blob: f2abd8bfd4a0f9288db6b4c67f2a9117e07c21be [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/radix-tree.h>
9#include <linux/writeback.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010#include <linux/workqueue.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <linux/migrate.h>
14#include <linux/ratelimit.h>
15#include <linux/uuid.h>
16#include <linux/semaphore.h>
17#include <linux/error-injection.h>
18#include <linux/crc32c.h>
David Brazdil0f672f62019-12-10 10:32:29 +000019#include <linux/sched/mm.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000020#include <asm/unaligned.h>
David Brazdil0f672f62019-12-10 10:32:29 +000021#include <crypto/hash.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000022#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "volumes.h"
27#include "print-tree.h"
28#include "locking.h"
29#include "tree-log.h"
30#include "free-space-cache.h"
31#include "free-space-tree.h"
32#include "inode-map.h"
33#include "check-integrity.h"
34#include "rcu-string.h"
35#include "dev-replace.h"
36#include "raid56.h"
37#include "sysfs.h"
38#include "qgroup.h"
39#include "compression.h"
40#include "tree-checker.h"
41#include "ref-verify.h"
David Brazdil0f672f62019-12-10 10:32:29 +000042#include "block-group.h"
Olivier Deprez157378f2022-04-04 15:47:50 +020043#include "discard.h"
44#include "space-info.h"
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000045
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000053static void end_workqueue_fn(struct btrfs_work *work);
54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66/*
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71struct btrfs_end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 blk_status_t status;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
79};
80
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
88 SLAB_MEM_SPREAD,
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
95void __cold btrfs_end_io_wq_exit(void)
96{
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
98}
99
Olivier Deprez157378f2022-04-04 15:47:50 +0200100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104}
105
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
111struct async_submit_bio {
112 void *private_data;
113 struct bio *bio;
114 extent_submit_bio_start_t *submit_bio_start;
115 int mirror_num;
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
121 struct btrfs_work work;
122 blk_status_t status;
123};
124
125/*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
David Brazdil0f672f62019-12-10 10:32:29 +0000133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000135 *
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
139 *
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
143 *
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
147 */
148#ifdef CONFIG_DEBUG_LOCK_ALLOC
149# if BTRFS_MAX_LEVEL != 8
150# error
151# endif
152
153static struct btrfs_lockdep_keyset {
154 u64 id; /* root objectid */
155 const char *name_stem; /* lock name stem */
156 char names[BTRFS_MAX_LEVEL + 1][20];
157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
158} btrfs_lockdep_keysets[] = {
159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
171 { .id = 0, .name_stem = "tree" },
172};
173
174void __init btrfs_init_lockdep(void)
175{
176 int i, j;
177
178 /* initialize lockdep class names */
179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181
182 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183 snprintf(ks->names[j], sizeof(ks->names[j]),
184 "btrfs-%s-%02d", ks->name_stem, j);
185 }
186}
187
188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190{
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202}
203
204#endif
205
206/*
David Brazdil0f672f62019-12-10 10:32:29 +0000207 * Compute the csum of a btree block and store the result to provided buffer.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000208 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000210{
David Brazdil0f672f62019-12-10 10:32:29 +0000211 struct btrfs_fs_info *fs_info = buf->fs_info;
Olivier Deprez157378f2022-04-04 15:47:50 +0200212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
David Brazdil0f672f62019-12-10 10:32:29 +0000213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000214 char *kaddr;
Olivier Deprez157378f2022-04-04 15:47:50 +0200215 int i;
David Brazdil0f672f62019-12-10 10:32:29 +0000216
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
Olivier Deprez157378f2022-04-04 15:47:50 +0200219 kaddr = page_address(buf->pages[0]);
220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 PAGE_SIZE - BTRFS_CSUM_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000222
Olivier Deprez157378f2022-04-04 15:47:50 +0200223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000226 }
227 memset(result, 0, BTRFS_CSUM_SIZE);
David Brazdil0f672f62019-12-10 10:32:29 +0000228 crypto_shash_final(shash, result);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000229}
230
231/*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
237static int verify_parent_transid(struct extent_io_tree *io_tree,
238 struct extent_buffer *eb, u64 parent_transid,
239 int atomic)
240{
241 struct extent_state *cached_state = NULL;
242 int ret;
243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
248 if (atomic)
249 return -EAGAIN;
250
251 if (need_lock) {
252 btrfs_tree_read_lock(eb);
David Brazdil0f672f62019-12-10 10:32:29 +0000253 btrfs_set_lock_blocking_read(eb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000254 }
255
256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257 &cached_state);
258 if (extent_buffer_uptodate(eb) &&
259 btrfs_header_generation(eb) == parent_transid) {
260 ret = 0;
261 goto out;
262 }
263 btrfs_err_rl(eb->fs_info,
264 "parent transid verify failed on %llu wanted %llu found %llu",
265 eb->start,
266 parent_transid, btrfs_header_generation(eb));
267 ret = 1;
268
269 /*
270 * Things reading via commit roots that don't have normal protection,
271 * like send, can have a really old block in cache that may point at a
272 * block that has been freed and re-allocated. So don't clear uptodate
273 * if we find an eb that is under IO (dirty/writeback) because we could
274 * end up reading in the stale data and then writing it back out and
275 * making everybody very sad.
276 */
277 if (!extent_buffer_under_io(eb))
278 clear_extent_buffer_uptodate(eb);
279out:
280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281 &cached_state);
282 if (need_lock)
283 btrfs_tree_read_unlock_blocking(eb);
284 return ret;
285}
286
David Brazdil0f672f62019-12-10 10:32:29 +0000287static bool btrfs_supported_super_csum(u16 csum_type)
288{
289 switch (csum_type) {
290 case BTRFS_CSUM_TYPE_CRC32:
Olivier Deprez157378f2022-04-04 15:47:50 +0200291 case BTRFS_CSUM_TYPE_XXHASH:
292 case BTRFS_CSUM_TYPE_SHA256:
293 case BTRFS_CSUM_TYPE_BLAKE2:
David Brazdil0f672f62019-12-10 10:32:29 +0000294 return true;
295 default:
296 return false;
297 }
298}
299
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000300/*
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
303 */
304static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305 char *raw_disk_sb)
306{
307 struct btrfs_super_block *disk_sb =
308 (struct btrfs_super_block *)raw_disk_sb;
David Brazdil0f672f62019-12-10 10:32:29 +0000309 char result[BTRFS_CSUM_SIZE];
310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000311
David Brazdil0f672f62019-12-10 10:32:29 +0000312 shash->tfm = fs_info->csum_shash;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000313
David Brazdil0f672f62019-12-10 10:32:29 +0000314 /*
315 * The super_block structure does not span the whole
316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 * filled with zeros and is included in the checksum.
318 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000321
David Brazdil0f672f62019-12-10 10:32:29 +0000322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323 return 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000324
David Brazdil0f672f62019-12-10 10:32:29 +0000325 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000326}
327
David Brazdil0f672f62019-12-10 10:32:29 +0000328int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329 struct btrfs_key *first_key, u64 parent_transid)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000330{
David Brazdil0f672f62019-12-10 10:32:29 +0000331 struct btrfs_fs_info *fs_info = eb->fs_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000332 int found_level;
333 struct btrfs_key found_key;
334 int ret;
335
336 found_level = btrfs_header_level(eb);
337 if (found_level != level) {
David Brazdil0f672f62019-12-10 10:32:29 +0000338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 KERN_ERR "BTRFS: tree level check failed\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000340 btrfs_err(fs_info,
341"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 eb->start, level, found_level);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000343 return -EIO;
344 }
345
346 if (!first_key)
347 return 0;
348
349 /*
350 * For live tree block (new tree blocks in current transaction),
351 * we need proper lock context to avoid race, which is impossible here.
352 * So we only checks tree blocks which is read from disk, whose
353 * generation <= fs_info->last_trans_committed.
354 */
355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000357
358 /* We have @first_key, so this @eb must have at least one item */
359 if (btrfs_header_nritems(eb) == 0) {
360 btrfs_err(fs_info,
361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362 eb->start);
363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364 return -EUCLEAN;
365 }
366
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000367 if (found_level)
368 btrfs_node_key_to_cpu(eb, &found_key, 0);
369 else
370 btrfs_item_key_to_cpu(eb, &found_key, 0);
371 ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000373 if (ret) {
David Brazdil0f672f62019-12-10 10:32:29 +0000374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 KERN_ERR "BTRFS: tree first key check failed\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000376 btrfs_err(fs_info,
377"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 eb->start, parent_transid, first_key->objectid,
379 first_key->type, first_key->offset,
380 found_key.objectid, found_key.type,
381 found_key.offset);
382 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000383 return ret;
384}
385
386/*
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
389 *
390 * @parent_transid: expected transid, skip check if 0
391 * @level: expected level, mandatory check
392 * @first_key: expected key of first slot, skip check if NULL
393 */
David Brazdil0f672f62019-12-10 10:32:29 +0000394static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000395 u64 parent_transid, int level,
396 struct btrfs_key *first_key)
397{
David Brazdil0f672f62019-12-10 10:32:29 +0000398 struct btrfs_fs_info *fs_info = eb->fs_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000399 struct extent_io_tree *io_tree;
400 int failed = 0;
401 int ret;
402 int num_copies = 0;
403 int mirror_num = 0;
404 int failed_mirror = 0;
405
406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407 while (1) {
408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
David Brazdil0f672f62019-12-10 10:32:29 +0000409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000410 if (!ret) {
411 if (verify_parent_transid(io_tree, eb,
412 parent_transid, 0))
413 ret = -EIO;
David Brazdil0f672f62019-12-10 10:32:29 +0000414 else if (btrfs_verify_level_key(eb, level,
415 first_key, parent_transid))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000416 ret = -EUCLEAN;
417 else
418 break;
419 }
420
421 num_copies = btrfs_num_copies(fs_info,
422 eb->start, eb->len);
423 if (num_copies == 1)
424 break;
425
426 if (!failed_mirror) {
427 failed = 1;
428 failed_mirror = eb->read_mirror;
429 }
430
431 mirror_num++;
432 if (mirror_num == failed_mirror)
433 mirror_num++;
434
435 if (mirror_num > num_copies)
436 break;
437 }
438
439 if (failed && !ret && failed_mirror)
David Brazdil0f672f62019-12-10 10:32:29 +0000440 btrfs_repair_eb_io_failure(eb, failed_mirror);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000441
442 return ret;
443}
444
445/*
446 * checksum a dirty tree block before IO. This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block
448 */
449
450static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451{
452 u64 start = page_offset(page);
453 u64 found_start;
David Brazdil0f672f62019-12-10 10:32:29 +0000454 u8 result[BTRFS_CSUM_SIZE];
455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000456 struct extent_buffer *eb;
David Brazdil0f672f62019-12-10 10:32:29 +0000457 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000458
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
461 return 0;
462
463 found_start = btrfs_header_bytenr(eb);
464 /*
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
467 */
468 if (WARN_ON(found_start != start))
469 return -EUCLEAN;
470 if (WARN_ON(!PageUptodate(page)))
471 return -EUCLEAN;
472
David Brazdil0f672f62019-12-10 10:32:29 +0000473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
Olivier Deprez157378f2022-04-04 15:47:50 +0200474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000476
Olivier Deprez157378f2022-04-04 15:47:50 +0200477 csum_tree_block(eb, result);
David Brazdil0f672f62019-12-10 10:32:29 +0000478
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
481 else
482 ret = btrfs_check_leaf_full(eb);
483
484 if (ret < 0) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200485 btrfs_print_tree(eb, 0);
David Brazdil0f672f62019-12-10 10:32:29 +0000486 btrfs_err(fs_info,
487 "block=%llu write time tree block corruption detected",
488 eb->start);
Olivier Deprez157378f2022-04-04 15:47:50 +0200489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
David Brazdil0f672f62019-12-10 10:32:29 +0000490 return ret;
491 }
492 write_extent_buffer(eb, result, 0, csum_size);
493
494 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000495}
496
David Brazdil0f672f62019-12-10 10:32:29 +0000497static int check_tree_block_fsid(struct extent_buffer *eb)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000498{
David Brazdil0f672f62019-12-10 10:32:29 +0000499 struct btrfs_fs_info *fs_info = eb->fs_info;
Olivier Deprez157378f2022-04-04 15:47:50 +0200500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000501 u8 fsid[BTRFS_FSID_SIZE];
Olivier Deprez157378f2022-04-04 15:47:50 +0200502 u8 *metadata_uuid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000503
Olivier Deprez157378f2022-04-04 15:47:50 +0200504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 BTRFS_FSID_SIZE);
506 /*
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
510 */
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
513 else
514 metadata_uuid = fs_devices->fsid;
David Brazdil0f672f62019-12-10 10:32:29 +0000515
Olivier Deprez157378f2022-04-04 15:47:50 +0200516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000518
Olivier Deprez157378f2022-04-04 15:47:50 +0200519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 return 0;
522
523 return 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000524}
525
Olivier Deprez157378f2022-04-04 15:47:50 +0200526int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 struct page *page, u64 start, u64 end,
528 int mirror)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000529{
530 u64 found_start;
531 int found_level;
532 struct extent_buffer *eb;
Olivier Deprez157378f2022-04-04 15:47:50 +0200533 struct btrfs_fs_info *fs_info;
534 u16 csum_size;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000535 int ret = 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000536 u8 result[BTRFS_CSUM_SIZE];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000537 int reads_done;
538
539 if (!page->private)
540 goto out;
541
542 eb = (struct extent_buffer *)page->private;
Olivier Deprez157378f2022-04-04 15:47:50 +0200543 fs_info = eb->fs_info;
544 csum_size = btrfs_super_csum_size(fs_info->super_copy);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000545
546 /* the pending IO might have been the only thing that kept this buffer
547 * in memory. Make sure we have a ref for all this other checks
548 */
Olivier Deprez157378f2022-04-04 15:47:50 +0200549 atomic_inc(&eb->refs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000550
551 reads_done = atomic_dec_and_test(&eb->io_pages);
552 if (!reads_done)
553 goto err;
554
555 eb->read_mirror = mirror;
556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 ret = -EIO;
558 goto err;
559 }
560
561 found_start = btrfs_header_bytenr(eb);
562 if (found_start != eb->start) {
563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 eb->start, found_start);
565 ret = -EIO;
566 goto err;
567 }
David Brazdil0f672f62019-12-10 10:32:29 +0000568 if (check_tree_block_fsid(eb)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000569 btrfs_err_rl(fs_info, "bad fsid on block %llu",
570 eb->start);
571 ret = -EIO;
572 goto err;
573 }
574 found_level = btrfs_header_level(eb);
575 if (found_level >= BTRFS_MAX_LEVEL) {
576 btrfs_err(fs_info, "bad tree block level %d on %llu",
577 (int)btrfs_header_level(eb), eb->start);
578 ret = -EIO;
579 goto err;
580 }
581
582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583 eb, found_level);
584
Olivier Deprez157378f2022-04-04 15:47:50 +0200585 csum_tree_block(eb, result);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000586
David Brazdil0f672f62019-12-10 10:32:29 +0000587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200588 u8 val[BTRFS_CSUM_SIZE] = { 0 };
David Brazdil0f672f62019-12-10 10:32:29 +0000589
590 read_extent_buffer(eb, &val, 0, csum_size);
591 btrfs_warn_rl(fs_info,
Olivier Deprez0e641232021-09-23 10:07:05 +0200592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
David Brazdil0f672f62019-12-10 10:32:29 +0000593 fs_info->sb->s_id, eb->start,
Olivier Deprez0e641232021-09-23 10:07:05 +0200594 CSUM_FMT_VALUE(csum_size, val),
595 CSUM_FMT_VALUE(csum_size, result),
596 btrfs_header_level(eb));
David Brazdil0f672f62019-12-10 10:32:29 +0000597 ret = -EUCLEAN;
598 goto err;
599 }
600
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000601 /*
602 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 * that we don't try and read the other copies of this block, just
604 * return -EIO.
605 */
David Brazdil0f672f62019-12-10 10:32:29 +0000606 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608 ret = -EIO;
609 }
610
David Brazdil0f672f62019-12-10 10:32:29 +0000611 if (found_level > 0 && btrfs_check_node(eb))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000612 ret = -EIO;
613
614 if (!ret)
615 set_extent_buffer_uptodate(eb);
David Brazdil0f672f62019-12-10 10:32:29 +0000616 else
617 btrfs_err(fs_info,
618 "block=%llu read time tree block corruption detected",
619 eb->start);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000620err:
621 if (reads_done &&
622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623 btree_readahead_hook(eb, ret);
624
625 if (ret) {
626 /*
627 * our io error hook is going to dec the io pages
628 * again, we have to make sure it has something
629 * to decrement
630 */
631 atomic_inc(&eb->io_pages);
632 clear_extent_buffer_uptodate(eb);
633 }
634 free_extent_buffer(eb);
635out:
636 return ret;
637}
638
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000639static void end_workqueue_bio(struct bio *bio)
640{
641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642 struct btrfs_fs_info *fs_info;
643 struct btrfs_workqueue *wq;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000644
645 fs_info = end_io_wq->info;
646 end_io_wq->status = bio->bi_status;
647
648 if (bio_op(bio) == REQ_OP_WRITE) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000650 wq = fs_info->endio_meta_write_workers;
Olivier Deprez0e641232021-09-23 10:07:05 +0200651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000652 wq = fs_info->endio_freespace_worker;
Olivier Deprez0e641232021-09-23 10:07:05 +0200653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000654 wq = fs_info->endio_raid56_workers;
Olivier Deprez0e641232021-09-23 10:07:05 +0200655 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000656 wq = fs_info->endio_write_workers;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000657 } else {
Olivier Deprez157378f2022-04-04 15:47:50 +0200658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000659 wq = fs_info->endio_raid56_workers;
Olivier Deprez0e641232021-09-23 10:07:05 +0200660 else if (end_io_wq->metadata)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000661 wq = fs_info->endio_meta_workers;
Olivier Deprez0e641232021-09-23 10:07:05 +0200662 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000663 wq = fs_info->endio_workers;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000664 }
665
Olivier Deprez0e641232021-09-23 10:07:05 +0200666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000667 btrfs_queue_work(wq, &end_io_wq->work);
668}
669
670blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671 enum btrfs_wq_endio_type metadata)
672{
673 struct btrfs_end_io_wq *end_io_wq;
674
675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676 if (!end_io_wq)
677 return BLK_STS_RESOURCE;
678
679 end_io_wq->private = bio->bi_private;
680 end_io_wq->end_io = bio->bi_end_io;
681 end_io_wq->info = info;
682 end_io_wq->status = 0;
683 end_io_wq->bio = bio;
684 end_io_wq->metadata = metadata;
685
686 bio->bi_private = end_io_wq;
687 bio->bi_end_io = end_workqueue_bio;
688 return 0;
689}
690
691static void run_one_async_start(struct btrfs_work *work)
692{
693 struct async_submit_bio *async;
694 blk_status_t ret;
695
696 async = container_of(work, struct async_submit_bio, work);
697 ret = async->submit_bio_start(async->private_data, async->bio,
698 async->bio_offset);
699 if (ret)
700 async->status = ret;
701}
702
David Brazdil0f672f62019-12-10 10:32:29 +0000703/*
704 * In order to insert checksums into the metadata in large chunks, we wait
705 * until bio submission time. All the pages in the bio are checksummed and
706 * sums are attached onto the ordered extent record.
707 *
708 * At IO completion time the csums attached on the ordered extent record are
709 * inserted into the tree.
710 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000711static void run_one_async_done(struct btrfs_work *work)
712{
713 struct async_submit_bio *async;
David Brazdil0f672f62019-12-10 10:32:29 +0000714 struct inode *inode;
715 blk_status_t ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000716
717 async = container_of(work, struct async_submit_bio, work);
David Brazdil0f672f62019-12-10 10:32:29 +0000718 inode = async->private_data;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000719
720 /* If an error occurred we just want to clean up the bio and move on */
721 if (async->status) {
722 async->bio->bi_status = async->status;
723 bio_endio(async->bio);
724 return;
725 }
726
Olivier Deprez157378f2022-04-04 15:47:50 +0200727 /*
728 * All of the bios that pass through here are from async helpers.
729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730 * This changes nothing when cgroups aren't in use.
731 */
732 async->bio->bi_opf |= REQ_CGROUP_PUNT;
733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
David Brazdil0f672f62019-12-10 10:32:29 +0000734 if (ret) {
735 async->bio->bi_status = ret;
736 bio_endio(async->bio);
737 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000738}
739
740static void run_one_async_free(struct btrfs_work *work)
741{
742 struct async_submit_bio *async;
743
744 async = container_of(work, struct async_submit_bio, work);
745 kfree(async);
746}
747
748blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749 int mirror_num, unsigned long bio_flags,
750 u64 bio_offset, void *private_data,
751 extent_submit_bio_start_t *submit_bio_start)
752{
753 struct async_submit_bio *async;
754
755 async = kmalloc(sizeof(*async), GFP_NOFS);
756 if (!async)
757 return BLK_STS_RESOURCE;
758
759 async->private_data = private_data;
760 async->bio = bio;
761 async->mirror_num = mirror_num;
762 async->submit_bio_start = submit_bio_start;
763
Olivier Deprez0e641232021-09-23 10:07:05 +0200764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765 run_one_async_free);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000766
767 async->bio_offset = bio_offset;
768
769 async->status = 0;
770
771 if (op_is_sync(bio->bi_opf))
772 btrfs_set_work_high_priority(&async->work);
773
774 btrfs_queue_work(fs_info->workers, &async->work);
775 return 0;
776}
777
778static blk_status_t btree_csum_one_bio(struct bio *bio)
779{
780 struct bio_vec *bvec;
781 struct btrfs_root *root;
David Brazdil0f672f62019-12-10 10:32:29 +0000782 int ret = 0;
783 struct bvec_iter_all iter_all;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000784
785 ASSERT(!bio_flagged(bio, BIO_CLONED));
David Brazdil0f672f62019-12-10 10:32:29 +0000786 bio_for_each_segment_all(bvec, bio, iter_all) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000787 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789 if (ret)
790 break;
791 }
792
793 return errno_to_blk_status(ret);
794}
795
796static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797 u64 bio_offset)
798{
799 /*
800 * when we're called for a write, we're already in the async
801 * submission context. Just jump into btrfs_map_bio
802 */
803 return btree_csum_one_bio(bio);
804}
805
David Brazdil0f672f62019-12-10 10:32:29 +0000806static int check_async_write(struct btrfs_fs_info *fs_info,
807 struct btrfs_inode *bi)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000808{
809 if (atomic_read(&bi->sync_writers))
810 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000812 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000813 return 1;
814}
815
Olivier Deprez157378f2022-04-04 15:47:50 +0200816blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 int mirror_num, unsigned long bio_flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000818{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
David Brazdil0f672f62019-12-10 10:32:29 +0000820 int async = check_async_write(fs_info, BTRFS_I(inode));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000821 blk_status_t ret;
822
823 if (bio_op(bio) != REQ_OP_WRITE) {
824 /*
825 * called for a read, do the setup so that checksum validation
826 * can happen in the async kernel threads
827 */
828 ret = btrfs_bio_wq_end_io(fs_info, bio,
829 BTRFS_WQ_ENDIO_METADATA);
830 if (ret)
831 goto out_w_error;
Olivier Deprez157378f2022-04-04 15:47:50 +0200832 ret = btrfs_map_bio(fs_info, bio, mirror_num);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000833 } else if (!async) {
834 ret = btree_csum_one_bio(bio);
835 if (ret)
836 goto out_w_error;
Olivier Deprez157378f2022-04-04 15:47:50 +0200837 ret = btrfs_map_bio(fs_info, bio, mirror_num);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000838 } else {
839 /*
840 * kthread helpers are used to submit writes so that
841 * checksumming can happen in parallel across all CPUs
842 */
843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
David Brazdil0f672f62019-12-10 10:32:29 +0000844 0, inode, btree_submit_bio_start);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000845 }
846
847 if (ret)
848 goto out_w_error;
849 return 0;
850
851out_w_error:
852 bio->bi_status = ret;
853 bio_endio(bio);
854 return ret;
855}
856
857#ifdef CONFIG_MIGRATION
858static int btree_migratepage(struct address_space *mapping,
859 struct page *newpage, struct page *page,
860 enum migrate_mode mode)
861{
862 /*
863 * we can't safely write a btree page from here,
864 * we haven't done the locking hook
865 */
866 if (PageDirty(page))
867 return -EAGAIN;
868 /*
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
871 */
872 if (page_has_private(page) &&
873 !try_to_release_page(page, GFP_KERNEL))
874 return -EAGAIN;
875 return migrate_page(mapping, newpage, page, mode);
876}
877#endif
878
879
880static int btree_writepages(struct address_space *mapping,
881 struct writeback_control *wbc)
882{
883 struct btrfs_fs_info *fs_info;
884 int ret;
885
886 if (wbc->sync_mode == WB_SYNC_NONE) {
887
888 if (wbc->for_kupdate)
889 return 0;
890
891 fs_info = BTRFS_I(mapping->host)->root->fs_info;
892 /* this is a bit racy, but that's ok */
893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 BTRFS_DIRTY_METADATA_THRESH,
895 fs_info->dirty_metadata_batch);
896 if (ret < 0)
897 return 0;
898 }
899 return btree_write_cache_pages(mapping, wbc);
900}
901
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000902static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903{
904 if (PageWriteback(page) || PageDirty(page))
905 return 0;
906
907 return try_release_extent_buffer(page);
908}
909
910static void btree_invalidatepage(struct page *page, unsigned int offset,
911 unsigned int length)
912{
913 struct extent_io_tree *tree;
914 tree = &BTRFS_I(page->mapping->host)->io_tree;
915 extent_invalidatepage(tree, page, offset);
916 btree_releasepage(page, GFP_NOFS);
917 if (PagePrivate(page)) {
918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 "page private not zero on page %llu",
920 (unsigned long long)page_offset(page));
Olivier Deprez157378f2022-04-04 15:47:50 +0200921 detach_page_private(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000922 }
923}
924
925static int btree_set_page_dirty(struct page *page)
926{
927#ifdef DEBUG
928 struct extent_buffer *eb;
929
930 BUG_ON(!PagePrivate(page));
931 eb = (struct extent_buffer *)page->private;
932 BUG_ON(!eb);
933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 BUG_ON(!atomic_read(&eb->refs));
935 btrfs_assert_tree_locked(eb);
936#endif
937 return __set_page_dirty_nobuffers(page);
938}
939
940static const struct address_space_operations btree_aops = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000941 .writepages = btree_writepages,
942 .releasepage = btree_releasepage,
943 .invalidatepage = btree_invalidatepage,
944#ifdef CONFIG_MIGRATION
945 .migratepage = btree_migratepage,
946#endif
947 .set_page_dirty = btree_set_page_dirty,
948};
949
950void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951{
952 struct extent_buffer *buf = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000953 int ret;
954
955 buf = btrfs_find_create_tree_block(fs_info, bytenr);
956 if (IS_ERR(buf))
David Brazdil0f672f62019-12-10 10:32:29 +0000957 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000958
David Brazdil0f672f62019-12-10 10:32:29 +0000959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960 if (ret < 0)
961 free_extent_buffer_stale(buf);
962 else
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000963 free_extent_buffer(buf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000964}
965
966struct extent_buffer *btrfs_find_create_tree_block(
967 struct btrfs_fs_info *fs_info,
968 u64 bytenr)
969{
970 if (btrfs_is_testing(fs_info))
971 return alloc_test_extent_buffer(fs_info, bytenr);
972 return alloc_extent_buffer(fs_info, bytenr);
973}
974
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000975/*
976 * Read tree block at logical address @bytenr and do variant basic but critical
977 * verification.
978 *
979 * @parent_transid: expected transid of this tree block, skip check if 0
980 * @level: expected level, mandatory check
981 * @first_key: expected key in slot 0, skip check if NULL
982 */
983struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984 u64 parent_transid, int level,
985 struct btrfs_key *first_key)
986{
987 struct extent_buffer *buf = NULL;
988 int ret;
989
990 buf = btrfs_find_create_tree_block(fs_info, bytenr);
991 if (IS_ERR(buf))
992 return buf;
993
David Brazdil0f672f62019-12-10 10:32:29 +0000994 ret = btree_read_extent_buffer_pages(buf, parent_transid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000995 level, first_key);
996 if (ret) {
David Brazdil0f672f62019-12-10 10:32:29 +0000997 free_extent_buffer_stale(buf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000998 return ERR_PTR(ret);
999 }
1000 return buf;
1001
1002}
1003
David Brazdil0f672f62019-12-10 10:32:29 +00001004void btrfs_clean_tree_block(struct extent_buffer *buf)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001005{
David Brazdil0f672f62019-12-10 10:32:29 +00001006 struct btrfs_fs_info *fs_info = buf->fs_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001007 if (btrfs_header_generation(buf) ==
1008 fs_info->running_transaction->transid) {
1009 btrfs_assert_tree_locked(buf);
1010
1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013 -buf->len,
1014 fs_info->dirty_metadata_batch);
1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */
David Brazdil0f672f62019-12-10 10:32:29 +00001016 btrfs_set_lock_blocking_write(buf);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001017 clear_extent_buffer_dirty(buf);
1018 }
1019 }
1020}
1021
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001022static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023 u64 objectid)
1024{
1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
Olivier Deprez157378f2022-04-04 15:47:50 +02001026 root->fs_info = fs_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001027 root->node = NULL;
1028 root->commit_root = NULL;
1029 root->state = 0;
1030 root->orphan_cleanup_state = 0;
1031
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001032 root->last_trans = 0;
1033 root->highest_objectid = 0;
1034 root->nr_delalloc_inodes = 0;
1035 root->nr_ordered_extents = 0;
1036 root->inode_tree = RB_ROOT;
1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038 root->block_rsv = NULL;
1039
1040 INIT_LIST_HEAD(&root->dirty_list);
1041 INIT_LIST_HEAD(&root->root_list);
1042 INIT_LIST_HEAD(&root->delalloc_inodes);
1043 INIT_LIST_HEAD(&root->delalloc_root);
1044 INIT_LIST_HEAD(&root->ordered_extents);
1045 INIT_LIST_HEAD(&root->ordered_root);
David Brazdil0f672f62019-12-10 10:32:29 +00001046 INIT_LIST_HEAD(&root->reloc_dirty_list);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001047 INIT_LIST_HEAD(&root->logged_list[0]);
1048 INIT_LIST_HEAD(&root->logged_list[1]);
1049 spin_lock_init(&root->inode_lock);
1050 spin_lock_init(&root->delalloc_lock);
1051 spin_lock_init(&root->ordered_extent_lock);
1052 spin_lock_init(&root->accounting_lock);
1053 spin_lock_init(&root->log_extents_lock[0]);
1054 spin_lock_init(&root->log_extents_lock[1]);
1055 spin_lock_init(&root->qgroup_meta_rsv_lock);
1056 mutex_init(&root->objectid_mutex);
1057 mutex_init(&root->log_mutex);
1058 mutex_init(&root->ordered_extent_mutex);
1059 mutex_init(&root->delalloc_mutex);
Olivier Deprez0e641232021-09-23 10:07:05 +02001060 init_waitqueue_head(&root->qgroup_flush_wait);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001061 init_waitqueue_head(&root->log_writer_wait);
1062 init_waitqueue_head(&root->log_commit_wait[0]);
1063 init_waitqueue_head(&root->log_commit_wait[1]);
1064 INIT_LIST_HEAD(&root->log_ctxs[0]);
1065 INIT_LIST_HEAD(&root->log_ctxs[1]);
1066 atomic_set(&root->log_commit[0], 0);
1067 atomic_set(&root->log_commit[1], 0);
1068 atomic_set(&root->log_writers, 0);
1069 atomic_set(&root->log_batch, 0);
1070 refcount_set(&root->refs, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001071 atomic_set(&root->snapshot_force_cow, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00001072 atomic_set(&root->nr_swapfiles, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001073 root->log_transid = 0;
1074 root->log_transid_committed = -1;
1075 root->last_log_commit = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02001076 if (!dummy) {
David Brazdil0f672f62019-12-10 10:32:29 +00001077 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
Olivier Deprez157378f2022-04-04 15:47:50 +02001079 extent_io_tree_init(fs_info, &root->log_csum_range,
1080 IO_TREE_LOG_CSUM_RANGE, NULL);
1081 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001082
1083 memset(&root->root_key, 0, sizeof(root->root_key));
1084 memset(&root->root_item, 0, sizeof(root->root_item));
1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001086 root->root_key.objectid = objectid;
1087 root->anon_dev = 0;
1088
1089 spin_lock_init(&root->root_item_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
Olivier Deprez157378f2022-04-04 15:47:50 +02001091#ifdef CONFIG_BTRFS_DEBUG
1092 INIT_LIST_HEAD(&root->leak_list);
1093 spin_lock(&fs_info->fs_roots_radix_lock);
1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095 spin_unlock(&fs_info->fs_roots_radix_lock);
1096#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001097}
1098
1099static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
Olivier Deprez157378f2022-04-04 15:47:50 +02001100 u64 objectid, gfp_t flags)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001101{
1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103 if (root)
Olivier Deprez157378f2022-04-04 15:47:50 +02001104 __setup_root(root, fs_info, objectid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001105 return root;
1106}
1107
1108#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109/* Should only be used by the testing infrastructure */
1110struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111{
1112 struct btrfs_root *root;
1113
1114 if (!fs_info)
1115 return ERR_PTR(-EINVAL);
1116
Olivier Deprez157378f2022-04-04 15:47:50 +02001117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001118 if (!root)
1119 return ERR_PTR(-ENOMEM);
1120
1121 /* We don't use the stripesize in selftest, set it as sectorsize */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001122 root->alloc_bytenr = 0;
1123
1124 return root;
1125}
1126#endif
1127
1128struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001129 u64 objectid)
1130{
David Brazdil0f672f62019-12-10 10:32:29 +00001131 struct btrfs_fs_info *fs_info = trans->fs_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001132 struct extent_buffer *leaf;
1133 struct btrfs_root *tree_root = fs_info->tree_root;
1134 struct btrfs_root *root;
1135 struct btrfs_key key;
David Brazdil0f672f62019-12-10 10:32:29 +00001136 unsigned int nofs_flag;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001137 int ret = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001138
David Brazdil0f672f62019-12-10 10:32:29 +00001139 /*
1140 * We're holding a transaction handle, so use a NOFS memory allocation
1141 * context to avoid deadlock if reclaim happens.
1142 */
1143 nofs_flag = memalloc_nofs_save();
Olivier Deprez157378f2022-04-04 15:47:50 +02001144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
David Brazdil0f672f62019-12-10 10:32:29 +00001145 memalloc_nofs_restore(nofs_flag);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001146 if (!root)
1147 return ERR_PTR(-ENOMEM);
1148
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001149 root->root_key.objectid = objectid;
1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151 root->root_key.offset = 0;
1152
Olivier Deprez157378f2022-04-04 15:47:50 +02001153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154 BTRFS_NESTING_NORMAL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001155 if (IS_ERR(leaf)) {
1156 ret = PTR_ERR(leaf);
1157 leaf = NULL;
1158 goto fail;
1159 }
1160
1161 root->node = leaf;
1162 btrfs_mark_buffer_dirty(leaf);
1163
1164 root->commit_root = btrfs_root_node(root);
1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166
1167 root->root_item.flags = 0;
1168 root->root_item.byte_limit = 0;
1169 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170 btrfs_set_root_generation(&root->root_item, trans->transid);
1171 btrfs_set_root_level(&root->root_item, 0);
1172 btrfs_set_root_refs(&root->root_item, 1);
1173 btrfs_set_root_used(&root->root_item, leaf->len);
1174 btrfs_set_root_last_snapshot(&root->root_item, 0);
1175 btrfs_set_root_dirid(&root->root_item, 0);
1176 if (is_fstree(objectid))
Olivier Deprez157378f2022-04-04 15:47:50 +02001177 generate_random_guid(root->root_item.uuid);
1178 else
1179 export_guid(root->root_item.uuid, &guid_null);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001180 root->root_item.drop_level = 0;
1181
1182 key.objectid = objectid;
1183 key.type = BTRFS_ROOT_ITEM_KEY;
1184 key.offset = 0;
1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186 if (ret)
1187 goto fail;
1188
1189 btrfs_tree_unlock(leaf);
1190
1191 return root;
1192
1193fail:
Olivier Deprez157378f2022-04-04 15:47:50 +02001194 if (leaf)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001195 btrfs_tree_unlock(leaf);
Olivier Deprez157378f2022-04-04 15:47:50 +02001196 btrfs_put_root(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001197
1198 return ERR_PTR(ret);
1199}
1200
1201static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202 struct btrfs_fs_info *fs_info)
1203{
1204 struct btrfs_root *root;
1205 struct extent_buffer *leaf;
1206
Olivier Deprez157378f2022-04-04 15:47:50 +02001207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001208 if (!root)
1209 return ERR_PTR(-ENOMEM);
1210
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214
1215 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02001216 * DON'T set SHAREABLE bit for log trees.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001217 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001218 * Log trees are not exposed to user space thus can't be snapshotted,
1219 * and they go away before a real commit is actually done.
1220 *
1221 * They do store pointers to file data extents, and those reference
1222 * counts still get updated (along with back refs to the log tree).
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001223 */
1224
1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
Olivier Deprez157378f2022-04-04 15:47:50 +02001226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001227 if (IS_ERR(leaf)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001228 btrfs_put_root(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001229 return ERR_CAST(leaf);
1230 }
1231
1232 root->node = leaf;
1233
1234 btrfs_mark_buffer_dirty(root->node);
1235 btrfs_tree_unlock(root->node);
1236 return root;
1237}
1238
1239int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info)
1241{
1242 struct btrfs_root *log_root;
1243
1244 log_root = alloc_log_tree(trans, fs_info);
1245 if (IS_ERR(log_root))
1246 return PTR_ERR(log_root);
1247 WARN_ON(fs_info->log_root_tree);
1248 fs_info->log_root_tree = log_root;
1249 return 0;
1250}
1251
1252int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_root *root)
1254{
1255 struct btrfs_fs_info *fs_info = root->fs_info;
1256 struct btrfs_root *log_root;
1257 struct btrfs_inode_item *inode_item;
1258
1259 log_root = alloc_log_tree(trans, fs_info);
1260 if (IS_ERR(log_root))
1261 return PTR_ERR(log_root);
1262
1263 log_root->last_trans = trans->transid;
1264 log_root->root_key.offset = root->root_key.objectid;
1265
1266 inode_item = &log_root->root_item.inode;
1267 btrfs_set_stack_inode_generation(inode_item, 1);
1268 btrfs_set_stack_inode_size(inode_item, 3);
1269 btrfs_set_stack_inode_nlink(inode_item, 1);
1270 btrfs_set_stack_inode_nbytes(inode_item,
1271 fs_info->nodesize);
1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273
1274 btrfs_set_root_node(&log_root->root_item, log_root->node);
1275
1276 WARN_ON(root->log_root);
1277 root->log_root = log_root;
1278 root->log_transid = 0;
1279 root->log_transid_committed = -1;
1280 root->last_log_commit = 0;
1281 return 0;
1282}
1283
Olivier Deprez157378f2022-04-04 15:47:50 +02001284static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285 struct btrfs_path *path,
1286 struct btrfs_key *key)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001287{
1288 struct btrfs_root *root;
1289 struct btrfs_fs_info *fs_info = tree_root->fs_info;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001290 u64 generation;
1291 int ret;
1292 int level;
1293
Olivier Deprez157378f2022-04-04 15:47:50 +02001294 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1295 if (!root)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001296 return ERR_PTR(-ENOMEM);
1297
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001298 ret = btrfs_find_root(tree_root, key, path,
1299 &root->root_item, &root->root_key);
1300 if (ret) {
1301 if (ret > 0)
1302 ret = -ENOENT;
Olivier Deprez157378f2022-04-04 15:47:50 +02001303 goto fail;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001304 }
1305
1306 generation = btrfs_root_generation(&root->root_item);
1307 level = btrfs_root_level(&root->root_item);
1308 root->node = read_tree_block(fs_info,
1309 btrfs_root_bytenr(&root->root_item),
1310 generation, level, NULL);
1311 if (IS_ERR(root->node)) {
1312 ret = PTR_ERR(root->node);
Olivier Deprez157378f2022-04-04 15:47:50 +02001313 root->node = NULL;
1314 goto fail;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001315 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316 ret = -EIO;
Olivier Deprez157378f2022-04-04 15:47:50 +02001317 goto fail;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001318 }
1319 root->commit_root = btrfs_root_node(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001320 return root;
Olivier Deprez157378f2022-04-04 15:47:50 +02001321fail:
1322 btrfs_put_root(root);
1323 return ERR_PTR(ret);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001324}
1325
Olivier Deprez157378f2022-04-04 15:47:50 +02001326struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327 struct btrfs_key *key)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001328{
1329 struct btrfs_root *root;
Olivier Deprez157378f2022-04-04 15:47:50 +02001330 struct btrfs_path *path;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001331
Olivier Deprez157378f2022-04-04 15:47:50 +02001332 path = btrfs_alloc_path();
1333 if (!path)
1334 return ERR_PTR(-ENOMEM);
1335 root = read_tree_root_path(tree_root, path, key);
1336 btrfs_free_path(path);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001337
1338 return root;
1339}
1340
Olivier Deprez157378f2022-04-04 15:47:50 +02001341/*
1342 * Initialize subvolume root in-memory structure
1343 *
1344 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1345 */
1346static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001347{
1348 int ret;
Olivier Deprez157378f2022-04-04 15:47:50 +02001349 unsigned int nofs_flag;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001350
1351 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353 GFP_NOFS);
1354 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355 ret = -ENOMEM;
1356 goto fail;
1357 }
1358
Olivier Deprez157378f2022-04-04 15:47:50 +02001359 /*
1360 * We might be called under a transaction (e.g. indirect backref
1361 * resolution) which could deadlock if it triggers memory reclaim
1362 */
1363 nofs_flag = memalloc_nofs_save();
1364 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365 memalloc_nofs_restore(nofs_flag);
1366 if (ret)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001367 goto fail;
Olivier Deprez157378f2022-04-04 15:47:50 +02001368
1369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372 btrfs_check_and_init_root_item(&root->root_item);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001373 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001374
1375 btrfs_init_free_ino_ctl(root);
1376 spin_lock_init(&root->ino_cache_lock);
1377 init_waitqueue_head(&root->ino_cache_wait);
1378
Olivier Deprez0e641232021-09-23 10:07:05 +02001379 /*
1380 * Don't assign anonymous block device to roots that are not exposed to
1381 * userspace, the id pool is limited to 1M
1382 */
1383 if (is_fstree(root->root_key.objectid) &&
1384 btrfs_root_refs(&root->root_item) > 0) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001385 if (!anon_dev) {
1386 ret = get_anon_bdev(&root->anon_dev);
1387 if (ret)
1388 goto fail;
1389 } else {
1390 root->anon_dev = anon_dev;
1391 }
Olivier Deprez0e641232021-09-23 10:07:05 +02001392 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001393
1394 mutex_lock(&root->objectid_mutex);
1395 ret = btrfs_find_highest_objectid(root,
1396 &root->highest_objectid);
1397 if (ret) {
1398 mutex_unlock(&root->objectid_mutex);
1399 goto fail;
1400 }
1401
1402 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403
1404 mutex_unlock(&root->objectid_mutex);
1405
1406 return 0;
1407fail:
1408 /* The caller is responsible to call btrfs_free_fs_root */
1409 return ret;
1410}
1411
Olivier Deprez157378f2022-04-04 15:47:50 +02001412static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413 u64 root_id)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001414{
1415 struct btrfs_root *root;
1416
1417 spin_lock(&fs_info->fs_roots_radix_lock);
1418 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419 (unsigned long)root_id);
Olivier Deprez157378f2022-04-04 15:47:50 +02001420 if (root)
1421 root = btrfs_grab_root(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001422 spin_unlock(&fs_info->fs_roots_radix_lock);
1423 return root;
1424}
1425
Olivier Deprez157378f2022-04-04 15:47:50 +02001426static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427 u64 objectid)
1428{
1429 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430 return btrfs_grab_root(fs_info->tree_root);
1431 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432 return btrfs_grab_root(fs_info->extent_root);
1433 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->chunk_root);
1435 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436 return btrfs_grab_root(fs_info->dev_root);
1437 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438 return btrfs_grab_root(fs_info->csum_root);
1439 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440 return btrfs_grab_root(fs_info->quota_root) ?
1441 fs_info->quota_root : ERR_PTR(-ENOENT);
1442 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443 return btrfs_grab_root(fs_info->uuid_root) ?
1444 fs_info->uuid_root : ERR_PTR(-ENOENT);
1445 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446 return btrfs_grab_root(fs_info->free_space_root) ?
1447 fs_info->free_space_root : ERR_PTR(-ENOENT);
1448 return NULL;
1449}
1450
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001451int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452 struct btrfs_root *root)
1453{
1454 int ret;
1455
1456 ret = radix_tree_preload(GFP_NOFS);
1457 if (ret)
1458 return ret;
1459
1460 spin_lock(&fs_info->fs_roots_radix_lock);
1461 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462 (unsigned long)root->root_key.objectid,
1463 root);
Olivier Deprez157378f2022-04-04 15:47:50 +02001464 if (ret == 0) {
1465 btrfs_grab_root(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001466 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
Olivier Deprez157378f2022-04-04 15:47:50 +02001467 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001468 spin_unlock(&fs_info->fs_roots_radix_lock);
1469 radix_tree_preload_end();
1470
1471 return ret;
1472}
1473
Olivier Deprez157378f2022-04-04 15:47:50 +02001474void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475{
1476#ifdef CONFIG_BTRFS_DEBUG
1477 struct btrfs_root *root;
1478
1479 while (!list_empty(&fs_info->allocated_roots)) {
1480 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481
1482 root = list_first_entry(&fs_info->allocated_roots,
1483 struct btrfs_root, leak_list);
1484 btrfs_err(fs_info, "leaked root %s refcount %d",
1485 btrfs_root_name(&root->root_key, buf),
1486 refcount_read(&root->refs));
1487 while (refcount_read(&root->refs) > 1)
1488 btrfs_put_root(root);
1489 btrfs_put_root(root);
1490 }
1491#endif
1492}
1493
1494void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495{
1496 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497 percpu_counter_destroy(&fs_info->delalloc_bytes);
1498 percpu_counter_destroy(&fs_info->dio_bytes);
1499 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500 btrfs_free_csum_hash(fs_info);
1501 btrfs_free_stripe_hash_table(fs_info);
1502 btrfs_free_ref_cache(fs_info);
1503 kfree(fs_info->balance_ctl);
1504 kfree(fs_info->delayed_root);
1505 btrfs_put_root(fs_info->extent_root);
1506 btrfs_put_root(fs_info->tree_root);
1507 btrfs_put_root(fs_info->chunk_root);
1508 btrfs_put_root(fs_info->dev_root);
1509 btrfs_put_root(fs_info->csum_root);
1510 btrfs_put_root(fs_info->quota_root);
1511 btrfs_put_root(fs_info->uuid_root);
1512 btrfs_put_root(fs_info->free_space_root);
1513 btrfs_put_root(fs_info->fs_root);
1514 btrfs_put_root(fs_info->data_reloc_root);
1515 btrfs_check_leaked_roots(fs_info);
1516 btrfs_extent_buffer_leak_debug_check(fs_info);
1517 kfree(fs_info->super_copy);
1518 kfree(fs_info->super_for_commit);
1519 kvfree(fs_info);
1520}
1521
1522
1523/*
1524 * Get an in-memory reference of a root structure.
1525 *
1526 * For essential trees like root/extent tree, we grab it from fs_info directly.
1527 * For subvolume trees, we check the cached filesystem roots first. If not
1528 * found, then read it from disk and add it to cached fs roots.
1529 *
1530 * Caller should release the root by calling btrfs_put_root() after the usage.
1531 *
1532 * NOTE: Reloc and log trees can't be read by this function as they share the
1533 * same root objectid.
1534 *
1535 * @objectid: root id
1536 * @anon_dev: preallocated anonymous block device number for new roots,
1537 * pass 0 for new allocation.
1538 * @check_ref: whether to check root item references, If true, return -ENOENT
1539 * for orphan roots
1540 */
1541static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542 u64 objectid, dev_t anon_dev,
1543 bool check_ref)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001544{
1545 struct btrfs_root *root;
1546 struct btrfs_path *path;
1547 struct btrfs_key key;
1548 int ret;
1549
Olivier Deprez157378f2022-04-04 15:47:50 +02001550 root = btrfs_get_global_root(fs_info, objectid);
1551 if (root)
1552 return root;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001553again:
Olivier Deprez157378f2022-04-04 15:47:50 +02001554 root = btrfs_lookup_fs_root(fs_info, objectid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001555 if (root) {
Olivier Deprez157378f2022-04-04 15:47:50 +02001556 /* Shouldn't get preallocated anon_dev for cached roots */
1557 ASSERT(!anon_dev);
1558 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1559 btrfs_put_root(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001560 return ERR_PTR(-ENOENT);
Olivier Deprez157378f2022-04-04 15:47:50 +02001561 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001562 return root;
1563 }
1564
Olivier Deprez157378f2022-04-04 15:47:50 +02001565 key.objectid = objectid;
1566 key.type = BTRFS_ROOT_ITEM_KEY;
1567 key.offset = (u64)-1;
1568 root = btrfs_read_tree_root(fs_info->tree_root, &key);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001569 if (IS_ERR(root))
1570 return root;
1571
1572 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1573 ret = -ENOENT;
1574 goto fail;
1575 }
1576
Olivier Deprez157378f2022-04-04 15:47:50 +02001577 ret = btrfs_init_fs_root(root, anon_dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001578 if (ret)
1579 goto fail;
1580
1581 path = btrfs_alloc_path();
1582 if (!path) {
1583 ret = -ENOMEM;
1584 goto fail;
1585 }
1586 key.objectid = BTRFS_ORPHAN_OBJECTID;
1587 key.type = BTRFS_ORPHAN_ITEM_KEY;
Olivier Deprez157378f2022-04-04 15:47:50 +02001588 key.offset = objectid;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001589
1590 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1591 btrfs_free_path(path);
1592 if (ret < 0)
1593 goto fail;
1594 if (ret == 0)
1595 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1596
1597 ret = btrfs_insert_fs_root(fs_info, root);
1598 if (ret) {
Olivier Deprez92d4c212022-12-06 15:05:30 +01001599 if (ret == -EEXIST) {
1600 btrfs_put_root(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001601 goto again;
Olivier Deprez92d4c212022-12-06 15:05:30 +01001602 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001603 goto fail;
1604 }
1605 return root;
1606fail:
Olivier Deprez157378f2022-04-04 15:47:50 +02001607 /*
1608 * If our caller provided us an anonymous device, then it's his
1609 * responsability to free it in case we fail. So we have to set our
1610 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1611 * and once again by our caller.
1612 */
1613 if (anon_dev)
1614 root->anon_dev = 0;
1615 btrfs_put_root(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001616 return ERR_PTR(ret);
1617}
1618
Olivier Deprez157378f2022-04-04 15:47:50 +02001619/*
1620 * Get in-memory reference of a root structure
1621 *
1622 * @objectid: tree objectid
1623 * @check_ref: if set, verify that the tree exists and the item has at least
1624 * one reference
1625 */
1626struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1627 u64 objectid, bool check_ref)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001628{
Olivier Deprez157378f2022-04-04 15:47:50 +02001629 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1630}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001631
Olivier Deprez157378f2022-04-04 15:47:50 +02001632/*
1633 * Get in-memory reference of a root structure, created as new, optionally pass
1634 * the anonymous block device id
1635 *
1636 * @objectid: tree objectid
1637 * @anon_dev: if zero, allocate a new anonymous block device or use the
1638 * parameter value
1639 */
1640struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1641 u64 objectid, dev_t anon_dev)
1642{
1643 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1644}
1645
1646/*
1647 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1648 * @fs_info: the fs_info
1649 * @objectid: the objectid we need to lookup
1650 *
1651 * This is exclusively used for backref walking, and exists specifically because
1652 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1653 * creation time, which means we may have to read the tree_root in order to look
1654 * up a fs root that is not in memory. If the root is not in memory we will
1655 * read the tree root commit root and look up the fs root from there. This is a
1656 * temporary root, it will not be inserted into the radix tree as it doesn't
1657 * have the most uptodate information, it'll simply be discarded once the
1658 * backref code is finished using the root.
1659 */
1660struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1661 struct btrfs_path *path,
1662 u64 objectid)
1663{
1664 struct btrfs_root *root;
1665 struct btrfs_key key;
1666
1667 ASSERT(path->search_commit_root && path->skip_locking);
1668
1669 /*
1670 * This can return -ENOENT if we ask for a root that doesn't exist, but
1671 * since this is called via the backref walking code we won't be looking
1672 * up a root that doesn't exist, unless there's corruption. So if root
1673 * != NULL just return it.
1674 */
1675 root = btrfs_get_global_root(fs_info, objectid);
1676 if (root)
1677 return root;
1678
1679 root = btrfs_lookup_fs_root(fs_info, objectid);
1680 if (root)
1681 return root;
1682
1683 key.objectid = objectid;
1684 key.type = BTRFS_ROOT_ITEM_KEY;
1685 key.offset = (u64)-1;
1686 root = read_tree_root_path(fs_info->tree_root, path, &key);
1687 btrfs_release_path(path);
1688
1689 return root;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001690}
1691
1692/*
1693 * called by the kthread helper functions to finally call the bio end_io
1694 * functions. This is where read checksum verification actually happens
1695 */
1696static void end_workqueue_fn(struct btrfs_work *work)
1697{
1698 struct bio *bio;
1699 struct btrfs_end_io_wq *end_io_wq;
1700
1701 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1702 bio = end_io_wq->bio;
1703
1704 bio->bi_status = end_io_wq->status;
1705 bio->bi_private = end_io_wq->private;
1706 bio->bi_end_io = end_io_wq->end_io;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001707 bio_endio(bio);
Olivier Deprez0e641232021-09-23 10:07:05 +02001708 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001709}
1710
1711static int cleaner_kthread(void *arg)
1712{
1713 struct btrfs_root *root = arg;
1714 struct btrfs_fs_info *fs_info = root->fs_info;
1715 int again;
1716
1717 while (1) {
1718 again = 0;
1719
David Brazdil0f672f62019-12-10 10:32:29 +00001720 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1721
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001722 /* Make the cleaner go to sleep early. */
1723 if (btrfs_need_cleaner_sleep(fs_info))
1724 goto sleep;
1725
1726 /*
1727 * Do not do anything if we might cause open_ctree() to block
1728 * before we have finished mounting the filesystem.
1729 */
1730 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1731 goto sleep;
1732
1733 if (!mutex_trylock(&fs_info->cleaner_mutex))
1734 goto sleep;
1735
1736 /*
1737 * Avoid the problem that we change the status of the fs
1738 * during the above check and trylock.
1739 */
1740 if (btrfs_need_cleaner_sleep(fs_info)) {
1741 mutex_unlock(&fs_info->cleaner_mutex);
1742 goto sleep;
1743 }
1744
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001745 btrfs_run_delayed_iputs(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001746
1747 again = btrfs_clean_one_deleted_snapshot(root);
1748 mutex_unlock(&fs_info->cleaner_mutex);
1749
1750 /*
1751 * The defragger has dealt with the R/O remount and umount,
1752 * needn't do anything special here.
1753 */
1754 btrfs_run_defrag_inodes(fs_info);
1755
1756 /*
1757 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1758 * with relocation (btrfs_relocate_chunk) and relocation
1759 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1760 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1761 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1762 * unused block groups.
1763 */
1764 btrfs_delete_unused_bgs(fs_info);
1765sleep:
David Brazdil0f672f62019-12-10 10:32:29 +00001766 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001767 if (kthread_should_park())
1768 kthread_parkme();
1769 if (kthread_should_stop())
1770 return 0;
1771 if (!again) {
1772 set_current_state(TASK_INTERRUPTIBLE);
1773 schedule();
1774 __set_current_state(TASK_RUNNING);
1775 }
1776 }
1777}
1778
1779static int transaction_kthread(void *arg)
1780{
1781 struct btrfs_root *root = arg;
1782 struct btrfs_fs_info *fs_info = root->fs_info;
1783 struct btrfs_trans_handle *trans;
1784 struct btrfs_transaction *cur;
1785 u64 transid;
1786 time64_t now;
1787 unsigned long delay;
1788 bool cannot_commit;
1789
1790 do {
1791 cannot_commit = false;
1792 delay = HZ * fs_info->commit_interval;
1793 mutex_lock(&fs_info->transaction_kthread_mutex);
1794
1795 spin_lock(&fs_info->trans_lock);
1796 cur = fs_info->running_transaction;
1797 if (!cur) {
1798 spin_unlock(&fs_info->trans_lock);
1799 goto sleep;
1800 }
1801
1802 now = ktime_get_seconds();
Olivier Deprez0e641232021-09-23 10:07:05 +02001803 if (cur->state < TRANS_STATE_COMMIT_START &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001804 (now < cur->start_time ||
1805 now - cur->start_time < fs_info->commit_interval)) {
1806 spin_unlock(&fs_info->trans_lock);
1807 delay = HZ * 5;
1808 goto sleep;
1809 }
1810 transid = cur->transid;
1811 spin_unlock(&fs_info->trans_lock);
1812
1813 /* If the file system is aborted, this will always fail. */
1814 trans = btrfs_attach_transaction(root);
1815 if (IS_ERR(trans)) {
1816 if (PTR_ERR(trans) != -ENOENT)
1817 cannot_commit = true;
1818 goto sleep;
1819 }
1820 if (transid == trans->transid) {
1821 btrfs_commit_transaction(trans);
1822 } else {
1823 btrfs_end_transaction(trans);
1824 }
1825sleep:
1826 wake_up_process(fs_info->cleaner_kthread);
1827 mutex_unlock(&fs_info->transaction_kthread_mutex);
1828
1829 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1830 &fs_info->fs_state)))
1831 btrfs_cleanup_transaction(fs_info);
1832 if (!kthread_should_stop() &&
1833 (!btrfs_transaction_blocked(fs_info) ||
1834 cannot_commit))
1835 schedule_timeout_interruptible(delay);
1836 } while (!kthread_should_stop());
1837 return 0;
1838}
1839
1840/*
Olivier Deprez157378f2022-04-04 15:47:50 +02001841 * This will find the highest generation in the array of root backups. The
1842 * index of the highest array is returned, or -EINVAL if we can't find
1843 * anything.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001844 *
1845 * We check to make sure the array is valid by comparing the
1846 * generation of the latest root in the array with the generation
1847 * in the super block. If they don't match we pitch it.
1848 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001849static int find_newest_super_backup(struct btrfs_fs_info *info)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001850{
Olivier Deprez157378f2022-04-04 15:47:50 +02001851 const u64 newest_gen = btrfs_super_generation(info->super_copy);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001852 u64 cur;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001853 struct btrfs_root_backup *root_backup;
1854 int i;
1855
1856 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1857 root_backup = info->super_copy->super_roots + i;
1858 cur = btrfs_backup_tree_root_gen(root_backup);
1859 if (cur == newest_gen)
Olivier Deprez157378f2022-04-04 15:47:50 +02001860 return i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001861 }
1862
Olivier Deprez157378f2022-04-04 15:47:50 +02001863 return -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001864}
1865
1866/*
1867 * copy all the root pointers into the super backup array.
1868 * this will bump the backup pointer by one when it is
1869 * done
1870 */
1871static void backup_super_roots(struct btrfs_fs_info *info)
1872{
Olivier Deprez157378f2022-04-04 15:47:50 +02001873 const int next_backup = info->backup_root_index;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001874 struct btrfs_root_backup *root_backup;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001875
1876 root_backup = info->super_for_commit->super_roots + next_backup;
1877
1878 /*
1879 * make sure all of our padding and empty slots get zero filled
1880 * regardless of which ones we use today
1881 */
1882 memset(root_backup, 0, sizeof(*root_backup));
1883
1884 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1885
1886 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1887 btrfs_set_backup_tree_root_gen(root_backup,
1888 btrfs_header_generation(info->tree_root->node));
1889
1890 btrfs_set_backup_tree_root_level(root_backup,
1891 btrfs_header_level(info->tree_root->node));
1892
1893 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1894 btrfs_set_backup_chunk_root_gen(root_backup,
1895 btrfs_header_generation(info->chunk_root->node));
1896 btrfs_set_backup_chunk_root_level(root_backup,
1897 btrfs_header_level(info->chunk_root->node));
1898
1899 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1900 btrfs_set_backup_extent_root_gen(root_backup,
1901 btrfs_header_generation(info->extent_root->node));
1902 btrfs_set_backup_extent_root_level(root_backup,
1903 btrfs_header_level(info->extent_root->node));
1904
1905 /*
1906 * we might commit during log recovery, which happens before we set
1907 * the fs_root. Make sure it is valid before we fill it in.
1908 */
1909 if (info->fs_root && info->fs_root->node) {
1910 btrfs_set_backup_fs_root(root_backup,
1911 info->fs_root->node->start);
1912 btrfs_set_backup_fs_root_gen(root_backup,
1913 btrfs_header_generation(info->fs_root->node));
1914 btrfs_set_backup_fs_root_level(root_backup,
1915 btrfs_header_level(info->fs_root->node));
1916 }
1917
1918 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1919 btrfs_set_backup_dev_root_gen(root_backup,
1920 btrfs_header_generation(info->dev_root->node));
1921 btrfs_set_backup_dev_root_level(root_backup,
1922 btrfs_header_level(info->dev_root->node));
1923
1924 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1925 btrfs_set_backup_csum_root_gen(root_backup,
1926 btrfs_header_generation(info->csum_root->node));
1927 btrfs_set_backup_csum_root_level(root_backup,
1928 btrfs_header_level(info->csum_root->node));
1929
1930 btrfs_set_backup_total_bytes(root_backup,
1931 btrfs_super_total_bytes(info->super_copy));
1932 btrfs_set_backup_bytes_used(root_backup,
1933 btrfs_super_bytes_used(info->super_copy));
1934 btrfs_set_backup_num_devices(root_backup,
1935 btrfs_super_num_devices(info->super_copy));
1936
1937 /*
1938 * if we don't copy this out to the super_copy, it won't get remembered
1939 * for the next commit
1940 */
1941 memcpy(&info->super_copy->super_roots,
1942 &info->super_for_commit->super_roots,
1943 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1944}
1945
1946/*
Olivier Deprez157378f2022-04-04 15:47:50 +02001947 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1948 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001949 *
Olivier Deprez157378f2022-04-04 15:47:50 +02001950 * fs_info - filesystem whose backup roots need to be read
1951 * priority - priority of backup root required
1952 *
1953 * Returns backup root index on success and -EINVAL otherwise.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001954 */
Olivier Deprez157378f2022-04-04 15:47:50 +02001955static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001956{
Olivier Deprez157378f2022-04-04 15:47:50 +02001957 int backup_index = find_newest_super_backup(fs_info);
1958 struct btrfs_super_block *super = fs_info->super_copy;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001959 struct btrfs_root_backup *root_backup;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001960
Olivier Deprez157378f2022-04-04 15:47:50 +02001961 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1962 if (priority == 0)
1963 return backup_index;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001964
Olivier Deprez157378f2022-04-04 15:47:50 +02001965 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1966 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001967 } else {
Olivier Deprez157378f2022-04-04 15:47:50 +02001968 return -EINVAL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001969 }
Olivier Deprez157378f2022-04-04 15:47:50 +02001970
1971 root_backup = super->super_roots + backup_index;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001972
1973 btrfs_set_super_generation(super,
1974 btrfs_backup_tree_root_gen(root_backup));
1975 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1976 btrfs_set_super_root_level(super,
1977 btrfs_backup_tree_root_level(root_backup));
1978 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1979
1980 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02001981 * Fixme: the total bytes and num_devices need to match or we should
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001982 * need a fsck
1983 */
1984 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1985 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
Olivier Deprez157378f2022-04-04 15:47:50 +02001986
1987 return backup_index;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001988}
1989
1990/* helper to cleanup workers */
1991static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1992{
1993 btrfs_destroy_workqueue(fs_info->fixup_workers);
1994 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1995 btrfs_destroy_workqueue(fs_info->workers);
1996 btrfs_destroy_workqueue(fs_info->endio_workers);
1997 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001998 btrfs_destroy_workqueue(fs_info->rmw_workers);
1999 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2000 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002001 btrfs_destroy_workqueue(fs_info->delayed_workers);
2002 btrfs_destroy_workqueue(fs_info->caching_workers);
2003 btrfs_destroy_workqueue(fs_info->readahead_workers);
2004 btrfs_destroy_workqueue(fs_info->flush_workers);
2005 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
Olivier Deprez157378f2022-04-04 15:47:50 +02002006 if (fs_info->discard_ctl.discard_workers)
2007 destroy_workqueue(fs_info->discard_ctl.discard_workers);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002008 /*
2009 * Now that all other work queues are destroyed, we can safely destroy
2010 * the queues used for metadata I/O, since tasks from those other work
2011 * queues can do metadata I/O operations.
2012 */
2013 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2014 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2015}
2016
2017static void free_root_extent_buffers(struct btrfs_root *root)
2018{
2019 if (root) {
2020 free_extent_buffer(root->node);
2021 free_extent_buffer(root->commit_root);
2022 root->node = NULL;
2023 root->commit_root = NULL;
2024 }
2025}
2026
2027/* helper to cleanup tree roots */
Olivier Deprez0e641232021-09-23 10:07:05 +02002028static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002029{
2030 free_root_extent_buffers(info->tree_root);
2031
2032 free_root_extent_buffers(info->dev_root);
2033 free_root_extent_buffers(info->extent_root);
2034 free_root_extent_buffers(info->csum_root);
2035 free_root_extent_buffers(info->quota_root);
2036 free_root_extent_buffers(info->uuid_root);
Olivier Deprez157378f2022-04-04 15:47:50 +02002037 free_root_extent_buffers(info->fs_root);
2038 free_root_extent_buffers(info->data_reloc_root);
Olivier Deprez0e641232021-09-23 10:07:05 +02002039 if (free_chunk_root)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002040 free_root_extent_buffers(info->chunk_root);
2041 free_root_extent_buffers(info->free_space_root);
2042}
2043
Olivier Deprez157378f2022-04-04 15:47:50 +02002044void btrfs_put_root(struct btrfs_root *root)
2045{
2046 if (!root)
2047 return;
2048
2049 if (refcount_dec_and_test(&root->refs)) {
2050 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2051 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2052 if (root->anon_dev)
2053 free_anon_bdev(root->anon_dev);
2054 btrfs_drew_lock_destroy(&root->snapshot_lock);
2055 free_root_extent_buffers(root);
2056 kfree(root->free_ino_ctl);
2057 kfree(root->free_ino_pinned);
2058#ifdef CONFIG_BTRFS_DEBUG
2059 spin_lock(&root->fs_info->fs_roots_radix_lock);
2060 list_del_init(&root->leak_list);
2061 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2062#endif
2063 kfree(root);
2064 }
2065}
2066
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002067void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2068{
2069 int ret;
2070 struct btrfs_root *gang[8];
2071 int i;
2072
2073 while (!list_empty(&fs_info->dead_roots)) {
2074 gang[0] = list_entry(fs_info->dead_roots.next,
2075 struct btrfs_root, root_list);
2076 list_del(&gang[0]->root_list);
2077
Olivier Deprez157378f2022-04-04 15:47:50 +02002078 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002079 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
Olivier Deprez157378f2022-04-04 15:47:50 +02002080 btrfs_put_root(gang[0]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002081 }
2082
2083 while (1) {
2084 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2085 (void **)gang, 0,
2086 ARRAY_SIZE(gang));
2087 if (!ret)
2088 break;
2089 for (i = 0; i < ret; i++)
2090 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2091 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002092}
2093
2094static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2095{
2096 mutex_init(&fs_info->scrub_lock);
2097 atomic_set(&fs_info->scrubs_running, 0);
2098 atomic_set(&fs_info->scrub_pause_req, 0);
2099 atomic_set(&fs_info->scrubs_paused, 0);
2100 atomic_set(&fs_info->scrub_cancel_req, 0);
2101 init_waitqueue_head(&fs_info->scrub_pause_wait);
David Brazdil0f672f62019-12-10 10:32:29 +00002102 refcount_set(&fs_info->scrub_workers_refcnt, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002103}
2104
2105static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2106{
2107 spin_lock_init(&fs_info->balance_lock);
2108 mutex_init(&fs_info->balance_mutex);
2109 atomic_set(&fs_info->balance_pause_req, 0);
2110 atomic_set(&fs_info->balance_cancel_req, 0);
2111 fs_info->balance_ctl = NULL;
2112 init_waitqueue_head(&fs_info->balance_wait_q);
2113}
2114
2115static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2116{
2117 struct inode *inode = fs_info->btree_inode;
2118
2119 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2120 set_nlink(inode, 1);
2121 /*
2122 * we set the i_size on the btree inode to the max possible int.
2123 * the real end of the address space is determined by all of
2124 * the devices in the system
2125 */
2126 inode->i_size = OFFSET_MAX;
2127 inode->i_mapping->a_ops = &btree_aops;
2128
2129 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
David Brazdil0f672f62019-12-10 10:32:29 +00002130 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
Olivier Deprez157378f2022-04-04 15:47:50 +02002131 IO_TREE_BTREE_INODE_IO, inode);
David Brazdil0f672f62019-12-10 10:32:29 +00002132 BTRFS_I(inode)->io_tree.track_uptodate = false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002133 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2134
Olivier Deprez157378f2022-04-04 15:47:50 +02002135 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002136 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2137 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2138 btrfs_insert_inode_hash(inode);
2139}
2140
2141static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2142{
2143 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
David Brazdil0f672f62019-12-10 10:32:29 +00002144 init_rwsem(&fs_info->dev_replace.rwsem);
2145 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002146}
2147
2148static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2149{
2150 spin_lock_init(&fs_info->qgroup_lock);
2151 mutex_init(&fs_info->qgroup_ioctl_lock);
2152 fs_info->qgroup_tree = RB_ROOT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002153 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2154 fs_info->qgroup_seq = 1;
2155 fs_info->qgroup_ulist = NULL;
2156 fs_info->qgroup_rescan_running = false;
2157 mutex_init(&fs_info->qgroup_rescan_lock);
2158}
2159
2160static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2161 struct btrfs_fs_devices *fs_devices)
2162{
2163 u32 max_active = fs_info->thread_pool_size;
2164 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2165
2166 fs_info->workers =
2167 btrfs_alloc_workqueue(fs_info, "worker",
2168 flags | WQ_HIGHPRI, max_active, 16);
2169
2170 fs_info->delalloc_workers =
2171 btrfs_alloc_workqueue(fs_info, "delalloc",
2172 flags, max_active, 2);
2173
2174 fs_info->flush_workers =
2175 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2176 flags, max_active, 0);
2177
2178 fs_info->caching_workers =
2179 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2180
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002181 fs_info->fixup_workers =
2182 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2183
2184 /*
2185 * endios are largely parallel and should have a very
2186 * low idle thresh
2187 */
2188 fs_info->endio_workers =
2189 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2190 fs_info->endio_meta_workers =
2191 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2192 max_active, 4);
2193 fs_info->endio_meta_write_workers =
2194 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2195 max_active, 2);
2196 fs_info->endio_raid56_workers =
2197 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2198 max_active, 4);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002199 fs_info->rmw_workers =
2200 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2201 fs_info->endio_write_workers =
2202 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2203 max_active, 2);
2204 fs_info->endio_freespace_worker =
2205 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2206 max_active, 0);
2207 fs_info->delayed_workers =
2208 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2209 max_active, 0);
2210 fs_info->readahead_workers =
2211 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2212 max_active, 2);
2213 fs_info->qgroup_rescan_workers =
2214 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
Olivier Deprez157378f2022-04-04 15:47:50 +02002215 fs_info->discard_ctl.discard_workers =
2216 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002217
2218 if (!(fs_info->workers && fs_info->delalloc_workers &&
Olivier Deprez157378f2022-04-04 15:47:50 +02002219 fs_info->flush_workers &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002220 fs_info->endio_workers && fs_info->endio_meta_workers &&
2221 fs_info->endio_meta_write_workers &&
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002222 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2223 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2224 fs_info->caching_workers && fs_info->readahead_workers &&
2225 fs_info->fixup_workers && fs_info->delayed_workers &&
Olivier Deprez157378f2022-04-04 15:47:50 +02002226 fs_info->qgroup_rescan_workers &&
2227 fs_info->discard_ctl.discard_workers)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002228 return -ENOMEM;
2229 }
2230
2231 return 0;
2232}
2233
David Brazdil0f672f62019-12-10 10:32:29 +00002234static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2235{
2236 struct crypto_shash *csum_shash;
Olivier Deprez157378f2022-04-04 15:47:50 +02002237 const char *csum_driver = btrfs_super_csum_driver(csum_type);
David Brazdil0f672f62019-12-10 10:32:29 +00002238
Olivier Deprez157378f2022-04-04 15:47:50 +02002239 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00002240
2241 if (IS_ERR(csum_shash)) {
2242 btrfs_err(fs_info, "error allocating %s hash for checksum",
Olivier Deprez157378f2022-04-04 15:47:50 +02002243 csum_driver);
David Brazdil0f672f62019-12-10 10:32:29 +00002244 return PTR_ERR(csum_shash);
2245 }
2246
2247 fs_info->csum_shash = csum_shash;
2248
2249 return 0;
2250}
2251
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002252static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2253 struct btrfs_fs_devices *fs_devices)
2254{
2255 int ret;
2256 struct btrfs_root *log_tree_root;
2257 struct btrfs_super_block *disk_super = fs_info->super_copy;
2258 u64 bytenr = btrfs_super_log_root(disk_super);
2259 int level = btrfs_super_log_root_level(disk_super);
2260
2261 if (fs_devices->rw_devices == 0) {
2262 btrfs_warn(fs_info, "log replay required on RO media");
2263 return -EIO;
2264 }
2265
Olivier Deprez157378f2022-04-04 15:47:50 +02002266 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2267 GFP_KERNEL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002268 if (!log_tree_root)
2269 return -ENOMEM;
2270
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002271 log_tree_root->node = read_tree_block(fs_info, bytenr,
2272 fs_info->generation + 1,
2273 level, NULL);
2274 if (IS_ERR(log_tree_root->node)) {
2275 btrfs_warn(fs_info, "failed to read log tree");
2276 ret = PTR_ERR(log_tree_root->node);
Olivier Deprez157378f2022-04-04 15:47:50 +02002277 log_tree_root->node = NULL;
2278 btrfs_put_root(log_tree_root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002279 return ret;
2280 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2281 btrfs_err(fs_info, "failed to read log tree");
Olivier Deprez157378f2022-04-04 15:47:50 +02002282 btrfs_put_root(log_tree_root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002283 return -EIO;
2284 }
2285 /* returns with log_tree_root freed on success */
2286 ret = btrfs_recover_log_trees(log_tree_root);
2287 if (ret) {
2288 btrfs_handle_fs_error(fs_info, ret,
2289 "Failed to recover log tree");
Olivier Deprez157378f2022-04-04 15:47:50 +02002290 btrfs_put_root(log_tree_root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002291 return ret;
2292 }
2293
2294 if (sb_rdonly(fs_info->sb)) {
2295 ret = btrfs_commit_super(fs_info);
2296 if (ret)
2297 return ret;
2298 }
2299
2300 return 0;
2301}
2302
2303static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2304{
2305 struct btrfs_root *tree_root = fs_info->tree_root;
2306 struct btrfs_root *root;
2307 struct btrfs_key location;
2308 int ret;
2309
2310 BUG_ON(!fs_info->tree_root);
2311
2312 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2313 location.type = BTRFS_ROOT_ITEM_KEY;
2314 location.offset = 0;
2315
2316 root = btrfs_read_tree_root(tree_root, &location);
2317 if (IS_ERR(root)) {
2318 ret = PTR_ERR(root);
2319 goto out;
2320 }
2321 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322 fs_info->extent_root = root;
2323
2324 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2325 root = btrfs_read_tree_root(tree_root, &location);
2326 if (IS_ERR(root)) {
2327 ret = PTR_ERR(root);
2328 goto out;
2329 }
2330 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2331 fs_info->dev_root = root;
2332 btrfs_init_devices_late(fs_info);
2333
2334 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2335 root = btrfs_read_tree_root(tree_root, &location);
2336 if (IS_ERR(root)) {
2337 ret = PTR_ERR(root);
2338 goto out;
2339 }
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 fs_info->csum_root = root;
2342
Olivier Deprez157378f2022-04-04 15:47:50 +02002343 /*
2344 * This tree can share blocks with some other fs tree during relocation
2345 * and we need a proper setup by btrfs_get_fs_root
2346 */
2347 root = btrfs_get_fs_root(tree_root->fs_info,
2348 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2349 if (IS_ERR(root)) {
2350 ret = PTR_ERR(root);
2351 goto out;
2352 }
2353 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2354 fs_info->data_reloc_root = root;
2355
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002356 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2357 root = btrfs_read_tree_root(tree_root, &location);
2358 if (!IS_ERR(root)) {
2359 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2360 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2361 fs_info->quota_root = root;
2362 }
2363
2364 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2365 root = btrfs_read_tree_root(tree_root, &location);
2366 if (IS_ERR(root)) {
2367 ret = PTR_ERR(root);
2368 if (ret != -ENOENT)
2369 goto out;
2370 } else {
2371 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2372 fs_info->uuid_root = root;
2373 }
2374
2375 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2376 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2377 root = btrfs_read_tree_root(tree_root, &location);
2378 if (IS_ERR(root)) {
2379 ret = PTR_ERR(root);
2380 goto out;
2381 }
2382 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2383 fs_info->free_space_root = root;
2384 }
2385
2386 return 0;
2387out:
2388 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2389 location.objectid, ret);
2390 return ret;
2391}
2392
2393/*
2394 * Real super block validation
2395 * NOTE: super csum type and incompat features will not be checked here.
2396 *
2397 * @sb: super block to check
2398 * @mirror_num: the super block number to check its bytenr:
2399 * 0 the primary (1st) sb
2400 * 1, 2 2nd and 3rd backup copy
2401 * -1 skip bytenr check
2402 */
2403static int validate_super(struct btrfs_fs_info *fs_info,
2404 struct btrfs_super_block *sb, int mirror_num)
2405{
2406 u64 nodesize = btrfs_super_nodesize(sb);
2407 u64 sectorsize = btrfs_super_sectorsize(sb);
2408 int ret = 0;
2409
2410 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2411 btrfs_err(fs_info, "no valid FS found");
2412 ret = -EINVAL;
2413 }
2414 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2415 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2416 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2417 ret = -EINVAL;
2418 }
2419 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2420 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2421 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2422 ret = -EINVAL;
2423 }
2424 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2425 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2426 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2427 ret = -EINVAL;
2428 }
2429 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2430 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2431 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2432 ret = -EINVAL;
2433 }
2434
2435 /*
2436 * Check sectorsize and nodesize first, other check will need it.
2437 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2438 */
2439 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2440 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2441 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2442 ret = -EINVAL;
2443 }
2444 /* Only PAGE SIZE is supported yet */
2445 if (sectorsize != PAGE_SIZE) {
2446 btrfs_err(fs_info,
2447 "sectorsize %llu not supported yet, only support %lu",
2448 sectorsize, PAGE_SIZE);
2449 ret = -EINVAL;
2450 }
2451 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2452 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2453 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2454 ret = -EINVAL;
2455 }
2456 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2457 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2458 le32_to_cpu(sb->__unused_leafsize), nodesize);
2459 ret = -EINVAL;
2460 }
2461
2462 /* Root alignment check */
2463 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2464 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2465 btrfs_super_root(sb));
2466 ret = -EINVAL;
2467 }
2468 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2469 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2470 btrfs_super_chunk_root(sb));
2471 ret = -EINVAL;
2472 }
2473 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2474 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2475 btrfs_super_log_root(sb));
2476 ret = -EINVAL;
2477 }
2478
Olivier Deprez0e641232021-09-23 10:07:05 +02002479 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2480 BTRFS_FSID_SIZE)) {
2481 btrfs_err(fs_info,
2482 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2483 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2484 ret = -EINVAL;
2485 }
2486
2487 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2488 memcmp(fs_info->fs_devices->metadata_uuid,
2489 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2490 btrfs_err(fs_info,
2491"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2492 fs_info->super_copy->metadata_uuid,
2493 fs_info->fs_devices->metadata_uuid);
2494 ret = -EINVAL;
2495 }
2496
David Brazdil0f672f62019-12-10 10:32:29 +00002497 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2498 BTRFS_FSID_SIZE) != 0) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002499 btrfs_err(fs_info,
David Brazdil0f672f62019-12-10 10:32:29 +00002500 "dev_item UUID does not match metadata fsid: %pU != %pU",
2501 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002502 ret = -EINVAL;
2503 }
2504
2505 /*
2506 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2507 * done later
2508 */
2509 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2510 btrfs_err(fs_info, "bytes_used is too small %llu",
2511 btrfs_super_bytes_used(sb));
2512 ret = -EINVAL;
2513 }
2514 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2515 btrfs_err(fs_info, "invalid stripesize %u",
2516 btrfs_super_stripesize(sb));
2517 ret = -EINVAL;
2518 }
2519 if (btrfs_super_num_devices(sb) > (1UL << 31))
2520 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2521 btrfs_super_num_devices(sb));
2522 if (btrfs_super_num_devices(sb) == 0) {
2523 btrfs_err(fs_info, "number of devices is 0");
2524 ret = -EINVAL;
2525 }
2526
2527 if (mirror_num >= 0 &&
2528 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2529 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2530 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2531 ret = -EINVAL;
2532 }
2533
2534 /*
2535 * Obvious sys_chunk_array corruptions, it must hold at least one key
2536 * and one chunk
2537 */
2538 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2539 btrfs_err(fs_info, "system chunk array too big %u > %u",
2540 btrfs_super_sys_array_size(sb),
2541 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2542 ret = -EINVAL;
2543 }
2544 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2545 + sizeof(struct btrfs_chunk)) {
2546 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2547 btrfs_super_sys_array_size(sb),
2548 sizeof(struct btrfs_disk_key)
2549 + sizeof(struct btrfs_chunk));
2550 ret = -EINVAL;
2551 }
2552
2553 /*
2554 * The generation is a global counter, we'll trust it more than the others
2555 * but it's still possible that it's the one that's wrong.
2556 */
2557 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2558 btrfs_warn(fs_info,
2559 "suspicious: generation < chunk_root_generation: %llu < %llu",
2560 btrfs_super_generation(sb),
2561 btrfs_super_chunk_root_generation(sb));
2562 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2563 && btrfs_super_cache_generation(sb) != (u64)-1)
2564 btrfs_warn(fs_info,
2565 "suspicious: generation < cache_generation: %llu < %llu",
2566 btrfs_super_generation(sb),
2567 btrfs_super_cache_generation(sb));
2568
2569 return ret;
2570}
2571
2572/*
2573 * Validation of super block at mount time.
2574 * Some checks already done early at mount time, like csum type and incompat
2575 * flags will be skipped.
2576 */
2577static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2578{
2579 return validate_super(fs_info, fs_info->super_copy, 0);
2580}
2581
2582/*
2583 * Validation of super block at write time.
2584 * Some checks like bytenr check will be skipped as their values will be
2585 * overwritten soon.
2586 * Extra checks like csum type and incompat flags will be done here.
2587 */
2588static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2589 struct btrfs_super_block *sb)
2590{
2591 int ret;
2592
2593 ret = validate_super(fs_info, sb, -1);
2594 if (ret < 0)
2595 goto out;
David Brazdil0f672f62019-12-10 10:32:29 +00002596 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002597 ret = -EUCLEAN;
2598 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2599 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2600 goto out;
2601 }
2602 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2603 ret = -EUCLEAN;
2604 btrfs_err(fs_info,
2605 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2606 btrfs_super_incompat_flags(sb),
2607 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2608 goto out;
2609 }
2610out:
2611 if (ret < 0)
2612 btrfs_err(fs_info,
2613 "super block corruption detected before writing it to disk");
2614 return ret;
2615}
2616
Olivier Deprez157378f2022-04-04 15:47:50 +02002617static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002618{
Olivier Deprez157378f2022-04-04 15:47:50 +02002619 int backup_index = find_newest_super_backup(fs_info);
2620 struct btrfs_super_block *sb = fs_info->super_copy;
2621 struct btrfs_root *tree_root = fs_info->tree_root;
2622 bool handle_error = false;
2623 int ret = 0;
2624 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002625
Olivier Deprez157378f2022-04-04 15:47:50 +02002626 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2627 u64 generation;
2628 int level;
2629
2630 if (handle_error) {
2631 if (!IS_ERR(tree_root->node))
2632 free_extent_buffer(tree_root->node);
2633 tree_root->node = NULL;
2634
2635 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2636 break;
2637
2638 free_root_pointers(fs_info, 0);
2639
2640 /*
2641 * Don't use the log in recovery mode, it won't be
2642 * valid
2643 */
2644 btrfs_set_super_log_root(sb, 0);
2645
2646 /* We can't trust the free space cache either */
2647 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2648
2649 ret = read_backup_root(fs_info, i);
2650 backup_index = ret;
2651 if (ret < 0)
2652 return ret;
2653 }
2654 generation = btrfs_super_generation(sb);
2655 level = btrfs_super_root_level(sb);
2656 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2657 generation, level, NULL);
2658 if (IS_ERR(tree_root->node)) {
2659 handle_error = true;
2660 ret = PTR_ERR(tree_root->node);
2661 tree_root->node = NULL;
2662 btrfs_warn(fs_info, "couldn't read tree root");
2663 continue;
2664
2665 } else if (!extent_buffer_uptodate(tree_root->node)) {
2666 handle_error = true;
2667 ret = -EIO;
2668 btrfs_warn(fs_info, "error while reading tree root");
2669 continue;
2670 }
2671
2672 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2673 tree_root->commit_root = btrfs_root_node(tree_root);
2674 btrfs_set_root_refs(&tree_root->root_item, 1);
2675
2676 /*
2677 * No need to hold btrfs_root::objectid_mutex since the fs
2678 * hasn't been fully initialised and we are the only user
2679 */
2680 ret = btrfs_find_highest_objectid(tree_root,
2681 &tree_root->highest_objectid);
2682 if (ret < 0) {
2683 handle_error = true;
2684 continue;
2685 }
2686
2687 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2688
2689 ret = btrfs_read_roots(fs_info);
2690 if (ret < 0) {
2691 handle_error = true;
2692 continue;
2693 }
2694
2695 /* All successful */
2696 fs_info->generation = generation;
2697 fs_info->last_trans_committed = generation;
2698
2699 /* Always begin writing backup roots after the one being used */
2700 if (backup_index < 0) {
2701 fs_info->backup_root_index = 0;
2702 } else {
2703 fs_info->backup_root_index = backup_index + 1;
2704 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2705 }
2706 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002707 }
2708
Olivier Deprez157378f2022-04-04 15:47:50 +02002709 return ret;
2710}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002711
Olivier Deprez157378f2022-04-04 15:47:50 +02002712void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2713{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002714 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2715 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2716 INIT_LIST_HEAD(&fs_info->trans_list);
2717 INIT_LIST_HEAD(&fs_info->dead_roots);
2718 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2719 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2720 INIT_LIST_HEAD(&fs_info->caching_block_groups);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002721 spin_lock_init(&fs_info->delalloc_root_lock);
2722 spin_lock_init(&fs_info->trans_lock);
2723 spin_lock_init(&fs_info->fs_roots_radix_lock);
2724 spin_lock_init(&fs_info->delayed_iput_lock);
2725 spin_lock_init(&fs_info->defrag_inodes_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002726 spin_lock_init(&fs_info->super_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002727 spin_lock_init(&fs_info->buffer_lock);
2728 spin_lock_init(&fs_info->unused_bgs_lock);
2729 rwlock_init(&fs_info->tree_mod_log_lock);
2730 mutex_init(&fs_info->unused_bg_unpin_mutex);
2731 mutex_init(&fs_info->delete_unused_bgs_mutex);
2732 mutex_init(&fs_info->reloc_mutex);
2733 mutex_init(&fs_info->delalloc_root_mutex);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002734 seqlock_init(&fs_info->profiles_lock);
2735
2736 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2737 INIT_LIST_HEAD(&fs_info->space_info);
2738 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2739 INIT_LIST_HEAD(&fs_info->unused_bgs);
Olivier Deprez157378f2022-04-04 15:47:50 +02002740#ifdef CONFIG_BTRFS_DEBUG
2741 INIT_LIST_HEAD(&fs_info->allocated_roots);
2742 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2743 spin_lock_init(&fs_info->eb_leak_lock);
2744#endif
David Brazdil0f672f62019-12-10 10:32:29 +00002745 extent_map_tree_init(&fs_info->mapping_tree);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002746 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2747 BTRFS_BLOCK_RSV_GLOBAL);
2748 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2749 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2750 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2751 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2752 BTRFS_BLOCK_RSV_DELOPS);
David Brazdil0f672f62019-12-10 10:32:29 +00002753 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2754 BTRFS_BLOCK_RSV_DELREFS);
2755
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002756 atomic_set(&fs_info->async_delalloc_pages, 0);
2757 atomic_set(&fs_info->defrag_running, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002758 atomic_set(&fs_info->reada_works_cnt, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00002759 atomic_set(&fs_info->nr_delayed_iputs, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002760 atomic64_set(&fs_info->tree_mod_seq, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002761 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2762 fs_info->metadata_ratio = 0;
2763 fs_info->defrag_inodes = RB_ROOT;
2764 atomic64_set(&fs_info->free_chunk_space, 0);
2765 fs_info->tree_mod_log = RB_ROOT;
2766 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2767 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2768 /* readahead state */
2769 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2770 spin_lock_init(&fs_info->reada_lock);
2771 btrfs_init_ref_verify(fs_info);
2772
2773 fs_info->thread_pool_size = min_t(unsigned long,
2774 num_online_cpus() + 2, 8);
2775
2776 INIT_LIST_HEAD(&fs_info->ordered_roots);
2777 spin_lock_init(&fs_info->ordered_root_lock);
2778
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002779 btrfs_init_scrub(fs_info);
2780#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2781 fs_info->check_integrity_print_mask = 0;
2782#endif
2783 btrfs_init_balance(fs_info);
Olivier Deprez157378f2022-04-04 15:47:50 +02002784 btrfs_init_async_reclaim_work(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002785
2786 spin_lock_init(&fs_info->block_group_cache_lock);
2787 fs_info->block_group_cache_tree = RB_ROOT;
2788 fs_info->first_logical_byte = (u64)-1;
2789
Olivier Deprez157378f2022-04-04 15:47:50 +02002790 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2791 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002792 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2793
2794 mutex_init(&fs_info->ordered_operations_mutex);
2795 mutex_init(&fs_info->tree_log_mutex);
2796 mutex_init(&fs_info->chunk_mutex);
2797 mutex_init(&fs_info->transaction_kthread_mutex);
2798 mutex_init(&fs_info->cleaner_mutex);
2799 mutex_init(&fs_info->ro_block_group_mutex);
2800 init_rwsem(&fs_info->commit_root_sem);
2801 init_rwsem(&fs_info->cleanup_work_sem);
2802 init_rwsem(&fs_info->subvol_sem);
2803 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2804
2805 btrfs_init_dev_replace_locks(fs_info);
2806 btrfs_init_qgroup(fs_info);
Olivier Deprez157378f2022-04-04 15:47:50 +02002807 btrfs_discard_init(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002808
2809 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2810 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2811
2812 init_waitqueue_head(&fs_info->transaction_throttle);
2813 init_waitqueue_head(&fs_info->transaction_wait);
2814 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2815 init_waitqueue_head(&fs_info->async_submit_wait);
David Brazdil0f672f62019-12-10 10:32:29 +00002816 init_waitqueue_head(&fs_info->delayed_iputs_wait);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002817
2818 /* Usable values until the real ones are cached from the superblock */
2819 fs_info->nodesize = 4096;
2820 fs_info->sectorsize = 4096;
2821 fs_info->stripesize = 4096;
2822
David Brazdil0f672f62019-12-10 10:32:29 +00002823 spin_lock_init(&fs_info->swapfile_pins_lock);
2824 fs_info->swapfile_pins = RB_ROOT;
2825
2826 fs_info->send_in_progress = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02002827}
David Brazdil0f672f62019-12-10 10:32:29 +00002828
Olivier Deprez157378f2022-04-04 15:47:50 +02002829static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2830{
2831 int ret;
2832
2833 fs_info->sb = sb;
2834 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2835 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2836
2837 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2838 if (ret)
2839 return ret;
2840
2841 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2842 if (ret)
2843 return ret;
2844
2845 fs_info->dirty_metadata_batch = PAGE_SIZE *
2846 (1 + ilog2(nr_cpu_ids));
2847
2848 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2849 if (ret)
2850 return ret;
2851
2852 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2853 GFP_KERNEL);
2854 if (ret)
2855 return ret;
2856
2857 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2858 GFP_KERNEL);
2859 if (!fs_info->delayed_root)
2860 return -ENOMEM;
2861 btrfs_init_delayed_root(fs_info->delayed_root);
2862
2863 return btrfs_alloc_stripe_hash_table(fs_info);
2864}
2865
2866static int btrfs_uuid_rescan_kthread(void *data)
2867{
2868 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2869 int ret;
2870
2871 /*
2872 * 1st step is to iterate through the existing UUID tree and
2873 * to delete all entries that contain outdated data.
2874 * 2nd step is to add all missing entries to the UUID tree.
2875 */
2876 ret = btrfs_uuid_tree_iterate(fs_info);
2877 if (ret < 0) {
2878 if (ret != -EINTR)
2879 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2880 ret);
2881 up(&fs_info->uuid_tree_rescan_sem);
2882 return ret;
2883 }
2884 return btrfs_uuid_scan_kthread(data);
2885}
2886
2887static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2888{
2889 struct task_struct *task;
2890
2891 down(&fs_info->uuid_tree_rescan_sem);
2892 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2893 if (IS_ERR(task)) {
2894 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2895 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2896 up(&fs_info->uuid_tree_rescan_sem);
2897 return PTR_ERR(task);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002898 }
2899
Olivier Deprez157378f2022-04-04 15:47:50 +02002900 return 0;
2901}
2902
2903int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2904 char *options)
2905{
2906 u32 sectorsize;
2907 u32 nodesize;
2908 u32 stripesize;
2909 u64 generation;
2910 u64 features;
2911 u16 csum_type;
2912 struct btrfs_super_block *disk_super;
2913 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2914 struct btrfs_root *tree_root;
2915 struct btrfs_root *chunk_root;
2916 int ret;
2917 int err = -EINVAL;
2918 int clear_free_space_tree = 0;
2919 int level;
2920
2921 ret = init_mount_fs_info(fs_info, sb);
2922 if (ret) {
2923 err = ret;
2924 goto fail;
2925 }
2926
2927 /* These need to be init'ed before we start creating inodes and such. */
2928 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2929 GFP_KERNEL);
2930 fs_info->tree_root = tree_root;
2931 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2932 GFP_KERNEL);
2933 fs_info->chunk_root = chunk_root;
2934 if (!tree_root || !chunk_root) {
2935 err = -ENOMEM;
2936 goto fail;
2937 }
2938
2939 fs_info->btree_inode = new_inode(sb);
2940 if (!fs_info->btree_inode) {
2941 err = -ENOMEM;
2942 goto fail;
2943 }
2944 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2945 btrfs_init_btree_inode(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002946
2947 invalidate_bdev(fs_devices->latest_bdev);
2948
2949 /*
2950 * Read super block and check the signature bytes only
2951 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002952 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2953 if (IS_ERR(disk_super)) {
2954 err = PTR_ERR(disk_super);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002955 goto fail_alloc;
2956 }
2957
2958 /*
Olivier Deprez0e641232021-09-23 10:07:05 +02002959 * Verify the type first, if that or the checksum value are
David Brazdil0f672f62019-12-10 10:32:29 +00002960 * corrupted, we'll find out
2961 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002962 csum_type = btrfs_super_csum_type(disk_super);
David Brazdil0f672f62019-12-10 10:32:29 +00002963 if (!btrfs_supported_super_csum(csum_type)) {
2964 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2965 csum_type);
2966 err = -EINVAL;
Olivier Deprez157378f2022-04-04 15:47:50 +02002967 btrfs_release_disk_super(disk_super);
David Brazdil0f672f62019-12-10 10:32:29 +00002968 goto fail_alloc;
2969 }
2970
2971 ret = btrfs_init_csum_hash(fs_info, csum_type);
2972 if (ret) {
2973 err = ret;
Olivier Deprez157378f2022-04-04 15:47:50 +02002974 btrfs_release_disk_super(disk_super);
David Brazdil0f672f62019-12-10 10:32:29 +00002975 goto fail_alloc;
2976 }
2977
2978 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002979 * We want to check superblock checksum, the type is stored inside.
2980 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2981 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002982 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002983 btrfs_err(fs_info, "superblock checksum mismatch");
2984 err = -EINVAL;
Olivier Deprez157378f2022-04-04 15:47:50 +02002985 btrfs_release_disk_super(disk_super);
2986 goto fail_alloc;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002987 }
2988
2989 /*
2990 * super_copy is zeroed at allocation time and we never touch the
2991 * following bytes up to INFO_SIZE, the checksum is calculated from
2992 * the whole block of INFO_SIZE
2993 */
Olivier Deprez157378f2022-04-04 15:47:50 +02002994 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2995 btrfs_release_disk_super(disk_super);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002996
David Brazdil0f672f62019-12-10 10:32:29 +00002997 disk_super = fs_info->super_copy;
2998
David Brazdil0f672f62019-12-10 10:32:29 +00002999
3000 features = btrfs_super_flags(disk_super);
3001 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3002 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3003 btrfs_set_super_flags(disk_super, features);
3004 btrfs_info(fs_info,
3005 "found metadata UUID change in progress flag, clearing");
3006 }
3007
3008 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3009 sizeof(*fs_info->super_for_commit));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003010
3011 ret = btrfs_validate_mount_super(fs_info);
3012 if (ret) {
3013 btrfs_err(fs_info, "superblock contains fatal errors");
3014 err = -EINVAL;
Olivier Deprez157378f2022-04-04 15:47:50 +02003015 goto fail_alloc;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003016 }
3017
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003018 if (!btrfs_super_root(disk_super))
Olivier Deprez157378f2022-04-04 15:47:50 +02003019 goto fail_alloc;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003020
3021 /* check FS state, whether FS is broken. */
3022 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3023 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3024
3025 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003026 * In the long term, we'll store the compression type in the super
3027 * block, and it'll be used for per file compression control.
3028 */
3029 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3030
Olivier Deprez0e641232021-09-23 10:07:05 +02003031 /*
3032 * Flag our filesystem as having big metadata blocks if they are bigger
3033 * than the page size
3034 */
3035 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3036 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3037 btrfs_info(fs_info,
3038 "flagging fs with big metadata feature");
3039 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3040 }
3041
3042 /* Set up fs_info before parsing mount options */
3043 nodesize = btrfs_super_nodesize(disk_super);
3044 sectorsize = btrfs_super_sectorsize(disk_super);
3045 stripesize = sectorsize;
3046 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3047 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3048
3049 /* Cache block sizes */
3050 fs_info->nodesize = nodesize;
3051 fs_info->sectorsize = sectorsize;
3052 fs_info->stripesize = stripesize;
3053
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003054 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3055 if (ret) {
3056 err = ret;
Olivier Deprez157378f2022-04-04 15:47:50 +02003057 goto fail_alloc;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003058 }
3059
3060 features = btrfs_super_incompat_flags(disk_super) &
3061 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3062 if (features) {
3063 btrfs_err(fs_info,
Olivier Deprez92d4c212022-12-06 15:05:30 +01003064 "cannot mount because of unsupported optional features (0x%llx)",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003065 features);
3066 err = -EINVAL;
Olivier Deprez157378f2022-04-04 15:47:50 +02003067 goto fail_alloc;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003068 }
3069
3070 features = btrfs_super_incompat_flags(disk_super);
3071 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3072 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3073 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3074 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3075 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3076
3077 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3078 btrfs_info(fs_info, "has skinny extents");
3079
3080 /*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003081 * mixed block groups end up with duplicate but slightly offset
3082 * extent buffers for the same range. It leads to corruptions
3083 */
3084 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3085 (sectorsize != nodesize)) {
3086 btrfs_err(fs_info,
3087"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3088 nodesize, sectorsize);
Olivier Deprez157378f2022-04-04 15:47:50 +02003089 goto fail_alloc;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003090 }
3091
3092 /*
3093 * Needn't use the lock because there is no other task which will
3094 * update the flag.
3095 */
3096 btrfs_set_super_incompat_flags(disk_super, features);
3097
3098 features = btrfs_super_compat_ro_flags(disk_super) &
3099 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3100 if (!sb_rdonly(sb) && features) {
3101 btrfs_err(fs_info,
Olivier Deprez92d4c212022-12-06 15:05:30 +01003102 "cannot mount read-write because of unsupported optional features (0x%llx)",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003103 features);
3104 err = -EINVAL;
Olivier Deprez157378f2022-04-04 15:47:50 +02003105 goto fail_alloc;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003106 }
Olivier Deprez92d4c212022-12-06 15:05:30 +01003107 /*
3108 * We have unsupported RO compat features, although RO mounted, we
3109 * should not cause any metadata write, including log replay.
3110 * Or we could screw up whatever the new feature requires.
3111 */
3112 if (unlikely(features && btrfs_super_log_root(disk_super) &&
3113 !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3114 btrfs_err(fs_info,
3115"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3116 features);
3117 err = -EINVAL;
3118 goto fail_alloc;
3119 }
3120
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003121
3122 ret = btrfs_init_workqueues(fs_info, fs_devices);
3123 if (ret) {
3124 err = ret;
3125 goto fail_sb_buffer;
3126 }
3127
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003128 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3129 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3130
3131 sb->s_blocksize = sectorsize;
3132 sb->s_blocksize_bits = blksize_bits(sectorsize);
David Brazdil0f672f62019-12-10 10:32:29 +00003133 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003134
3135 mutex_lock(&fs_info->chunk_mutex);
3136 ret = btrfs_read_sys_array(fs_info);
3137 mutex_unlock(&fs_info->chunk_mutex);
3138 if (ret) {
3139 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3140 goto fail_sb_buffer;
3141 }
3142
3143 generation = btrfs_super_chunk_root_generation(disk_super);
3144 level = btrfs_super_chunk_root_level(disk_super);
3145
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003146 chunk_root->node = read_tree_block(fs_info,
3147 btrfs_super_chunk_root(disk_super),
3148 generation, level, NULL);
3149 if (IS_ERR(chunk_root->node) ||
3150 !extent_buffer_uptodate(chunk_root->node)) {
3151 btrfs_err(fs_info, "failed to read chunk root");
3152 if (!IS_ERR(chunk_root->node))
3153 free_extent_buffer(chunk_root->node);
3154 chunk_root->node = NULL;
3155 goto fail_tree_roots;
3156 }
3157 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3158 chunk_root->commit_root = btrfs_root_node(chunk_root);
3159
3160 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
Olivier Deprez157378f2022-04-04 15:47:50 +02003161 offsetof(struct btrfs_header, chunk_tree_uuid),
3162 BTRFS_UUID_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003163
3164 ret = btrfs_read_chunk_tree(fs_info);
3165 if (ret) {
3166 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3167 goto fail_tree_roots;
3168 }
3169
3170 /*
3171 * Keep the devid that is marked to be the target device for the
3172 * device replace procedure
3173 */
3174 btrfs_free_extra_devids(fs_devices, 0);
3175
3176 if (!fs_devices->latest_bdev) {
3177 btrfs_err(fs_info, "failed to read devices");
3178 goto fail_tree_roots;
3179 }
3180
Olivier Deprez157378f2022-04-04 15:47:50 +02003181 ret = init_tree_roots(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003182 if (ret)
Olivier Deprez157378f2022-04-04 15:47:50 +02003183 goto fail_tree_roots;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003184
Olivier Deprez0e641232021-09-23 10:07:05 +02003185 /*
3186 * If we have a uuid root and we're not being told to rescan we need to
3187 * check the generation here so we can set the
3188 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3189 * transaction during a balance or the log replay without updating the
3190 * uuid generation, and then if we crash we would rescan the uuid tree,
3191 * even though it was perfectly fine.
3192 */
3193 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3194 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3195 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3196
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003197 ret = btrfs_verify_dev_extents(fs_info);
3198 if (ret) {
3199 btrfs_err(fs_info,
3200 "failed to verify dev extents against chunks: %d",
3201 ret);
3202 goto fail_block_groups;
3203 }
3204 ret = btrfs_recover_balance(fs_info);
3205 if (ret) {
3206 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3207 goto fail_block_groups;
3208 }
3209
3210 ret = btrfs_init_dev_stats(fs_info);
3211 if (ret) {
3212 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3213 goto fail_block_groups;
3214 }
3215
3216 ret = btrfs_init_dev_replace(fs_info);
3217 if (ret) {
3218 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3219 goto fail_block_groups;
3220 }
3221
3222 btrfs_free_extra_devids(fs_devices, 1);
3223
Olivier Deprez157378f2022-04-04 15:47:50 +02003224 ret = btrfs_sysfs_add_fsid(fs_devices);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003225 if (ret) {
3226 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3227 ret);
3228 goto fail_block_groups;
3229 }
3230
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003231 ret = btrfs_sysfs_add_mounted(fs_info);
3232 if (ret) {
3233 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3234 goto fail_fsdev_sysfs;
3235 }
3236
3237 ret = btrfs_init_space_info(fs_info);
3238 if (ret) {
3239 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3240 goto fail_sysfs;
3241 }
3242
3243 ret = btrfs_read_block_groups(fs_info);
3244 if (ret) {
3245 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3246 goto fail_sysfs;
3247 }
3248
Olivier Deprez157378f2022-04-04 15:47:50 +02003249 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3250 !btrfs_check_rw_degradable(fs_info, NULL)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003251 btrfs_warn(fs_info,
David Brazdil0f672f62019-12-10 10:32:29 +00003252 "writable mount is not allowed due to too many missing devices");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003253 goto fail_sysfs;
3254 }
3255
3256 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3257 "btrfs-cleaner");
3258 if (IS_ERR(fs_info->cleaner_kthread))
3259 goto fail_sysfs;
3260
3261 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3262 tree_root,
3263 "btrfs-transaction");
3264 if (IS_ERR(fs_info->transaction_kthread))
3265 goto fail_cleaner;
3266
3267 if (!btrfs_test_opt(fs_info, NOSSD) &&
3268 !fs_info->fs_devices->rotating) {
3269 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3270 }
3271
3272 /*
3273 * Mount does not set all options immediately, we can do it now and do
3274 * not have to wait for transaction commit
3275 */
3276 btrfs_apply_pending_changes(fs_info);
3277
3278#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3279 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3280 ret = btrfsic_mount(fs_info, fs_devices,
3281 btrfs_test_opt(fs_info,
3282 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3283 1 : 0,
3284 fs_info->check_integrity_print_mask);
3285 if (ret)
3286 btrfs_warn(fs_info,
3287 "failed to initialize integrity check module: %d",
3288 ret);
3289 }
3290#endif
3291 ret = btrfs_read_qgroup_config(fs_info);
3292 if (ret)
3293 goto fail_trans_kthread;
3294
3295 if (btrfs_build_ref_tree(fs_info))
3296 btrfs_err(fs_info, "couldn't build ref tree");
3297
3298 /* do not make disk changes in broken FS or nologreplay is given */
3299 if (btrfs_super_log_root(disk_super) != 0 &&
3300 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
Olivier Deprez0e641232021-09-23 10:07:05 +02003301 btrfs_info(fs_info, "start tree-log replay");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003302 ret = btrfs_replay_log(fs_info, fs_devices);
3303 if (ret) {
3304 err = ret;
3305 goto fail_qgroup;
3306 }
3307 }
3308
3309 ret = btrfs_find_orphan_roots(fs_info);
3310 if (ret)
3311 goto fail_qgroup;
3312
3313 if (!sb_rdonly(sb)) {
3314 ret = btrfs_cleanup_fs_roots(fs_info);
3315 if (ret)
3316 goto fail_qgroup;
3317
3318 mutex_lock(&fs_info->cleaner_mutex);
3319 ret = btrfs_recover_relocation(tree_root);
3320 mutex_unlock(&fs_info->cleaner_mutex);
3321 if (ret < 0) {
3322 btrfs_warn(fs_info, "failed to recover relocation: %d",
3323 ret);
3324 err = -EINVAL;
3325 goto fail_qgroup;
3326 }
3327 }
3328
Olivier Deprez157378f2022-04-04 15:47:50 +02003329 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003330 if (IS_ERR(fs_info->fs_root)) {
3331 err = PTR_ERR(fs_info->fs_root);
3332 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
Olivier Deprez0e641232021-09-23 10:07:05 +02003333 fs_info->fs_root = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003334 goto fail_qgroup;
3335 }
3336
3337 if (sb_rdonly(sb))
3338 return 0;
3339
3340 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3341 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3342 clear_free_space_tree = 1;
3343 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3344 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3345 btrfs_warn(fs_info, "free space tree is invalid");
3346 clear_free_space_tree = 1;
3347 }
3348
3349 if (clear_free_space_tree) {
3350 btrfs_info(fs_info, "clearing free space tree");
3351 ret = btrfs_clear_free_space_tree(fs_info);
3352 if (ret) {
3353 btrfs_warn(fs_info,
3354 "failed to clear free space tree: %d", ret);
3355 close_ctree(fs_info);
3356 return ret;
3357 }
3358 }
3359
3360 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3361 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3362 btrfs_info(fs_info, "creating free space tree");
3363 ret = btrfs_create_free_space_tree(fs_info);
3364 if (ret) {
3365 btrfs_warn(fs_info,
3366 "failed to create free space tree: %d", ret);
3367 close_ctree(fs_info);
3368 return ret;
3369 }
3370 }
3371
3372 down_read(&fs_info->cleanup_work_sem);
3373 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3374 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3375 up_read(&fs_info->cleanup_work_sem);
3376 close_ctree(fs_info);
3377 return ret;
3378 }
3379 up_read(&fs_info->cleanup_work_sem);
3380
3381 ret = btrfs_resume_balance_async(fs_info);
3382 if (ret) {
3383 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3384 close_ctree(fs_info);
3385 return ret;
3386 }
3387
3388 ret = btrfs_resume_dev_replace_async(fs_info);
3389 if (ret) {
3390 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3391 close_ctree(fs_info);
3392 return ret;
3393 }
3394
3395 btrfs_qgroup_rescan_resume(fs_info);
Olivier Deprez157378f2022-04-04 15:47:50 +02003396 btrfs_discard_resume(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003397
3398 if (!fs_info->uuid_root) {
3399 btrfs_info(fs_info, "creating UUID tree");
3400 ret = btrfs_create_uuid_tree(fs_info);
3401 if (ret) {
3402 btrfs_warn(fs_info,
3403 "failed to create the UUID tree: %d", ret);
3404 close_ctree(fs_info);
3405 return ret;
3406 }
3407 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3408 fs_info->generation !=
3409 btrfs_super_uuid_tree_generation(disk_super)) {
3410 btrfs_info(fs_info, "checking UUID tree");
3411 ret = btrfs_check_uuid_tree(fs_info);
3412 if (ret) {
3413 btrfs_warn(fs_info,
3414 "failed to check the UUID tree: %d", ret);
3415 close_ctree(fs_info);
3416 return ret;
3417 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003418 }
3419 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3420
3421 /*
3422 * backuproot only affect mount behavior, and if open_ctree succeeded,
3423 * no need to keep the flag
3424 */
3425 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3426
3427 return 0;
3428
3429fail_qgroup:
3430 btrfs_free_qgroup_config(fs_info);
3431fail_trans_kthread:
3432 kthread_stop(fs_info->transaction_kthread);
3433 btrfs_cleanup_transaction(fs_info);
3434 btrfs_free_fs_roots(fs_info);
3435fail_cleaner:
3436 kthread_stop(fs_info->cleaner_kthread);
3437
3438 /*
3439 * make sure we're done with the btree inode before we stop our
3440 * kthreads
3441 */
3442 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3443
3444fail_sysfs:
3445 btrfs_sysfs_remove_mounted(fs_info);
3446
3447fail_fsdev_sysfs:
3448 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3449
3450fail_block_groups:
3451 btrfs_put_block_group_cache(fs_info);
3452
3453fail_tree_roots:
Olivier Deprez157378f2022-04-04 15:47:50 +02003454 if (fs_info->data_reloc_root)
3455 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
Olivier Deprez0e641232021-09-23 10:07:05 +02003456 free_root_pointers(fs_info, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003457 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3458
3459fail_sb_buffer:
3460 btrfs_stop_all_workers(fs_info);
3461 btrfs_free_block_groups(fs_info);
3462fail_alloc:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003463 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3464
3465 iput(fs_info->btree_inode);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003466fail:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003467 btrfs_close_devices(fs_info->fs_devices);
3468 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003469}
3470ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3471
Olivier Deprez157378f2022-04-04 15:47:50 +02003472static void btrfs_end_super_write(struct bio *bio)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003473{
Olivier Deprez157378f2022-04-04 15:47:50 +02003474 struct btrfs_device *device = bio->bi_private;
3475 struct bio_vec *bvec;
3476 struct bvec_iter_all iter_all;
3477 struct page *page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003478
Olivier Deprez157378f2022-04-04 15:47:50 +02003479 bio_for_each_segment_all(bvec, bio, iter_all) {
3480 page = bvec->bv_page;
3481
3482 if (bio->bi_status) {
3483 btrfs_warn_rl_in_rcu(device->fs_info,
3484 "lost page write due to IO error on %s (%d)",
3485 rcu_str_deref(device->name),
3486 blk_status_to_errno(bio->bi_status));
3487 ClearPageUptodate(page);
3488 SetPageError(page);
3489 btrfs_dev_stat_inc_and_print(device,
3490 BTRFS_DEV_STAT_WRITE_ERRS);
3491 } else {
3492 SetPageUptodate(page);
3493 }
3494
3495 put_page(page);
3496 unlock_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003497 }
Olivier Deprez157378f2022-04-04 15:47:50 +02003498
3499 bio_put(bio);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003500}
3501
Olivier Deprez157378f2022-04-04 15:47:50 +02003502struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3503 int copy_num)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003504{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003505 struct btrfs_super_block *super;
Olivier Deprez157378f2022-04-04 15:47:50 +02003506 struct page *page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003507 u64 bytenr;
Olivier Deprez157378f2022-04-04 15:47:50 +02003508 struct address_space *mapping = bdev->bd_inode->i_mapping;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003509
3510 bytenr = btrfs_sb_offset(copy_num);
3511 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
Olivier Deprez157378f2022-04-04 15:47:50 +02003512 return ERR_PTR(-EINVAL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003513
Olivier Deprez157378f2022-04-04 15:47:50 +02003514 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3515 if (IS_ERR(page))
3516 return ERR_CAST(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003517
Olivier Deprez157378f2022-04-04 15:47:50 +02003518 super = page_address(page);
3519 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3520 btrfs_release_disk_super(super);
3521 return ERR_PTR(-ENODATA);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003522 }
3523
Olivier Deprez157378f2022-04-04 15:47:50 +02003524 if (btrfs_super_bytenr(super) != bytenr) {
3525 btrfs_release_disk_super(super);
3526 return ERR_PTR(-EINVAL);
3527 }
3528
3529 return super;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003530}
3531
3532
Olivier Deprez157378f2022-04-04 15:47:50 +02003533struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003534{
Olivier Deprez157378f2022-04-04 15:47:50 +02003535 struct btrfs_super_block *super, *latest = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003536 int i;
3537 u64 transid = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003538
3539 /* we would like to check all the supers, but that would make
3540 * a btrfs mount succeed after a mkfs from a different FS.
3541 * So, we need to add a special mount option to scan for
3542 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3543 */
3544 for (i = 0; i < 1; i++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003545 super = btrfs_read_dev_one_super(bdev, i);
3546 if (IS_ERR(super))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003547 continue;
3548
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003549 if (!latest || btrfs_super_generation(super) > transid) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003550 if (latest)
3551 btrfs_release_disk_super(super);
3552
3553 latest = super;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003554 transid = btrfs_super_generation(super);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003555 }
3556 }
3557
Olivier Deprez157378f2022-04-04 15:47:50 +02003558 return super;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003559}
3560
3561/*
3562 * Write superblock @sb to the @device. Do not wait for completion, all the
Olivier Deprez157378f2022-04-04 15:47:50 +02003563 * pages we use for writing are locked.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003564 *
3565 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3566 * the expected device size at commit time. Note that max_mirrors must be
3567 * same for write and wait phases.
3568 *
Olivier Deprez157378f2022-04-04 15:47:50 +02003569 * Return number of errors when page is not found or submission fails.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003570 */
3571static int write_dev_supers(struct btrfs_device *device,
3572 struct btrfs_super_block *sb, int max_mirrors)
3573{
David Brazdil0f672f62019-12-10 10:32:29 +00003574 struct btrfs_fs_info *fs_info = device->fs_info;
Olivier Deprez157378f2022-04-04 15:47:50 +02003575 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
David Brazdil0f672f62019-12-10 10:32:29 +00003576 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003577 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003578 int errors = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003579 u64 bytenr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003580
3581 if (max_mirrors == 0)
3582 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3583
David Brazdil0f672f62019-12-10 10:32:29 +00003584 shash->tfm = fs_info->csum_shash;
3585
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003586 for (i = 0; i < max_mirrors; i++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003587 struct page *page;
3588 struct bio *bio;
3589 struct btrfs_super_block *disk_super;
3590
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003591 bytenr = btrfs_sb_offset(i);
3592 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3593 device->commit_total_bytes)
3594 break;
3595
3596 btrfs_set_super_bytenr(sb, bytenr);
3597
Olivier Deprez157378f2022-04-04 15:47:50 +02003598 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3599 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3600 sb->csum);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003601
Olivier Deprez157378f2022-04-04 15:47:50 +02003602 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3603 GFP_NOFS);
3604 if (!page) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003605 btrfs_err(device->fs_info,
Olivier Deprez157378f2022-04-04 15:47:50 +02003606 "couldn't get super block page for bytenr %llu",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003607 bytenr);
3608 errors++;
3609 continue;
3610 }
3611
Olivier Deprez157378f2022-04-04 15:47:50 +02003612 /* Bump the refcount for wait_dev_supers() */
3613 get_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003614
Olivier Deprez157378f2022-04-04 15:47:50 +02003615 disk_super = page_address(page);
3616 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003617
3618 /*
Olivier Deprez157378f2022-04-04 15:47:50 +02003619 * Directly use bios here instead of relying on the page cache
3620 * to do I/O, so we don't lose the ability to do integrity
3621 * checking.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003622 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003623 bio = bio_alloc(GFP_NOFS, 1);
3624 bio_set_dev(bio, device->bdev);
3625 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3626 bio->bi_private = device;
3627 bio->bi_end_io = btrfs_end_super_write;
3628 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3629 offset_in_page(bytenr));
3630
3631 /*
3632 * We FUA only the first super block. The others we allow to
3633 * go down lazy and there's a short window where the on-disk
3634 * copies might still contain the older version.
3635 */
3636 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003637 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
Olivier Deprez157378f2022-04-04 15:47:50 +02003638 bio->bi_opf |= REQ_FUA;
3639
3640 btrfsic_submit_bio(bio);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003641 }
3642 return errors < i ? 0 : -1;
3643}
3644
3645/*
3646 * Wait for write completion of superblocks done by write_dev_supers,
3647 * @max_mirrors same for write and wait phases.
3648 *
Olivier Deprez157378f2022-04-04 15:47:50 +02003649 * Return number of errors when page is not found or not marked up to
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003650 * date.
3651 */
3652static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3653{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003654 int i;
3655 int errors = 0;
3656 bool primary_failed = false;
3657 u64 bytenr;
3658
3659 if (max_mirrors == 0)
3660 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3661
3662 for (i = 0; i < max_mirrors; i++) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003663 struct page *page;
3664
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003665 bytenr = btrfs_sb_offset(i);
3666 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3667 device->commit_total_bytes)
3668 break;
3669
Olivier Deprez157378f2022-04-04 15:47:50 +02003670 page = find_get_page(device->bdev->bd_inode->i_mapping,
3671 bytenr >> PAGE_SHIFT);
3672 if (!page) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003673 errors++;
3674 if (i == 0)
3675 primary_failed = true;
3676 continue;
3677 }
Olivier Deprez157378f2022-04-04 15:47:50 +02003678 /* Page is submitted locked and unlocked once the IO completes */
3679 wait_on_page_locked(page);
3680 if (PageError(page)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003681 errors++;
3682 if (i == 0)
3683 primary_failed = true;
3684 }
3685
Olivier Deprez157378f2022-04-04 15:47:50 +02003686 /* Drop our reference */
3687 put_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003688
Olivier Deprez157378f2022-04-04 15:47:50 +02003689 /* Drop the reference from the writing run */
3690 put_page(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003691 }
3692
3693 /* log error, force error return */
3694 if (primary_failed) {
3695 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3696 device->devid);
3697 return -1;
3698 }
3699
3700 return errors < i ? 0 : -1;
3701}
3702
3703/*
3704 * endio for the write_dev_flush, this will wake anyone waiting
3705 * for the barrier when it is done
3706 */
3707static void btrfs_end_empty_barrier(struct bio *bio)
3708{
3709 complete(bio->bi_private);
3710}
3711
3712/*
3713 * Submit a flush request to the device if it supports it. Error handling is
3714 * done in the waiting counterpart.
3715 */
3716static void write_dev_flush(struct btrfs_device *device)
3717{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003718 struct bio *bio = device->flush_bio;
3719
Olivier Deprez157378f2022-04-04 15:47:50 +02003720#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3721 /*
3722 * When a disk has write caching disabled, we skip submission of a bio
3723 * with flush and sync requests before writing the superblock, since
3724 * it's not needed. However when the integrity checker is enabled, this
3725 * results in reports that there are metadata blocks referred by a
3726 * superblock that were not properly flushed. So don't skip the bio
3727 * submission only when the integrity checker is enabled for the sake
3728 * of simplicity, since this is a debug tool and not meant for use in
3729 * non-debug builds.
3730 */
3731 struct request_queue *q = bdev_get_queue(device->bdev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003732 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3733 return;
Olivier Deprez157378f2022-04-04 15:47:50 +02003734#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003735
3736 bio_reset(bio);
3737 bio->bi_end_io = btrfs_end_empty_barrier;
3738 bio_set_dev(bio, device->bdev);
3739 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3740 init_completion(&device->flush_wait);
3741 bio->bi_private = &device->flush_wait;
3742
3743 btrfsic_submit_bio(bio);
3744 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3745}
3746
3747/*
3748 * If the flush bio has been submitted by write_dev_flush, wait for it.
3749 */
3750static blk_status_t wait_dev_flush(struct btrfs_device *device)
3751{
3752 struct bio *bio = device->flush_bio;
3753
3754 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3755 return BLK_STS_OK;
3756
3757 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3758 wait_for_completion_io(&device->flush_wait);
3759
3760 return bio->bi_status;
3761}
3762
3763static int check_barrier_error(struct btrfs_fs_info *fs_info)
3764{
3765 if (!btrfs_check_rw_degradable(fs_info, NULL))
3766 return -EIO;
3767 return 0;
3768}
3769
3770/*
3771 * send an empty flush down to each device in parallel,
3772 * then wait for them
3773 */
3774static int barrier_all_devices(struct btrfs_fs_info *info)
3775{
3776 struct list_head *head;
3777 struct btrfs_device *dev;
3778 int errors_wait = 0;
3779 blk_status_t ret;
3780
3781 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3782 /* send down all the barriers */
3783 head = &info->fs_devices->devices;
3784 list_for_each_entry(dev, head, dev_list) {
3785 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3786 continue;
3787 if (!dev->bdev)
3788 continue;
3789 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3790 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3791 continue;
3792
3793 write_dev_flush(dev);
3794 dev->last_flush_error = BLK_STS_OK;
3795 }
3796
3797 /* wait for all the barriers */
3798 list_for_each_entry(dev, head, dev_list) {
3799 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3800 continue;
3801 if (!dev->bdev) {
3802 errors_wait++;
3803 continue;
3804 }
3805 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3806 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3807 continue;
3808
3809 ret = wait_dev_flush(dev);
3810 if (ret) {
3811 dev->last_flush_error = ret;
3812 btrfs_dev_stat_inc_and_print(dev,
3813 BTRFS_DEV_STAT_FLUSH_ERRS);
3814 errors_wait++;
3815 }
3816 }
3817
3818 if (errors_wait) {
3819 /*
3820 * At some point we need the status of all disks
3821 * to arrive at the volume status. So error checking
3822 * is being pushed to a separate loop.
3823 */
3824 return check_barrier_error(info);
3825 }
3826 return 0;
3827}
3828
3829int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3830{
3831 int raid_type;
3832 int min_tolerated = INT_MAX;
3833
3834 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3835 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
David Brazdil0f672f62019-12-10 10:32:29 +00003836 min_tolerated = min_t(int, min_tolerated,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003837 btrfs_raid_array[BTRFS_RAID_SINGLE].
3838 tolerated_failures);
3839
3840 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3841 if (raid_type == BTRFS_RAID_SINGLE)
3842 continue;
3843 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3844 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00003845 min_tolerated = min_t(int, min_tolerated,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003846 btrfs_raid_array[raid_type].
3847 tolerated_failures);
3848 }
3849
3850 if (min_tolerated == INT_MAX) {
3851 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3852 min_tolerated = 0;
3853 }
3854
3855 return min_tolerated;
3856}
3857
3858int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3859{
3860 struct list_head *head;
3861 struct btrfs_device *dev;
3862 struct btrfs_super_block *sb;
3863 struct btrfs_dev_item *dev_item;
3864 int ret;
3865 int do_barriers;
3866 int max_errors;
3867 int total_errors = 0;
3868 u64 flags;
3869
3870 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3871
3872 /*
3873 * max_mirrors == 0 indicates we're from commit_transaction,
3874 * not from fsync where the tree roots in fs_info have not
3875 * been consistent on disk.
3876 */
3877 if (max_mirrors == 0)
3878 backup_super_roots(fs_info);
3879
3880 sb = fs_info->super_for_commit;
3881 dev_item = &sb->dev_item;
3882
3883 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3884 head = &fs_info->fs_devices->devices;
3885 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3886
3887 if (do_barriers) {
3888 ret = barrier_all_devices(fs_info);
3889 if (ret) {
3890 mutex_unlock(
3891 &fs_info->fs_devices->device_list_mutex);
3892 btrfs_handle_fs_error(fs_info, ret,
3893 "errors while submitting device barriers.");
3894 return ret;
3895 }
3896 }
3897
3898 list_for_each_entry(dev, head, dev_list) {
3899 if (!dev->bdev) {
3900 total_errors++;
3901 continue;
3902 }
3903 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3904 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3905 continue;
3906
3907 btrfs_set_stack_device_generation(dev_item, 0);
3908 btrfs_set_stack_device_type(dev_item, dev->type);
3909 btrfs_set_stack_device_id(dev_item, dev->devid);
3910 btrfs_set_stack_device_total_bytes(dev_item,
3911 dev->commit_total_bytes);
3912 btrfs_set_stack_device_bytes_used(dev_item,
3913 dev->commit_bytes_used);
3914 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3915 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3916 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3917 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
David Brazdil0f672f62019-12-10 10:32:29 +00003918 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3919 BTRFS_FSID_SIZE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003920
3921 flags = btrfs_super_flags(sb);
3922 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3923
3924 ret = btrfs_validate_write_super(fs_info, sb);
3925 if (ret < 0) {
3926 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3927 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3928 "unexpected superblock corruption detected");
3929 return -EUCLEAN;
3930 }
3931
3932 ret = write_dev_supers(dev, sb, max_mirrors);
3933 if (ret)
3934 total_errors++;
3935 }
3936 if (total_errors > max_errors) {
3937 btrfs_err(fs_info, "%d errors while writing supers",
3938 total_errors);
3939 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3940
3941 /* FUA is masked off if unsupported and can't be the reason */
3942 btrfs_handle_fs_error(fs_info, -EIO,
3943 "%d errors while writing supers",
3944 total_errors);
3945 return -EIO;
3946 }
3947
3948 total_errors = 0;
3949 list_for_each_entry(dev, head, dev_list) {
3950 if (!dev->bdev)
3951 continue;
3952 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3953 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3954 continue;
3955
3956 ret = wait_dev_supers(dev, max_mirrors);
3957 if (ret)
3958 total_errors++;
3959 }
3960 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3961 if (total_errors > max_errors) {
3962 btrfs_handle_fs_error(fs_info, -EIO,
3963 "%d errors while writing supers",
3964 total_errors);
3965 return -EIO;
3966 }
3967 return 0;
3968}
3969
3970/* Drop a fs root from the radix tree and free it. */
3971void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3972 struct btrfs_root *root)
3973{
Olivier Deprez157378f2022-04-04 15:47:50 +02003974 bool drop_ref = false;
3975
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003976 spin_lock(&fs_info->fs_roots_radix_lock);
3977 radix_tree_delete(&fs_info->fs_roots_radix,
3978 (unsigned long)root->root_key.objectid);
Olivier Deprez157378f2022-04-04 15:47:50 +02003979 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3980 drop_ref = true;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003981 spin_unlock(&fs_info->fs_roots_radix_lock);
3982
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003983 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003984 ASSERT(root->log_root == NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003985 if (root->reloc_root) {
Olivier Deprez157378f2022-04-04 15:47:50 +02003986 btrfs_put_root(root->reloc_root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003987 root->reloc_root = NULL;
3988 }
3989 }
3990
3991 if (root->free_ino_pinned)
3992 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3993 if (root->free_ino_ctl)
3994 __btrfs_remove_free_space_cache(root->free_ino_ctl);
Olivier Deprez157378f2022-04-04 15:47:50 +02003995 if (root->ino_cache_inode) {
3996 iput(root->ino_cache_inode);
3997 root->ino_cache_inode = NULL;
3998 }
3999 if (drop_ref)
4000 btrfs_put_root(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004001}
4002
4003int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4004{
4005 u64 root_objectid = 0;
4006 struct btrfs_root *gang[8];
4007 int i = 0;
4008 int err = 0;
4009 unsigned int ret = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004010
4011 while (1) {
Olivier Deprez157378f2022-04-04 15:47:50 +02004012 spin_lock(&fs_info->fs_roots_radix_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004013 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4014 (void **)gang, root_objectid,
4015 ARRAY_SIZE(gang));
4016 if (!ret) {
Olivier Deprez157378f2022-04-04 15:47:50 +02004017 spin_unlock(&fs_info->fs_roots_radix_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004018 break;
4019 }
4020 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4021
4022 for (i = 0; i < ret; i++) {
4023 /* Avoid to grab roots in dead_roots */
4024 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4025 gang[i] = NULL;
4026 continue;
4027 }
4028 /* grab all the search result for later use */
Olivier Deprez157378f2022-04-04 15:47:50 +02004029 gang[i] = btrfs_grab_root(gang[i]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004030 }
Olivier Deprez157378f2022-04-04 15:47:50 +02004031 spin_unlock(&fs_info->fs_roots_radix_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004032
4033 for (i = 0; i < ret; i++) {
4034 if (!gang[i])
4035 continue;
4036 root_objectid = gang[i]->root_key.objectid;
4037 err = btrfs_orphan_cleanup(gang[i]);
4038 if (err)
4039 break;
Olivier Deprez157378f2022-04-04 15:47:50 +02004040 btrfs_put_root(gang[i]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004041 }
4042 root_objectid++;
4043 }
4044
4045 /* release the uncleaned roots due to error */
4046 for (; i < ret; i++) {
4047 if (gang[i])
Olivier Deprez157378f2022-04-04 15:47:50 +02004048 btrfs_put_root(gang[i]);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004049 }
4050 return err;
4051}
4052
4053int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4054{
4055 struct btrfs_root *root = fs_info->tree_root;
4056 struct btrfs_trans_handle *trans;
4057
4058 mutex_lock(&fs_info->cleaner_mutex);
4059 btrfs_run_delayed_iputs(fs_info);
4060 mutex_unlock(&fs_info->cleaner_mutex);
4061 wake_up_process(fs_info->cleaner_kthread);
4062
4063 /* wait until ongoing cleanup work done */
4064 down_write(&fs_info->cleanup_work_sem);
4065 up_write(&fs_info->cleanup_work_sem);
4066
4067 trans = btrfs_join_transaction(root);
4068 if (IS_ERR(trans))
4069 return PTR_ERR(trans);
4070 return btrfs_commit_transaction(trans);
4071}
4072
Olivier Deprez157378f2022-04-04 15:47:50 +02004073void __cold close_ctree(struct btrfs_fs_info *fs_info)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004074{
4075 int ret;
4076
4077 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4078 /*
4079 * We don't want the cleaner to start new transactions, add more delayed
4080 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4081 * because that frees the task_struct, and the transaction kthread might
4082 * still try to wake up the cleaner.
4083 */
4084 kthread_park(fs_info->cleaner_kthread);
4085
4086 /* wait for the qgroup rescan worker to stop */
4087 btrfs_qgroup_wait_for_completion(fs_info, false);
4088
4089 /* wait for the uuid_scan task to finish */
4090 down(&fs_info->uuid_tree_rescan_sem);
4091 /* avoid complains from lockdep et al., set sem back to initial state */
4092 up(&fs_info->uuid_tree_rescan_sem);
4093
4094 /* pause restriper - we want to resume on mount */
4095 btrfs_pause_balance(fs_info);
4096
4097 btrfs_dev_replace_suspend_for_unmount(fs_info);
4098
4099 btrfs_scrub_cancel(fs_info);
4100
4101 /* wait for any defraggers to finish */
4102 wait_event(fs_info->transaction_wait,
4103 (atomic_read(&fs_info->defrag_running) == 0));
4104
4105 /* clear out the rbtree of defraggable inodes */
4106 btrfs_cleanup_defrag_inodes(fs_info);
4107
Olivier Deprez92d4c212022-12-06 15:05:30 +01004108 /*
4109 * After we parked the cleaner kthread, ordered extents may have
4110 * completed and created new delayed iputs. If one of the async reclaim
4111 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4112 * can hang forever trying to stop it, because if a delayed iput is
4113 * added after it ran btrfs_run_delayed_iputs() and before it called
4114 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4115 * no one else to run iputs.
4116 *
4117 * So wait for all ongoing ordered extents to complete and then run
4118 * delayed iputs. This works because once we reach this point no one
4119 * can either create new ordered extents nor create delayed iputs
4120 * through some other means.
4121 *
4122 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4123 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4124 * but the delayed iput for the respective inode is made only when doing
4125 * the final btrfs_put_ordered_extent() (which must happen at
4126 * btrfs_finish_ordered_io() when we are unmounting).
4127 */
4128 btrfs_flush_workqueue(fs_info->endio_write_workers);
4129 /* Ordered extents for free space inodes. */
4130 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4131 btrfs_run_delayed_iputs(fs_info);
4132
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004133 cancel_work_sync(&fs_info->async_reclaim_work);
Olivier Deprez157378f2022-04-04 15:47:50 +02004134 cancel_work_sync(&fs_info->async_data_reclaim_work);
4135
4136 /* Cancel or finish ongoing discard work */
4137 btrfs_discard_cleanup(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004138
4139 if (!sb_rdonly(fs_info->sb)) {
4140 /*
4141 * The cleaner kthread is stopped, so do one final pass over
4142 * unused block groups.
4143 */
4144 btrfs_delete_unused_bgs(fs_info);
4145
Olivier Deprez0e641232021-09-23 10:07:05 +02004146 /*
4147 * There might be existing delayed inode workers still running
4148 * and holding an empty delayed inode item. We must wait for
4149 * them to complete first because they can create a transaction.
4150 * This happens when someone calls btrfs_balance_delayed_items()
4151 * and then a transaction commit runs the same delayed nodes
4152 * before any delayed worker has done something with the nodes.
4153 * We must wait for any worker here and not at transaction
4154 * commit time since that could cause a deadlock.
4155 * This is a very rare case.
4156 */
4157 btrfs_flush_workqueue(fs_info->delayed_workers);
4158
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004159 ret = btrfs_commit_super(fs_info);
4160 if (ret)
4161 btrfs_err(fs_info, "commit super ret %d", ret);
4162 }
4163
4164 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4165 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4166 btrfs_error_commit_super(fs_info);
4167
4168 kthread_stop(fs_info->transaction_kthread);
4169 kthread_stop(fs_info->cleaner_kthread);
4170
David Brazdil0f672f62019-12-10 10:32:29 +00004171 ASSERT(list_empty(&fs_info->delayed_iputs));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004172 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4173
Olivier Deprez157378f2022-04-04 15:47:50 +02004174 if (btrfs_check_quota_leak(fs_info)) {
4175 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4176 btrfs_err(fs_info, "qgroup reserved space leaked");
4177 }
4178
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004179 btrfs_free_qgroup_config(fs_info);
4180 ASSERT(list_empty(&fs_info->delalloc_roots));
4181
4182 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4183 btrfs_info(fs_info, "at unmount delalloc count %lld",
4184 percpu_counter_sum(&fs_info->delalloc_bytes));
4185 }
4186
David Brazdil0f672f62019-12-10 10:32:29 +00004187 if (percpu_counter_sum(&fs_info->dio_bytes))
4188 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4189 percpu_counter_sum(&fs_info->dio_bytes));
4190
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004191 btrfs_sysfs_remove_mounted(fs_info);
4192 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4193
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004194 btrfs_put_block_group_cache(fs_info);
4195
4196 /*
4197 * we must make sure there is not any read request to
4198 * submit after we stopping all workers.
4199 */
4200 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4201 btrfs_stop_all_workers(fs_info);
4202
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004203 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
Olivier Deprez0e641232021-09-23 10:07:05 +02004204 free_root_pointers(fs_info, true);
Olivier Deprez157378f2022-04-04 15:47:50 +02004205 btrfs_free_fs_roots(fs_info);
Olivier Deprez0e641232021-09-23 10:07:05 +02004206
4207 /*
4208 * We must free the block groups after dropping the fs_roots as we could
4209 * have had an IO error and have left over tree log blocks that aren't
4210 * cleaned up until the fs roots are freed. This makes the block group
4211 * accounting appear to be wrong because there's pending reserved bytes,
4212 * so make sure we do the block group cleanup afterwards.
4213 */
4214 btrfs_free_block_groups(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004215
4216 iput(fs_info->btree_inode);
4217
4218#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4219 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4220 btrfsic_unmount(fs_info->fs_devices);
4221#endif
4222
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004223 btrfs_mapping_tree_free(&fs_info->mapping_tree);
David Brazdil0f672f62019-12-10 10:32:29 +00004224 btrfs_close_devices(fs_info->fs_devices);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004225}
4226
4227int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4228 int atomic)
4229{
4230 int ret;
4231 struct inode *btree_inode = buf->pages[0]->mapping->host;
4232
4233 ret = extent_buffer_uptodate(buf);
4234 if (!ret)
4235 return ret;
4236
4237 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4238 parent_transid, atomic);
4239 if (ret == -EAGAIN)
4240 return ret;
4241 return !ret;
4242}
4243
4244void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4245{
4246 struct btrfs_fs_info *fs_info;
4247 struct btrfs_root *root;
4248 u64 transid = btrfs_header_generation(buf);
4249 int was_dirty;
4250
4251#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4252 /*
4253 * This is a fast path so only do this check if we have sanity tests
David Brazdil0f672f62019-12-10 10:32:29 +00004254 * enabled. Normal people shouldn't be using unmapped buffers as dirty
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004255 * outside of the sanity tests.
4256 */
4257 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4258 return;
4259#endif
4260 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4261 fs_info = root->fs_info;
4262 btrfs_assert_tree_locked(buf);
4263 if (transid != fs_info->generation)
4264 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4265 buf->start, transid, fs_info->generation);
4266 was_dirty = set_extent_buffer_dirty(buf);
4267 if (!was_dirty)
4268 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4269 buf->len,
4270 fs_info->dirty_metadata_batch);
4271#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4272 /*
4273 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4274 * but item data not updated.
4275 * So here we should only check item pointers, not item data.
4276 */
4277 if (btrfs_header_level(buf) == 0 &&
David Brazdil0f672f62019-12-10 10:32:29 +00004278 btrfs_check_leaf_relaxed(buf)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004279 btrfs_print_leaf(buf);
4280 ASSERT(0);
4281 }
4282#endif
4283}
4284
4285static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4286 int flush_delayed)
4287{
4288 /*
4289 * looks as though older kernels can get into trouble with
4290 * this code, they end up stuck in balance_dirty_pages forever
4291 */
4292 int ret;
4293
4294 if (current->flags & PF_MEMALLOC)
4295 return;
4296
4297 if (flush_delayed)
4298 btrfs_balance_delayed_items(fs_info);
4299
4300 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4301 BTRFS_DIRTY_METADATA_THRESH,
4302 fs_info->dirty_metadata_batch);
4303 if (ret > 0) {
4304 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4305 }
4306}
4307
4308void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4309{
4310 __btrfs_btree_balance_dirty(fs_info, 1);
4311}
4312
4313void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4314{
4315 __btrfs_btree_balance_dirty(fs_info, 0);
4316}
4317
4318int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4319 struct btrfs_key *first_key)
4320{
David Brazdil0f672f62019-12-10 10:32:29 +00004321 return btree_read_extent_buffer_pages(buf, parent_transid,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004322 level, first_key);
4323}
4324
4325static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4326{
4327 /* cleanup FS via transaction */
4328 btrfs_cleanup_transaction(fs_info);
4329
4330 mutex_lock(&fs_info->cleaner_mutex);
4331 btrfs_run_delayed_iputs(fs_info);
4332 mutex_unlock(&fs_info->cleaner_mutex);
4333
4334 down_write(&fs_info->cleanup_work_sem);
4335 up_write(&fs_info->cleanup_work_sem);
4336}
4337
Olivier Deprez157378f2022-04-04 15:47:50 +02004338static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4339{
4340 struct btrfs_root *gang[8];
4341 u64 root_objectid = 0;
4342 int ret;
4343
4344 spin_lock(&fs_info->fs_roots_radix_lock);
4345 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4346 (void **)gang, root_objectid,
4347 ARRAY_SIZE(gang))) != 0) {
4348 int i;
4349
4350 for (i = 0; i < ret; i++)
4351 gang[i] = btrfs_grab_root(gang[i]);
4352 spin_unlock(&fs_info->fs_roots_radix_lock);
4353
4354 for (i = 0; i < ret; i++) {
4355 if (!gang[i])
4356 continue;
4357 root_objectid = gang[i]->root_key.objectid;
4358 btrfs_free_log(NULL, gang[i]);
4359 btrfs_put_root(gang[i]);
4360 }
4361 root_objectid++;
4362 spin_lock(&fs_info->fs_roots_radix_lock);
4363 }
4364 spin_unlock(&fs_info->fs_roots_radix_lock);
4365 btrfs_free_log_root_tree(NULL, fs_info);
4366}
4367
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004368static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4369{
4370 struct btrfs_ordered_extent *ordered;
4371
4372 spin_lock(&root->ordered_extent_lock);
4373 /*
4374 * This will just short circuit the ordered completion stuff which will
4375 * make sure the ordered extent gets properly cleaned up.
4376 */
4377 list_for_each_entry(ordered, &root->ordered_extents,
4378 root_extent_list)
4379 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4380 spin_unlock(&root->ordered_extent_lock);
4381}
4382
4383static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4384{
4385 struct btrfs_root *root;
4386 struct list_head splice;
4387
4388 INIT_LIST_HEAD(&splice);
4389
4390 spin_lock(&fs_info->ordered_root_lock);
4391 list_splice_init(&fs_info->ordered_roots, &splice);
4392 while (!list_empty(&splice)) {
4393 root = list_first_entry(&splice, struct btrfs_root,
4394 ordered_root);
4395 list_move_tail(&root->ordered_root,
4396 &fs_info->ordered_roots);
4397
4398 spin_unlock(&fs_info->ordered_root_lock);
4399 btrfs_destroy_ordered_extents(root);
4400
4401 cond_resched();
4402 spin_lock(&fs_info->ordered_root_lock);
4403 }
4404 spin_unlock(&fs_info->ordered_root_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00004405
4406 /*
4407 * We need this here because if we've been flipped read-only we won't
4408 * get sync() from the umount, so we need to make sure any ordered
4409 * extents that haven't had their dirty pages IO start writeout yet
4410 * actually get run and error out properly.
4411 */
4412 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004413}
4414
4415static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4416 struct btrfs_fs_info *fs_info)
4417{
4418 struct rb_node *node;
4419 struct btrfs_delayed_ref_root *delayed_refs;
4420 struct btrfs_delayed_ref_node *ref;
4421 int ret = 0;
4422
4423 delayed_refs = &trans->delayed_refs;
4424
4425 spin_lock(&delayed_refs->lock);
4426 if (atomic_read(&delayed_refs->num_entries) == 0) {
4427 spin_unlock(&delayed_refs->lock);
Olivier Deprez157378f2022-04-04 15:47:50 +02004428 btrfs_debug(fs_info, "delayed_refs has NO entry");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004429 return ret;
4430 }
4431
David Brazdil0f672f62019-12-10 10:32:29 +00004432 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004433 struct btrfs_delayed_ref_head *head;
4434 struct rb_node *n;
4435 bool pin_bytes = false;
4436
4437 head = rb_entry(node, struct btrfs_delayed_ref_head,
4438 href_node);
David Brazdil0f672f62019-12-10 10:32:29 +00004439 if (btrfs_delayed_ref_lock(delayed_refs, head))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004440 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00004441
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004442 spin_lock(&head->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00004443 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004444 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4445 ref_node);
4446 ref->in_tree = 0;
David Brazdil0f672f62019-12-10 10:32:29 +00004447 rb_erase_cached(&ref->ref_node, &head->ref_tree);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004448 RB_CLEAR_NODE(&ref->ref_node);
4449 if (!list_empty(&ref->add_list))
4450 list_del(&ref->add_list);
4451 atomic_dec(&delayed_refs->num_entries);
4452 btrfs_put_delayed_ref(ref);
4453 }
4454 if (head->must_insert_reserved)
4455 pin_bytes = true;
4456 btrfs_free_delayed_extent_op(head->extent_op);
David Brazdil0f672f62019-12-10 10:32:29 +00004457 btrfs_delete_ref_head(delayed_refs, head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004458 spin_unlock(&head->lock);
4459 spin_unlock(&delayed_refs->lock);
4460 mutex_unlock(&head->mutex);
4461
Olivier Deprez157378f2022-04-04 15:47:50 +02004462 if (pin_bytes) {
4463 struct btrfs_block_group *cache;
4464
4465 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4466 BUG_ON(!cache);
4467
4468 spin_lock(&cache->space_info->lock);
4469 spin_lock(&cache->lock);
4470 cache->pinned += head->num_bytes;
4471 btrfs_space_info_update_bytes_pinned(fs_info,
4472 cache->space_info, head->num_bytes);
4473 cache->reserved -= head->num_bytes;
4474 cache->space_info->bytes_reserved -= head->num_bytes;
4475 spin_unlock(&cache->lock);
4476 spin_unlock(&cache->space_info->lock);
4477 percpu_counter_add_batch(
4478 &cache->space_info->total_bytes_pinned,
4479 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4480
4481 btrfs_put_block_group(cache);
4482
4483 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4484 head->bytenr + head->num_bytes - 1);
4485 }
David Brazdil0f672f62019-12-10 10:32:29 +00004486 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004487 btrfs_put_delayed_ref_head(head);
4488 cond_resched();
4489 spin_lock(&delayed_refs->lock);
4490 }
Olivier Deprez0e641232021-09-23 10:07:05 +02004491 btrfs_qgroup_destroy_extent_records(trans);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004492
4493 spin_unlock(&delayed_refs->lock);
4494
4495 return ret;
4496}
4497
4498static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4499{
4500 struct btrfs_inode *btrfs_inode;
4501 struct list_head splice;
4502
4503 INIT_LIST_HEAD(&splice);
4504
4505 spin_lock(&root->delalloc_lock);
4506 list_splice_init(&root->delalloc_inodes, &splice);
4507
4508 while (!list_empty(&splice)) {
4509 struct inode *inode = NULL;
4510 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4511 delalloc_inodes);
4512 __btrfs_del_delalloc_inode(root, btrfs_inode);
4513 spin_unlock(&root->delalloc_lock);
4514
4515 /*
4516 * Make sure we get a live inode and that it'll not disappear
4517 * meanwhile.
4518 */
4519 inode = igrab(&btrfs_inode->vfs_inode);
4520 if (inode) {
4521 invalidate_inode_pages2(inode->i_mapping);
4522 iput(inode);
4523 }
4524 spin_lock(&root->delalloc_lock);
4525 }
4526 spin_unlock(&root->delalloc_lock);
4527}
4528
4529static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4530{
4531 struct btrfs_root *root;
4532 struct list_head splice;
4533
4534 INIT_LIST_HEAD(&splice);
4535
4536 spin_lock(&fs_info->delalloc_root_lock);
4537 list_splice_init(&fs_info->delalloc_roots, &splice);
4538 while (!list_empty(&splice)) {
4539 root = list_first_entry(&splice, struct btrfs_root,
4540 delalloc_root);
Olivier Deprez157378f2022-04-04 15:47:50 +02004541 root = btrfs_grab_root(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004542 BUG_ON(!root);
4543 spin_unlock(&fs_info->delalloc_root_lock);
4544
4545 btrfs_destroy_delalloc_inodes(root);
Olivier Deprez157378f2022-04-04 15:47:50 +02004546 btrfs_put_root(root);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004547
4548 spin_lock(&fs_info->delalloc_root_lock);
4549 }
4550 spin_unlock(&fs_info->delalloc_root_lock);
4551}
4552
4553static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4554 struct extent_io_tree *dirty_pages,
4555 int mark)
4556{
4557 int ret;
4558 struct extent_buffer *eb;
4559 u64 start = 0;
4560 u64 end;
4561
4562 while (1) {
4563 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4564 mark, NULL);
4565 if (ret)
4566 break;
4567
4568 clear_extent_bits(dirty_pages, start, end, mark);
4569 while (start <= end) {
4570 eb = find_extent_buffer(fs_info, start);
4571 start += fs_info->nodesize;
4572 if (!eb)
4573 continue;
4574 wait_on_extent_buffer_writeback(eb);
4575
4576 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4577 &eb->bflags))
4578 clear_extent_buffer_dirty(eb);
4579 free_extent_buffer_stale(eb);
4580 }
4581 }
4582
4583 return ret;
4584}
4585
4586static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
Olivier Deprez157378f2022-04-04 15:47:50 +02004587 struct extent_io_tree *unpin)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004588{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004589 u64 start;
4590 u64 end;
4591 int ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004592
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004593 while (1) {
David Brazdil0f672f62019-12-10 10:32:29 +00004594 struct extent_state *cached_state = NULL;
4595
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004596 /*
4597 * The btrfs_finish_extent_commit() may get the same range as
4598 * ours between find_first_extent_bit and clear_extent_dirty.
4599 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4600 * the same extent range.
4601 */
4602 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4603 ret = find_first_extent_bit(unpin, 0, &start, &end,
David Brazdil0f672f62019-12-10 10:32:29 +00004604 EXTENT_DIRTY, &cached_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004605 if (ret) {
4606 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4607 break;
4608 }
4609
David Brazdil0f672f62019-12-10 10:32:29 +00004610 clear_extent_dirty(unpin, start, end, &cached_state);
4611 free_extent_state(cached_state);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004612 btrfs_error_unpin_extent_range(fs_info, start, end);
4613 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4614 cond_resched();
4615 }
4616
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004617 return 0;
4618}
4619
Olivier Deprez157378f2022-04-04 15:47:50 +02004620static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004621{
4622 struct inode *inode;
4623
4624 inode = cache->io_ctl.inode;
4625 if (inode) {
4626 invalidate_inode_pages2(inode->i_mapping);
4627 BTRFS_I(inode)->generation = 0;
4628 cache->io_ctl.inode = NULL;
4629 iput(inode);
4630 }
Olivier Deprez0e641232021-09-23 10:07:05 +02004631 ASSERT(cache->io_ctl.pages == NULL);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004632 btrfs_put_block_group(cache);
4633}
4634
4635void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4636 struct btrfs_fs_info *fs_info)
4637{
Olivier Deprez157378f2022-04-04 15:47:50 +02004638 struct btrfs_block_group *cache;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004639
4640 spin_lock(&cur_trans->dirty_bgs_lock);
4641 while (!list_empty(&cur_trans->dirty_bgs)) {
4642 cache = list_first_entry(&cur_trans->dirty_bgs,
Olivier Deprez157378f2022-04-04 15:47:50 +02004643 struct btrfs_block_group,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004644 dirty_list);
4645
4646 if (!list_empty(&cache->io_list)) {
4647 spin_unlock(&cur_trans->dirty_bgs_lock);
4648 list_del_init(&cache->io_list);
4649 btrfs_cleanup_bg_io(cache);
4650 spin_lock(&cur_trans->dirty_bgs_lock);
4651 }
4652
4653 list_del_init(&cache->dirty_list);
4654 spin_lock(&cache->lock);
4655 cache->disk_cache_state = BTRFS_DC_ERROR;
4656 spin_unlock(&cache->lock);
4657
4658 spin_unlock(&cur_trans->dirty_bgs_lock);
4659 btrfs_put_block_group(cache);
David Brazdil0f672f62019-12-10 10:32:29 +00004660 btrfs_delayed_refs_rsv_release(fs_info, 1);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004661 spin_lock(&cur_trans->dirty_bgs_lock);
4662 }
4663 spin_unlock(&cur_trans->dirty_bgs_lock);
4664
4665 /*
4666 * Refer to the definition of io_bgs member for details why it's safe
4667 * to use it without any locking
4668 */
4669 while (!list_empty(&cur_trans->io_bgs)) {
4670 cache = list_first_entry(&cur_trans->io_bgs,
Olivier Deprez157378f2022-04-04 15:47:50 +02004671 struct btrfs_block_group,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004672 io_list);
4673
4674 list_del_init(&cache->io_list);
4675 spin_lock(&cache->lock);
4676 cache->disk_cache_state = BTRFS_DC_ERROR;
4677 spin_unlock(&cache->lock);
4678 btrfs_cleanup_bg_io(cache);
4679 }
4680}
4681
4682void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4683 struct btrfs_fs_info *fs_info)
4684{
David Brazdil0f672f62019-12-10 10:32:29 +00004685 struct btrfs_device *dev, *tmp;
4686
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004687 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4688 ASSERT(list_empty(&cur_trans->dirty_bgs));
4689 ASSERT(list_empty(&cur_trans->io_bgs));
4690
David Brazdil0f672f62019-12-10 10:32:29 +00004691 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4692 post_commit_list) {
4693 list_del_init(&dev->post_commit_list);
4694 }
4695
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004696 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4697
4698 cur_trans->state = TRANS_STATE_COMMIT_START;
4699 wake_up(&fs_info->transaction_blocked_wait);
4700
4701 cur_trans->state = TRANS_STATE_UNBLOCKED;
4702 wake_up(&fs_info->transaction_wait);
4703
4704 btrfs_destroy_delayed_inodes(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004705
4706 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4707 EXTENT_DIRTY);
Olivier Deprez157378f2022-04-04 15:47:50 +02004708 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004709
4710 cur_trans->state =TRANS_STATE_COMPLETED;
4711 wake_up(&cur_trans->commit_wait);
4712}
4713
4714static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4715{
4716 struct btrfs_transaction *t;
4717
4718 mutex_lock(&fs_info->transaction_kthread_mutex);
4719
4720 spin_lock(&fs_info->trans_lock);
4721 while (!list_empty(&fs_info->trans_list)) {
4722 t = list_first_entry(&fs_info->trans_list,
4723 struct btrfs_transaction, list);
4724 if (t->state >= TRANS_STATE_COMMIT_START) {
4725 refcount_inc(&t->use_count);
4726 spin_unlock(&fs_info->trans_lock);
4727 btrfs_wait_for_commit(fs_info, t->transid);
4728 btrfs_put_transaction(t);
4729 spin_lock(&fs_info->trans_lock);
4730 continue;
4731 }
4732 if (t == fs_info->running_transaction) {
4733 t->state = TRANS_STATE_COMMIT_DOING;
4734 spin_unlock(&fs_info->trans_lock);
4735 /*
4736 * We wait for 0 num_writers since we don't hold a trans
4737 * handle open currently for this transaction.
4738 */
4739 wait_event(t->writer_wait,
4740 atomic_read(&t->num_writers) == 0);
4741 } else {
4742 spin_unlock(&fs_info->trans_lock);
4743 }
4744 btrfs_cleanup_one_transaction(t, fs_info);
4745
4746 spin_lock(&fs_info->trans_lock);
4747 if (t == fs_info->running_transaction)
4748 fs_info->running_transaction = NULL;
4749 list_del_init(&t->list);
4750 spin_unlock(&fs_info->trans_lock);
4751
4752 btrfs_put_transaction(t);
4753 trace_btrfs_transaction_commit(fs_info->tree_root);
4754 spin_lock(&fs_info->trans_lock);
4755 }
4756 spin_unlock(&fs_info->trans_lock);
4757 btrfs_destroy_all_ordered_extents(fs_info);
4758 btrfs_destroy_delayed_inodes(fs_info);
4759 btrfs_assert_delayed_root_empty(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004760 btrfs_destroy_all_delalloc_inodes(fs_info);
Olivier Deprez157378f2022-04-04 15:47:50 +02004761 btrfs_drop_all_logs(fs_info);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004762 mutex_unlock(&fs_info->transaction_kthread_mutex);
4763
4764 return 0;
4765}