blob: 43270b07b2e0b6596ed31ed235b793da9e59c399 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
Olivier Deprez92d4c212022-12-06 15:05:30 +010036#include <linux/kthread.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000037#include <linux/list.h>
38#include <linux/mempolicy.h>
39#include <linux/mm.h>
40#include <linux/memory.h>
41#include <linux/export.h>
42#include <linux/mount.h>
David Brazdil0f672f62019-12-10 10:32:29 +000043#include <linux/fs_context.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000044#include <linux/namei.h>
45#include <linux/pagemap.h>
46#include <linux/proc_fs.h>
47#include <linux/rcupdate.h>
48#include <linux/sched.h>
David Brazdil0f672f62019-12-10 10:32:29 +000049#include <linux/sched/deadline.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000050#include <linux/sched/mm.h>
51#include <linux/sched/task.h>
52#include <linux/seq_file.h>
53#include <linux/security.h>
54#include <linux/slab.h>
55#include <linux/spinlock.h>
56#include <linux/stat.h>
57#include <linux/string.h>
58#include <linux/time.h>
59#include <linux/time64.h>
60#include <linux/backing-dev.h>
61#include <linux/sort.h>
62#include <linux/oom.h>
63#include <linux/sched/isolation.h>
64#include <linux/uaccess.h>
65#include <linux/atomic.h>
66#include <linux/mutex.h>
67#include <linux/cgroup.h>
68#include <linux/wait.h>
69
70DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
71DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
72
73/* See "Frequency meter" comments, below. */
74
75struct fmeter {
76 int cnt; /* unprocessed events count */
77 int val; /* most recent output value */
78 time64_t time; /* clock (secs) when val computed */
79 spinlock_t lock; /* guards read or write of above */
80};
81
82struct cpuset {
83 struct cgroup_subsys_state css;
84
85 unsigned long flags; /* "unsigned long" so bitops work */
86
87 /*
88 * On default hierarchy:
89 *
90 * The user-configured masks can only be changed by writing to
91 * cpuset.cpus and cpuset.mems, and won't be limited by the
92 * parent masks.
93 *
94 * The effective masks is the real masks that apply to the tasks
95 * in the cpuset. They may be changed if the configured masks are
96 * changed or hotplug happens.
97 *
98 * effective_mask == configured_mask & parent's effective_mask,
99 * and if it ends up empty, it will inherit the parent's mask.
100 *
101 *
102 * On legacy hierachy:
103 *
104 * The user-configured masks are always the same with effective masks.
105 */
106
107 /* user-configured CPUs and Memory Nodes allow to tasks */
108 cpumask_var_t cpus_allowed;
109 nodemask_t mems_allowed;
110
111 /* effective CPUs and Memory Nodes allow to tasks */
112 cpumask_var_t effective_cpus;
113 nodemask_t effective_mems;
114
115 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000116 * CPUs allocated to child sub-partitions (default hierarchy only)
117 * - CPUs granted by the parent = effective_cpus U subparts_cpus
118 * - effective_cpus and subparts_cpus are mutually exclusive.
119 *
120 * effective_cpus contains only onlined CPUs, but subparts_cpus
121 * may have offlined ones.
122 */
123 cpumask_var_t subparts_cpus;
124
125 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000126 * This is old Memory Nodes tasks took on.
127 *
128 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
129 * - A new cpuset's old_mems_allowed is initialized when some
130 * task is moved into it.
131 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
132 * cpuset.mems_allowed and have tasks' nodemask updated, and
133 * then old_mems_allowed is updated to mems_allowed.
134 */
135 nodemask_t old_mems_allowed;
136
137 struct fmeter fmeter; /* memory_pressure filter */
138
139 /*
140 * Tasks are being attached to this cpuset. Used to prevent
141 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
142 */
143 int attach_in_progress;
144
145 /* partition number for rebuild_sched_domains() */
146 int pn;
147
148 /* for custom sched domain */
149 int relax_domain_level;
David Brazdil0f672f62019-12-10 10:32:29 +0000150
151 /* number of CPUs in subparts_cpus */
152 int nr_subparts_cpus;
153
154 /* partition root state */
155 int partition_root_state;
156
157 /*
158 * Default hierarchy only:
159 * use_parent_ecpus - set if using parent's effective_cpus
160 * child_ecpus_count - # of children with use_parent_ecpus set
161 */
162 int use_parent_ecpus;
163 int child_ecpus_count;
164};
165
166/*
167 * Partition root states:
168 *
169 * 0 - not a partition root
170 *
171 * 1 - partition root
172 *
173 * -1 - invalid partition root
174 * None of the cpus in cpus_allowed can be put into the parent's
175 * subparts_cpus. In this case, the cpuset is not a real partition
176 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
177 * and the cpuset can be restored back to a partition root if the
178 * parent cpuset can give more CPUs back to this child cpuset.
179 */
180#define PRS_DISABLED 0
181#define PRS_ENABLED 1
182#define PRS_ERROR -1
183
184/*
185 * Temporary cpumasks for working with partitions that are passed among
186 * functions to avoid memory allocation in inner functions.
187 */
188struct tmpmasks {
189 cpumask_var_t addmask, delmask; /* For partition root */
190 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000191};
192
193static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
194{
195 return css ? container_of(css, struct cpuset, css) : NULL;
196}
197
198/* Retrieve the cpuset for a task */
199static inline struct cpuset *task_cs(struct task_struct *task)
200{
201 return css_cs(task_css(task, cpuset_cgrp_id));
202}
203
204static inline struct cpuset *parent_cs(struct cpuset *cs)
205{
206 return css_cs(cs->css.parent);
207}
208
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000209/* bits in struct cpuset flags field */
210typedef enum {
211 CS_ONLINE,
212 CS_CPU_EXCLUSIVE,
213 CS_MEM_EXCLUSIVE,
214 CS_MEM_HARDWALL,
215 CS_MEMORY_MIGRATE,
216 CS_SCHED_LOAD_BALANCE,
217 CS_SPREAD_PAGE,
218 CS_SPREAD_SLAB,
219} cpuset_flagbits_t;
220
221/* convenient tests for these bits */
222static inline bool is_cpuset_online(struct cpuset *cs)
223{
224 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
225}
226
227static inline int is_cpu_exclusive(const struct cpuset *cs)
228{
229 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
230}
231
232static inline int is_mem_exclusive(const struct cpuset *cs)
233{
234 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
235}
236
237static inline int is_mem_hardwall(const struct cpuset *cs)
238{
239 return test_bit(CS_MEM_HARDWALL, &cs->flags);
240}
241
242static inline int is_sched_load_balance(const struct cpuset *cs)
243{
244 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
245}
246
247static inline int is_memory_migrate(const struct cpuset *cs)
248{
249 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
250}
251
252static inline int is_spread_page(const struct cpuset *cs)
253{
254 return test_bit(CS_SPREAD_PAGE, &cs->flags);
255}
256
257static inline int is_spread_slab(const struct cpuset *cs)
258{
259 return test_bit(CS_SPREAD_SLAB, &cs->flags);
260}
261
David Brazdil0f672f62019-12-10 10:32:29 +0000262static inline int is_partition_root(const struct cpuset *cs)
263{
264 return cs->partition_root_state > 0;
265}
266
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000267static struct cpuset top_cpuset = {
268 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
269 (1 << CS_MEM_EXCLUSIVE)),
David Brazdil0f672f62019-12-10 10:32:29 +0000270 .partition_root_state = PRS_ENABLED,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000271};
272
273/**
274 * cpuset_for_each_child - traverse online children of a cpuset
275 * @child_cs: loop cursor pointing to the current child
276 * @pos_css: used for iteration
277 * @parent_cs: target cpuset to walk children of
278 *
279 * Walk @child_cs through the online children of @parent_cs. Must be used
280 * with RCU read locked.
281 */
282#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
283 css_for_each_child((pos_css), &(parent_cs)->css) \
284 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
285
286/**
287 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
288 * @des_cs: loop cursor pointing to the current descendant
289 * @pos_css: used for iteration
290 * @root_cs: target cpuset to walk ancestor of
291 *
292 * Walk @des_cs through the online descendants of @root_cs. Must be used
293 * with RCU read locked. The caller may modify @pos_css by calling
294 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
295 * iteration and the first node to be visited.
296 */
297#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
298 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
299 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
300
301/*
302 * There are two global locks guarding cpuset structures - cpuset_mutex and
303 * callback_lock. We also require taking task_lock() when dereferencing a
304 * task's cpuset pointer. See "The task_lock() exception", at the end of this
305 * comment.
306 *
307 * A task must hold both locks to modify cpusets. If a task holds
308 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
309 * is the only task able to also acquire callback_lock and be able to
310 * modify cpusets. It can perform various checks on the cpuset structure
311 * first, knowing nothing will change. It can also allocate memory while
312 * just holding cpuset_mutex. While it is performing these checks, various
313 * callback routines can briefly acquire callback_lock to query cpusets.
314 * Once it is ready to make the changes, it takes callback_lock, blocking
315 * everyone else.
316 *
317 * Calls to the kernel memory allocator can not be made while holding
318 * callback_lock, as that would risk double tripping on callback_lock
319 * from one of the callbacks into the cpuset code from within
320 * __alloc_pages().
321 *
322 * If a task is only holding callback_lock, then it has read-only
323 * access to cpusets.
324 *
325 * Now, the task_struct fields mems_allowed and mempolicy may be changed
326 * by other task, we use alloc_lock in the task_struct fields to protect
327 * them.
328 *
329 * The cpuset_common_file_read() handlers only hold callback_lock across
330 * small pieces of code, such as when reading out possibly multi-word
331 * cpumasks and nodemasks.
332 *
333 * Accessing a task's cpuset should be done in accordance with the
334 * guidelines for accessing subsystem state in kernel/cgroup.c
335 */
336
David Brazdil0f672f62019-12-10 10:32:29 +0000337DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
338
339void cpuset_read_lock(void)
340{
341 percpu_down_read(&cpuset_rwsem);
342}
343
344void cpuset_read_unlock(void)
345{
346 percpu_up_read(&cpuset_rwsem);
347}
348
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000349static DEFINE_SPINLOCK(callback_lock);
350
351static struct workqueue_struct *cpuset_migrate_mm_wq;
352
353/*
354 * CPU / memory hotplug is handled asynchronously.
355 */
356static void cpuset_hotplug_workfn(struct work_struct *work);
357static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
358
359static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
360
361/*
Olivier Deprez157378f2022-04-04 15:47:50 +0200362 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
363 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
364 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
365 * With v2 behavior, "cpus" and "mems" are always what the users have
366 * requested and won't be changed by hotplug events. Only the effective
367 * cpus or mems will be affected.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000368 */
369static inline bool is_in_v2_mode(void)
370{
371 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
372 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
373}
374
375/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000376 * Return in pmask the portion of a cpusets's cpus_allowed that
377 * are online. If none are online, walk up the cpuset hierarchy
378 * until we find one that does have some online cpus.
379 *
380 * One way or another, we guarantee to return some non-empty subset
381 * of cpu_online_mask.
382 *
383 * Call with callback_lock or cpuset_mutex held.
384 */
385static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
386{
387 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
388 cs = parent_cs(cs);
389 if (unlikely(!cs)) {
390 /*
391 * The top cpuset doesn't have any online cpu as a
392 * consequence of a race between cpuset_hotplug_work
393 * and cpu hotplug notifier. But we know the top
Olivier Deprez157378f2022-04-04 15:47:50 +0200394 * cpuset's effective_cpus is on its way to be
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000395 * identical to cpu_online_mask.
396 */
397 cpumask_copy(pmask, cpu_online_mask);
398 return;
399 }
400 }
401 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
402}
403
404/*
405 * Return in *pmask the portion of a cpusets's mems_allowed that
406 * are online, with memory. If none are online with memory, walk
407 * up the cpuset hierarchy until we find one that does have some
408 * online mems. The top cpuset always has some mems online.
409 *
410 * One way or another, we guarantee to return some non-empty subset
411 * of node_states[N_MEMORY].
412 *
413 * Call with callback_lock or cpuset_mutex held.
414 */
415static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
416{
417 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
418 cs = parent_cs(cs);
419 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
420}
421
422/*
423 * update task's spread flag if cpuset's page/slab spread flag is set
424 *
425 * Call with callback_lock or cpuset_mutex held.
426 */
427static void cpuset_update_task_spread_flag(struct cpuset *cs,
428 struct task_struct *tsk)
429{
430 if (is_spread_page(cs))
431 task_set_spread_page(tsk);
432 else
433 task_clear_spread_page(tsk);
434
435 if (is_spread_slab(cs))
436 task_set_spread_slab(tsk);
437 else
438 task_clear_spread_slab(tsk);
439}
440
441/*
442 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
443 *
444 * One cpuset is a subset of another if all its allowed CPUs and
445 * Memory Nodes are a subset of the other, and its exclusive flags
446 * are only set if the other's are set. Call holding cpuset_mutex.
447 */
448
449static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
450{
451 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
452 nodes_subset(p->mems_allowed, q->mems_allowed) &&
453 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
454 is_mem_exclusive(p) <= is_mem_exclusive(q);
455}
456
457/**
David Brazdil0f672f62019-12-10 10:32:29 +0000458 * alloc_cpumasks - allocate three cpumasks for cpuset
459 * @cs: the cpuset that have cpumasks to be allocated.
460 * @tmp: the tmpmasks structure pointer
461 * Return: 0 if successful, -ENOMEM otherwise.
462 *
463 * Only one of the two input arguments should be non-NULL.
464 */
465static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
466{
467 cpumask_var_t *pmask1, *pmask2, *pmask3;
468
469 if (cs) {
470 pmask1 = &cs->cpus_allowed;
471 pmask2 = &cs->effective_cpus;
472 pmask3 = &cs->subparts_cpus;
473 } else {
474 pmask1 = &tmp->new_cpus;
475 pmask2 = &tmp->addmask;
476 pmask3 = &tmp->delmask;
477 }
478
479 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
480 return -ENOMEM;
481
482 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
483 goto free_one;
484
485 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
486 goto free_two;
487
488 return 0;
489
490free_two:
491 free_cpumask_var(*pmask2);
492free_one:
493 free_cpumask_var(*pmask1);
494 return -ENOMEM;
495}
496
497/**
498 * free_cpumasks - free cpumasks in a tmpmasks structure
499 * @cs: the cpuset that have cpumasks to be free.
500 * @tmp: the tmpmasks structure pointer
501 */
502static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
503{
504 if (cs) {
505 free_cpumask_var(cs->cpus_allowed);
506 free_cpumask_var(cs->effective_cpus);
507 free_cpumask_var(cs->subparts_cpus);
508 }
509 if (tmp) {
510 free_cpumask_var(tmp->new_cpus);
511 free_cpumask_var(tmp->addmask);
512 free_cpumask_var(tmp->delmask);
513 }
514}
515
516/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000517 * alloc_trial_cpuset - allocate a trial cpuset
518 * @cs: the cpuset that the trial cpuset duplicates
519 */
520static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
521{
522 struct cpuset *trial;
523
524 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
525 if (!trial)
526 return NULL;
527
David Brazdil0f672f62019-12-10 10:32:29 +0000528 if (alloc_cpumasks(trial, NULL)) {
529 kfree(trial);
530 return NULL;
531 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000532
533 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
534 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
535 return trial;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000536}
537
538/**
David Brazdil0f672f62019-12-10 10:32:29 +0000539 * free_cpuset - free the cpuset
540 * @cs: the cpuset to be freed
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000541 */
David Brazdil0f672f62019-12-10 10:32:29 +0000542static inline void free_cpuset(struct cpuset *cs)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000543{
David Brazdil0f672f62019-12-10 10:32:29 +0000544 free_cpumasks(cs, NULL);
545 kfree(cs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000546}
547
548/*
549 * validate_change() - Used to validate that any proposed cpuset change
550 * follows the structural rules for cpusets.
551 *
552 * If we replaced the flag and mask values of the current cpuset
553 * (cur) with those values in the trial cpuset (trial), would
554 * our various subset and exclusive rules still be valid? Presumes
555 * cpuset_mutex held.
556 *
557 * 'cur' is the address of an actual, in-use cpuset. Operations
558 * such as list traversal that depend on the actual address of the
559 * cpuset in the list must use cur below, not trial.
560 *
561 * 'trial' is the address of bulk structure copy of cur, with
562 * perhaps one or more of the fields cpus_allowed, mems_allowed,
563 * or flags changed to new, trial values.
564 *
565 * Return 0 if valid, -errno if not.
566 */
567
568static int validate_change(struct cpuset *cur, struct cpuset *trial)
569{
570 struct cgroup_subsys_state *css;
571 struct cpuset *c, *par;
572 int ret;
573
574 rcu_read_lock();
575
576 /* Each of our child cpusets must be a subset of us */
577 ret = -EBUSY;
578 cpuset_for_each_child(c, css, cur)
579 if (!is_cpuset_subset(c, trial))
580 goto out;
581
582 /* Remaining checks don't apply to root cpuset */
583 ret = 0;
584 if (cur == &top_cpuset)
585 goto out;
586
587 par = parent_cs(cur);
588
589 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
590 ret = -EACCES;
591 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
592 goto out;
593
594 /*
595 * If either I or some sibling (!= me) is exclusive, we can't
596 * overlap
597 */
598 ret = -EINVAL;
599 cpuset_for_each_child(c, css, par) {
600 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
601 c != cur &&
602 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
603 goto out;
604 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
605 c != cur &&
606 nodes_intersects(trial->mems_allowed, c->mems_allowed))
607 goto out;
608 }
609
610 /*
611 * Cpusets with tasks - existing or newly being attached - can't
612 * be changed to have empty cpus_allowed or mems_allowed.
613 */
614 ret = -ENOSPC;
615 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
616 if (!cpumask_empty(cur->cpus_allowed) &&
617 cpumask_empty(trial->cpus_allowed))
618 goto out;
619 if (!nodes_empty(cur->mems_allowed) &&
620 nodes_empty(trial->mems_allowed))
621 goto out;
622 }
623
624 /*
625 * We can't shrink if we won't have enough room for SCHED_DEADLINE
626 * tasks.
627 */
628 ret = -EBUSY;
629 if (is_cpu_exclusive(cur) &&
630 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
631 trial->cpus_allowed))
632 goto out;
633
634 ret = 0;
635out:
636 rcu_read_unlock();
637 return ret;
638}
639
640#ifdef CONFIG_SMP
641/*
642 * Helper routine for generate_sched_domains().
643 * Do cpusets a, b have overlapping effective cpus_allowed masks?
644 */
645static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
646{
647 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
648}
649
650static void
651update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
652{
653 if (dattr->relax_domain_level < c->relax_domain_level)
654 dattr->relax_domain_level = c->relax_domain_level;
655 return;
656}
657
658static void update_domain_attr_tree(struct sched_domain_attr *dattr,
659 struct cpuset *root_cs)
660{
661 struct cpuset *cp;
662 struct cgroup_subsys_state *pos_css;
663
664 rcu_read_lock();
665 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
666 /* skip the whole subtree if @cp doesn't have any CPU */
667 if (cpumask_empty(cp->cpus_allowed)) {
668 pos_css = css_rightmost_descendant(pos_css);
669 continue;
670 }
671
672 if (is_sched_load_balance(cp))
673 update_domain_attr(dattr, cp);
674 }
675 rcu_read_unlock();
676}
677
678/* Must be called with cpuset_mutex held. */
679static inline int nr_cpusets(void)
680{
681 /* jump label reference count + the top-level cpuset */
682 return static_key_count(&cpusets_enabled_key.key) + 1;
683}
684
685/*
686 * generate_sched_domains()
687 *
688 * This function builds a partial partition of the systems CPUs
689 * A 'partial partition' is a set of non-overlapping subsets whose
690 * union is a subset of that set.
691 * The output of this function needs to be passed to kernel/sched/core.c
692 * partition_sched_domains() routine, which will rebuild the scheduler's
693 * load balancing domains (sched domains) as specified by that partial
694 * partition.
695 *
David Brazdil0f672f62019-12-10 10:32:29 +0000696 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000697 * for a background explanation of this.
698 *
699 * Does not return errors, on the theory that the callers of this
700 * routine would rather not worry about failures to rebuild sched
701 * domains when operating in the severe memory shortage situations
702 * that could cause allocation failures below.
703 *
704 * Must be called with cpuset_mutex held.
705 *
706 * The three key local variables below are:
David Brazdil0f672f62019-12-10 10:32:29 +0000707 * cp - cpuset pointer, used (together with pos_css) to perform a
708 * top-down scan of all cpusets. For our purposes, rebuilding
709 * the schedulers sched domains, we can ignore !is_sched_load_
710 * balance cpusets.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000711 * csa - (for CpuSet Array) Array of pointers to all the cpusets
712 * that need to be load balanced, for convenient iterative
713 * access by the subsequent code that finds the best partition,
714 * i.e the set of domains (subsets) of CPUs such that the
715 * cpus_allowed of every cpuset marked is_sched_load_balance
716 * is a subset of one of these domains, while there are as
717 * many such domains as possible, each as small as possible.
718 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
719 * the kernel/sched/core.c routine partition_sched_domains() in a
720 * convenient format, that can be easily compared to the prior
721 * value to determine what partition elements (sched domains)
722 * were changed (added or removed.)
723 *
724 * Finding the best partition (set of domains):
725 * The triple nested loops below over i, j, k scan over the
726 * load balanced cpusets (using the array of cpuset pointers in
727 * csa[]) looking for pairs of cpusets that have overlapping
728 * cpus_allowed, but which don't have the same 'pn' partition
729 * number and gives them in the same partition number. It keeps
730 * looping on the 'restart' label until it can no longer find
731 * any such pairs.
732 *
733 * The union of the cpus_allowed masks from the set of
734 * all cpusets having the same 'pn' value then form the one
735 * element of the partition (one sched domain) to be passed to
736 * partition_sched_domains().
737 */
738static int generate_sched_domains(cpumask_var_t **domains,
739 struct sched_domain_attr **attributes)
740{
David Brazdil0f672f62019-12-10 10:32:29 +0000741 struct cpuset *cp; /* top-down scan of cpusets */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000742 struct cpuset **csa; /* array of all cpuset ptrs */
743 int csn; /* how many cpuset ptrs in csa so far */
744 int i, j, k; /* indices for partition finding loops */
745 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
746 struct sched_domain_attr *dattr; /* attributes for custom domains */
747 int ndoms = 0; /* number of sched domains in result */
748 int nslot; /* next empty doms[] struct cpumask slot */
749 struct cgroup_subsys_state *pos_css;
David Brazdil0f672f62019-12-10 10:32:29 +0000750 bool root_load_balance = is_sched_load_balance(&top_cpuset);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000751
752 doms = NULL;
753 dattr = NULL;
754 csa = NULL;
755
756 /* Special case for the 99% of systems with one, full, sched domain */
David Brazdil0f672f62019-12-10 10:32:29 +0000757 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000758 ndoms = 1;
759 doms = alloc_sched_domains(ndoms);
760 if (!doms)
761 goto done;
762
763 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
764 if (dattr) {
765 *dattr = SD_ATTR_INIT;
766 update_domain_attr_tree(dattr, &top_cpuset);
767 }
768 cpumask_and(doms[0], top_cpuset.effective_cpus,
769 housekeeping_cpumask(HK_FLAG_DOMAIN));
770
771 goto done;
772 }
773
774 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
775 if (!csa)
776 goto done;
777 csn = 0;
778
779 rcu_read_lock();
David Brazdil0f672f62019-12-10 10:32:29 +0000780 if (root_load_balance)
781 csa[csn++] = &top_cpuset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000782 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
783 if (cp == &top_cpuset)
784 continue;
785 /*
786 * Continue traversing beyond @cp iff @cp has some CPUs and
787 * isn't load balancing. The former is obvious. The
788 * latter: All child cpusets contain a subset of the
789 * parent's cpus, so just skip them, and then we call
790 * update_domain_attr_tree() to calc relax_domain_level of
791 * the corresponding sched domain.
David Brazdil0f672f62019-12-10 10:32:29 +0000792 *
793 * If root is load-balancing, we can skip @cp if it
794 * is a subset of the root's effective_cpus.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000795 */
796 if (!cpumask_empty(cp->cpus_allowed) &&
797 !(is_sched_load_balance(cp) &&
798 cpumask_intersects(cp->cpus_allowed,
799 housekeeping_cpumask(HK_FLAG_DOMAIN))))
800 continue;
801
David Brazdil0f672f62019-12-10 10:32:29 +0000802 if (root_load_balance &&
803 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
804 continue;
805
806 if (is_sched_load_balance(cp) &&
807 !cpumask_empty(cp->effective_cpus))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000808 csa[csn++] = cp;
809
David Brazdil0f672f62019-12-10 10:32:29 +0000810 /* skip @cp's subtree if not a partition root */
811 if (!is_partition_root(cp))
812 pos_css = css_rightmost_descendant(pos_css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000813 }
814 rcu_read_unlock();
815
816 for (i = 0; i < csn; i++)
817 csa[i]->pn = i;
818 ndoms = csn;
819
820restart:
821 /* Find the best partition (set of sched domains) */
822 for (i = 0; i < csn; i++) {
823 struct cpuset *a = csa[i];
824 int apn = a->pn;
825
826 for (j = 0; j < csn; j++) {
827 struct cpuset *b = csa[j];
828 int bpn = b->pn;
829
830 if (apn != bpn && cpusets_overlap(a, b)) {
831 for (k = 0; k < csn; k++) {
832 struct cpuset *c = csa[k];
833
834 if (c->pn == bpn)
835 c->pn = apn;
836 }
837 ndoms--; /* one less element */
838 goto restart;
839 }
840 }
841 }
842
843 /*
844 * Now we know how many domains to create.
845 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
846 */
847 doms = alloc_sched_domains(ndoms);
848 if (!doms)
849 goto done;
850
851 /*
852 * The rest of the code, including the scheduler, can deal with
853 * dattr==NULL case. No need to abort if alloc fails.
854 */
855 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
856 GFP_KERNEL);
857
858 for (nslot = 0, i = 0; i < csn; i++) {
859 struct cpuset *a = csa[i];
860 struct cpumask *dp;
861 int apn = a->pn;
862
863 if (apn < 0) {
864 /* Skip completed partitions */
865 continue;
866 }
867
868 dp = doms[nslot];
869
870 if (nslot == ndoms) {
871 static int warnings = 10;
872 if (warnings) {
873 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
874 nslot, ndoms, csn, i, apn);
875 warnings--;
876 }
877 continue;
878 }
879
880 cpumask_clear(dp);
881 if (dattr)
882 *(dattr + nslot) = SD_ATTR_INIT;
883 for (j = i; j < csn; j++) {
884 struct cpuset *b = csa[j];
885
886 if (apn == b->pn) {
887 cpumask_or(dp, dp, b->effective_cpus);
888 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
889 if (dattr)
890 update_domain_attr_tree(dattr + nslot, b);
891
892 /* Done with this partition */
893 b->pn = -1;
894 }
895 }
896 nslot++;
897 }
898 BUG_ON(nslot != ndoms);
899
900done:
901 kfree(csa);
902
903 /*
904 * Fallback to the default domain if kmalloc() failed.
905 * See comments in partition_sched_domains().
906 */
907 if (doms == NULL)
908 ndoms = 1;
909
910 *domains = doms;
911 *attributes = dattr;
912 return ndoms;
913}
914
David Brazdil0f672f62019-12-10 10:32:29 +0000915static void update_tasks_root_domain(struct cpuset *cs)
916{
917 struct css_task_iter it;
918 struct task_struct *task;
919
920 css_task_iter_start(&cs->css, 0, &it);
921
922 while ((task = css_task_iter_next(&it)))
923 dl_add_task_root_domain(task);
924
925 css_task_iter_end(&it);
926}
927
928static void rebuild_root_domains(void)
929{
930 struct cpuset *cs = NULL;
931 struct cgroup_subsys_state *pos_css;
932
933 percpu_rwsem_assert_held(&cpuset_rwsem);
934 lockdep_assert_cpus_held();
935 lockdep_assert_held(&sched_domains_mutex);
936
David Brazdil0f672f62019-12-10 10:32:29 +0000937 rcu_read_lock();
938
939 /*
940 * Clear default root domain DL accounting, it will be computed again
941 * if a task belongs to it.
942 */
943 dl_clear_root_domain(&def_root_domain);
944
945 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
946
947 if (cpumask_empty(cs->effective_cpus)) {
948 pos_css = css_rightmost_descendant(pos_css);
949 continue;
950 }
951
952 css_get(&cs->css);
953
954 rcu_read_unlock();
955
956 update_tasks_root_domain(cs);
957
958 rcu_read_lock();
959 css_put(&cs->css);
960 }
961 rcu_read_unlock();
962}
963
964static void
965partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
966 struct sched_domain_attr *dattr_new)
967{
968 mutex_lock(&sched_domains_mutex);
969 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
970 rebuild_root_domains();
971 mutex_unlock(&sched_domains_mutex);
972}
973
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000974/*
975 * Rebuild scheduler domains.
976 *
977 * If the flag 'sched_load_balance' of any cpuset with non-empty
978 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
979 * which has that flag enabled, or if any cpuset with a non-empty
980 * 'cpus' is removed, then call this routine to rebuild the
981 * scheduler's dynamic sched domains.
982 *
983 * Call with cpuset_mutex held. Takes get_online_cpus().
984 */
985static void rebuild_sched_domains_locked(void)
986{
Olivier Deprez0e641232021-09-23 10:07:05 +0200987 struct cgroup_subsys_state *pos_css;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000988 struct sched_domain_attr *attr;
989 cpumask_var_t *doms;
Olivier Deprez0e641232021-09-23 10:07:05 +0200990 struct cpuset *cs;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000991 int ndoms;
992
David Brazdil0f672f62019-12-10 10:32:29 +0000993 lockdep_assert_cpus_held();
994 percpu_rwsem_assert_held(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000995
996 /*
Olivier Deprez0e641232021-09-23 10:07:05 +0200997 * If we have raced with CPU hotplug, return early to avoid
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000998 * passing doms with offlined cpu to partition_sched_domains().
Olivier Deprez0e641232021-09-23 10:07:05 +0200999 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1000 *
1001 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1002 * should be the same as the active CPUs, so checking only top_cpuset
1003 * is enough to detect racing CPU offlines.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001004 */
David Brazdil0f672f62019-12-10 10:32:29 +00001005 if (!top_cpuset.nr_subparts_cpus &&
1006 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1007 return;
1008
Olivier Deprez0e641232021-09-23 10:07:05 +02001009 /*
1010 * With subpartition CPUs, however, the effective CPUs of a partition
1011 * root should be only a subset of the active CPUs. Since a CPU in any
1012 * partition root could be offlined, all must be checked.
1013 */
1014 if (top_cpuset.nr_subparts_cpus) {
1015 rcu_read_lock();
1016 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1017 if (!is_partition_root(cs)) {
1018 pos_css = css_rightmost_descendant(pos_css);
1019 continue;
1020 }
1021 if (!cpumask_subset(cs->effective_cpus,
1022 cpu_active_mask)) {
1023 rcu_read_unlock();
1024 return;
1025 }
1026 }
1027 rcu_read_unlock();
1028 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001029
1030 /* Generate domain masks and attrs */
1031 ndoms = generate_sched_domains(&doms, &attr);
1032
1033 /* Have scheduler rebuild the domains */
David Brazdil0f672f62019-12-10 10:32:29 +00001034 partition_and_rebuild_sched_domains(ndoms, doms, attr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001035}
1036#else /* !CONFIG_SMP */
1037static void rebuild_sched_domains_locked(void)
1038{
1039}
1040#endif /* CONFIG_SMP */
1041
1042void rebuild_sched_domains(void)
1043{
David Brazdil0f672f62019-12-10 10:32:29 +00001044 get_online_cpus();
1045 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001046 rebuild_sched_domains_locked();
David Brazdil0f672f62019-12-10 10:32:29 +00001047 percpu_up_write(&cpuset_rwsem);
1048 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001049}
1050
1051/**
1052 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1053 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1054 *
1055 * Iterate through each task of @cs updating its cpus_allowed to the
1056 * effective cpuset's. As this function is called with cpuset_mutex held,
1057 * cpuset membership stays stable.
1058 */
1059static void update_tasks_cpumask(struct cpuset *cs)
1060{
1061 struct css_task_iter it;
1062 struct task_struct *task;
Olivier Deprez92d4c212022-12-06 15:05:30 +01001063 bool top_cs = cs == &top_cpuset;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001064
1065 css_task_iter_start(&cs->css, 0, &it);
Olivier Deprez92d4c212022-12-06 15:05:30 +01001066 while ((task = css_task_iter_next(&it))) {
1067 /*
1068 * Percpu kthreads in top_cpuset are ignored
1069 */
1070 if (top_cs && (task->flags & PF_KTHREAD) &&
1071 kthread_is_per_cpu(task))
1072 continue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001073 set_cpus_allowed_ptr(task, cs->effective_cpus);
Olivier Deprez92d4c212022-12-06 15:05:30 +01001074 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001075 css_task_iter_end(&it);
1076}
1077
David Brazdil0f672f62019-12-10 10:32:29 +00001078/**
1079 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1080 * @new_cpus: the temp variable for the new effective_cpus mask
1081 * @cs: the cpuset the need to recompute the new effective_cpus mask
1082 * @parent: the parent cpuset
1083 *
1084 * If the parent has subpartition CPUs, include them in the list of
1085 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1086 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1087 * to mask those out.
1088 */
1089static void compute_effective_cpumask(struct cpumask *new_cpus,
1090 struct cpuset *cs, struct cpuset *parent)
1091{
1092 if (parent->nr_subparts_cpus) {
1093 cpumask_or(new_cpus, parent->effective_cpus,
1094 parent->subparts_cpus);
1095 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1096 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1097 } else {
1098 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1099 }
1100}
1101
1102/*
1103 * Commands for update_parent_subparts_cpumask
1104 */
1105enum subparts_cmd {
1106 partcmd_enable, /* Enable partition root */
1107 partcmd_disable, /* Disable partition root */
1108 partcmd_update, /* Update parent's subparts_cpus */
1109};
1110
1111/**
1112 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1113 * @cpuset: The cpuset that requests change in partition root state
1114 * @cmd: Partition root state change command
1115 * @newmask: Optional new cpumask for partcmd_update
1116 * @tmp: Temporary addmask and delmask
1117 * Return: 0, 1 or an error code
1118 *
1119 * For partcmd_enable, the cpuset is being transformed from a non-partition
1120 * root to a partition root. The cpus_allowed mask of the given cpuset will
1121 * be put into parent's subparts_cpus and taken away from parent's
1122 * effective_cpus. The function will return 0 if all the CPUs listed in
1123 * cpus_allowed can be granted or an error code will be returned.
1124 *
1125 * For partcmd_disable, the cpuset is being transofrmed from a partition
Olivier Deprez157378f2022-04-04 15:47:50 +02001126 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
David Brazdil0f672f62019-12-10 10:32:29 +00001127 * parent's subparts_cpus will be taken away from that cpumask and put back
1128 * into parent's effective_cpus. 0 should always be returned.
1129 *
1130 * For partcmd_update, if the optional newmask is specified, the cpu
1131 * list is to be changed from cpus_allowed to newmask. Otherwise,
1132 * cpus_allowed is assumed to remain the same. The cpuset should either
1133 * be a partition root or an invalid partition root. The partition root
1134 * state may change if newmask is NULL and none of the requested CPUs can
1135 * be granted by the parent. The function will return 1 if changes to
1136 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1137 * Error code should only be returned when newmask is non-NULL.
1138 *
1139 * The partcmd_enable and partcmd_disable commands are used by
1140 * update_prstate(). The partcmd_update command is used by
1141 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1142 * newmask set.
1143 *
1144 * The checking is more strict when enabling partition root than the
1145 * other two commands.
1146 *
1147 * Because of the implicit cpu exclusive nature of a partition root,
1148 * cpumask changes that violates the cpu exclusivity rule will not be
1149 * permitted when checked by validate_change(). The validate_change()
1150 * function will also prevent any changes to the cpu list if it is not
1151 * a superset of children's cpu lists.
1152 */
1153static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1154 struct cpumask *newmask,
1155 struct tmpmasks *tmp)
1156{
1157 struct cpuset *parent = parent_cs(cpuset);
1158 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1159 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
Olivier Deprez157378f2022-04-04 15:47:50 +02001160 int new_prs;
David Brazdil0f672f62019-12-10 10:32:29 +00001161 bool part_error = false; /* Partition error? */
1162
1163 percpu_rwsem_assert_held(&cpuset_rwsem);
1164
1165 /*
1166 * The parent must be a partition root.
1167 * The new cpumask, if present, or the current cpus_allowed must
1168 * not be empty.
1169 */
1170 if (!is_partition_root(parent) ||
1171 (newmask && cpumask_empty(newmask)) ||
1172 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1173 return -EINVAL;
1174
1175 /*
1176 * Enabling/disabling partition root is not allowed if there are
1177 * online children.
1178 */
1179 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1180 return -EBUSY;
1181
1182 /*
1183 * Enabling partition root is not allowed if not all the CPUs
1184 * can be granted from parent's effective_cpus or at least one
1185 * CPU will be left after that.
1186 */
1187 if ((cmd == partcmd_enable) &&
1188 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1189 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1190 return -EINVAL;
1191
1192 /*
1193 * A cpumask update cannot make parent's effective_cpus become empty.
1194 */
1195 adding = deleting = false;
Olivier Deprez157378f2022-04-04 15:47:50 +02001196 new_prs = cpuset->partition_root_state;
David Brazdil0f672f62019-12-10 10:32:29 +00001197 if (cmd == partcmd_enable) {
1198 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1199 adding = true;
1200 } else if (cmd == partcmd_disable) {
1201 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1202 parent->subparts_cpus);
1203 } else if (newmask) {
1204 /*
1205 * partcmd_update with newmask:
1206 *
1207 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1208 * addmask = newmask & parent->effective_cpus
1209 * & ~parent->subparts_cpus
1210 */
1211 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1212 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1213 parent->subparts_cpus);
1214
1215 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1216 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1217 parent->subparts_cpus);
1218 /*
1219 * Return error if the new effective_cpus could become empty.
1220 */
1221 if (adding &&
1222 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1223 if (!deleting)
1224 return -EINVAL;
1225 /*
1226 * As some of the CPUs in subparts_cpus might have
1227 * been offlined, we need to compute the real delmask
1228 * to confirm that.
1229 */
1230 if (!cpumask_and(tmp->addmask, tmp->delmask,
1231 cpu_active_mask))
1232 return -EINVAL;
1233 cpumask_copy(tmp->addmask, parent->effective_cpus);
1234 }
1235 } else {
1236 /*
1237 * partcmd_update w/o newmask:
1238 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001239 * addmask = cpus_allowed & parent->effective_cpus
David Brazdil0f672f62019-12-10 10:32:29 +00001240 *
1241 * Note that parent's subparts_cpus may have been
1242 * pre-shrunk in case there is a change in the cpu list.
1243 * So no deletion is needed.
1244 */
1245 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1246 parent->effective_cpus);
1247 part_error = cpumask_equal(tmp->addmask,
1248 parent->effective_cpus);
1249 }
1250
1251 if (cmd == partcmd_update) {
1252 int prev_prs = cpuset->partition_root_state;
1253
1254 /*
1255 * Check for possible transition between PRS_ENABLED
1256 * and PRS_ERROR.
1257 */
1258 switch (cpuset->partition_root_state) {
1259 case PRS_ENABLED:
1260 if (part_error)
Olivier Deprez157378f2022-04-04 15:47:50 +02001261 new_prs = PRS_ERROR;
David Brazdil0f672f62019-12-10 10:32:29 +00001262 break;
1263 case PRS_ERROR:
1264 if (!part_error)
Olivier Deprez157378f2022-04-04 15:47:50 +02001265 new_prs = PRS_ENABLED;
David Brazdil0f672f62019-12-10 10:32:29 +00001266 break;
1267 }
1268 /*
1269 * Set part_error if previously in invalid state.
1270 */
1271 part_error = (prev_prs == PRS_ERROR);
1272 }
1273
Olivier Deprez157378f2022-04-04 15:47:50 +02001274 if (!part_error && (new_prs == PRS_ERROR))
David Brazdil0f672f62019-12-10 10:32:29 +00001275 return 0; /* Nothing need to be done */
1276
Olivier Deprez157378f2022-04-04 15:47:50 +02001277 if (new_prs == PRS_ERROR) {
David Brazdil0f672f62019-12-10 10:32:29 +00001278 /*
1279 * Remove all its cpus from parent's subparts_cpus.
1280 */
1281 adding = false;
1282 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1283 parent->subparts_cpus);
1284 }
1285
Olivier Deprez157378f2022-04-04 15:47:50 +02001286 if (!adding && !deleting && (new_prs == cpuset->partition_root_state))
David Brazdil0f672f62019-12-10 10:32:29 +00001287 return 0;
1288
1289 /*
1290 * Change the parent's subparts_cpus.
1291 * Newly added CPUs will be removed from effective_cpus and
1292 * newly deleted ones will be added back to effective_cpus.
1293 */
1294 spin_lock_irq(&callback_lock);
1295 if (adding) {
1296 cpumask_or(parent->subparts_cpus,
1297 parent->subparts_cpus, tmp->addmask);
1298 cpumask_andnot(parent->effective_cpus,
1299 parent->effective_cpus, tmp->addmask);
1300 }
1301 if (deleting) {
1302 cpumask_andnot(parent->subparts_cpus,
1303 parent->subparts_cpus, tmp->delmask);
1304 /*
1305 * Some of the CPUs in subparts_cpus might have been offlined.
1306 */
1307 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1308 cpumask_or(parent->effective_cpus,
1309 parent->effective_cpus, tmp->delmask);
1310 }
1311
1312 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
Olivier Deprez157378f2022-04-04 15:47:50 +02001313
1314 if (cpuset->partition_root_state != new_prs)
1315 cpuset->partition_root_state = new_prs;
David Brazdil0f672f62019-12-10 10:32:29 +00001316 spin_unlock_irq(&callback_lock);
1317
1318 return cmd == partcmd_update;
1319}
1320
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001321/*
1322 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
David Brazdil0f672f62019-12-10 10:32:29 +00001323 * @cs: the cpuset to consider
1324 * @tmp: temp variables for calculating effective_cpus & partition setup
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001325 *
1326 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1327 * and all its descendants need to be updated.
1328 *
1329 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1330 *
1331 * Called with cpuset_mutex held
1332 */
David Brazdil0f672f62019-12-10 10:32:29 +00001333static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001334{
1335 struct cpuset *cp;
1336 struct cgroup_subsys_state *pos_css;
1337 bool need_rebuild_sched_domains = false;
Olivier Deprez157378f2022-04-04 15:47:50 +02001338 int new_prs;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001339
1340 rcu_read_lock();
1341 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1342 struct cpuset *parent = parent_cs(cp);
1343
David Brazdil0f672f62019-12-10 10:32:29 +00001344 compute_effective_cpumask(tmp->new_cpus, cp, parent);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001345
1346 /*
1347 * If it becomes empty, inherit the effective mask of the
1348 * parent, which is guaranteed to have some CPUs.
1349 */
David Brazdil0f672f62019-12-10 10:32:29 +00001350 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1351 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1352 if (!cp->use_parent_ecpus) {
1353 cp->use_parent_ecpus = true;
1354 parent->child_ecpus_count++;
1355 }
1356 } else if (cp->use_parent_ecpus) {
1357 cp->use_parent_ecpus = false;
1358 WARN_ON_ONCE(!parent->child_ecpus_count);
1359 parent->child_ecpus_count--;
1360 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001361
David Brazdil0f672f62019-12-10 10:32:29 +00001362 /*
1363 * Skip the whole subtree if the cpumask remains the same
1364 * and has no partition root state.
1365 */
1366 if (!cp->partition_root_state &&
1367 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001368 pos_css = css_rightmost_descendant(pos_css);
1369 continue;
1370 }
1371
David Brazdil0f672f62019-12-10 10:32:29 +00001372 /*
1373 * update_parent_subparts_cpumask() should have been called
1374 * for cs already in update_cpumask(). We should also call
1375 * update_tasks_cpumask() again for tasks in the parent
1376 * cpuset if the parent's subparts_cpus changes.
1377 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001378 new_prs = cp->partition_root_state;
1379 if ((cp != cs) && new_prs) {
David Brazdil0f672f62019-12-10 10:32:29 +00001380 switch (parent->partition_root_state) {
1381 case PRS_DISABLED:
1382 /*
1383 * If parent is not a partition root or an
Olivier Deprez157378f2022-04-04 15:47:50 +02001384 * invalid partition root, clear its state
1385 * and its CS_CPU_EXCLUSIVE flag.
David Brazdil0f672f62019-12-10 10:32:29 +00001386 */
1387 WARN_ON_ONCE(cp->partition_root_state
1388 != PRS_ERROR);
Olivier Deprez157378f2022-04-04 15:47:50 +02001389 new_prs = PRS_DISABLED;
David Brazdil0f672f62019-12-10 10:32:29 +00001390
1391 /*
1392 * clear_bit() is an atomic operation and
1393 * readers aren't interested in the state
1394 * of CS_CPU_EXCLUSIVE anyway. So we can
1395 * just update the flag without holding
1396 * the callback_lock.
1397 */
1398 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1399 break;
1400
1401 case PRS_ENABLED:
1402 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1403 update_tasks_cpumask(parent);
1404 break;
1405
1406 case PRS_ERROR:
1407 /*
1408 * When parent is invalid, it has to be too.
1409 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001410 new_prs = PRS_ERROR;
David Brazdil0f672f62019-12-10 10:32:29 +00001411 break;
1412 }
1413 }
1414
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001415 if (!css_tryget_online(&cp->css))
1416 continue;
1417 rcu_read_unlock();
1418
1419 spin_lock_irq(&callback_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001420
1421 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
Olivier Deprez157378f2022-04-04 15:47:50 +02001422 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
David Brazdil0f672f62019-12-10 10:32:29 +00001423 cp->nr_subparts_cpus = 0;
1424 cpumask_clear(cp->subparts_cpus);
1425 } else if (cp->nr_subparts_cpus) {
1426 /*
1427 * Make sure that effective_cpus & subparts_cpus
1428 * are mutually exclusive.
1429 *
1430 * In the unlikely event that effective_cpus
1431 * becomes empty. we clear cp->nr_subparts_cpus and
1432 * let its child partition roots to compete for
1433 * CPUs again.
1434 */
1435 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1436 cp->subparts_cpus);
1437 if (cpumask_empty(cp->effective_cpus)) {
1438 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1439 cpumask_clear(cp->subparts_cpus);
1440 cp->nr_subparts_cpus = 0;
1441 } else if (!cpumask_subset(cp->subparts_cpus,
1442 tmp->new_cpus)) {
1443 cpumask_andnot(cp->subparts_cpus,
1444 cp->subparts_cpus, tmp->new_cpus);
1445 cp->nr_subparts_cpus
1446 = cpumask_weight(cp->subparts_cpus);
1447 }
1448 }
Olivier Deprez157378f2022-04-04 15:47:50 +02001449
1450 if (new_prs != cp->partition_root_state)
1451 cp->partition_root_state = new_prs;
1452
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001453 spin_unlock_irq(&callback_lock);
1454
1455 WARN_ON(!is_in_v2_mode() &&
1456 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1457
1458 update_tasks_cpumask(cp);
1459
1460 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001461 * On legacy hierarchy, if the effective cpumask of any non-
1462 * empty cpuset is changed, we need to rebuild sched domains.
1463 * On default hierarchy, the cpuset needs to be a partition
1464 * root as well.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001465 */
1466 if (!cpumask_empty(cp->cpus_allowed) &&
David Brazdil0f672f62019-12-10 10:32:29 +00001467 is_sched_load_balance(cp) &&
1468 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1469 is_partition_root(cp)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001470 need_rebuild_sched_domains = true;
1471
1472 rcu_read_lock();
1473 css_put(&cp->css);
1474 }
1475 rcu_read_unlock();
1476
1477 if (need_rebuild_sched_domains)
1478 rebuild_sched_domains_locked();
1479}
1480
1481/**
David Brazdil0f672f62019-12-10 10:32:29 +00001482 * update_sibling_cpumasks - Update siblings cpumasks
1483 * @parent: Parent cpuset
1484 * @cs: Current cpuset
1485 * @tmp: Temp variables
1486 */
1487static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1488 struct tmpmasks *tmp)
1489{
1490 struct cpuset *sibling;
1491 struct cgroup_subsys_state *pos_css;
1492
Olivier Deprez157378f2022-04-04 15:47:50 +02001493 percpu_rwsem_assert_held(&cpuset_rwsem);
1494
David Brazdil0f672f62019-12-10 10:32:29 +00001495 /*
1496 * Check all its siblings and call update_cpumasks_hier()
1497 * if their use_parent_ecpus flag is set in order for them
1498 * to use the right effective_cpus value.
Olivier Deprez157378f2022-04-04 15:47:50 +02001499 *
1500 * The update_cpumasks_hier() function may sleep. So we have to
1501 * release the RCU read lock before calling it.
David Brazdil0f672f62019-12-10 10:32:29 +00001502 */
1503 rcu_read_lock();
1504 cpuset_for_each_child(sibling, pos_css, parent) {
1505 if (sibling == cs)
1506 continue;
1507 if (!sibling->use_parent_ecpus)
1508 continue;
Olivier Deprez157378f2022-04-04 15:47:50 +02001509 if (!css_tryget_online(&sibling->css))
1510 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00001511
Olivier Deprez157378f2022-04-04 15:47:50 +02001512 rcu_read_unlock();
David Brazdil0f672f62019-12-10 10:32:29 +00001513 update_cpumasks_hier(sibling, tmp);
Olivier Deprez157378f2022-04-04 15:47:50 +02001514 rcu_read_lock();
1515 css_put(&sibling->css);
David Brazdil0f672f62019-12-10 10:32:29 +00001516 }
1517 rcu_read_unlock();
1518}
1519
1520/**
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001521 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1522 * @cs: the cpuset to consider
1523 * @trialcs: trial cpuset
1524 * @buf: buffer of cpu numbers written to this cpuset
1525 */
1526static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1527 const char *buf)
1528{
1529 int retval;
David Brazdil0f672f62019-12-10 10:32:29 +00001530 struct tmpmasks tmp;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001531
1532 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1533 if (cs == &top_cpuset)
1534 return -EACCES;
1535
1536 /*
1537 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1538 * Since cpulist_parse() fails on an empty mask, we special case
1539 * that parsing. The validate_change() call ensures that cpusets
1540 * with tasks have cpus.
1541 */
1542 if (!*buf) {
1543 cpumask_clear(trialcs->cpus_allowed);
1544 } else {
1545 retval = cpulist_parse(buf, trialcs->cpus_allowed);
1546 if (retval < 0)
1547 return retval;
1548
1549 if (!cpumask_subset(trialcs->cpus_allowed,
1550 top_cpuset.cpus_allowed))
1551 return -EINVAL;
1552 }
1553
1554 /* Nothing to do if the cpus didn't change */
1555 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1556 return 0;
1557
1558 retval = validate_change(cs, trialcs);
1559 if (retval < 0)
1560 return retval;
1561
David Brazdil0f672f62019-12-10 10:32:29 +00001562#ifdef CONFIG_CPUMASK_OFFSTACK
1563 /*
1564 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1565 * to allocated cpumasks.
1566 */
1567 tmp.addmask = trialcs->subparts_cpus;
1568 tmp.delmask = trialcs->effective_cpus;
1569 tmp.new_cpus = trialcs->cpus_allowed;
1570#endif
1571
1572 if (cs->partition_root_state) {
1573 /* Cpumask of a partition root cannot be empty */
1574 if (cpumask_empty(trialcs->cpus_allowed))
1575 return -EINVAL;
1576 if (update_parent_subparts_cpumask(cs, partcmd_update,
1577 trialcs->cpus_allowed, &tmp) < 0)
1578 return -EINVAL;
1579 }
1580
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001581 spin_lock_irq(&callback_lock);
1582 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
David Brazdil0f672f62019-12-10 10:32:29 +00001583
1584 /*
1585 * Make sure that subparts_cpus is a subset of cpus_allowed.
1586 */
1587 if (cs->nr_subparts_cpus) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001588 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
David Brazdil0f672f62019-12-10 10:32:29 +00001589 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1590 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001591 spin_unlock_irq(&callback_lock);
1592
David Brazdil0f672f62019-12-10 10:32:29 +00001593 update_cpumasks_hier(cs, &tmp);
1594
1595 if (cs->partition_root_state) {
1596 struct cpuset *parent = parent_cs(cs);
1597
1598 /*
1599 * For partition root, update the cpumasks of sibling
1600 * cpusets if they use parent's effective_cpus.
1601 */
1602 if (parent->child_ecpus_count)
1603 update_sibling_cpumasks(parent, cs, &tmp);
1604 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001605 return 0;
1606}
1607
1608/*
1609 * Migrate memory region from one set of nodes to another. This is
1610 * performed asynchronously as it can be called from process migration path
1611 * holding locks involved in process management. All mm migrations are
1612 * performed in the queued order and can be waited for by flushing
1613 * cpuset_migrate_mm_wq.
1614 */
1615
1616struct cpuset_migrate_mm_work {
1617 struct work_struct work;
1618 struct mm_struct *mm;
1619 nodemask_t from;
1620 nodemask_t to;
1621};
1622
1623static void cpuset_migrate_mm_workfn(struct work_struct *work)
1624{
1625 struct cpuset_migrate_mm_work *mwork =
1626 container_of(work, struct cpuset_migrate_mm_work, work);
1627
1628 /* on a wq worker, no need to worry about %current's mems_allowed */
1629 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1630 mmput(mwork->mm);
1631 kfree(mwork);
1632}
1633
1634static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1635 const nodemask_t *to)
1636{
1637 struct cpuset_migrate_mm_work *mwork;
1638
1639 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1640 if (mwork) {
1641 mwork->mm = mm;
1642 mwork->from = *from;
1643 mwork->to = *to;
1644 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1645 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1646 } else {
1647 mmput(mm);
1648 }
1649}
1650
1651static void cpuset_post_attach(void)
1652{
1653 flush_workqueue(cpuset_migrate_mm_wq);
1654}
1655
1656/*
1657 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1658 * @tsk: the task to change
1659 * @newmems: new nodes that the task will be set
1660 *
1661 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1662 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1663 * parallel, it might temporarily see an empty intersection, which results in
1664 * a seqlock check and retry before OOM or allocation failure.
1665 */
1666static void cpuset_change_task_nodemask(struct task_struct *tsk,
1667 nodemask_t *newmems)
1668{
1669 task_lock(tsk);
1670
1671 local_irq_disable();
1672 write_seqcount_begin(&tsk->mems_allowed_seq);
1673
1674 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1675 mpol_rebind_task(tsk, newmems);
1676 tsk->mems_allowed = *newmems;
1677
1678 write_seqcount_end(&tsk->mems_allowed_seq);
1679 local_irq_enable();
1680
1681 task_unlock(tsk);
1682}
1683
1684static void *cpuset_being_rebound;
1685
1686/**
1687 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1688 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1689 *
1690 * Iterate through each task of @cs updating its mems_allowed to the
1691 * effective cpuset's. As this function is called with cpuset_mutex held,
1692 * cpuset membership stays stable.
1693 */
1694static void update_tasks_nodemask(struct cpuset *cs)
1695{
1696 static nodemask_t newmems; /* protected by cpuset_mutex */
1697 struct css_task_iter it;
1698 struct task_struct *task;
1699
1700 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1701
1702 guarantee_online_mems(cs, &newmems);
1703
1704 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02001705 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001706 * take while holding tasklist_lock. Forks can happen - the
1707 * mpol_dup() cpuset_being_rebound check will catch such forks,
1708 * and rebind their vma mempolicies too. Because we still hold
1709 * the global cpuset_mutex, we know that no other rebind effort
1710 * will be contending for the global variable cpuset_being_rebound.
1711 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1712 * is idempotent. Also migrate pages in each mm to new nodes.
1713 */
1714 css_task_iter_start(&cs->css, 0, &it);
1715 while ((task = css_task_iter_next(&it))) {
1716 struct mm_struct *mm;
1717 bool migrate;
1718
1719 cpuset_change_task_nodemask(task, &newmems);
1720
1721 mm = get_task_mm(task);
1722 if (!mm)
1723 continue;
1724
1725 migrate = is_memory_migrate(cs);
1726
1727 mpol_rebind_mm(mm, &cs->mems_allowed);
1728 if (migrate)
1729 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1730 else
1731 mmput(mm);
1732 }
1733 css_task_iter_end(&it);
1734
1735 /*
1736 * All the tasks' nodemasks have been updated, update
1737 * cs->old_mems_allowed.
1738 */
1739 cs->old_mems_allowed = newmems;
1740
1741 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1742 cpuset_being_rebound = NULL;
1743}
1744
1745/*
1746 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1747 * @cs: the cpuset to consider
1748 * @new_mems: a temp variable for calculating new effective_mems
1749 *
1750 * When configured nodemask is changed, the effective nodemasks of this cpuset
1751 * and all its descendants need to be updated.
1752 *
1753 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1754 *
1755 * Called with cpuset_mutex held
1756 */
1757static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1758{
1759 struct cpuset *cp;
1760 struct cgroup_subsys_state *pos_css;
1761
1762 rcu_read_lock();
1763 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1764 struct cpuset *parent = parent_cs(cp);
1765
1766 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1767
1768 /*
1769 * If it becomes empty, inherit the effective mask of the
1770 * parent, which is guaranteed to have some MEMs.
1771 */
1772 if (is_in_v2_mode() && nodes_empty(*new_mems))
1773 *new_mems = parent->effective_mems;
1774
1775 /* Skip the whole subtree if the nodemask remains the same. */
1776 if (nodes_equal(*new_mems, cp->effective_mems)) {
1777 pos_css = css_rightmost_descendant(pos_css);
1778 continue;
1779 }
1780
1781 if (!css_tryget_online(&cp->css))
1782 continue;
1783 rcu_read_unlock();
1784
1785 spin_lock_irq(&callback_lock);
1786 cp->effective_mems = *new_mems;
1787 spin_unlock_irq(&callback_lock);
1788
1789 WARN_ON(!is_in_v2_mode() &&
1790 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1791
1792 update_tasks_nodemask(cp);
1793
1794 rcu_read_lock();
1795 css_put(&cp->css);
1796 }
1797 rcu_read_unlock();
1798}
1799
1800/*
1801 * Handle user request to change the 'mems' memory placement
1802 * of a cpuset. Needs to validate the request, update the
1803 * cpusets mems_allowed, and for each task in the cpuset,
1804 * update mems_allowed and rebind task's mempolicy and any vma
1805 * mempolicies and if the cpuset is marked 'memory_migrate',
1806 * migrate the tasks pages to the new memory.
1807 *
1808 * Call with cpuset_mutex held. May take callback_lock during call.
1809 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
Olivier Deprez157378f2022-04-04 15:47:50 +02001810 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001811 * their mempolicies to the cpusets new mems_allowed.
1812 */
1813static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1814 const char *buf)
1815{
1816 int retval;
1817
1818 /*
1819 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1820 * it's read-only
1821 */
1822 if (cs == &top_cpuset) {
1823 retval = -EACCES;
1824 goto done;
1825 }
1826
1827 /*
1828 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1829 * Since nodelist_parse() fails on an empty mask, we special case
1830 * that parsing. The validate_change() call ensures that cpusets
1831 * with tasks have memory.
1832 */
1833 if (!*buf) {
1834 nodes_clear(trialcs->mems_allowed);
1835 } else {
1836 retval = nodelist_parse(buf, trialcs->mems_allowed);
1837 if (retval < 0)
1838 goto done;
1839
1840 if (!nodes_subset(trialcs->mems_allowed,
1841 top_cpuset.mems_allowed)) {
1842 retval = -EINVAL;
1843 goto done;
1844 }
1845 }
1846
1847 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1848 retval = 0; /* Too easy - nothing to do */
1849 goto done;
1850 }
1851 retval = validate_change(cs, trialcs);
1852 if (retval < 0)
1853 goto done;
1854
1855 spin_lock_irq(&callback_lock);
1856 cs->mems_allowed = trialcs->mems_allowed;
1857 spin_unlock_irq(&callback_lock);
1858
1859 /* use trialcs->mems_allowed as a temp variable */
1860 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1861done:
1862 return retval;
1863}
1864
1865bool current_cpuset_is_being_rebound(void)
1866{
1867 bool ret;
1868
1869 rcu_read_lock();
1870 ret = task_cs(current) == cpuset_being_rebound;
1871 rcu_read_unlock();
1872
1873 return ret;
1874}
1875
1876static int update_relax_domain_level(struct cpuset *cs, s64 val)
1877{
1878#ifdef CONFIG_SMP
1879 if (val < -1 || val >= sched_domain_level_max)
1880 return -EINVAL;
1881#endif
1882
1883 if (val != cs->relax_domain_level) {
1884 cs->relax_domain_level = val;
1885 if (!cpumask_empty(cs->cpus_allowed) &&
1886 is_sched_load_balance(cs))
1887 rebuild_sched_domains_locked();
1888 }
1889
1890 return 0;
1891}
1892
1893/**
1894 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1895 * @cs: the cpuset in which each task's spread flags needs to be changed
1896 *
1897 * Iterate through each task of @cs updating its spread flags. As this
1898 * function is called with cpuset_mutex held, cpuset membership stays
1899 * stable.
1900 */
1901static void update_tasks_flags(struct cpuset *cs)
1902{
1903 struct css_task_iter it;
1904 struct task_struct *task;
1905
1906 css_task_iter_start(&cs->css, 0, &it);
1907 while ((task = css_task_iter_next(&it)))
1908 cpuset_update_task_spread_flag(cs, task);
1909 css_task_iter_end(&it);
1910}
1911
1912/*
1913 * update_flag - read a 0 or a 1 in a file and update associated flag
1914 * bit: the bit to update (see cpuset_flagbits_t)
1915 * cs: the cpuset to update
1916 * turning_on: whether the flag is being set or cleared
1917 *
1918 * Call with cpuset_mutex held.
1919 */
1920
1921static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1922 int turning_on)
1923{
1924 struct cpuset *trialcs;
1925 int balance_flag_changed;
1926 int spread_flag_changed;
1927 int err;
1928
1929 trialcs = alloc_trial_cpuset(cs);
1930 if (!trialcs)
1931 return -ENOMEM;
1932
1933 if (turning_on)
1934 set_bit(bit, &trialcs->flags);
1935 else
1936 clear_bit(bit, &trialcs->flags);
1937
1938 err = validate_change(cs, trialcs);
1939 if (err < 0)
1940 goto out;
1941
1942 balance_flag_changed = (is_sched_load_balance(cs) !=
1943 is_sched_load_balance(trialcs));
1944
1945 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1946 || (is_spread_page(cs) != is_spread_page(trialcs)));
1947
1948 spin_lock_irq(&callback_lock);
1949 cs->flags = trialcs->flags;
1950 spin_unlock_irq(&callback_lock);
1951
1952 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1953 rebuild_sched_domains_locked();
1954
1955 if (spread_flag_changed)
1956 update_tasks_flags(cs);
1957out:
David Brazdil0f672f62019-12-10 10:32:29 +00001958 free_cpuset(trialcs);
1959 return err;
1960}
1961
1962/*
1963 * update_prstate - update partititon_root_state
Olivier Deprez157378f2022-04-04 15:47:50 +02001964 * cs: the cpuset to update
1965 * new_prs: new partition root state
David Brazdil0f672f62019-12-10 10:32:29 +00001966 *
1967 * Call with cpuset_mutex held.
1968 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001969static int update_prstate(struct cpuset *cs, int new_prs)
David Brazdil0f672f62019-12-10 10:32:29 +00001970{
Olivier Deprez157378f2022-04-04 15:47:50 +02001971 int err, old_prs = cs->partition_root_state;
David Brazdil0f672f62019-12-10 10:32:29 +00001972 struct cpuset *parent = parent_cs(cs);
Olivier Deprez157378f2022-04-04 15:47:50 +02001973 struct tmpmasks tmpmask;
David Brazdil0f672f62019-12-10 10:32:29 +00001974
Olivier Deprez157378f2022-04-04 15:47:50 +02001975 if (old_prs == new_prs)
David Brazdil0f672f62019-12-10 10:32:29 +00001976 return 0;
1977
1978 /*
1979 * Cannot force a partial or invalid partition root to a full
1980 * partition root.
1981 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001982 if (new_prs && (old_prs == PRS_ERROR))
David Brazdil0f672f62019-12-10 10:32:29 +00001983 return -EINVAL;
1984
Olivier Deprez157378f2022-04-04 15:47:50 +02001985 if (alloc_cpumasks(NULL, &tmpmask))
David Brazdil0f672f62019-12-10 10:32:29 +00001986 return -ENOMEM;
1987
1988 err = -EINVAL;
Olivier Deprez157378f2022-04-04 15:47:50 +02001989 if (!old_prs) {
David Brazdil0f672f62019-12-10 10:32:29 +00001990 /*
1991 * Turning on partition root requires setting the
1992 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1993 * cannot be NULL.
1994 */
1995 if (cpumask_empty(cs->cpus_allowed))
1996 goto out;
1997
1998 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1999 if (err)
2000 goto out;
2001
2002 err = update_parent_subparts_cpumask(cs, partcmd_enable,
Olivier Deprez157378f2022-04-04 15:47:50 +02002003 NULL, &tmpmask);
David Brazdil0f672f62019-12-10 10:32:29 +00002004 if (err) {
2005 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2006 goto out;
2007 }
David Brazdil0f672f62019-12-10 10:32:29 +00002008 } else {
2009 /*
2010 * Turning off partition root will clear the
2011 * CS_CPU_EXCLUSIVE bit.
2012 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002013 if (old_prs == PRS_ERROR) {
David Brazdil0f672f62019-12-10 10:32:29 +00002014 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2015 err = 0;
2016 goto out;
2017 }
2018
2019 err = update_parent_subparts_cpumask(cs, partcmd_disable,
Olivier Deprez157378f2022-04-04 15:47:50 +02002020 NULL, &tmpmask);
David Brazdil0f672f62019-12-10 10:32:29 +00002021 if (err)
2022 goto out;
2023
David Brazdil0f672f62019-12-10 10:32:29 +00002024 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2025 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2026 }
2027
Olivier Deprez92d4c212022-12-06 15:05:30 +01002028 update_tasks_cpumask(parent);
David Brazdil0f672f62019-12-10 10:32:29 +00002029
2030 if (parent->child_ecpus_count)
Olivier Deprez157378f2022-04-04 15:47:50 +02002031 update_sibling_cpumasks(parent, cs, &tmpmask);
David Brazdil0f672f62019-12-10 10:32:29 +00002032
2033 rebuild_sched_domains_locked();
2034out:
Olivier Deprez157378f2022-04-04 15:47:50 +02002035 if (!err) {
2036 spin_lock_irq(&callback_lock);
2037 cs->partition_root_state = new_prs;
2038 spin_unlock_irq(&callback_lock);
2039 }
2040
2041 free_cpumasks(NULL, &tmpmask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002042 return err;
2043}
2044
2045/*
2046 * Frequency meter - How fast is some event occurring?
2047 *
2048 * These routines manage a digitally filtered, constant time based,
2049 * event frequency meter. There are four routines:
2050 * fmeter_init() - initialize a frequency meter.
2051 * fmeter_markevent() - called each time the event happens.
2052 * fmeter_getrate() - returns the recent rate of such events.
2053 * fmeter_update() - internal routine used to update fmeter.
2054 *
2055 * A common data structure is passed to each of these routines,
2056 * which is used to keep track of the state required to manage the
2057 * frequency meter and its digital filter.
2058 *
2059 * The filter works on the number of events marked per unit time.
2060 * The filter is single-pole low-pass recursive (IIR). The time unit
2061 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2062 * simulate 3 decimal digits of precision (multiplied by 1000).
2063 *
2064 * With an FM_COEF of 933, and a time base of 1 second, the filter
2065 * has a half-life of 10 seconds, meaning that if the events quit
2066 * happening, then the rate returned from the fmeter_getrate()
2067 * will be cut in half each 10 seconds, until it converges to zero.
2068 *
2069 * It is not worth doing a real infinitely recursive filter. If more
2070 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2071 * just compute FM_MAXTICKS ticks worth, by which point the level
2072 * will be stable.
2073 *
2074 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2075 * arithmetic overflow in the fmeter_update() routine.
2076 *
2077 * Given the simple 32 bit integer arithmetic used, this meter works
2078 * best for reporting rates between one per millisecond (msec) and
2079 * one per 32 (approx) seconds. At constant rates faster than one
2080 * per msec it maxes out at values just under 1,000,000. At constant
2081 * rates between one per msec, and one per second it will stabilize
2082 * to a value N*1000, where N is the rate of events per second.
2083 * At constant rates between one per second and one per 32 seconds,
2084 * it will be choppy, moving up on the seconds that have an event,
2085 * and then decaying until the next event. At rates slower than
2086 * about one in 32 seconds, it decays all the way back to zero between
2087 * each event.
2088 */
2089
2090#define FM_COEF 933 /* coefficient for half-life of 10 secs */
2091#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2092#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2093#define FM_SCALE 1000 /* faux fixed point scale */
2094
2095/* Initialize a frequency meter */
2096static void fmeter_init(struct fmeter *fmp)
2097{
2098 fmp->cnt = 0;
2099 fmp->val = 0;
2100 fmp->time = 0;
2101 spin_lock_init(&fmp->lock);
2102}
2103
2104/* Internal meter update - process cnt events and update value */
2105static void fmeter_update(struct fmeter *fmp)
2106{
2107 time64_t now;
2108 u32 ticks;
2109
2110 now = ktime_get_seconds();
2111 ticks = now - fmp->time;
2112
2113 if (ticks == 0)
2114 return;
2115
2116 ticks = min(FM_MAXTICKS, ticks);
2117 while (ticks-- > 0)
2118 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2119 fmp->time = now;
2120
2121 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2122 fmp->cnt = 0;
2123}
2124
2125/* Process any previous ticks, then bump cnt by one (times scale). */
2126static void fmeter_markevent(struct fmeter *fmp)
2127{
2128 spin_lock(&fmp->lock);
2129 fmeter_update(fmp);
2130 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2131 spin_unlock(&fmp->lock);
2132}
2133
2134/* Process any previous ticks, then return current value. */
2135static int fmeter_getrate(struct fmeter *fmp)
2136{
2137 int val;
2138
2139 spin_lock(&fmp->lock);
2140 fmeter_update(fmp);
2141 val = fmp->val;
2142 spin_unlock(&fmp->lock);
2143 return val;
2144}
2145
2146static struct cpuset *cpuset_attach_old_cs;
2147
2148/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2149static int cpuset_can_attach(struct cgroup_taskset *tset)
2150{
2151 struct cgroup_subsys_state *css;
2152 struct cpuset *cs;
2153 struct task_struct *task;
2154 int ret;
2155
2156 /* used later by cpuset_attach() */
2157 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2158 cs = css_cs(css);
2159
David Brazdil0f672f62019-12-10 10:32:29 +00002160 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002161
2162 /* allow moving tasks into an empty cpuset if on default hierarchy */
2163 ret = -ENOSPC;
2164 if (!is_in_v2_mode() &&
2165 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2166 goto out_unlock;
2167
2168 cgroup_taskset_for_each(task, css, tset) {
Olivier Deprez92d4c212022-12-06 15:05:30 +01002169 ret = task_can_attach(task, cs->effective_cpus);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002170 if (ret)
2171 goto out_unlock;
2172 ret = security_task_setscheduler(task);
2173 if (ret)
2174 goto out_unlock;
2175 }
2176
2177 /*
2178 * Mark attach is in progress. This makes validate_change() fail
2179 * changes which zero cpus/mems_allowed.
2180 */
2181 cs->attach_in_progress++;
2182 ret = 0;
2183out_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +00002184 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002185 return ret;
2186}
2187
2188static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2189{
2190 struct cgroup_subsys_state *css;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002191
2192 cgroup_taskset_first(tset, &css);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002193
David Brazdil0f672f62019-12-10 10:32:29 +00002194 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002195 css_cs(css)->attach_in_progress--;
David Brazdil0f672f62019-12-10 10:32:29 +00002196 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002197}
2198
2199/*
2200 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2201 * but we can't allocate it dynamically there. Define it global and
2202 * allocate from cpuset_init().
2203 */
2204static cpumask_var_t cpus_attach;
2205
2206static void cpuset_attach(struct cgroup_taskset *tset)
2207{
2208 /* static buf protected by cpuset_mutex */
2209 static nodemask_t cpuset_attach_nodemask_to;
2210 struct task_struct *task;
2211 struct task_struct *leader;
2212 struct cgroup_subsys_state *css;
2213 struct cpuset *cs;
2214 struct cpuset *oldcs = cpuset_attach_old_cs;
2215
2216 cgroup_taskset_first(tset, &css);
2217 cs = css_cs(css);
2218
Olivier Deprez92d4c212022-12-06 15:05:30 +01002219 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
David Brazdil0f672f62019-12-10 10:32:29 +00002220 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002221
2222 /* prepare for attach */
2223 if (cs == &top_cpuset)
2224 cpumask_copy(cpus_attach, cpu_possible_mask);
2225 else
2226 guarantee_online_cpus(cs, cpus_attach);
2227
2228 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2229
2230 cgroup_taskset_for_each(task, css, tset) {
2231 /*
2232 * can_attach beforehand should guarantee that this doesn't
2233 * fail. TODO: have a better way to handle failure here
2234 */
2235 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2236
2237 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2238 cpuset_update_task_spread_flag(cs, task);
2239 }
2240
2241 /*
2242 * Change mm for all threadgroup leaders. This is expensive and may
2243 * sleep and should be moved outside migration path proper.
2244 */
2245 cpuset_attach_nodemask_to = cs->effective_mems;
2246 cgroup_taskset_for_each_leader(leader, css, tset) {
2247 struct mm_struct *mm = get_task_mm(leader);
2248
2249 if (mm) {
2250 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2251
2252 /*
2253 * old_mems_allowed is the same with mems_allowed
2254 * here, except if this task is being moved
2255 * automatically due to hotplug. In that case
2256 * @mems_allowed has been updated and is empty, so
2257 * @old_mems_allowed is the right nodesets that we
2258 * migrate mm from.
2259 */
2260 if (is_memory_migrate(cs))
2261 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2262 &cpuset_attach_nodemask_to);
2263 else
2264 mmput(mm);
2265 }
2266 }
2267
2268 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2269
2270 cs->attach_in_progress--;
2271 if (!cs->attach_in_progress)
2272 wake_up(&cpuset_attach_wq);
2273
David Brazdil0f672f62019-12-10 10:32:29 +00002274 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002275}
2276
2277/* The various types of files and directories in a cpuset file system */
2278
2279typedef enum {
2280 FILE_MEMORY_MIGRATE,
2281 FILE_CPULIST,
2282 FILE_MEMLIST,
2283 FILE_EFFECTIVE_CPULIST,
2284 FILE_EFFECTIVE_MEMLIST,
David Brazdil0f672f62019-12-10 10:32:29 +00002285 FILE_SUBPARTS_CPULIST,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002286 FILE_CPU_EXCLUSIVE,
2287 FILE_MEM_EXCLUSIVE,
2288 FILE_MEM_HARDWALL,
2289 FILE_SCHED_LOAD_BALANCE,
David Brazdil0f672f62019-12-10 10:32:29 +00002290 FILE_PARTITION_ROOT,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002291 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2292 FILE_MEMORY_PRESSURE_ENABLED,
2293 FILE_MEMORY_PRESSURE,
2294 FILE_SPREAD_PAGE,
2295 FILE_SPREAD_SLAB,
2296} cpuset_filetype_t;
2297
2298static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2299 u64 val)
2300{
2301 struct cpuset *cs = css_cs(css);
2302 cpuset_filetype_t type = cft->private;
2303 int retval = 0;
2304
David Brazdil0f672f62019-12-10 10:32:29 +00002305 get_online_cpus();
2306 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002307 if (!is_cpuset_online(cs)) {
2308 retval = -ENODEV;
2309 goto out_unlock;
2310 }
2311
2312 switch (type) {
2313 case FILE_CPU_EXCLUSIVE:
2314 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2315 break;
2316 case FILE_MEM_EXCLUSIVE:
2317 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2318 break;
2319 case FILE_MEM_HARDWALL:
2320 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2321 break;
2322 case FILE_SCHED_LOAD_BALANCE:
2323 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2324 break;
2325 case FILE_MEMORY_MIGRATE:
2326 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2327 break;
2328 case FILE_MEMORY_PRESSURE_ENABLED:
2329 cpuset_memory_pressure_enabled = !!val;
2330 break;
2331 case FILE_SPREAD_PAGE:
2332 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2333 break;
2334 case FILE_SPREAD_SLAB:
2335 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2336 break;
2337 default:
2338 retval = -EINVAL;
2339 break;
2340 }
2341out_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +00002342 percpu_up_write(&cpuset_rwsem);
2343 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002344 return retval;
2345}
2346
2347static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2348 s64 val)
2349{
2350 struct cpuset *cs = css_cs(css);
2351 cpuset_filetype_t type = cft->private;
2352 int retval = -ENODEV;
2353
David Brazdil0f672f62019-12-10 10:32:29 +00002354 get_online_cpus();
2355 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002356 if (!is_cpuset_online(cs))
2357 goto out_unlock;
2358
2359 switch (type) {
2360 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2361 retval = update_relax_domain_level(cs, val);
2362 break;
2363 default:
2364 retval = -EINVAL;
2365 break;
2366 }
2367out_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +00002368 percpu_up_write(&cpuset_rwsem);
2369 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002370 return retval;
2371}
2372
2373/*
2374 * Common handling for a write to a "cpus" or "mems" file.
2375 */
2376static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2377 char *buf, size_t nbytes, loff_t off)
2378{
2379 struct cpuset *cs = css_cs(of_css(of));
2380 struct cpuset *trialcs;
2381 int retval = -ENODEV;
2382
2383 buf = strstrip(buf);
2384
2385 /*
2386 * CPU or memory hotunplug may leave @cs w/o any execution
2387 * resources, in which case the hotplug code asynchronously updates
2388 * configuration and transfers all tasks to the nearest ancestor
2389 * which can execute.
2390 *
2391 * As writes to "cpus" or "mems" may restore @cs's execution
2392 * resources, wait for the previously scheduled operations before
2393 * proceeding, so that we don't end up keep removing tasks added
2394 * after execution capability is restored.
2395 *
2396 * cpuset_hotplug_work calls back into cgroup core via
2397 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2398 * operation like this one can lead to a deadlock through kernfs
2399 * active_ref protection. Let's break the protection. Losing the
2400 * protection is okay as we check whether @cs is online after
2401 * grabbing cpuset_mutex anyway. This only happens on the legacy
2402 * hierarchies.
2403 */
2404 css_get(&cs->css);
2405 kernfs_break_active_protection(of->kn);
2406 flush_work(&cpuset_hotplug_work);
2407
David Brazdil0f672f62019-12-10 10:32:29 +00002408 get_online_cpus();
2409 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002410 if (!is_cpuset_online(cs))
2411 goto out_unlock;
2412
2413 trialcs = alloc_trial_cpuset(cs);
2414 if (!trialcs) {
2415 retval = -ENOMEM;
2416 goto out_unlock;
2417 }
2418
2419 switch (of_cft(of)->private) {
2420 case FILE_CPULIST:
2421 retval = update_cpumask(cs, trialcs, buf);
2422 break;
2423 case FILE_MEMLIST:
2424 retval = update_nodemask(cs, trialcs, buf);
2425 break;
2426 default:
2427 retval = -EINVAL;
2428 break;
2429 }
2430
David Brazdil0f672f62019-12-10 10:32:29 +00002431 free_cpuset(trialcs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002432out_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +00002433 percpu_up_write(&cpuset_rwsem);
2434 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002435 kernfs_unbreak_active_protection(of->kn);
2436 css_put(&cs->css);
2437 flush_workqueue(cpuset_migrate_mm_wq);
2438 return retval ?: nbytes;
2439}
2440
2441/*
2442 * These ascii lists should be read in a single call, by using a user
2443 * buffer large enough to hold the entire map. If read in smaller
2444 * chunks, there is no guarantee of atomicity. Since the display format
2445 * used, list of ranges of sequential numbers, is variable length,
2446 * and since these maps can change value dynamically, one could read
2447 * gibberish by doing partial reads while a list was changing.
2448 */
2449static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2450{
2451 struct cpuset *cs = css_cs(seq_css(sf));
2452 cpuset_filetype_t type = seq_cft(sf)->private;
2453 int ret = 0;
2454
2455 spin_lock_irq(&callback_lock);
2456
2457 switch (type) {
2458 case FILE_CPULIST:
2459 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2460 break;
2461 case FILE_MEMLIST:
2462 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2463 break;
2464 case FILE_EFFECTIVE_CPULIST:
2465 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2466 break;
2467 case FILE_EFFECTIVE_MEMLIST:
2468 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2469 break;
David Brazdil0f672f62019-12-10 10:32:29 +00002470 case FILE_SUBPARTS_CPULIST:
2471 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2472 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002473 default:
2474 ret = -EINVAL;
2475 }
2476
2477 spin_unlock_irq(&callback_lock);
2478 return ret;
2479}
2480
2481static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2482{
2483 struct cpuset *cs = css_cs(css);
2484 cpuset_filetype_t type = cft->private;
2485 switch (type) {
2486 case FILE_CPU_EXCLUSIVE:
2487 return is_cpu_exclusive(cs);
2488 case FILE_MEM_EXCLUSIVE:
2489 return is_mem_exclusive(cs);
2490 case FILE_MEM_HARDWALL:
2491 return is_mem_hardwall(cs);
2492 case FILE_SCHED_LOAD_BALANCE:
2493 return is_sched_load_balance(cs);
2494 case FILE_MEMORY_MIGRATE:
2495 return is_memory_migrate(cs);
2496 case FILE_MEMORY_PRESSURE_ENABLED:
2497 return cpuset_memory_pressure_enabled;
2498 case FILE_MEMORY_PRESSURE:
2499 return fmeter_getrate(&cs->fmeter);
2500 case FILE_SPREAD_PAGE:
2501 return is_spread_page(cs);
2502 case FILE_SPREAD_SLAB:
2503 return is_spread_slab(cs);
2504 default:
2505 BUG();
2506 }
2507
2508 /* Unreachable but makes gcc happy */
2509 return 0;
2510}
2511
2512static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2513{
2514 struct cpuset *cs = css_cs(css);
2515 cpuset_filetype_t type = cft->private;
2516 switch (type) {
2517 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2518 return cs->relax_domain_level;
2519 default:
2520 BUG();
2521 }
2522
2523 /* Unrechable but makes gcc happy */
2524 return 0;
2525}
2526
David Brazdil0f672f62019-12-10 10:32:29 +00002527static int sched_partition_show(struct seq_file *seq, void *v)
2528{
2529 struct cpuset *cs = css_cs(seq_css(seq));
2530
2531 switch (cs->partition_root_state) {
2532 case PRS_ENABLED:
2533 seq_puts(seq, "root\n");
2534 break;
2535 case PRS_DISABLED:
2536 seq_puts(seq, "member\n");
2537 break;
2538 case PRS_ERROR:
2539 seq_puts(seq, "root invalid\n");
2540 break;
2541 }
2542 return 0;
2543}
2544
2545static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2546 size_t nbytes, loff_t off)
2547{
2548 struct cpuset *cs = css_cs(of_css(of));
2549 int val;
2550 int retval = -ENODEV;
2551
2552 buf = strstrip(buf);
2553
2554 /*
2555 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2556 */
2557 if (!strcmp(buf, "root"))
2558 val = PRS_ENABLED;
2559 else if (!strcmp(buf, "member"))
2560 val = PRS_DISABLED;
2561 else
2562 return -EINVAL;
2563
2564 css_get(&cs->css);
2565 get_online_cpus();
2566 percpu_down_write(&cpuset_rwsem);
2567 if (!is_cpuset_online(cs))
2568 goto out_unlock;
2569
2570 retval = update_prstate(cs, val);
2571out_unlock:
2572 percpu_up_write(&cpuset_rwsem);
2573 put_online_cpus();
2574 css_put(&cs->css);
2575 return retval ?: nbytes;
2576}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002577
2578/*
2579 * for the common functions, 'private' gives the type of file
2580 */
2581
David Brazdil0f672f62019-12-10 10:32:29 +00002582static struct cftype legacy_files[] = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002583 {
2584 .name = "cpus",
2585 .seq_show = cpuset_common_seq_show,
2586 .write = cpuset_write_resmask,
2587 .max_write_len = (100U + 6 * NR_CPUS),
2588 .private = FILE_CPULIST,
2589 },
2590
2591 {
2592 .name = "mems",
2593 .seq_show = cpuset_common_seq_show,
2594 .write = cpuset_write_resmask,
2595 .max_write_len = (100U + 6 * MAX_NUMNODES),
2596 .private = FILE_MEMLIST,
2597 },
2598
2599 {
2600 .name = "effective_cpus",
2601 .seq_show = cpuset_common_seq_show,
2602 .private = FILE_EFFECTIVE_CPULIST,
2603 },
2604
2605 {
2606 .name = "effective_mems",
2607 .seq_show = cpuset_common_seq_show,
2608 .private = FILE_EFFECTIVE_MEMLIST,
2609 },
2610
2611 {
2612 .name = "cpu_exclusive",
2613 .read_u64 = cpuset_read_u64,
2614 .write_u64 = cpuset_write_u64,
2615 .private = FILE_CPU_EXCLUSIVE,
2616 },
2617
2618 {
2619 .name = "mem_exclusive",
2620 .read_u64 = cpuset_read_u64,
2621 .write_u64 = cpuset_write_u64,
2622 .private = FILE_MEM_EXCLUSIVE,
2623 },
2624
2625 {
2626 .name = "mem_hardwall",
2627 .read_u64 = cpuset_read_u64,
2628 .write_u64 = cpuset_write_u64,
2629 .private = FILE_MEM_HARDWALL,
2630 },
2631
2632 {
2633 .name = "sched_load_balance",
2634 .read_u64 = cpuset_read_u64,
2635 .write_u64 = cpuset_write_u64,
2636 .private = FILE_SCHED_LOAD_BALANCE,
2637 },
2638
2639 {
2640 .name = "sched_relax_domain_level",
2641 .read_s64 = cpuset_read_s64,
2642 .write_s64 = cpuset_write_s64,
2643 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2644 },
2645
2646 {
2647 .name = "memory_migrate",
2648 .read_u64 = cpuset_read_u64,
2649 .write_u64 = cpuset_write_u64,
2650 .private = FILE_MEMORY_MIGRATE,
2651 },
2652
2653 {
2654 .name = "memory_pressure",
2655 .read_u64 = cpuset_read_u64,
2656 .private = FILE_MEMORY_PRESSURE,
2657 },
2658
2659 {
2660 .name = "memory_spread_page",
2661 .read_u64 = cpuset_read_u64,
2662 .write_u64 = cpuset_write_u64,
2663 .private = FILE_SPREAD_PAGE,
2664 },
2665
2666 {
2667 .name = "memory_spread_slab",
2668 .read_u64 = cpuset_read_u64,
2669 .write_u64 = cpuset_write_u64,
2670 .private = FILE_SPREAD_SLAB,
2671 },
2672
2673 {
2674 .name = "memory_pressure_enabled",
2675 .flags = CFTYPE_ONLY_ON_ROOT,
2676 .read_u64 = cpuset_read_u64,
2677 .write_u64 = cpuset_write_u64,
2678 .private = FILE_MEMORY_PRESSURE_ENABLED,
2679 },
2680
2681 { } /* terminate */
2682};
2683
2684/*
David Brazdil0f672f62019-12-10 10:32:29 +00002685 * This is currently a minimal set for the default hierarchy. It can be
2686 * expanded later on by migrating more features and control files from v1.
2687 */
2688static struct cftype dfl_files[] = {
2689 {
2690 .name = "cpus",
2691 .seq_show = cpuset_common_seq_show,
2692 .write = cpuset_write_resmask,
2693 .max_write_len = (100U + 6 * NR_CPUS),
2694 .private = FILE_CPULIST,
2695 .flags = CFTYPE_NOT_ON_ROOT,
2696 },
2697
2698 {
2699 .name = "mems",
2700 .seq_show = cpuset_common_seq_show,
2701 .write = cpuset_write_resmask,
2702 .max_write_len = (100U + 6 * MAX_NUMNODES),
2703 .private = FILE_MEMLIST,
2704 .flags = CFTYPE_NOT_ON_ROOT,
2705 },
2706
2707 {
2708 .name = "cpus.effective",
2709 .seq_show = cpuset_common_seq_show,
2710 .private = FILE_EFFECTIVE_CPULIST,
2711 },
2712
2713 {
2714 .name = "mems.effective",
2715 .seq_show = cpuset_common_seq_show,
2716 .private = FILE_EFFECTIVE_MEMLIST,
2717 },
2718
2719 {
2720 .name = "cpus.partition",
2721 .seq_show = sched_partition_show,
2722 .write = sched_partition_write,
2723 .private = FILE_PARTITION_ROOT,
2724 .flags = CFTYPE_NOT_ON_ROOT,
2725 },
2726
2727 {
2728 .name = "cpus.subpartitions",
2729 .seq_show = cpuset_common_seq_show,
2730 .private = FILE_SUBPARTS_CPULIST,
2731 .flags = CFTYPE_DEBUG,
2732 },
2733
2734 { } /* terminate */
2735};
2736
2737
2738/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002739 * cpuset_css_alloc - allocate a cpuset css
2740 * cgrp: control group that the new cpuset will be part of
2741 */
2742
2743static struct cgroup_subsys_state *
2744cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2745{
2746 struct cpuset *cs;
2747
2748 if (!parent_css)
2749 return &top_cpuset.css;
2750
2751 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2752 if (!cs)
2753 return ERR_PTR(-ENOMEM);
David Brazdil0f672f62019-12-10 10:32:29 +00002754
2755 if (alloc_cpumasks(cs, NULL)) {
2756 kfree(cs);
2757 return ERR_PTR(-ENOMEM);
2758 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002759
2760 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002761 nodes_clear(cs->mems_allowed);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002762 nodes_clear(cs->effective_mems);
2763 fmeter_init(&cs->fmeter);
2764 cs->relax_domain_level = -1;
2765
2766 return &cs->css;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002767}
2768
2769static int cpuset_css_online(struct cgroup_subsys_state *css)
2770{
2771 struct cpuset *cs = css_cs(css);
2772 struct cpuset *parent = parent_cs(cs);
2773 struct cpuset *tmp_cs;
2774 struct cgroup_subsys_state *pos_css;
2775
2776 if (!parent)
2777 return 0;
2778
David Brazdil0f672f62019-12-10 10:32:29 +00002779 get_online_cpus();
2780 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002781
2782 set_bit(CS_ONLINE, &cs->flags);
2783 if (is_spread_page(parent))
2784 set_bit(CS_SPREAD_PAGE, &cs->flags);
2785 if (is_spread_slab(parent))
2786 set_bit(CS_SPREAD_SLAB, &cs->flags);
2787
2788 cpuset_inc();
2789
2790 spin_lock_irq(&callback_lock);
2791 if (is_in_v2_mode()) {
2792 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2793 cs->effective_mems = parent->effective_mems;
David Brazdil0f672f62019-12-10 10:32:29 +00002794 cs->use_parent_ecpus = true;
2795 parent->child_ecpus_count++;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002796 }
2797 spin_unlock_irq(&callback_lock);
2798
2799 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2800 goto out_unlock;
2801
2802 /*
2803 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2804 * set. This flag handling is implemented in cgroup core for
2805 * histrical reasons - the flag may be specified during mount.
2806 *
2807 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2808 * refuse to clone the configuration - thereby refusing the task to
2809 * be entered, and as a result refusing the sys_unshare() or
2810 * clone() which initiated it. If this becomes a problem for some
2811 * users who wish to allow that scenario, then this could be
2812 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2813 * (and likewise for mems) to the new cgroup.
2814 */
2815 rcu_read_lock();
2816 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2817 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2818 rcu_read_unlock();
2819 goto out_unlock;
2820 }
2821 }
2822 rcu_read_unlock();
2823
2824 spin_lock_irq(&callback_lock);
2825 cs->mems_allowed = parent->mems_allowed;
2826 cs->effective_mems = parent->mems_allowed;
2827 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2828 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2829 spin_unlock_irq(&callback_lock);
2830out_unlock:
David Brazdil0f672f62019-12-10 10:32:29 +00002831 percpu_up_write(&cpuset_rwsem);
2832 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002833 return 0;
2834}
2835
2836/*
2837 * If the cpuset being removed has its flag 'sched_load_balance'
2838 * enabled, then simulate turning sched_load_balance off, which
David Brazdil0f672f62019-12-10 10:32:29 +00002839 * will call rebuild_sched_domains_locked(). That is not needed
2840 * in the default hierarchy where only changes in partition
2841 * will cause repartitioning.
2842 *
2843 * If the cpuset has the 'sched.partition' flag enabled, simulate
2844 * turning 'sched.partition" off.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002845 */
2846
2847static void cpuset_css_offline(struct cgroup_subsys_state *css)
2848{
2849 struct cpuset *cs = css_cs(css);
2850
David Brazdil0f672f62019-12-10 10:32:29 +00002851 get_online_cpus();
2852 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002853
David Brazdil0f672f62019-12-10 10:32:29 +00002854 if (is_partition_root(cs))
2855 update_prstate(cs, 0);
2856
2857 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2858 is_sched_load_balance(cs))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002859 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2860
David Brazdil0f672f62019-12-10 10:32:29 +00002861 if (cs->use_parent_ecpus) {
2862 struct cpuset *parent = parent_cs(cs);
2863
2864 cs->use_parent_ecpus = false;
2865 parent->child_ecpus_count--;
2866 }
2867
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002868 cpuset_dec();
2869 clear_bit(CS_ONLINE, &cs->flags);
2870
David Brazdil0f672f62019-12-10 10:32:29 +00002871 percpu_up_write(&cpuset_rwsem);
2872 put_online_cpus();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002873}
2874
2875static void cpuset_css_free(struct cgroup_subsys_state *css)
2876{
2877 struct cpuset *cs = css_cs(css);
2878
David Brazdil0f672f62019-12-10 10:32:29 +00002879 free_cpuset(cs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002880}
2881
2882static void cpuset_bind(struct cgroup_subsys_state *root_css)
2883{
David Brazdil0f672f62019-12-10 10:32:29 +00002884 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002885 spin_lock_irq(&callback_lock);
2886
2887 if (is_in_v2_mode()) {
2888 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2889 top_cpuset.mems_allowed = node_possible_map;
2890 } else {
2891 cpumask_copy(top_cpuset.cpus_allowed,
2892 top_cpuset.effective_cpus);
2893 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2894 }
2895
2896 spin_unlock_irq(&callback_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00002897 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002898}
2899
2900/*
2901 * Make sure the new task conform to the current state of its parent,
2902 * which could have been changed by cpuset just after it inherits the
2903 * state from the parent and before it sits on the cgroup's task list.
2904 */
2905static void cpuset_fork(struct task_struct *task)
2906{
2907 if (task_css_is_root(task, cpuset_cgrp_id))
2908 return;
2909
David Brazdil0f672f62019-12-10 10:32:29 +00002910 set_cpus_allowed_ptr(task, current->cpus_ptr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002911 task->mems_allowed = current->mems_allowed;
2912}
2913
2914struct cgroup_subsys cpuset_cgrp_subsys = {
2915 .css_alloc = cpuset_css_alloc,
2916 .css_online = cpuset_css_online,
2917 .css_offline = cpuset_css_offline,
2918 .css_free = cpuset_css_free,
2919 .can_attach = cpuset_can_attach,
2920 .cancel_attach = cpuset_cancel_attach,
2921 .attach = cpuset_attach,
2922 .post_attach = cpuset_post_attach,
2923 .bind = cpuset_bind,
2924 .fork = cpuset_fork,
David Brazdil0f672f62019-12-10 10:32:29 +00002925 .legacy_cftypes = legacy_files,
2926 .dfl_cftypes = dfl_files,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002927 .early_init = true,
David Brazdil0f672f62019-12-10 10:32:29 +00002928 .threaded = true,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002929};
2930
2931/**
2932 * cpuset_init - initialize cpusets at system boot
2933 *
David Brazdil0f672f62019-12-10 10:32:29 +00002934 * Description: Initialize top_cpuset
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002935 **/
2936
2937int __init cpuset_init(void)
2938{
David Brazdil0f672f62019-12-10 10:32:29 +00002939 BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002940
2941 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2942 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
David Brazdil0f672f62019-12-10 10:32:29 +00002943 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002944
2945 cpumask_setall(top_cpuset.cpus_allowed);
2946 nodes_setall(top_cpuset.mems_allowed);
2947 cpumask_setall(top_cpuset.effective_cpus);
2948 nodes_setall(top_cpuset.effective_mems);
2949
2950 fmeter_init(&top_cpuset.fmeter);
2951 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2952 top_cpuset.relax_domain_level = -1;
2953
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002954 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2955
2956 return 0;
2957}
2958
2959/*
2960 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2961 * or memory nodes, we need to walk over the cpuset hierarchy,
2962 * removing that CPU or node from all cpusets. If this removes the
2963 * last CPU or node from a cpuset, then move the tasks in the empty
2964 * cpuset to its next-highest non-empty parent.
2965 */
2966static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2967{
2968 struct cpuset *parent;
2969
2970 /*
2971 * Find its next-highest non-empty parent, (top cpuset
2972 * has online cpus, so can't be empty).
2973 */
2974 parent = parent_cs(cs);
2975 while (cpumask_empty(parent->cpus_allowed) ||
2976 nodes_empty(parent->mems_allowed))
2977 parent = parent_cs(parent);
2978
2979 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2980 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2981 pr_cont_cgroup_name(cs->css.cgroup);
2982 pr_cont("\n");
2983 }
2984}
2985
2986static void
2987hotplug_update_tasks_legacy(struct cpuset *cs,
2988 struct cpumask *new_cpus, nodemask_t *new_mems,
2989 bool cpus_updated, bool mems_updated)
2990{
2991 bool is_empty;
2992
2993 spin_lock_irq(&callback_lock);
2994 cpumask_copy(cs->cpus_allowed, new_cpus);
2995 cpumask_copy(cs->effective_cpus, new_cpus);
2996 cs->mems_allowed = *new_mems;
2997 cs->effective_mems = *new_mems;
2998 spin_unlock_irq(&callback_lock);
2999
3000 /*
3001 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3002 * as the tasks will be migratecd to an ancestor.
3003 */
3004 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3005 update_tasks_cpumask(cs);
3006 if (mems_updated && !nodes_empty(cs->mems_allowed))
3007 update_tasks_nodemask(cs);
3008
3009 is_empty = cpumask_empty(cs->cpus_allowed) ||
3010 nodes_empty(cs->mems_allowed);
3011
David Brazdil0f672f62019-12-10 10:32:29 +00003012 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003013
3014 /*
3015 * Move tasks to the nearest ancestor with execution resources,
3016 * This is full cgroup operation which will also call back into
3017 * cpuset. Should be done outside any lock.
3018 */
3019 if (is_empty)
3020 remove_tasks_in_empty_cpuset(cs);
3021
David Brazdil0f672f62019-12-10 10:32:29 +00003022 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003023}
3024
3025static void
3026hotplug_update_tasks(struct cpuset *cs,
3027 struct cpumask *new_cpus, nodemask_t *new_mems,
3028 bool cpus_updated, bool mems_updated)
3029{
3030 if (cpumask_empty(new_cpus))
3031 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3032 if (nodes_empty(*new_mems))
3033 *new_mems = parent_cs(cs)->effective_mems;
3034
3035 spin_lock_irq(&callback_lock);
3036 cpumask_copy(cs->effective_cpus, new_cpus);
3037 cs->effective_mems = *new_mems;
3038 spin_unlock_irq(&callback_lock);
3039
3040 if (cpus_updated)
3041 update_tasks_cpumask(cs);
3042 if (mems_updated)
3043 update_tasks_nodemask(cs);
3044}
3045
David Brazdil0f672f62019-12-10 10:32:29 +00003046static bool force_rebuild;
3047
3048void cpuset_force_rebuild(void)
3049{
3050 force_rebuild = true;
3051}
3052
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003053/**
3054 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3055 * @cs: cpuset in interest
David Brazdil0f672f62019-12-10 10:32:29 +00003056 * @tmp: the tmpmasks structure pointer
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003057 *
3058 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3059 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3060 * all its tasks are moved to the nearest ancestor with both resources.
3061 */
David Brazdil0f672f62019-12-10 10:32:29 +00003062static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003063{
3064 static cpumask_t new_cpus;
3065 static nodemask_t new_mems;
3066 bool cpus_updated;
3067 bool mems_updated;
David Brazdil0f672f62019-12-10 10:32:29 +00003068 struct cpuset *parent;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003069retry:
3070 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3071
David Brazdil0f672f62019-12-10 10:32:29 +00003072 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003073
3074 /*
3075 * We have raced with task attaching. We wait until attaching
3076 * is finished, so we won't attach a task to an empty cpuset.
3077 */
3078 if (cs->attach_in_progress) {
David Brazdil0f672f62019-12-10 10:32:29 +00003079 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003080 goto retry;
3081 }
3082
Olivier Deprez157378f2022-04-04 15:47:50 +02003083 parent = parent_cs(cs);
David Brazdil0f672f62019-12-10 10:32:29 +00003084 compute_effective_cpumask(&new_cpus, cs, parent);
3085 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003086
David Brazdil0f672f62019-12-10 10:32:29 +00003087 if (cs->nr_subparts_cpus)
3088 /*
3089 * Make sure that CPUs allocated to child partitions
3090 * do not show up in effective_cpus.
3091 */
3092 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3093
3094 if (!tmp || !cs->partition_root_state)
3095 goto update_tasks;
3096
3097 /*
3098 * In the unlikely event that a partition root has empty
3099 * effective_cpus or its parent becomes erroneous, we have to
3100 * transition it to the erroneous state.
3101 */
3102 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3103 (parent->partition_root_state == PRS_ERROR))) {
3104 if (cs->nr_subparts_cpus) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003105 spin_lock_irq(&callback_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00003106 cs->nr_subparts_cpus = 0;
3107 cpumask_clear(cs->subparts_cpus);
Olivier Deprez157378f2022-04-04 15:47:50 +02003108 spin_unlock_irq(&callback_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00003109 compute_effective_cpumask(&new_cpus, cs, parent);
3110 }
3111
3112 /*
3113 * If the effective_cpus is empty because the child
3114 * partitions take away all the CPUs, we can keep
3115 * the current partition and let the child partitions
3116 * fight for available CPUs.
3117 */
3118 if ((parent->partition_root_state == PRS_ERROR) ||
3119 cpumask_empty(&new_cpus)) {
3120 update_parent_subparts_cpumask(cs, partcmd_disable,
3121 NULL, tmp);
Olivier Deprez157378f2022-04-04 15:47:50 +02003122 spin_lock_irq(&callback_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00003123 cs->partition_root_state = PRS_ERROR;
Olivier Deprez157378f2022-04-04 15:47:50 +02003124 spin_unlock_irq(&callback_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00003125 }
3126 cpuset_force_rebuild();
3127 }
3128
3129 /*
3130 * On the other hand, an erroneous partition root may be transitioned
3131 * back to a regular one or a partition root with no CPU allocated
3132 * from the parent may change to erroneous.
3133 */
3134 if (is_partition_root(parent) &&
3135 ((cs->partition_root_state == PRS_ERROR) ||
3136 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3137 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3138 cpuset_force_rebuild();
3139
3140update_tasks:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003141 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3142 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3143
3144 if (is_in_v2_mode())
3145 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3146 cpus_updated, mems_updated);
3147 else
3148 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3149 cpus_updated, mems_updated);
3150
David Brazdil0f672f62019-12-10 10:32:29 +00003151 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003152}
3153
3154/**
3155 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3156 *
3157 * This function is called after either CPU or memory configuration has
3158 * changed and updates cpuset accordingly. The top_cpuset is always
3159 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3160 * order to make cpusets transparent (of no affect) on systems that are
3161 * actively using CPU hotplug but making no active use of cpusets.
3162 *
3163 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3164 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3165 * all descendants.
3166 *
3167 * Note that CPU offlining during suspend is ignored. We don't modify
3168 * cpusets across suspend/resume cycles at all.
3169 */
3170static void cpuset_hotplug_workfn(struct work_struct *work)
3171{
3172 static cpumask_t new_cpus;
3173 static nodemask_t new_mems;
3174 bool cpus_updated, mems_updated;
3175 bool on_dfl = is_in_v2_mode();
David Brazdil0f672f62019-12-10 10:32:29 +00003176 struct tmpmasks tmp, *ptmp = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003177
David Brazdil0f672f62019-12-10 10:32:29 +00003178 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3179 ptmp = &tmp;
3180
3181 percpu_down_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003182
3183 /* fetch the available cpus/mems and find out which changed how */
3184 cpumask_copy(&new_cpus, cpu_active_mask);
3185 new_mems = node_states[N_MEMORY];
3186
David Brazdil0f672f62019-12-10 10:32:29 +00003187 /*
3188 * If subparts_cpus is populated, it is likely that the check below
3189 * will produce a false positive on cpus_updated when the cpu list
3190 * isn't changed. It is extra work, but it is better to be safe.
3191 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003192 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3193 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3194
Olivier Deprez0e641232021-09-23 10:07:05 +02003195 /*
3196 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3197 * we assumed that cpus are updated.
3198 */
3199 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3200 cpus_updated = true;
3201
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003202 /* synchronize cpus_allowed to cpu_active_mask */
3203 if (cpus_updated) {
3204 spin_lock_irq(&callback_lock);
3205 if (!on_dfl)
3206 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
David Brazdil0f672f62019-12-10 10:32:29 +00003207 /*
3208 * Make sure that CPUs allocated to child partitions
3209 * do not show up in effective_cpus. If no CPU is left,
3210 * we clear the subparts_cpus & let the child partitions
3211 * fight for the CPUs again.
3212 */
3213 if (top_cpuset.nr_subparts_cpus) {
3214 if (cpumask_subset(&new_cpus,
3215 top_cpuset.subparts_cpus)) {
3216 top_cpuset.nr_subparts_cpus = 0;
3217 cpumask_clear(top_cpuset.subparts_cpus);
3218 } else {
3219 cpumask_andnot(&new_cpus, &new_cpus,
3220 top_cpuset.subparts_cpus);
3221 }
3222 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003223 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3224 spin_unlock_irq(&callback_lock);
3225 /* we don't mess with cpumasks of tasks in top_cpuset */
3226 }
3227
3228 /* synchronize mems_allowed to N_MEMORY */
3229 if (mems_updated) {
3230 spin_lock_irq(&callback_lock);
3231 if (!on_dfl)
3232 top_cpuset.mems_allowed = new_mems;
3233 top_cpuset.effective_mems = new_mems;
3234 spin_unlock_irq(&callback_lock);
3235 update_tasks_nodemask(&top_cpuset);
3236 }
3237
David Brazdil0f672f62019-12-10 10:32:29 +00003238 percpu_up_write(&cpuset_rwsem);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003239
3240 /* if cpus or mems changed, we need to propagate to descendants */
3241 if (cpus_updated || mems_updated) {
3242 struct cpuset *cs;
3243 struct cgroup_subsys_state *pos_css;
3244
3245 rcu_read_lock();
3246 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3247 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3248 continue;
3249 rcu_read_unlock();
3250
David Brazdil0f672f62019-12-10 10:32:29 +00003251 cpuset_hotplug_update_tasks(cs, ptmp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003252
3253 rcu_read_lock();
3254 css_put(&cs->css);
3255 }
3256 rcu_read_unlock();
3257 }
3258
3259 /* rebuild sched domains if cpus_allowed has changed */
3260 if (cpus_updated || force_rebuild) {
3261 force_rebuild = false;
3262 rebuild_sched_domains();
3263 }
David Brazdil0f672f62019-12-10 10:32:29 +00003264
3265 free_cpumasks(NULL, ptmp);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003266}
3267
3268void cpuset_update_active_cpus(void)
3269{
3270 /*
3271 * We're inside cpu hotplug critical region which usually nests
3272 * inside cgroup synchronization. Bounce actual hotplug processing
3273 * to a work item to avoid reverse locking order.
3274 */
3275 schedule_work(&cpuset_hotplug_work);
3276}
3277
3278void cpuset_wait_for_hotplug(void)
3279{
3280 flush_work(&cpuset_hotplug_work);
3281}
3282
3283/*
3284 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3285 * Call this routine anytime after node_states[N_MEMORY] changes.
3286 * See cpuset_update_active_cpus() for CPU hotplug handling.
3287 */
3288static int cpuset_track_online_nodes(struct notifier_block *self,
3289 unsigned long action, void *arg)
3290{
3291 schedule_work(&cpuset_hotplug_work);
3292 return NOTIFY_OK;
3293}
3294
3295static struct notifier_block cpuset_track_online_nodes_nb = {
3296 .notifier_call = cpuset_track_online_nodes,
3297 .priority = 10, /* ??! */
3298};
3299
3300/**
3301 * cpuset_init_smp - initialize cpus_allowed
3302 *
3303 * Description: Finish top cpuset after cpu, node maps are initialized
3304 */
3305void __init cpuset_init_smp(void)
3306{
Olivier Deprez92d4c212022-12-06 15:05:30 +01003307 /*
3308 * cpus_allowd/mems_allowed set to v2 values in the initial
3309 * cpuset_bind() call will be reset to v1 values in another
3310 * cpuset_bind() call when v1 cpuset is mounted.
3311 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003312 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3313
3314 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3315 top_cpuset.effective_mems = node_states[N_MEMORY];
3316
3317 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3318
3319 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3320 BUG_ON(!cpuset_migrate_mm_wq);
3321}
3322
3323/**
3324 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3325 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3326 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3327 *
3328 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3329 * attached to the specified @tsk. Guaranteed to return some non-empty
3330 * subset of cpu_online_mask, even if this means going outside the
3331 * tasks cpuset.
3332 **/
3333
3334void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3335{
3336 unsigned long flags;
3337
3338 spin_lock_irqsave(&callback_lock, flags);
3339 rcu_read_lock();
3340 guarantee_online_cpus(task_cs(tsk), pmask);
3341 rcu_read_unlock();
3342 spin_unlock_irqrestore(&callback_lock, flags);
3343}
3344
David Brazdil0f672f62019-12-10 10:32:29 +00003345/**
3346 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3347 * @tsk: pointer to task_struct with which the scheduler is struggling
3348 *
3349 * Description: In the case that the scheduler cannot find an allowed cpu in
3350 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3351 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3352 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3353 * This is the absolute last resort for the scheduler and it is only used if
3354 * _every_ other avenue has been traveled.
3355 **/
3356
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003357void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3358{
3359 rcu_read_lock();
David Brazdil0f672f62019-12-10 10:32:29 +00003360 do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3361 task_cs(tsk)->cpus_allowed : cpu_possible_mask);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003362 rcu_read_unlock();
3363
3364 /*
3365 * We own tsk->cpus_allowed, nobody can change it under us.
3366 *
3367 * But we used cs && cs->cpus_allowed lockless and thus can
3368 * race with cgroup_attach_task() or update_cpumask() and get
3369 * the wrong tsk->cpus_allowed. However, both cases imply the
3370 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3371 * which takes task_rq_lock().
3372 *
3373 * If we are called after it dropped the lock we must see all
3374 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3375 * set any mask even if it is not right from task_cs() pov,
3376 * the pending set_cpus_allowed_ptr() will fix things.
3377 *
3378 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3379 * if required.
3380 */
3381}
3382
3383void __init cpuset_init_current_mems_allowed(void)
3384{
3385 nodes_setall(current->mems_allowed);
3386}
3387
3388/**
3389 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3390 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3391 *
3392 * Description: Returns the nodemask_t mems_allowed of the cpuset
3393 * attached to the specified @tsk. Guaranteed to return some non-empty
3394 * subset of node_states[N_MEMORY], even if this means going outside the
3395 * tasks cpuset.
3396 **/
3397
3398nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3399{
3400 nodemask_t mask;
3401 unsigned long flags;
3402
3403 spin_lock_irqsave(&callback_lock, flags);
3404 rcu_read_lock();
3405 guarantee_online_mems(task_cs(tsk), &mask);
3406 rcu_read_unlock();
3407 spin_unlock_irqrestore(&callback_lock, flags);
3408
3409 return mask;
3410}
3411
3412/**
3413 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3414 * @nodemask: the nodemask to be checked
3415 *
3416 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3417 */
3418int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3419{
3420 return nodes_intersects(*nodemask, current->mems_allowed);
3421}
3422
3423/*
3424 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3425 * mem_hardwall ancestor to the specified cpuset. Call holding
3426 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3427 * (an unusual configuration), then returns the root cpuset.
3428 */
3429static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3430{
3431 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3432 cs = parent_cs(cs);
3433 return cs;
3434}
3435
3436/**
3437 * cpuset_node_allowed - Can we allocate on a memory node?
3438 * @node: is this an allowed node?
3439 * @gfp_mask: memory allocation flags
3440 *
3441 * If we're in interrupt, yes, we can always allocate. If @node is set in
3442 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3443 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3444 * yes. If current has access to memory reserves as an oom victim, yes.
3445 * Otherwise, no.
3446 *
3447 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3448 * and do not allow allocations outside the current tasks cpuset
3449 * unless the task has been OOM killed.
3450 * GFP_KERNEL allocations are not so marked, so can escape to the
3451 * nearest enclosing hardwalled ancestor cpuset.
3452 *
3453 * Scanning up parent cpusets requires callback_lock. The
3454 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3455 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3456 * current tasks mems_allowed came up empty on the first pass over
3457 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3458 * cpuset are short of memory, might require taking the callback_lock.
3459 *
3460 * The first call here from mm/page_alloc:get_page_from_freelist()
3461 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3462 * so no allocation on a node outside the cpuset is allowed (unless
3463 * in interrupt, of course).
3464 *
3465 * The second pass through get_page_from_freelist() doesn't even call
3466 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3467 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3468 * in alloc_flags. That logic and the checks below have the combined
3469 * affect that:
3470 * in_interrupt - any node ok (current task context irrelevant)
3471 * GFP_ATOMIC - any node ok
3472 * tsk_is_oom_victim - any node ok
3473 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3474 * GFP_USER - only nodes in current tasks mems allowed ok.
3475 */
3476bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3477{
3478 struct cpuset *cs; /* current cpuset ancestors */
3479 int allowed; /* is allocation in zone z allowed? */
3480 unsigned long flags;
3481
3482 if (in_interrupt())
3483 return true;
3484 if (node_isset(node, current->mems_allowed))
3485 return true;
3486 /*
3487 * Allow tasks that have access to memory reserves because they have
3488 * been OOM killed to get memory anywhere.
3489 */
3490 if (unlikely(tsk_is_oom_victim(current)))
3491 return true;
3492 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3493 return false;
3494
3495 if (current->flags & PF_EXITING) /* Let dying task have memory */
3496 return true;
3497
3498 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3499 spin_lock_irqsave(&callback_lock, flags);
3500
3501 rcu_read_lock();
3502 cs = nearest_hardwall_ancestor(task_cs(current));
3503 allowed = node_isset(node, cs->mems_allowed);
3504 rcu_read_unlock();
3505
3506 spin_unlock_irqrestore(&callback_lock, flags);
3507 return allowed;
3508}
3509
3510/**
3511 * cpuset_mem_spread_node() - On which node to begin search for a file page
3512 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3513 *
3514 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3515 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3516 * and if the memory allocation used cpuset_mem_spread_node()
3517 * to determine on which node to start looking, as it will for
3518 * certain page cache or slab cache pages such as used for file
3519 * system buffers and inode caches, then instead of starting on the
3520 * local node to look for a free page, rather spread the starting
3521 * node around the tasks mems_allowed nodes.
3522 *
3523 * We don't have to worry about the returned node being offline
3524 * because "it can't happen", and even if it did, it would be ok.
3525 *
3526 * The routines calling guarantee_online_mems() are careful to
3527 * only set nodes in task->mems_allowed that are online. So it
3528 * should not be possible for the following code to return an
3529 * offline node. But if it did, that would be ok, as this routine
3530 * is not returning the node where the allocation must be, only
3531 * the node where the search should start. The zonelist passed to
3532 * __alloc_pages() will include all nodes. If the slab allocator
3533 * is passed an offline node, it will fall back to the local node.
3534 * See kmem_cache_alloc_node().
3535 */
3536
3537static int cpuset_spread_node(int *rotor)
3538{
3539 return *rotor = next_node_in(*rotor, current->mems_allowed);
3540}
3541
3542int cpuset_mem_spread_node(void)
3543{
3544 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3545 current->cpuset_mem_spread_rotor =
3546 node_random(&current->mems_allowed);
3547
3548 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3549}
3550
3551int cpuset_slab_spread_node(void)
3552{
3553 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3554 current->cpuset_slab_spread_rotor =
3555 node_random(&current->mems_allowed);
3556
3557 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3558}
3559
3560EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3561
3562/**
3563 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3564 * @tsk1: pointer to task_struct of some task.
3565 * @tsk2: pointer to task_struct of some other task.
3566 *
3567 * Description: Return true if @tsk1's mems_allowed intersects the
3568 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3569 * one of the task's memory usage might impact the memory available
3570 * to the other.
3571 **/
3572
3573int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3574 const struct task_struct *tsk2)
3575{
3576 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3577}
3578
3579/**
3580 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3581 *
3582 * Description: Prints current's name, cpuset name, and cached copy of its
3583 * mems_allowed to the kernel log.
3584 */
3585void cpuset_print_current_mems_allowed(void)
3586{
3587 struct cgroup *cgrp;
3588
3589 rcu_read_lock();
3590
3591 cgrp = task_cs(current)->css.cgroup;
David Brazdil0f672f62019-12-10 10:32:29 +00003592 pr_cont(",cpuset=");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003593 pr_cont_cgroup_name(cgrp);
David Brazdil0f672f62019-12-10 10:32:29 +00003594 pr_cont(",mems_allowed=%*pbl",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003595 nodemask_pr_args(&current->mems_allowed));
3596
3597 rcu_read_unlock();
3598}
3599
3600/*
3601 * Collection of memory_pressure is suppressed unless
3602 * this flag is enabled by writing "1" to the special
3603 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3604 */
3605
3606int cpuset_memory_pressure_enabled __read_mostly;
3607
3608/**
3609 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3610 *
3611 * Keep a running average of the rate of synchronous (direct)
3612 * page reclaim efforts initiated by tasks in each cpuset.
3613 *
3614 * This represents the rate at which some task in the cpuset
3615 * ran low on memory on all nodes it was allowed to use, and
3616 * had to enter the kernels page reclaim code in an effort to
3617 * create more free memory by tossing clean pages or swapping
3618 * or writing dirty pages.
3619 *
3620 * Display to user space in the per-cpuset read-only file
3621 * "memory_pressure". Value displayed is an integer
3622 * representing the recent rate of entry into the synchronous
3623 * (direct) page reclaim by any task attached to the cpuset.
3624 **/
3625
3626void __cpuset_memory_pressure_bump(void)
3627{
3628 rcu_read_lock();
3629 fmeter_markevent(&task_cs(current)->fmeter);
3630 rcu_read_unlock();
3631}
3632
3633#ifdef CONFIG_PROC_PID_CPUSET
3634/*
3635 * proc_cpuset_show()
3636 * - Print tasks cpuset path into seq_file.
3637 * - Used for /proc/<pid>/cpuset.
3638 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3639 * doesn't really matter if tsk->cpuset changes after we read it,
3640 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3641 * anyway.
3642 */
3643int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3644 struct pid *pid, struct task_struct *tsk)
3645{
3646 char *buf;
3647 struct cgroup_subsys_state *css;
3648 int retval;
3649
3650 retval = -ENOMEM;
3651 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3652 if (!buf)
3653 goto out;
3654
3655 css = task_get_css(tsk, cpuset_cgrp_id);
3656 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3657 current->nsproxy->cgroup_ns);
3658 css_put(css);
3659 if (retval >= PATH_MAX)
3660 retval = -ENAMETOOLONG;
3661 if (retval < 0)
3662 goto out_free;
3663 seq_puts(m, buf);
3664 seq_putc(m, '\n');
3665 retval = 0;
3666out_free:
3667 kfree(buf);
3668out:
3669 return retval;
3670}
3671#endif /* CONFIG_PROC_PID_CPUSET */
3672
3673/* Display task mems_allowed in /proc/<pid>/status file. */
3674void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3675{
3676 seq_printf(m, "Mems_allowed:\t%*pb\n",
3677 nodemask_pr_args(&task->mems_allowed));
3678 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3679 nodemask_pr_args(&task->mems_allowed));
3680}