_huge_page(vma, haddr, outside_reserve); |
| 4171 | |
| 4172 | if (IS_ERR(new_page)) { |
| 4173 | /* |
| 4174 | * If a process owning a MAP_PRIVATE mapping fails to COW, |
| 4175 | * it is due to references held by a child and an insufficient |
| 4176 | * huge page pool. To guarantee the original mappers |
| 4177 | * reliability, unmap the page from child processes. The child |
| 4178 | * may get SIGKILLed if it later faults. |
| 4179 | */ |
| 4180 | if (outside_reserve) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4181 | struct address_space *mapping = vma->vm_file->f_mapping; |
| 4182 | pgoff_t idx; |
| 4183 | u32 hash; |
| 4184 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4185 | put_page(old_page); |
| 4186 | BUG_ON(huge_pte_none(pte)); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4187 | /* |
| 4188 | * Drop hugetlb_fault_mutex and i_mmap_rwsem before |
| 4189 | * unmapping. unmapping needs to hold i_mmap_rwsem |
| 4190 | * in write mode. Dropping i_mmap_rwsem in read mode |
| 4191 | * here is OK as COW mappings do not interact with |
| 4192 | * PMD sharing. |
| 4193 | * |
| 4194 | * Reacquire both after unmap operation. |
| 4195 | */ |
| 4196 | idx = vma_hugecache_offset(h, vma, haddr); |
| 4197 | hash = hugetlb_fault_mutex_hash(mapping, idx); |
| 4198 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| 4199 | i_mmap_unlock_read(mapping); |
| 4200 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4201 | unmap_ref_private(mm, vma, old_page, haddr); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4202 | |
| 4203 | i_mmap_lock_read(mapping); |
| 4204 | mutex_lock(&hugetlb_fault_mutex_table[hash]); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4205 | spin_lock(ptl); |
| 4206 | ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); |
| 4207 | if (likely(ptep && |
| 4208 | pte_same(huge_ptep_get(ptep), pte))) |
| 4209 | goto retry_avoidcopy; |
| 4210 | /* |
| 4211 | * race occurs while re-acquiring page table |
| 4212 | * lock, and our job is done. |
| 4213 | */ |
| 4214 | return 0; |
| 4215 | } |
| 4216 | |
| 4217 | ret = vmf_error(PTR_ERR(new_page)); |
| 4218 | goto out_release_old; |
| 4219 | } |
| 4220 | |
| 4221 | /* |
| 4222 | * When the original hugepage is shared one, it does not have |
| 4223 | * anon_vma prepared. |
| 4224 | */ |
| 4225 | if (unlikely(anon_vma_prepare(vma))) { |
| 4226 | ret = VM_FAULT_OOM; |
| 4227 | goto out_release_all; |
| 4228 | } |
| 4229 | |
| 4230 | copy_user_huge_page(new_page, old_page, address, vma, |
| 4231 | pages_per_huge_page(h)); |
| 4232 | __SetPageUptodate(new_page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4233 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4234 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, |
| 4235 | haddr + huge_page_size(h)); |
| 4236 | mmu_notifier_invalidate_range_start(&range); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4237 | |
| 4238 | /* |
| 4239 | * Retake the page table lock to check for racing updates |
| 4240 | * before the page tables are altered |
| 4241 | */ |
| 4242 | spin_lock(ptl); |
| 4243 | ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); |
| 4244 | if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { |
| 4245 | ClearPagePrivate(new_page); |
| 4246 | |
| 4247 | /* Break COW */ |
| 4248 | huge_ptep_clear_flush(vma, haddr, ptep); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4249 | mmu_notifier_invalidate_range(mm, range.start, range.end); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4250 | set_huge_pte_at(mm, haddr, ptep, |
| 4251 | make_huge_pte(vma, new_page, 1)); |
| 4252 | page_remove_rmap(old_page, true); |
| 4253 | hugepage_add_new_anon_rmap(new_page, vma, haddr); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4254 | set_page_huge_active(new_page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4255 | /* Make the old page be freed below */ |
| 4256 | new_page = old_page; |
| 4257 | } |
| 4258 | spin_unlock(ptl); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4259 | mmu_notifier_invalidate_range_end(&range); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4260 | out_release_all: |
| 4261 | restore_reserve_on_error(h, vma, haddr, new_page); |
| 4262 | put_page(new_page); |
| 4263 | out_release_old: |
| 4264 | put_page(old_page); |
| 4265 | |
| 4266 | spin_lock(ptl); /* Caller expects lock to be held */ |
| 4267 | return ret; |
| 4268 | } |
| 4269 | |
| 4270 | /* Return the pagecache page at a given address within a VMA */ |
| 4271 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, |
| 4272 | struct vm_area_struct *vma, unsigned long address) |
| 4273 | { |
| 4274 | struct address_space *mapping; |
| 4275 | pgoff_t idx; |
| 4276 | |
| 4277 | mapping = vma->vm_file->f_mapping; |
| 4278 | idx = vma_hugecache_offset(h, vma, address); |
| 4279 | |
| 4280 | return find_lock_page(mapping, idx); |
| 4281 | } |
| 4282 | |
| 4283 | /* |
| 4284 | * Return whether there is a pagecache page to back given address within VMA. |
| 4285 | * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. |
| 4286 | */ |
| 4287 | static bool hugetlbfs_pagecache_present(struct hstate *h, |
| 4288 | struct vm_area_struct *vma, unsigned long address) |
| 4289 | { |
| 4290 | struct address_space *mapping; |
| 4291 | pgoff_t idx; |
| 4292 | struct page *page; |
| 4293 | |
| 4294 | mapping = vma->vm_file->f_mapping; |
| 4295 | idx = vma_hugecache_offset(h, vma, address); |
| 4296 | |
| 4297 | page = find_get_page(mapping, idx); |
| 4298 | if (page) |
| 4299 | put_page(page); |
| 4300 | return page != NULL; |
| 4301 | } |
| 4302 | |
| 4303 | int huge_add_to_page_cache(struct page *page, struct address_space *mapping, |
| 4304 | pgoff_t idx) |
| 4305 | { |
| 4306 | struct inode *inode = mapping->host; |
| 4307 | struct hstate *h = hstate_inode(inode); |
| 4308 | int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); |
| 4309 | |
| 4310 | if (err) |
| 4311 | return err; |
| 4312 | ClearPagePrivate(page); |
| 4313 | |
| 4314 | /* |
| 4315 | * set page dirty so that it will not be removed from cache/file |
| 4316 | * by non-hugetlbfs specific code paths. |
| 4317 | */ |
| 4318 | set_page_dirty(page); |
| 4319 | |
| 4320 | spin_lock(&inode->i_lock); |
| 4321 | inode->i_blocks += blocks_per_huge_page(h); |
| 4322 | spin_unlock(&inode->i_lock); |
| 4323 | return 0; |
| 4324 | } |
| 4325 | |
| 4326 | static vm_fault_t hugetlb_no_page(struct mm_struct *mm, |
| 4327 | struct vm_area_struct *vma, |
| 4328 | struct address_space *mapping, pgoff_t idx, |
| 4329 | unsigned long address, pte_t *ptep, unsigned int flags) |
| 4330 | { |
| 4331 | struct hstate *h = hstate_vma(vma); |
| 4332 | vm_fault_t ret = VM_FAULT_SIGBUS; |
| 4333 | int anon_rmap = 0; |
| 4334 | unsigned long size; |
| 4335 | struct page *page; |
| 4336 | pte_t new_pte; |
| 4337 | spinlock_t *ptl; |
| 4338 | unsigned long haddr = address & huge_page_mask(h); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4339 | bool new_page = false; |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 4340 | u32 hash = hugetlb_fault_mutex_hash(mapping, idx); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4341 | |
| 4342 | /* |
| 4343 | * Currently, we are forced to kill the process in the event the |
| 4344 | * original mapper has unmapped pages from the child due to a failed |
| 4345 | * COW. Warn that such a situation has occurred as it may not be obvious |
| 4346 | */ |
| 4347 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { |
| 4348 | pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", |
| 4349 | current->pid); |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 4350 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4351 | } |
| 4352 | |
| 4353 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4354 | * We can not race with truncation due to holding i_mmap_rwsem. |
| 4355 | * i_size is modified when holding i_mmap_rwsem, so check here |
| 4356 | * once for faults beyond end of file. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4357 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4358 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
| 4359 | if (idx >= size) |
| 4360 | goto out; |
| 4361 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4362 | retry: |
| 4363 | page = find_lock_page(mapping, idx); |
| 4364 | if (!page) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4365 | /* |
| 4366 | * Check for page in userfault range |
| 4367 | */ |
| 4368 | if (userfaultfd_missing(vma)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4369 | struct vm_fault vmf = { |
| 4370 | .vma = vma, |
| 4371 | .address = haddr, |
| 4372 | .flags = flags, |
| 4373 | /* |
| 4374 | * Hard to debug if it ends up being |
| 4375 | * used by a callee that assumes |
| 4376 | * something about the other |
| 4377 | * uninitialized fields... same as in |
| 4378 | * memory.c |
| 4379 | */ |
| 4380 | }; |
| 4381 | |
| 4382 | /* |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 4383 | * vma_lock and hugetlb_fault_mutex must be dropped |
| 4384 | * before handling userfault. Also mmap_lock will |
| 4385 | * be dropped during handling userfault, any vma |
| 4386 | * operation should be careful from here. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4387 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4388 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4389 | i_mmap_unlock_read(mapping); |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 4390 | return handle_userfault(&vmf, VM_UFFD_MISSING); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4391 | } |
| 4392 | |
| 4393 | page = alloc_huge_page(vma, haddr, 0); |
| 4394 | if (IS_ERR(page)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4395 | /* |
| 4396 | * Returning error will result in faulting task being |
| 4397 | * sent SIGBUS. The hugetlb fault mutex prevents two |
| 4398 | * tasks from racing to fault in the same page which |
| 4399 | * could result in false unable to allocate errors. |
| 4400 | * Page migration does not take the fault mutex, but |
| 4401 | * does a clear then write of pte's under page table |
| 4402 | * lock. Page fault code could race with migration, |
| 4403 | * notice the clear pte and try to allocate a page |
| 4404 | * here. Before returning error, get ptl and make |
| 4405 | * sure there really is no pte entry. |
| 4406 | */ |
| 4407 | ptl = huge_pte_lock(h, mm, ptep); |
| 4408 | if (!huge_pte_none(huge_ptep_get(ptep))) { |
| 4409 | ret = 0; |
| 4410 | spin_unlock(ptl); |
| 4411 | goto out; |
| 4412 | } |
| 4413 | spin_unlock(ptl); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4414 | ret = vmf_error(PTR_ERR(page)); |
| 4415 | goto out; |
| 4416 | } |
| 4417 | clear_huge_page(page, address, pages_per_huge_page(h)); |
| 4418 | __SetPageUptodate(page); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4419 | new_page = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4420 | |
| 4421 | if (vma->vm_flags & VM_MAYSHARE) { |
| 4422 | int err = huge_add_to_page_cache(page, mapping, idx); |
| 4423 | if (err) { |
| 4424 | put_page(page); |
| 4425 | if (err == -EEXIST) |
| 4426 | goto retry; |
| 4427 | goto out; |
| 4428 | } |
| 4429 | } else { |
| 4430 | lock_page(page); |
| 4431 | if (unlikely(anon_vma_prepare(vma))) { |
| 4432 | ret = VM_FAULT_OOM; |
| 4433 | goto backout_unlocked; |
| 4434 | } |
| 4435 | anon_rmap = 1; |
| 4436 | } |
| 4437 | } else { |
| 4438 | /* |
| 4439 | * If memory error occurs between mmap() and fault, some process |
| 4440 | * don't have hwpoisoned swap entry for errored virtual address. |
| 4441 | * So we need to block hugepage fault by PG_hwpoison bit check. |
| 4442 | */ |
| 4443 | if (unlikely(PageHWPoison(page))) { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 4444 | ret = VM_FAULT_HWPOISON_LARGE | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4445 | VM_FAULT_SET_HINDEX(hstate_index(h)); |
| 4446 | goto backout_unlocked; |
| 4447 | } |
| 4448 | } |
| 4449 | |
| 4450 | /* |
| 4451 | * If we are going to COW a private mapping later, we examine the |
| 4452 | * pending reservations for this page now. This will ensure that |
| 4453 | * any allocations necessary to record that reservation occur outside |
| 4454 | * the spinlock. |
| 4455 | */ |
| 4456 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { |
| 4457 | if (vma_needs_reservation(h, vma, haddr) < 0) { |
| 4458 | ret = VM_FAULT_OOM; |
| 4459 | goto backout_unlocked; |
| 4460 | } |
| 4461 | /* Just decrements count, does not deallocate */ |
| 4462 | vma_end_reservation(h, vma, haddr); |
| 4463 | } |
| 4464 | |
| 4465 | ptl = huge_pte_lock(h, mm, ptep); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4466 | ret = 0; |
| 4467 | if (!huge_pte_none(huge_ptep_get(ptep))) |
| 4468 | goto backout; |
| 4469 | |
| 4470 | if (anon_rmap) { |
| 4471 | ClearPagePrivate(page); |
| 4472 | hugepage_add_new_anon_rmap(page, vma, haddr); |
| 4473 | } else |
| 4474 | page_dup_rmap(page, true); |
| 4475 | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) |
| 4476 | && (vma->vm_flags & VM_SHARED))); |
| 4477 | set_huge_pte_at(mm, haddr, ptep, new_pte); |
| 4478 | |
| 4479 | hugetlb_count_add(pages_per_huge_page(h), mm); |
| 4480 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { |
| 4481 | /* Optimization, do the COW without a second fault */ |
| 4482 | ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); |
| 4483 | } |
| 4484 | |
| 4485 | spin_unlock(ptl); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4486 | |
| 4487 | /* |
| 4488 | * Only make newly allocated pages active. Existing pages found |
| 4489 | * in the pagecache could be !page_huge_active() if they have been |
| 4490 | * isolated for migration. |
| 4491 | */ |
| 4492 | if (new_page) |
| 4493 | set_page_huge_active(page); |
| 4494 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4495 | unlock_page(page); |
| 4496 | out: |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 4497 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| 4498 | i_mmap_unlock_read(mapping); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4499 | return ret; |
| 4500 | |
| 4501 | backout: |
| 4502 | spin_unlock(ptl); |
| 4503 | backout_unlocked: |
| 4504 | unlock_page(page); |
| 4505 | restore_reserve_on_error(h, vma, haddr, page); |
| 4506 | put_page(page); |
| 4507 | goto out; |
| 4508 | } |
| 4509 | |
| 4510 | #ifdef CONFIG_SMP |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4511 | u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4512 | { |
| 4513 | unsigned long key[2]; |
| 4514 | u32 hash; |
| 4515 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4516 | key[0] = (unsigned long) mapping; |
| 4517 | key[1] = idx; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4518 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 4519 | hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4520 | |
| 4521 | return hash & (num_fault_mutexes - 1); |
| 4522 | } |
| 4523 | #else |
| 4524 | /* |
| 4525 | * For uniprocesor systems we always use a single mutex, so just |
| 4526 | * return 0 and avoid the hashing overhead. |
| 4527 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4528 | u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4529 | { |
| 4530 | return 0; |
| 4531 | } |
| 4532 | #endif |
| 4533 | |
| 4534 | vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
| 4535 | unsigned long address, unsigned int flags) |
| 4536 | { |
| 4537 | pte_t *ptep, entry; |
| 4538 | spinlock_t *ptl; |
| 4539 | vm_fault_t ret; |
| 4540 | u32 hash; |
| 4541 | pgoff_t idx; |
| 4542 | struct page *page = NULL; |
| 4543 | struct page *pagecache_page = NULL; |
| 4544 | struct hstate *h = hstate_vma(vma); |
| 4545 | struct address_space *mapping; |
| 4546 | int need_wait_lock = 0; |
| 4547 | unsigned long haddr = address & huge_page_mask(h); |
| 4548 | |
| 4549 | ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); |
| 4550 | if (ptep) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4551 | /* |
| 4552 | * Since we hold no locks, ptep could be stale. That is |
| 4553 | * OK as we are only making decisions based on content and |
| 4554 | * not actually modifying content here. |
| 4555 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4556 | entry = huge_ptep_get(ptep); |
| 4557 | if (unlikely(is_hugetlb_entry_migration(entry))) { |
| 4558 | migration_entry_wait_huge(vma, mm, ptep); |
| 4559 | return 0; |
| 4560 | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) |
| 4561 | return VM_FAULT_HWPOISON_LARGE | |
| 4562 | VM_FAULT_SET_HINDEX(hstate_index(h)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4563 | } |
| 4564 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4565 | /* |
| 4566 | * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold |
| 4567 | * until finished with ptep. This serves two purposes: |
| 4568 | * 1) It prevents huge_pmd_unshare from being called elsewhere |
| 4569 | * and making the ptep no longer valid. |
| 4570 | * 2) It synchronizes us with i_size modifications during truncation. |
| 4571 | * |
| 4572 | * ptep could have already be assigned via huge_pte_offset. That |
| 4573 | * is OK, as huge_pte_alloc will return the same value unless |
| 4574 | * something has changed. |
| 4575 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4576 | mapping = vma->vm_file->f_mapping; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4577 | i_mmap_lock_read(mapping); |
| 4578 | ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); |
| 4579 | if (!ptep) { |
| 4580 | i_mmap_unlock_read(mapping); |
| 4581 | return VM_FAULT_OOM; |
| 4582 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4583 | |
| 4584 | /* |
| 4585 | * Serialize hugepage allocation and instantiation, so that we don't |
| 4586 | * get spurious allocation failures if two CPUs race to instantiate |
| 4587 | * the same page in the page cache. |
| 4588 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4589 | idx = vma_hugecache_offset(h, vma, haddr); |
| 4590 | hash = hugetlb_fault_mutex_hash(mapping, idx); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4591 | mutex_lock(&hugetlb_fault_mutex_table[hash]); |
| 4592 | |
| 4593 | entry = huge_ptep_get(ptep); |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 4594 | if (huge_pte_none(entry)) |
| 4595 | /* |
| 4596 | * hugetlb_no_page will drop vma lock and hugetlb fault |
| 4597 | * mutex internally, which make us return immediately. |
| 4598 | */ |
| 4599 | return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4600 | |
| 4601 | ret = 0; |
| 4602 | |
| 4603 | /* |
| 4604 | * entry could be a migration/hwpoison entry at this point, so this |
| 4605 | * check prevents the kernel from going below assuming that we have |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4606 | * an active hugepage in pagecache. This goto expects the 2nd page |
| 4607 | * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will |
| 4608 | * properly handle it. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4609 | */ |
| 4610 | if (!pte_present(entry)) |
| 4611 | goto out_mutex; |
| 4612 | |
| 4613 | /* |
| 4614 | * If we are going to COW the mapping later, we examine the pending |
| 4615 | * reservations for this page now. This will ensure that any |
| 4616 | * allocations necessary to record that reservation occur outside the |
| 4617 | * spinlock. For private mappings, we also lookup the pagecache |
| 4618 | * page now as it is used to determine if a reservation has been |
| 4619 | * consumed. |
| 4620 | */ |
| 4621 | if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { |
| 4622 | if (vma_needs_reservation(h, vma, haddr) < 0) { |
| 4623 | ret = VM_FAULT_OOM; |
| 4624 | goto out_mutex; |
| 4625 | } |
| 4626 | /* Just decrements count, does not deallocate */ |
| 4627 | vma_end_reservation(h, vma, haddr); |
| 4628 | |
| 4629 | if (!(vma->vm_flags & VM_MAYSHARE)) |
| 4630 | pagecache_page = hugetlbfs_pagecache_page(h, |
| 4631 | vma, haddr); |
| 4632 | } |
| 4633 | |
| 4634 | ptl = huge_pte_lock(h, mm, ptep); |
| 4635 | |
| 4636 | /* Check for a racing update before calling hugetlb_cow */ |
| 4637 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) |
| 4638 | goto out_ptl; |
| 4639 | |
| 4640 | /* |
| 4641 | * hugetlb_cow() requires page locks of pte_page(entry) and |
| 4642 | * pagecache_page, so here we need take the former one |
| 4643 | * when page != pagecache_page or !pagecache_page. |
| 4644 | */ |
| 4645 | page = pte_page(entry); |
| 4646 | if (page != pagecache_page) |
| 4647 | if (!trylock_page(page)) { |
| 4648 | need_wait_lock = 1; |
| 4649 | goto out_ptl; |
| 4650 | } |
| 4651 | |
| 4652 | get_page(page); |
| 4653 | |
| 4654 | if (flags & FAULT_FLAG_WRITE) { |
| 4655 | if (!huge_pte_write(entry)) { |
| 4656 | ret = hugetlb_cow(mm, vma, address, ptep, |
| 4657 | pagecache_page, ptl); |
| 4658 | goto out_put_page; |
| 4659 | } |
| 4660 | entry = huge_pte_mkdirty(entry); |
| 4661 | } |
| 4662 | entry = pte_mkyoung(entry); |
| 4663 | if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, |
| 4664 | flags & FAULT_FLAG_WRITE)) |
| 4665 | update_mmu_cache(vma, haddr, ptep); |
| 4666 | out_put_page: |
| 4667 | if (page != pagecache_page) |
| 4668 | unlock_page(page); |
| 4669 | put_page(page); |
| 4670 | out_ptl: |
| 4671 | spin_unlock(ptl); |
| 4672 | |
| 4673 | if (pagecache_page) { |
| 4674 | unlock_page(pagecache_page); |
| 4675 | put_page(pagecache_page); |
| 4676 | } |
| 4677 | out_mutex: |
| 4678 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4679 | i_mmap_unlock_read(mapping); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4680 | /* |
| 4681 | * Generally it's safe to hold refcount during waiting page lock. But |
| 4682 | * here we just wait to defer the next page fault to avoid busy loop and |
| 4683 | * the page is not used after unlocked before returning from the current |
| 4684 | * page fault. So we are safe from accessing freed page, even if we wait |
| 4685 | * here without taking refcount. |
| 4686 | */ |
| 4687 | if (need_wait_lock) |
| 4688 | wait_on_page_locked(page); |
| 4689 | return ret; |
| 4690 | } |
| 4691 | |
| 4692 | /* |
| 4693 | * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with |
| 4694 | * modifications for huge pages. |
| 4695 | */ |
| 4696 | int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, |
| 4697 | pte_t *dst_pte, |
| 4698 | struct vm_area_struct *dst_vma, |
| 4699 | unsigned long dst_addr, |
| 4700 | unsigned long src_addr, |
| 4701 | struct page **pagep) |
| 4702 | { |
| 4703 | struct address_space *mapping; |
| 4704 | pgoff_t idx; |
| 4705 | unsigned long size; |
| 4706 | int vm_shared = dst_vma->vm_flags & VM_SHARED; |
| 4707 | struct hstate *h = hstate_vma(dst_vma); |
| 4708 | pte_t _dst_pte; |
| 4709 | spinlock_t *ptl; |
| 4710 | int ret; |
| 4711 | struct page *page; |
| 4712 | |
| 4713 | if (!*pagep) { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 4714 | /* If a page already exists, then it's UFFDIO_COPY for |
| 4715 | * a non-missing case. Return -EEXIST. |
| 4716 | */ |
| 4717 | if (vm_shared && |
| 4718 | hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { |
| 4719 | ret = -EEXIST; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4720 | goto out; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 4721 | } |
| 4722 | |
| 4723 | page = alloc_huge_page(dst_vma, dst_addr, 0); |
| 4724 | if (IS_ERR(page)) { |
| 4725 | ret = -ENOMEM; |
| 4726 | goto out; |
| 4727 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4728 | |
| 4729 | ret = copy_huge_page_from_user(page, |
| 4730 | (const void __user *) src_addr, |
| 4731 | pages_per_huge_page(h), false); |
| 4732 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4733 | /* fallback to copy_from_user outside mmap_lock */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4734 | if (unlikely(ret)) { |
| 4735 | ret = -ENOENT; |
| 4736 | *pagep = page; |
| 4737 | /* don't free the page */ |
| 4738 | goto out; |
| 4739 | } |
| 4740 | } else { |
| 4741 | page = *pagep; |
| 4742 | *pagep = NULL; |
| 4743 | } |
| 4744 | |
| 4745 | /* |
| 4746 | * The memory barrier inside __SetPageUptodate makes sure that |
| 4747 | * preceding stores to the page contents become visible before |
| 4748 | * the set_pte_at() write. |
| 4749 | */ |
| 4750 | __SetPageUptodate(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4751 | |
| 4752 | mapping = dst_vma->vm_file->f_mapping; |
| 4753 | idx = vma_hugecache_offset(h, dst_vma, dst_addr); |
| 4754 | |
| 4755 | /* |
| 4756 | * If shared, add to page cache |
| 4757 | */ |
| 4758 | if (vm_shared) { |
| 4759 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
| 4760 | ret = -EFAULT; |
| 4761 | if (idx >= size) |
| 4762 | goto out_release_nounlock; |
| 4763 | |
| 4764 | /* |
| 4765 | * Serialization between remove_inode_hugepages() and |
| 4766 | * huge_add_to_page_cache() below happens through the |
| 4767 | * hugetlb_fault_mutex_table that here must be hold by |
| 4768 | * the caller. |
| 4769 | */ |
| 4770 | ret = huge_add_to_page_cache(page, mapping, idx); |
| 4771 | if (ret) |
| 4772 | goto out_release_nounlock; |
| 4773 | } |
| 4774 | |
| 4775 | ptl = huge_pte_lockptr(h, dst_mm, dst_pte); |
| 4776 | spin_lock(ptl); |
| 4777 | |
| 4778 | /* |
| 4779 | * Recheck the i_size after holding PT lock to make sure not |
| 4780 | * to leave any page mapped (as page_mapped()) beyond the end |
| 4781 | * of the i_size (remove_inode_hugepages() is strict about |
| 4782 | * enforcing that). If we bail out here, we'll also leave a |
| 4783 | * page in the radix tree in the vm_shared case beyond the end |
| 4784 | * of the i_size, but remove_inode_hugepages() will take care |
| 4785 | * of it as soon as we drop the hugetlb_fault_mutex_table. |
| 4786 | */ |
| 4787 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
| 4788 | ret = -EFAULT; |
| 4789 | if (idx >= size) |
| 4790 | goto out_release_unlock; |
| 4791 | |
| 4792 | ret = -EEXIST; |
| 4793 | if (!huge_pte_none(huge_ptep_get(dst_pte))) |
| 4794 | goto out_release_unlock; |
| 4795 | |
| 4796 | if (vm_shared) { |
| 4797 | page_dup_rmap(page, true); |
| 4798 | } else { |
| 4799 | ClearPagePrivate(page); |
| 4800 | hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); |
| 4801 | } |
| 4802 | |
| 4803 | _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); |
| 4804 | if (dst_vma->vm_flags & VM_WRITE) |
| 4805 | _dst_pte = huge_pte_mkdirty(_dst_pte); |
| 4806 | _dst_pte = pte_mkyoung(_dst_pte); |
| 4807 | |
| 4808 | set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); |
| 4809 | |
| 4810 | (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, |
| 4811 | dst_vma->vm_flags & VM_WRITE); |
| 4812 | hugetlb_count_add(pages_per_huge_page(h), dst_mm); |
| 4813 | |
| 4814 | /* No need to invalidate - it was non-present before */ |
| 4815 | update_mmu_cache(dst_vma, dst_addr, dst_pte); |
| 4816 | |
| 4817 | spin_unlock(ptl); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4818 | set_page_huge_active(page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4819 | if (vm_shared) |
| 4820 | unlock_page(page); |
| 4821 | ret = 0; |
| 4822 | out: |
| 4823 | return ret; |
| 4824 | out_release_unlock: |
| 4825 | spin_unlock(ptl); |
| 4826 | if (vm_shared) |
| 4827 | unlock_page(page); |
| 4828 | out_release_nounlock: |
| 4829 | put_page(page); |
| 4830 | goto out; |
| 4831 | } |
| 4832 | |
| 4833 | long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
| 4834 | struct page **pages, struct vm_area_struct **vmas, |
| 4835 | unsigned long *position, unsigned long *nr_pages, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4836 | long i, unsigned int flags, int *locked) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4837 | { |
| 4838 | unsigned long pfn_offset; |
| 4839 | unsigned long vaddr = *position; |
| 4840 | unsigned long remainder = *nr_pages; |
| 4841 | struct hstate *h = hstate_vma(vma); |
| 4842 | int err = -EFAULT; |
| 4843 | |
| 4844 | while (vaddr < vma->vm_end && remainder) { |
| 4845 | pte_t *pte; |
| 4846 | spinlock_t *ptl = NULL; |
| 4847 | int absent; |
| 4848 | struct page *page; |
| 4849 | |
| 4850 | /* |
| 4851 | * If we have a pending SIGKILL, don't keep faulting pages and |
| 4852 | * potentially allocating memory. |
| 4853 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4854 | if (fatal_signal_pending(current)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4855 | remainder = 0; |
| 4856 | break; |
| 4857 | } |
| 4858 | |
| 4859 | /* |
| 4860 | * Some archs (sparc64, sh*) have multiple pte_ts to |
| 4861 | * each hugepage. We have to make sure we get the |
| 4862 | * first, for the page indexing below to work. |
| 4863 | * |
| 4864 | * Note that page table lock is not held when pte is null. |
| 4865 | */ |
| 4866 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), |
| 4867 | huge_page_size(h)); |
| 4868 | if (pte) |
| 4869 | ptl = huge_pte_lock(h, mm, pte); |
| 4870 | absent = !pte || huge_pte_none(huge_ptep_get(pte)); |
| 4871 | |
| 4872 | /* |
| 4873 | * When coredumping, it suits get_dump_page if we just return |
| 4874 | * an error where there's an empty slot with no huge pagecache |
| 4875 | * to back it. This way, we avoid allocating a hugepage, and |
| 4876 | * the sparse dumpfile avoids allocating disk blocks, but its |
| 4877 | * huge holes still show up with zeroes where they need to be. |
| 4878 | */ |
| 4879 | if (absent && (flags & FOLL_DUMP) && |
| 4880 | !hugetlbfs_pagecache_present(h, vma, vaddr)) { |
| 4881 | if (pte) |
| 4882 | spin_unlock(ptl); |
| 4883 | remainder = 0; |
| 4884 | break; |
| 4885 | } |
| 4886 | |
| 4887 | /* |
| 4888 | * We need call hugetlb_fault for both hugepages under migration |
| 4889 | * (in which case hugetlb_fault waits for the migration,) and |
| 4890 | * hwpoisoned hugepages (in which case we need to prevent the |
| 4891 | * caller from accessing to them.) In order to do this, we use |
| 4892 | * here is_swap_pte instead of is_hugetlb_entry_migration and |
| 4893 | * is_hugetlb_entry_hwpoisoned. This is because it simply covers |
| 4894 | * both cases, and because we can't follow correct pages |
| 4895 | * directly from any kind of swap entries. |
| 4896 | */ |
| 4897 | if (absent || is_swap_pte(huge_ptep_get(pte)) || |
| 4898 | ((flags & FOLL_WRITE) && |
| 4899 | !huge_pte_write(huge_ptep_get(pte)))) { |
| 4900 | vm_fault_t ret; |
| 4901 | unsigned int fault_flags = 0; |
| 4902 | |
| 4903 | if (pte) |
| 4904 | spin_unlock(ptl); |
| 4905 | if (flags & FOLL_WRITE) |
| 4906 | fault_flags |= FAULT_FLAG_WRITE; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4907 | if (locked) |
| 4908 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | |
| 4909 | FAULT_FLAG_KILLABLE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4910 | if (flags & FOLL_NOWAIT) |
| 4911 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | |
| 4912 | FAULT_FLAG_RETRY_NOWAIT; |
| 4913 | if (flags & FOLL_TRIED) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4914 | /* |
| 4915 | * Note: FAULT_FLAG_ALLOW_RETRY and |
| 4916 | * FAULT_FLAG_TRIED can co-exist |
| 4917 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4918 | fault_flags |= FAULT_FLAG_TRIED; |
| 4919 | } |
| 4920 | ret = hugetlb_fault(mm, vma, vaddr, fault_flags); |
| 4921 | if (ret & VM_FAULT_ERROR) { |
| 4922 | err = vm_fault_to_errno(ret, flags); |
| 4923 | remainder = 0; |
| 4924 | break; |
| 4925 | } |
| 4926 | if (ret & VM_FAULT_RETRY) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4927 | if (locked && |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4928 | !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4929 | *locked = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4930 | *nr_pages = 0; |
| 4931 | /* |
| 4932 | * VM_FAULT_RETRY must not return an |
| 4933 | * error, it will return zero |
| 4934 | * instead. |
| 4935 | * |
| 4936 | * No need to update "position" as the |
| 4937 | * caller will not check it after |
| 4938 | * *nr_pages is set to 0. |
| 4939 | */ |
| 4940 | return i; |
| 4941 | } |
| 4942 | continue; |
| 4943 | } |
| 4944 | |
| 4945 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
| 4946 | page = pte_page(huge_ptep_get(pte)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4947 | |
| 4948 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4949 | * If subpage information not requested, update counters |
| 4950 | * and skip the same_page loop below. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4951 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 4952 | if (!pages && !vmas && !pfn_offset && |
| 4953 | (vaddr + huge_page_size(h) < vma->vm_end) && |
| 4954 | (remainder >= pages_per_huge_page(h))) { |
| 4955 | vaddr += huge_page_size(h); |
| 4956 | remainder -= pages_per_huge_page(h); |
| 4957 | i += pages_per_huge_page(h); |
| 4958 | spin_unlock(ptl); |
| 4959 | continue; |
| 4960 | } |
| 4961 | |
| 4962 | same_page: |
| 4963 | if (pages) { |
| 4964 | pages[i] = mem_map_offset(page, pfn_offset); |
| 4965 | /* |
| 4966 | * try_grab_page() should always succeed here, because: |
| 4967 | * a) we hold the ptl lock, and b) we've just checked |
| 4968 | * that the huge page is present in the page tables. If |
| 4969 | * the huge page is present, then the tail pages must |
| 4970 | * also be present. The ptl prevents the head page and |
| 4971 | * tail pages from being rearranged in any way. So this |
| 4972 | * page must be available at this point, unless the page |
| 4973 | * refcount overflowed: |
| 4974 | */ |
| 4975 | if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 4976 | spin_unlock(ptl); |
| 4977 | remainder = 0; |
| 4978 | err = -ENOMEM; |
| 4979 | break; |
| 4980 | } |
| 4981 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4982 | |
| 4983 | if (vmas) |
| 4984 | vmas[i] = vma; |
| 4985 | |
| 4986 | vaddr += PAGE_SIZE; |
| 4987 | ++pfn_offset; |
| 4988 | --remainder; |
| 4989 | ++i; |
| 4990 | if (vaddr < vma->vm_end && remainder && |
| 4991 | pfn_offset < pages_per_huge_page(h)) { |
| 4992 | /* |
| 4993 | * We use pfn_offset to avoid touching the pageframes |
| 4994 | * of this compound page. |
| 4995 | */ |
| 4996 | goto same_page; |
| 4997 | } |
| 4998 | spin_unlock(ptl); |
| 4999 | } |
| 5000 | *nr_pages = remainder; |
| 5001 | /* |
| 5002 | * setting position is actually required only if remainder is |
| 5003 | * not zero but it's faster not to add a "if (remainder)" |
| 5004 | * branch. |
| 5005 | */ |
| 5006 | *position = vaddr; |
| 5007 | |
| 5008 | return i ? i : err; |
| 5009 | } |
| 5010 | |
| 5011 | #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE |
| 5012 | /* |
| 5013 | * ARCHes with special requirements for evicting HUGETLB backing TLB entries can |
| 5014 | * implement this. |
| 5015 | */ |
| 5016 | #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) |
| 5017 | #endif |
| 5018 | |
| 5019 | unsigned long hugetlb_change_protection(struct vm_area_struct *vma, |
| 5020 | unsigned long address, unsigned long end, pgprot_t newprot) |
| 5021 | { |
| 5022 | struct mm_struct *mm = vma->vm_mm; |
| 5023 | unsigned long start = address; |
| 5024 | pte_t *ptep; |
| 5025 | pte_t pte; |
| 5026 | struct hstate *h = hstate_vma(vma); |
| 5027 | unsigned long pages = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5028 | bool shared_pmd = false; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5029 | struct mmu_notifier_range range; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5030 | |
| 5031 | /* |
| 5032 | * In the case of shared PMDs, the area to flush could be beyond |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5033 | * start/end. Set range.start/range.end to cover the maximum possible |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5034 | * range if PMD sharing is possible. |
| 5035 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5036 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, |
| 5037 | 0, vma, mm, start, end); |
| 5038 | adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5039 | |
| 5040 | BUG_ON(address >= end); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5041 | flush_cache_range(vma, range.start, range.end); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5042 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5043 | mmu_notifier_invalidate_range_start(&range); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5044 | i_mmap_lock_write(vma->vm_file->f_mapping); |
| 5045 | for (; address < end; address += huge_page_size(h)) { |
| 5046 | spinlock_t *ptl; |
| 5047 | ptep = huge_pte_offset(mm, address, huge_page_size(h)); |
| 5048 | if (!ptep) |
| 5049 | continue; |
| 5050 | ptl = huge_pte_lock(h, mm, ptep); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5051 | if (huge_pmd_unshare(mm, vma, &address, ptep)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5052 | pages++; |
| 5053 | spin_unlock(ptl); |
| 5054 | shared_pmd = true; |
| 5055 | continue; |
| 5056 | } |
| 5057 | pte = huge_ptep_get(ptep); |
| 5058 | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { |
| 5059 | spin_unlock(ptl); |
| 5060 | continue; |
| 5061 | } |
| 5062 | if (unlikely(is_hugetlb_entry_migration(pte))) { |
| 5063 | swp_entry_t entry = pte_to_swp_entry(pte); |
| 5064 | |
| 5065 | if (is_write_migration_entry(entry)) { |
| 5066 | pte_t newpte; |
| 5067 | |
| 5068 | make_migration_entry_read(&entry); |
| 5069 | newpte = swp_entry_to_pte(entry); |
| 5070 | set_huge_swap_pte_at(mm, address, ptep, |
| 5071 | newpte, huge_page_size(h)); |
| 5072 | pages++; |
| 5073 | } |
| 5074 | spin_unlock(ptl); |
| 5075 | continue; |
| 5076 | } |
| 5077 | if (!huge_pte_none(pte)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5078 | pte_t old_pte; |
| 5079 | |
| 5080 | old_pte = huge_ptep_modify_prot_start(vma, address, ptep); |
| 5081 | pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5082 | pte = arch_make_huge_pte(pte, vma, NULL, 0); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5083 | huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5084 | pages++; |
| 5085 | } |
| 5086 | spin_unlock(ptl); |
| 5087 | } |
| 5088 | /* |
| 5089 | * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare |
| 5090 | * may have cleared our pud entry and done put_page on the page table: |
| 5091 | * once we release i_mmap_rwsem, another task can do the final put_page |
| 5092 | * and that page table be reused and filled with junk. If we actually |
| 5093 | * did unshare a page of pmds, flush the range corresponding to the pud. |
| 5094 | */ |
| 5095 | if (shared_pmd) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5096 | flush_hugetlb_tlb_range(vma, range.start, range.end); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5097 | else |
| 5098 | flush_hugetlb_tlb_range(vma, start, end); |
| 5099 | /* |
| 5100 | * No need to call mmu_notifier_invalidate_range() we are downgrading |
| 5101 | * page table protection not changing it to point to a new page. |
| 5102 | * |
| 5103 | * See Documentation/vm/mmu_notifier.rst |
| 5104 | */ |
| 5105 | i_mmap_unlock_write(vma->vm_file->f_mapping); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5106 | mmu_notifier_invalidate_range_end(&range); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5107 | |
| 5108 | return pages << h->order; |
| 5109 | } |
| 5110 | |
| 5111 | int hugetlb_reserve_pages(struct inode *inode, |
| 5112 | long from, long to, |
| 5113 | struct vm_area_struct *vma, |
| 5114 | vm_flags_t vm_flags) |
| 5115 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5116 | long ret, chg, add = -1; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5117 | struct hstate *h = hstate_inode(inode); |
| 5118 | struct hugepage_subpool *spool = subpool_inode(inode); |
| 5119 | struct resv_map *resv_map; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5120 | struct hugetlb_cgroup *h_cg = NULL; |
| 5121 | long gbl_reserve, regions_needed = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5122 | |
| 5123 | /* This should never happen */ |
| 5124 | if (from > to) { |
| 5125 | VM_WARN(1, "%s called with a negative range\n", __func__); |
| 5126 | return -EINVAL; |
| 5127 | } |
| 5128 | |
| 5129 | /* |
| 5130 | * Only apply hugepage reservation if asked. At fault time, an |
| 5131 | * attempt will be made for VM_NORESERVE to allocate a page |
| 5132 | * without using reserves |
| 5133 | */ |
| 5134 | if (vm_flags & VM_NORESERVE) |
| 5135 | return 0; |
| 5136 | |
| 5137 | /* |
| 5138 | * Shared mappings base their reservation on the number of pages that |
| 5139 | * are already allocated on behalf of the file. Private mappings need |
| 5140 | * to reserve the full area even if read-only as mprotect() may be |
| 5141 | * called to make the mapping read-write. Assume !vma is a shm mapping |
| 5142 | */ |
| 5143 | if (!vma || vma->vm_flags & VM_MAYSHARE) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5144 | /* |
| 5145 | * resv_map can not be NULL as hugetlb_reserve_pages is only |
| 5146 | * called for inodes for which resv_maps were created (see |
| 5147 | * hugetlbfs_get_inode). |
| 5148 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5149 | resv_map = inode_resv_map(inode); |
| 5150 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5151 | chg = region_chg(resv_map, from, to, ®ions_needed); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5152 | |
| 5153 | } else { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5154 | /* Private mapping. */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5155 | resv_map = resv_map_alloc(); |
| 5156 | if (!resv_map) |
| 5157 | return -ENOMEM; |
| 5158 | |
| 5159 | chg = to - from; |
| 5160 | |
| 5161 | set_vma_resv_map(vma, resv_map); |
| 5162 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); |
| 5163 | } |
| 5164 | |
| 5165 | if (chg < 0) { |
| 5166 | ret = chg; |
| 5167 | goto out_err; |
| 5168 | } |
| 5169 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5170 | ret = hugetlb_cgroup_charge_cgroup_rsvd( |
| 5171 | hstate_index(h), chg * pages_per_huge_page(h), &h_cg); |
| 5172 | |
| 5173 | if (ret < 0) { |
| 5174 | ret = -ENOMEM; |
| 5175 | goto out_err; |
| 5176 | } |
| 5177 | |
| 5178 | if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { |
| 5179 | /* For private mappings, the hugetlb_cgroup uncharge info hangs |
| 5180 | * of the resv_map. |
| 5181 | */ |
| 5182 | resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); |
| 5183 | } |
| 5184 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5185 | /* |
| 5186 | * There must be enough pages in the subpool for the mapping. If |
| 5187 | * the subpool has a minimum size, there may be some global |
| 5188 | * reservations already in place (gbl_reserve). |
| 5189 | */ |
| 5190 | gbl_reserve = hugepage_subpool_get_pages(spool, chg); |
| 5191 | if (gbl_reserve < 0) { |
| 5192 | ret = -ENOSPC; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5193 | goto out_uncharge_cgroup; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5194 | } |
| 5195 | |
| 5196 | /* |
| 5197 | * Check enough hugepages are available for the reservation. |
| 5198 | * Hand the pages back to the subpool if there are not |
| 5199 | */ |
| 5200 | ret = hugetlb_acct_memory(h, gbl_reserve); |
| 5201 | if (ret < 0) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5202 | goto out_put_pages; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5203 | } |
| 5204 | |
| 5205 | /* |
| 5206 | * Account for the reservations made. Shared mappings record regions |
| 5207 | * that have reservations as they are shared by multiple VMAs. |
| 5208 | * When the last VMA disappears, the region map says how much |
| 5209 | * the reservation was and the page cache tells how much of |
| 5210 | * the reservation was consumed. Private mappings are per-VMA and |
| 5211 | * only the consumed reservations are tracked. When the VMA |
| 5212 | * disappears, the original reservation is the VMA size and the |
| 5213 | * consumed reservations are stored in the map. Hence, nothing |
| 5214 | * else has to be done for private mappings here |
| 5215 | */ |
| 5216 | if (!vma || vma->vm_flags & VM_MAYSHARE) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5217 | add = region_add(resv_map, from, to, regions_needed, h, h_cg); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5218 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5219 | if (unlikely(add < 0)) { |
| 5220 | hugetlb_acct_memory(h, -gbl_reserve); |
| 5221 | ret = add; |
| 5222 | goto out_put_pages; |
| 5223 | } else if (unlikely(chg > add)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5224 | /* |
| 5225 | * pages in this range were added to the reserve |
| 5226 | * map between region_chg and region_add. This |
| 5227 | * indicates a race with alloc_huge_page. Adjust |
| 5228 | * the subpool and reserve counts modified above |
| 5229 | * based on the difference. |
| 5230 | */ |
| 5231 | long rsv_adjust; |
| 5232 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5233 | /* |
| 5234 | * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the |
| 5235 | * reference to h_cg->css. See comment below for detail. |
| 5236 | */ |
| 5237 | hugetlb_cgroup_uncharge_cgroup_rsvd( |
| 5238 | hstate_index(h), |
| 5239 | (chg - add) * pages_per_huge_page(h), h_cg); |
| 5240 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5241 | rsv_adjust = hugepage_subpool_put_pages(spool, |
| 5242 | chg - add); |
| 5243 | hugetlb_acct_memory(h, -rsv_adjust); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5244 | } else if (h_cg) { |
| 5245 | /* |
| 5246 | * The file_regions will hold their own reference to |
| 5247 | * h_cg->css. So we should release the reference held |
| 5248 | * via hugetlb_cgroup_charge_cgroup_rsvd() when we are |
| 5249 | * done. |
| 5250 | */ |
| 5251 | hugetlb_cgroup_put_rsvd_cgroup(h_cg); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5252 | } |
| 5253 | } |
| 5254 | return 0; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5255 | out_put_pages: |
| 5256 | /* put back original number of pages, chg */ |
| 5257 | (void)hugepage_subpool_put_pages(spool, chg); |
| 5258 | out_uncharge_cgroup: |
| 5259 | hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), |
| 5260 | chg * pages_per_huge_page(h), h_cg); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5261 | out_err: |
| 5262 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5263 | /* Only call region_abort if the region_chg succeeded but the |
| 5264 | * region_add failed or didn't run. |
| 5265 | */ |
| 5266 | if (chg >= 0 && add < 0) |
| 5267 | region_abort(resv_map, from, to, regions_needed); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5268 | if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
| 5269 | kref_put(&resv_map->refs, resv_map_release); |
| 5270 | return ret; |
| 5271 | } |
| 5272 | |
| 5273 | long hugetlb_unreserve_pages(struct inode *inode, long start, long end, |
| 5274 | long freed) |
| 5275 | { |
| 5276 | struct hstate *h = hstate_inode(inode); |
| 5277 | struct resv_map *resv_map = inode_resv_map(inode); |
| 5278 | long chg = 0; |
| 5279 | struct hugepage_subpool *spool = subpool_inode(inode); |
| 5280 | long gbl_reserve; |
| 5281 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 5282 | /* |
| 5283 | * Since this routine can be called in the evict inode path for all |
| 5284 | * hugetlbfs inodes, resv_map could be NULL. |
| 5285 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5286 | if (resv_map) { |
| 5287 | chg = region_del(resv_map, start, end); |
| 5288 | /* |
| 5289 | * region_del() can fail in the rare case where a region |
| 5290 | * must be split and another region descriptor can not be |
| 5291 | * allocated. If end == LONG_MAX, it will not fail. |
| 5292 | */ |
| 5293 | if (chg < 0) |
| 5294 | return chg; |
| 5295 | } |
| 5296 | |
| 5297 | spin_lock(&inode->i_lock); |
| 5298 | inode->i_blocks -= (blocks_per_huge_page(h) * freed); |
| 5299 | spin_unlock(&inode->i_lock); |
| 5300 | |
| 5301 | /* |
| 5302 | * If the subpool has a minimum size, the number of global |
| 5303 | * reservations to be released may be adjusted. |
| 5304 | */ |
| 5305 | gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); |
| 5306 | hugetlb_acct_memory(h, -gbl_reserve); |
| 5307 | |
| 5308 | return 0; |
| 5309 | } |
| 5310 | |
| 5311 | #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE |
| 5312 | static unsigned long page_table_shareable(struct vm_area_struct *svma, |
| 5313 | struct vm_area_struct *vma, |
| 5314 | unsigned long addr, pgoff_t idx) |
| 5315 | { |
| 5316 | unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + |
| 5317 | svma->vm_start; |
| 5318 | unsigned long sbase = saddr & PUD_MASK; |
| 5319 | unsigned long s_end = sbase + PUD_SIZE; |
| 5320 | |
| 5321 | /* Allow segments to share if only one is marked locked */ |
| 5322 | unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; |
| 5323 | unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; |
| 5324 | |
| 5325 | /* |
| 5326 | * match the virtual addresses, permission and the alignment of the |
| 5327 | * page table page. |
| 5328 | */ |
| 5329 | if (pmd_index(addr) != pmd_index(saddr) || |
| 5330 | vm_flags != svm_flags || |
| 5331 | sbase < svma->vm_start || svma->vm_end < s_end) |
| 5332 | return 0; |
| 5333 | |
| 5334 | return saddr; |
| 5335 | } |
| 5336 | |
| 5337 | static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) |
| 5338 | { |
| 5339 | unsigned long base = addr & PUD_MASK; |
| 5340 | unsigned long end = base + PUD_SIZE; |
| 5341 | |
| 5342 | /* |
| 5343 | * check on proper vm_flags and page table alignment |
| 5344 | */ |
| 5345 | if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) |
| 5346 | return true; |
| 5347 | return false; |
| 5348 | } |
| 5349 | |
| 5350 | /* |
| 5351 | * Determine if start,end range within vma could be mapped by shared pmd. |
| 5352 | * If yes, adjust start and end to cover range associated with possible |
| 5353 | * shared pmd mappings. |
| 5354 | */ |
| 5355 | void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, |
| 5356 | unsigned long *start, unsigned long *end) |
| 5357 | { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 5358 | unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), |
| 5359 | v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5360 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 5361 | /* |
| 5362 | * vma need span at least one aligned PUD size and the start,end range |
| 5363 | * must at least partialy within it. |
| 5364 | */ |
| 5365 | if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || |
| 5366 | (*end <= v_start) || (*start >= v_end)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5367 | return; |
| 5368 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 5369 | /* Extend the range to be PUD aligned for a worst case scenario */ |
| 5370 | if (*start > v_start) |
| 5371 | *start = ALIGN_DOWN(*start, PUD_SIZE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5372 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 5373 | if (*end < v_end) |
| 5374 | *end = ALIGN(*end, PUD_SIZE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5375 | } |
| 5376 | |
| 5377 | /* |
| 5378 | * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() |
| 5379 | * and returns the corresponding pte. While this is not necessary for the |
| 5380 | * !shared pmd case because we can allocate the pmd later as well, it makes the |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5381 | * code much cleaner. |
| 5382 | * |
| 5383 | * This routine must be called with i_mmap_rwsem held in at least read mode if |
| 5384 | * sharing is possible. For hugetlbfs, this prevents removal of any page |
| 5385 | * table entries associated with the address space. This is important as we |
| 5386 | * are setting up sharing based on existing page table entries (mappings). |
| 5387 | * |
| 5388 | * NOTE: This routine is only called from huge_pte_alloc. Some callers of |
| 5389 | * huge_pte_alloc know that sharing is not possible and do not take |
| 5390 | * i_mmap_rwsem as a performance optimization. This is handled by the |
| 5391 | * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is |
| 5392 | * only required for subsequent processing. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5393 | */ |
| 5394 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) |
| 5395 | { |
| 5396 | struct vm_area_struct *vma = find_vma(mm, addr); |
| 5397 | struct address_space *mapping = vma->vm_file->f_mapping; |
| 5398 | pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + |
| 5399 | vma->vm_pgoff; |
| 5400 | struct vm_area_struct *svma; |
| 5401 | unsigned long saddr; |
| 5402 | pte_t *spte = NULL; |
| 5403 | pte_t *pte; |
| 5404 | spinlock_t *ptl; |
| 5405 | |
| 5406 | if (!vma_shareable(vma, addr)) |
| 5407 | return (pte_t *)pmd_alloc(mm, pud, addr); |
| 5408 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5409 | i_mmap_assert_locked(mapping); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5410 | vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { |
| 5411 | if (svma == vma) |
| 5412 | continue; |
| 5413 | |
| 5414 | saddr = page_table_shareable(svma, vma, addr, idx); |
| 5415 | if (saddr) { |
| 5416 | spte = huge_pte_offset(svma->vm_mm, saddr, |
| 5417 | vma_mmu_pagesize(svma)); |
| 5418 | if (spte) { |
| 5419 | get_page(virt_to_page(spte)); |
| 5420 | break; |
| 5421 | } |
| 5422 | } |
| 5423 | } |
| 5424 | |
| 5425 | if (!spte) |
| 5426 | goto out; |
| 5427 | |
| 5428 | ptl = huge_pte_lock(hstate_vma(vma), mm, spte); |
| 5429 | if (pud_none(*pud)) { |
| 5430 | pud_populate(mm, pud, |
| 5431 | (pmd_t *)((unsigned long)spte & PAGE_MASK)); |
| 5432 | mm_inc_nr_pmds(mm); |
| 5433 | } else { |
| 5434 | put_page(virt_to_page(spte)); |
| 5435 | } |
| 5436 | spin_unlock(ptl); |
| 5437 | out: |
| 5438 | pte = (pte_t *)pmd_alloc(mm, pud, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5439 | return pte; |
| 5440 | } |
| 5441 | |
| 5442 | /* |
| 5443 | * unmap huge page backed by shared pte. |
| 5444 | * |
| 5445 | * Hugetlb pte page is ref counted at the time of mapping. If pte is shared |
| 5446 | * indicated by page_count > 1, unmap is achieved by clearing pud and |
| 5447 | * decrementing the ref count. If count == 1, the pte page is not shared. |
| 5448 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5449 | * Called with page table lock held and i_mmap_rwsem held in write mode. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5450 | * |
| 5451 | * returns: 1 successfully unmapped a shared pte page |
| 5452 | * 0 the underlying pte page is not shared, or it is the last user |
| 5453 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5454 | int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, |
| 5455 | unsigned long *addr, pte_t *ptep) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5456 | { |
| 5457 | pgd_t *pgd = pgd_offset(mm, *addr); |
| 5458 | p4d_t *p4d = p4d_offset(pgd, *addr); |
| 5459 | pud_t *pud = pud_offset(p4d, *addr); |
| 5460 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5461 | i_mmap_assert_write_locked(vma->vm_file->f_mapping); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5462 | BUG_ON(page_count(virt_to_page(ptep)) == 0); |
| 5463 | if (page_count(virt_to_page(ptep)) == 1) |
| 5464 | return 0; |
| 5465 | |
| 5466 | pud_clear(pud); |
| 5467 | put_page(virt_to_page(ptep)); |
| 5468 | mm_dec_nr_pmds(mm); |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 5469 | /* |
| 5470 | * This update of passed address optimizes loops sequentially |
| 5471 | * processing addresses in increments of huge page size (PMD_SIZE |
| 5472 | * in this case). By clearing the pud, a PUD_SIZE area is unmapped. |
| 5473 | * Update address to the 'last page' in the cleared area so that |
| 5474 | * calling loop can move to first page past this area. |
| 5475 | */ |
| 5476 | *addr |= PUD_SIZE - PMD_SIZE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5477 | return 1; |
| 5478 | } |
| 5479 | #define want_pmd_share() (1) |
| 5480 | #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ |
| 5481 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) |
| 5482 | { |
| 5483 | return NULL; |
| 5484 | } |
| 5485 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5486 | int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, |
| 5487 | unsigned long *addr, pte_t *ptep) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5488 | { |
| 5489 | return 0; |
| 5490 | } |
| 5491 | |
| 5492 | void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, |
| 5493 | unsigned long *start, unsigned long *end) |
| 5494 | { |
| 5495 | } |
| 5496 | #define want_pmd_share() (0) |
| 5497 | #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ |
| 5498 | |
| 5499 | #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB |
| 5500 | pte_t *huge_pte_alloc(struct mm_struct *mm, |
| 5501 | unsigned long addr, unsigned long sz) |
| 5502 | { |
| 5503 | pgd_t *pgd; |
| 5504 | p4d_t *p4d; |
| 5505 | pud_t *pud; |
| 5506 | pte_t *pte = NULL; |
| 5507 | |
| 5508 | pgd = pgd_offset(mm, addr); |
| 5509 | p4d = p4d_alloc(mm, pgd, addr); |
| 5510 | if (!p4d) |
| 5511 | return NULL; |
| 5512 | pud = pud_alloc(mm, p4d, addr); |
| 5513 | if (pud) { |
| 5514 | if (sz == PUD_SIZE) { |
| 5515 | pte = (pte_t *)pud; |
| 5516 | } else { |
| 5517 | BUG_ON(sz != PMD_SIZE); |
| 5518 | if (want_pmd_share() && pud_none(*pud)) |
| 5519 | pte = huge_pmd_share(mm, addr, pud); |
| 5520 | else |
| 5521 | pte = (pte_t *)pmd_alloc(mm, pud, addr); |
| 5522 | } |
| 5523 | } |
| 5524 | BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); |
| 5525 | |
| 5526 | return pte; |
| 5527 | } |
| 5528 | |
| 5529 | /* |
| 5530 | * huge_pte_offset() - Walk the page table to resolve the hugepage |
| 5531 | * entry at address @addr |
| 5532 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5533 | * Return: Pointer to page table entry (PUD or PMD) for |
| 5534 | * address @addr, or NULL if a !p*d_present() entry is encountered and the |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5535 | * size @sz doesn't match the hugepage size at this level of the page |
| 5536 | * table. |
| 5537 | */ |
| 5538 | pte_t *huge_pte_offset(struct mm_struct *mm, |
| 5539 | unsigned long addr, unsigned long sz) |
| 5540 | { |
| 5541 | pgd_t *pgd; |
| 5542 | p4d_t *p4d; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5543 | pud_t *pud; |
| 5544 | pmd_t *pmd; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5545 | |
| 5546 | pgd = pgd_offset(mm, addr); |
| 5547 | if (!pgd_present(*pgd)) |
| 5548 | return NULL; |
| 5549 | p4d = p4d_offset(pgd, addr); |
| 5550 | if (!p4d_present(*p4d)) |
| 5551 | return NULL; |
| 5552 | |
| 5553 | pud = pud_offset(p4d, addr); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5554 | if (sz == PUD_SIZE) |
| 5555 | /* must be pud huge, non-present or none */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5556 | return (pte_t *)pud; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5557 | if (!pud_present(*pud)) |
| 5558 | return NULL; |
| 5559 | /* must have a valid entry and size to go further */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5560 | |
| 5561 | pmd = pmd_offset(pud, addr); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5562 | /* must be pmd huge, non-present or none */ |
| 5563 | return (pte_t *)pmd; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5564 | } |
| 5565 | |
| 5566 | #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ |
| 5567 | |
| 5568 | /* |
| 5569 | * These functions are overwritable if your architecture needs its own |
| 5570 | * behavior. |
| 5571 | */ |
| 5572 | struct page * __weak |
| 5573 | follow_huge_addr(struct mm_struct *mm, unsigned long address, |
| 5574 | int write) |
| 5575 | { |
| 5576 | return ERR_PTR(-EINVAL); |
| 5577 | } |
| 5578 | |
| 5579 | struct page * __weak |
| 5580 | follow_huge_pd(struct vm_area_struct *vma, |
| 5581 | unsigned long address, hugepd_t hpd, int flags, int pdshift) |
| 5582 | { |
| 5583 | WARN(1, "hugepd follow called with no support for hugepage directory format\n"); |
| 5584 | return NULL; |
| 5585 | } |
| 5586 | |
| 5587 | struct page * __weak |
| 5588 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, |
| 5589 | pmd_t *pmd, int flags) |
| 5590 | { |
| 5591 | struct page *page = NULL; |
| 5592 | spinlock_t *ptl; |
| 5593 | pte_t pte; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5594 | |
| 5595 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
| 5596 | if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == |
| 5597 | (FOLL_PIN | FOLL_GET))) |
| 5598 | return NULL; |
| 5599 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5600 | retry: |
| 5601 | ptl = pmd_lockptr(mm, pmd); |
| 5602 | spin_lock(ptl); |
| 5603 | /* |
| 5604 | * make sure that the address range covered by this pmd is not |
| 5605 | * unmapped from other threads. |
| 5606 | */ |
| 5607 | if (!pmd_huge(*pmd)) |
| 5608 | goto out; |
| 5609 | pte = huge_ptep_get((pte_t *)pmd); |
| 5610 | if (pte_present(pte)) { |
| 5611 | page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5612 | /* |
| 5613 | * try_grab_page() should always succeed here, because: a) we |
| 5614 | * hold the pmd (ptl) lock, and b) we've just checked that the |
| 5615 | * huge pmd (head) page is present in the page tables. The ptl |
| 5616 | * prevents the head page and tail pages from being rearranged |
| 5617 | * in any way. So this page must be available at this point, |
| 5618 | * unless the page refcount overflowed: |
| 5619 | */ |
| 5620 | if (WARN_ON_ONCE(!try_grab_page(page, flags))) { |
| 5621 | page = NULL; |
| 5622 | goto out; |
| 5623 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5624 | } else { |
| 5625 | if (is_hugetlb_entry_migration(pte)) { |
| 5626 | spin_unlock(ptl); |
| 5627 | __migration_entry_wait(mm, (pte_t *)pmd, ptl); |
| 5628 | goto retry; |
| 5629 | } |
| 5630 | /* |
| 5631 | * hwpoisoned entry is treated as no_page_table in |
| 5632 | * follow_page_mask(). |
| 5633 | */ |
| 5634 | } |
| 5635 | out: |
| 5636 | spin_unlock(ptl); |
| 5637 | return page; |
| 5638 | } |
| 5639 | |
| 5640 | struct page * __weak |
| 5641 | follow_huge_pud(struct mm_struct *mm, unsigned long address, |
| 5642 | pud_t *pud, int flags) |
| 5643 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5644 | if (flags & (FOLL_GET | FOLL_PIN)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5645 | return NULL; |
| 5646 | |
| 5647 | return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); |
| 5648 | } |
| 5649 | |
| 5650 | struct page * __weak |
| 5651 | follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) |
| 5652 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5653 | if (flags & (FOLL_GET | FOLL_PIN)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5654 | return NULL; |
| 5655 | |
| 5656 | return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); |
| 5657 | } |
| 5658 | |
| 5659 | bool isolate_huge_page(struct page *page, struct list_head *list) |
| 5660 | { |
| 5661 | bool ret = true; |
| 5662 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5663 | spin_lock(&hugetlb_lock); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 5664 | if (!PageHeadHuge(page) || !page_huge_active(page) || |
| 5665 | !get_page_unless_zero(page)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5666 | ret = false; |
| 5667 | goto unlock; |
| 5668 | } |
| 5669 | clear_page_huge_active(page); |
| 5670 | list_move_tail(&page->lru, list); |
| 5671 | unlock: |
| 5672 | spin_unlock(&hugetlb_lock); |
| 5673 | return ret; |
| 5674 | } |
| 5675 | |
| 5676 | void putback_active_hugepage(struct page *page) |
| 5677 | { |
| 5678 | VM_BUG_ON_PAGE(!PageHead(page), page); |
| 5679 | spin_lock(&hugetlb_lock); |
| 5680 | set_page_huge_active(page); |
| 5681 | list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); |
| 5682 | spin_unlock(&hugetlb_lock); |
| 5683 | put_page(page); |
| 5684 | } |
| 5685 | |
| 5686 | void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) |
| 5687 | { |
| 5688 | struct hstate *h = page_hstate(oldpage); |
| 5689 | |
| 5690 | hugetlb_cgroup_migrate(oldpage, newpage); |
| 5691 | set_page_owner_migrate_reason(newpage, reason); |
| 5692 | |
| 5693 | /* |
| 5694 | * transfer temporary state of the new huge page. This is |
| 5695 | * reverse to other transitions because the newpage is going to |
| 5696 | * be final while the old one will be freed so it takes over |
| 5697 | * the temporary status. |
| 5698 | * |
| 5699 | * Also note that we have to transfer the per-node surplus state |
| 5700 | * here as well otherwise the global surplus count will not match |
| 5701 | * the per-node's. |
| 5702 | */ |
| 5703 | if (PageHugeTemporary(newpage)) { |
| 5704 | int old_nid = page_to_nid(oldpage); |
| 5705 | int new_nid = page_to_nid(newpage); |
| 5706 | |
| 5707 | SetPageHugeTemporary(oldpage); |
| 5708 | ClearPageHugeTemporary(newpage); |
| 5709 | |
| 5710 | spin_lock(&hugetlb_lock); |
| 5711 | if (h->surplus_huge_pages_node[old_nid]) { |
| 5712 | h->surplus_huge_pages_node[old_nid]--; |
| 5713 | h->surplus_huge_pages_node[new_nid]++; |
| 5714 | } |
| 5715 | spin_unlock(&hugetlb_lock); |
| 5716 | } |
| 5717 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 5718 | |
| 5719 | #ifdef CONFIG_CMA |
| 5720 | static bool cma_reserve_called __initdata; |
| 5721 | |
| 5722 | static int __init cmdline_parse_hugetlb_cma(char *p) |
| 5723 | { |
| 5724 | hugetlb_cma_size = memparse(p, &p); |
| 5725 | return 0; |
| 5726 | } |
| 5727 | |
| 5728 | early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); |
| 5729 | |
| 5730 | void __init hugetlb_cma_reserve(int order) |
| 5731 | { |
| 5732 | unsigned long size, reserved, per_node; |
| 5733 | int nid; |
| 5734 | |
| 5735 | cma_reserve_called = true; |
| 5736 | |
| 5737 | if (!hugetlb_cma_size) |
| 5738 | return; |
| 5739 | |
| 5740 | if (hugetlb_cma_size < (PAGE_SIZE << order)) { |
| 5741 | pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", |
| 5742 | (PAGE_SIZE << order) / SZ_1M); |
| 5743 | return; |
| 5744 | } |
| 5745 | |
| 5746 | /* |
| 5747 | * If 3 GB area is requested on a machine with 4 numa nodes, |
| 5748 | * let's allocate 1 GB on first three nodes and ignore the last one. |
| 5749 | */ |
| 5750 | per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); |
| 5751 | pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", |
| 5752 | hugetlb_cma_size / SZ_1M, per_node / SZ_1M); |
| 5753 | |
| 5754 | reserved = 0; |
| 5755 | for_each_node_state(nid, N_ONLINE) { |
| 5756 | int res; |
| 5757 | char name[CMA_MAX_NAME]; |
| 5758 | |
| 5759 | size = min(per_node, hugetlb_cma_size - reserved); |
| 5760 | size = round_up(size, PAGE_SIZE << order); |
| 5761 | |
| 5762 | snprintf(name, sizeof(name), "hugetlb%d", nid); |
| 5763 | res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, |
| 5764 | 0, false, name, |
| 5765 | &hugetlb_cma[nid], nid); |
| 5766 | if (res) { |
| 5767 | pr_warn("hugetlb_cma: reservation failed: err %d, node %d", |
| 5768 | res, nid); |
| 5769 | continue; |
| 5770 | } |
| 5771 | |
| 5772 | reserved += size; |
| 5773 | pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", |
| 5774 | size / SZ_1M, nid); |
| 5775 | |
| 5776 | if (reserved >= hugetlb_cma_size) |
| 5777 | break; |
| 5778 | } |
| 5779 | } |
| 5780 | |
| 5781 | void __init hugetlb_cma_check(void) |
| 5782 | { |
| 5783 | if (!hugetlb_cma_size || cma_reserve_called) |
| 5784 | return; |
| 5785 | |
| 5786 | pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); |
| 5787 | } |
| 5788 | |
| 5789 | #endif /* CONFIG_CMA */ |