blob: 4600e3c9e49e43f058ad9dfe5ace3615325336c7 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * SH RSPI driver
4 *
5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
7 *
8 * Based on spi-sh.c:
9 * Copyright (C) 2011 Renesas Solutions Corp.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/errno.h>
16#include <linux/interrupt.h>
17#include <linux/platform_device.h>
18#include <linux/io.h>
19#include <linux/clk.h>
20#include <linux/dmaengine.h>
21#include <linux/dma-mapping.h>
22#include <linux/of_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/sh_dma.h>
25#include <linux/spi/spi.h>
26#include <linux/spi/rspi.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020027#include <linux/spinlock.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000028
29#define RSPI_SPCR 0x00 /* Control Register */
30#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
31#define RSPI_SPPCR 0x02 /* Pin Control Register */
32#define RSPI_SPSR 0x03 /* Status Register */
33#define RSPI_SPDR 0x04 /* Data Register */
34#define RSPI_SPSCR 0x08 /* Sequence Control Register */
35#define RSPI_SPSSR 0x09 /* Sequence Status Register */
36#define RSPI_SPBR 0x0a /* Bit Rate Register */
37#define RSPI_SPDCR 0x0b /* Data Control Register */
38#define RSPI_SPCKD 0x0c /* Clock Delay Register */
39#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
40#define RSPI_SPND 0x0e /* Next-Access Delay Register */
41#define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
42#define RSPI_SPCMD0 0x10 /* Command Register 0 */
43#define RSPI_SPCMD1 0x12 /* Command Register 1 */
44#define RSPI_SPCMD2 0x14 /* Command Register 2 */
45#define RSPI_SPCMD3 0x16 /* Command Register 3 */
46#define RSPI_SPCMD4 0x18 /* Command Register 4 */
47#define RSPI_SPCMD5 0x1a /* Command Register 5 */
48#define RSPI_SPCMD6 0x1c /* Command Register 6 */
49#define RSPI_SPCMD7 0x1e /* Command Register 7 */
50#define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
51#define RSPI_NUM_SPCMD 8
52#define RSPI_RZ_NUM_SPCMD 4
53#define QSPI_NUM_SPCMD 4
54
55/* RSPI on RZ only */
56#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
57#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
58
59/* QSPI only */
60#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
61#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
62#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
63#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
64#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
65#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
66#define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
67
68/* SPCR - Control Register */
69#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
70#define SPCR_SPE 0x40 /* Function Enable */
71#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
72#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
73#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
74#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
75/* RSPI on SH only */
76#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
77#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
78/* QSPI on R-Car Gen2 only */
79#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
80#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
81
82/* SSLP - Slave Select Polarity Register */
Olivier Deprez157378f2022-04-04 15:47:50 +020083#define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000084
85/* SPPCR - Pin Control Register */
86#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
87#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
88#define SPPCR_SPOM 0x04
89#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
90#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
91
92#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
94
95/* SPSR - Status Register */
96#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
97#define SPSR_TEND 0x40 /* Transmit End */
98#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
99#define SPSR_PERF 0x08 /* Parity Error Flag */
100#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
101#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
102#define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
103
104/* SPSCR - Sequence Control Register */
105#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
106
107/* SPSSR - Sequence Status Register */
108#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
109#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
110
111/* SPDCR - Data Control Register */
112#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
113#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
114#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
115#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
116#define SPDCR_SPLWORD SPDCR_SPLW1
117#define SPDCR_SPLBYTE SPDCR_SPLW0
118#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
119#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
120#define SPDCR_SLSEL1 0x08
121#define SPDCR_SLSEL0 0x04
122#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
123#define SPDCR_SPFC1 0x02
124#define SPDCR_SPFC0 0x01
125#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
126
127/* SPCKD - Clock Delay Register */
128#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
129
130/* SSLND - Slave Select Negation Delay Register */
131#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
132
133/* SPND - Next-Access Delay Register */
134#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
135
136/* SPCR2 - Control Register 2 */
137#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
138#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
139#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
140#define SPCR2_SPPE 0x01 /* Parity Enable */
141
142/* SPCMDn - Command Registers */
143#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
144#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
145#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
146#define SPCMD_LSBF 0x1000 /* LSB First */
147#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
148#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
149#define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
150#define SPCMD_SPB_16BIT 0x0100
151#define SPCMD_SPB_20BIT 0x0000
152#define SPCMD_SPB_24BIT 0x0100
153#define SPCMD_SPB_32BIT 0x0200
154#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
155#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
156#define SPCMD_SPIMOD1 0x0040
157#define SPCMD_SPIMOD0 0x0020
158#define SPCMD_SPIMOD_SINGLE 0
159#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
160#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
161#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
Olivier Deprez157378f2022-04-04 15:47:50 +0200162#define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000163#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
Olivier Deprez157378f2022-04-04 15:47:50 +0200164#define SPCMD_BRDV(brdv) ((brdv) << 2)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000165#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
166#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
167
168/* SPBFCR - Buffer Control Register */
169#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
170#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
171#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
172#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
173/* QSPI on R-Car Gen2 */
174#define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
175#define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
176#define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
177#define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
178
179#define QSPI_BUFFER_SIZE 32u
180
181struct rspi_data {
182 void __iomem *addr;
Olivier Deprez157378f2022-04-04 15:47:50 +0200183 u32 speed_hz;
David Brazdil0f672f62019-12-10 10:32:29 +0000184 struct spi_controller *ctlr;
Olivier Deprez157378f2022-04-04 15:47:50 +0200185 struct platform_device *pdev;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000186 wait_queue_head_t wait;
Olivier Deprez157378f2022-04-04 15:47:50 +0200187 spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000188 struct clk *clk;
189 u16 spcmd;
190 u8 spsr;
191 u8 sppcr;
192 int rx_irq, tx_irq;
193 const struct spi_ops *ops;
194
195 unsigned dma_callbacked:1;
196 unsigned byte_access:1;
197};
198
199static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
200{
201 iowrite8(data, rspi->addr + offset);
202}
203
204static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
205{
206 iowrite16(data, rspi->addr + offset);
207}
208
209static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
210{
211 iowrite32(data, rspi->addr + offset);
212}
213
214static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
215{
216 return ioread8(rspi->addr + offset);
217}
218
219static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
220{
221 return ioread16(rspi->addr + offset);
222}
223
224static void rspi_write_data(const struct rspi_data *rspi, u16 data)
225{
226 if (rspi->byte_access)
227 rspi_write8(rspi, data, RSPI_SPDR);
228 else /* 16 bit */
229 rspi_write16(rspi, data, RSPI_SPDR);
230}
231
232static u16 rspi_read_data(const struct rspi_data *rspi)
233{
234 if (rspi->byte_access)
235 return rspi_read8(rspi, RSPI_SPDR);
236 else /* 16 bit */
237 return rspi_read16(rspi, RSPI_SPDR);
238}
239
240/* optional functions */
241struct spi_ops {
242 int (*set_config_register)(struct rspi_data *rspi, int access_size);
David Brazdil0f672f62019-12-10 10:32:29 +0000243 int (*transfer_one)(struct spi_controller *ctlr,
244 struct spi_device *spi, struct spi_transfer *xfer);
Olivier Deprez157378f2022-04-04 15:47:50 +0200245 u16 extra_mode_bits;
246 u16 min_div;
247 u16 max_div;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000248 u16 flags;
249 u16 fifo_size;
Olivier Deprez157378f2022-04-04 15:47:50 +0200250 u8 num_hw_ss;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000251};
252
Olivier Deprez157378f2022-04-04 15:47:50 +0200253static void rspi_set_rate(struct rspi_data *rspi)
254{
255 unsigned long clksrc;
256 int brdv = 0, spbr;
257
258 clksrc = clk_get_rate(rspi->clk);
259 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
260 while (spbr > 255 && brdv < 3) {
261 brdv++;
262 spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
263 }
264
265 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
266 rspi->spcmd |= SPCMD_BRDV(brdv);
267 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
268}
269
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000270/*
271 * functions for RSPI on legacy SH
272 */
273static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
274{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000275 /* Sets output mode, MOSI signal, and (optionally) loopback */
276 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
277
278 /* Sets transfer bit rate */
Olivier Deprez157378f2022-04-04 15:47:50 +0200279 rspi_set_rate(rspi);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000280
281 /* Disable dummy transmission, set 16-bit word access, 1 frame */
282 rspi_write8(rspi, 0, RSPI_SPDCR);
283 rspi->byte_access = 0;
284
285 /* Sets RSPCK, SSL, next-access delay value */
286 rspi_write8(rspi, 0x00, RSPI_SPCKD);
287 rspi_write8(rspi, 0x00, RSPI_SSLND);
288 rspi_write8(rspi, 0x00, RSPI_SPND);
289
290 /* Sets parity, interrupt mask */
291 rspi_write8(rspi, 0x00, RSPI_SPCR2);
292
David Brazdil0f672f62019-12-10 10:32:29 +0000293 /* Resets sequencer */
294 rspi_write8(rspi, 0, RSPI_SPSCR);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000295 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
296 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
297
298 /* Sets RSPI mode */
299 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
300
301 return 0;
302}
303
304/*
305 * functions for RSPI on RZ
306 */
307static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
308{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000309 /* Sets output mode, MOSI signal, and (optionally) loopback */
310 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
311
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000312 /* Sets transfer bit rate */
Olivier Deprez157378f2022-04-04 15:47:50 +0200313 rspi_set_rate(rspi);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000314
315 /* Disable dummy transmission, set byte access */
316 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
317 rspi->byte_access = 1;
318
319 /* Sets RSPCK, SSL, next-access delay value */
320 rspi_write8(rspi, 0x00, RSPI_SPCKD);
321 rspi_write8(rspi, 0x00, RSPI_SSLND);
322 rspi_write8(rspi, 0x00, RSPI_SPND);
323
David Brazdil0f672f62019-12-10 10:32:29 +0000324 /* Resets sequencer */
325 rspi_write8(rspi, 0, RSPI_SPSCR);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000326 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
327 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
328
329 /* Sets RSPI mode */
330 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
331
332 return 0;
333}
334
335/*
336 * functions for QSPI
337 */
338static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
339{
Olivier Deprez157378f2022-04-04 15:47:50 +0200340 unsigned long clksrc;
341 int brdv = 0, spbr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000342
343 /* Sets output mode, MOSI signal, and (optionally) loopback */
344 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
345
346 /* Sets transfer bit rate */
Olivier Deprez157378f2022-04-04 15:47:50 +0200347 clksrc = clk_get_rate(rspi->clk);
348 if (rspi->speed_hz >= clksrc) {
349 spbr = 0;
350 rspi->speed_hz = clksrc;
351 } else {
352 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
353 while (spbr > 255 && brdv < 3) {
354 brdv++;
355 spbr = DIV_ROUND_UP(spbr, 2);
356 }
357 spbr = clamp(spbr, 0, 255);
358 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
359 }
360 rspi_write8(rspi, spbr, RSPI_SPBR);
361 rspi->spcmd |= SPCMD_BRDV(brdv);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000362
363 /* Disable dummy transmission, set byte access */
364 rspi_write8(rspi, 0, RSPI_SPDCR);
365 rspi->byte_access = 1;
366
367 /* Sets RSPCK, SSL, next-access delay value */
368 rspi_write8(rspi, 0x00, RSPI_SPCKD);
369 rspi_write8(rspi, 0x00, RSPI_SSLND);
370 rspi_write8(rspi, 0x00, RSPI_SPND);
371
372 /* Data Length Setting */
373 if (access_size == 8)
374 rspi->spcmd |= SPCMD_SPB_8BIT;
375 else if (access_size == 16)
376 rspi->spcmd |= SPCMD_SPB_16BIT;
377 else
378 rspi->spcmd |= SPCMD_SPB_32BIT;
379
380 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
381
382 /* Resets transfer data length */
383 rspi_write32(rspi, 0, QSPI_SPBMUL0);
384
385 /* Resets transmit and receive buffer */
386 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
387 /* Sets buffer to allow normal operation */
388 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
389
David Brazdil0f672f62019-12-10 10:32:29 +0000390 /* Resets sequencer */
391 rspi_write8(rspi, 0, RSPI_SPSCR);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000392 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
393
394 /* Sets RSPI mode */
395 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
396
397 return 0;
398}
399
400static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
401{
402 u8 data;
403
404 data = rspi_read8(rspi, reg);
405 data &= ~mask;
406 data |= (val & mask);
407 rspi_write8(rspi, data, reg);
408}
409
410static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
411 unsigned int len)
412{
413 unsigned int n;
414
415 n = min(len, QSPI_BUFFER_SIZE);
416
417 if (len >= QSPI_BUFFER_SIZE) {
418 /* sets triggering number to 32 bytes */
419 qspi_update(rspi, SPBFCR_TXTRG_MASK,
420 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
421 } else {
422 /* sets triggering number to 1 byte */
423 qspi_update(rspi, SPBFCR_TXTRG_MASK,
424 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
425 }
426
427 return n;
428}
429
430static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
431{
432 unsigned int n;
433
434 n = min(len, QSPI_BUFFER_SIZE);
435
436 if (len >= QSPI_BUFFER_SIZE) {
437 /* sets triggering number to 32 bytes */
438 qspi_update(rspi, SPBFCR_RXTRG_MASK,
439 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
440 } else {
441 /* sets triggering number to 1 byte */
442 qspi_update(rspi, SPBFCR_RXTRG_MASK,
443 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
444 }
445 return n;
446}
447
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000448static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
449{
450 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
451}
452
453static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
454{
455 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
456}
457
458static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
459 u8 enable_bit)
460{
461 int ret;
462
463 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
464 if (rspi->spsr & wait_mask)
465 return 0;
466
467 rspi_enable_irq(rspi, enable_bit);
468 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
469 if (ret == 0 && !(rspi->spsr & wait_mask))
470 return -ETIMEDOUT;
471
472 return 0;
473}
474
475static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
476{
477 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
478}
479
480static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
481{
482 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
483}
484
485static int rspi_data_out(struct rspi_data *rspi, u8 data)
486{
487 int error = rspi_wait_for_tx_empty(rspi);
488 if (error < 0) {
David Brazdil0f672f62019-12-10 10:32:29 +0000489 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000490 return error;
491 }
492 rspi_write_data(rspi, data);
493 return 0;
494}
495
496static int rspi_data_in(struct rspi_data *rspi)
497{
498 int error;
499 u8 data;
500
501 error = rspi_wait_for_rx_full(rspi);
502 if (error < 0) {
David Brazdil0f672f62019-12-10 10:32:29 +0000503 dev_err(&rspi->ctlr->dev, "receive timeout\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000504 return error;
505 }
506 data = rspi_read_data(rspi);
507 return data;
508}
509
510static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
511 unsigned int n)
512{
513 while (n-- > 0) {
514 if (tx) {
515 int ret = rspi_data_out(rspi, *tx++);
516 if (ret < 0)
517 return ret;
518 }
519 if (rx) {
520 int ret = rspi_data_in(rspi);
521 if (ret < 0)
522 return ret;
523 *rx++ = ret;
524 }
525 }
526
527 return 0;
528}
529
530static void rspi_dma_complete(void *arg)
531{
532 struct rspi_data *rspi = arg;
533
534 rspi->dma_callbacked = 1;
535 wake_up_interruptible(&rspi->wait);
536}
537
538static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
539 struct sg_table *rx)
540{
541 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
542 u8 irq_mask = 0;
543 unsigned int other_irq = 0;
544 dma_cookie_t cookie;
545 int ret;
546
547 /* First prepare and submit the DMA request(s), as this may fail */
548 if (rx) {
David Brazdil0f672f62019-12-10 10:32:29 +0000549 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
550 rx->nents, DMA_DEV_TO_MEM,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000551 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
552 if (!desc_rx) {
553 ret = -EAGAIN;
554 goto no_dma_rx;
555 }
556
557 desc_rx->callback = rspi_dma_complete;
558 desc_rx->callback_param = rspi;
559 cookie = dmaengine_submit(desc_rx);
560 if (dma_submit_error(cookie)) {
561 ret = cookie;
562 goto no_dma_rx;
563 }
564
565 irq_mask |= SPCR_SPRIE;
566 }
567
568 if (tx) {
David Brazdil0f672f62019-12-10 10:32:29 +0000569 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
570 tx->nents, DMA_MEM_TO_DEV,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000571 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
572 if (!desc_tx) {
573 ret = -EAGAIN;
574 goto no_dma_tx;
575 }
576
577 if (rx) {
578 /* No callback */
579 desc_tx->callback = NULL;
580 } else {
581 desc_tx->callback = rspi_dma_complete;
582 desc_tx->callback_param = rspi;
583 }
584 cookie = dmaengine_submit(desc_tx);
585 if (dma_submit_error(cookie)) {
586 ret = cookie;
587 goto no_dma_tx;
588 }
589
590 irq_mask |= SPCR_SPTIE;
591 }
592
593 /*
594 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
595 * called. So, this driver disables the IRQ while DMA transfer.
596 */
597 if (tx)
598 disable_irq(other_irq = rspi->tx_irq);
599 if (rx && rspi->rx_irq != other_irq)
600 disable_irq(rspi->rx_irq);
601
602 rspi_enable_irq(rspi, irq_mask);
603 rspi->dma_callbacked = 0;
604
605 /* Now start DMA */
606 if (rx)
David Brazdil0f672f62019-12-10 10:32:29 +0000607 dma_async_issue_pending(rspi->ctlr->dma_rx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000608 if (tx)
David Brazdil0f672f62019-12-10 10:32:29 +0000609 dma_async_issue_pending(rspi->ctlr->dma_tx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000610
611 ret = wait_event_interruptible_timeout(rspi->wait,
612 rspi->dma_callbacked, HZ);
613 if (ret > 0 && rspi->dma_callbacked) {
614 ret = 0;
Olivier Deprez92d4c212022-12-06 15:05:30 +0100615 if (tx)
616 dmaengine_synchronize(rspi->ctlr->dma_tx);
617 if (rx)
618 dmaengine_synchronize(rspi->ctlr->dma_rx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000619 } else {
620 if (!ret) {
David Brazdil0f672f62019-12-10 10:32:29 +0000621 dev_err(&rspi->ctlr->dev, "DMA timeout\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000622 ret = -ETIMEDOUT;
623 }
624 if (tx)
David Brazdil0f672f62019-12-10 10:32:29 +0000625 dmaengine_terminate_all(rspi->ctlr->dma_tx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000626 if (rx)
David Brazdil0f672f62019-12-10 10:32:29 +0000627 dmaengine_terminate_all(rspi->ctlr->dma_rx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000628 }
629
630 rspi_disable_irq(rspi, irq_mask);
631
632 if (tx)
633 enable_irq(rspi->tx_irq);
634 if (rx && rspi->rx_irq != other_irq)
635 enable_irq(rspi->rx_irq);
636
637 return ret;
638
639no_dma_tx:
640 if (rx)
David Brazdil0f672f62019-12-10 10:32:29 +0000641 dmaengine_terminate_all(rspi->ctlr->dma_rx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000642no_dma_rx:
643 if (ret == -EAGAIN) {
Olivier Deprez157378f2022-04-04 15:47:50 +0200644 dev_warn_once(&rspi->ctlr->dev,
645 "DMA not available, falling back to PIO\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000646 }
647 return ret;
648}
649
650static void rspi_receive_init(const struct rspi_data *rspi)
651{
652 u8 spsr;
653
654 spsr = rspi_read8(rspi, RSPI_SPSR);
655 if (spsr & SPSR_SPRF)
656 rspi_read_data(rspi); /* dummy read */
657 if (spsr & SPSR_OVRF)
658 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
659 RSPI_SPSR);
660}
661
662static void rspi_rz_receive_init(const struct rspi_data *rspi)
663{
664 rspi_receive_init(rspi);
665 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
666 rspi_write8(rspi, 0, RSPI_SPBFCR);
667}
668
669static void qspi_receive_init(const struct rspi_data *rspi)
670{
671 u8 spsr;
672
673 spsr = rspi_read8(rspi, RSPI_SPSR);
674 if (spsr & SPSR_SPRF)
675 rspi_read_data(rspi); /* dummy read */
676 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
677 rspi_write8(rspi, 0, QSPI_SPBFCR);
678}
679
680static bool __rspi_can_dma(const struct rspi_data *rspi,
681 const struct spi_transfer *xfer)
682{
683 return xfer->len > rspi->ops->fifo_size;
684}
685
David Brazdil0f672f62019-12-10 10:32:29 +0000686static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000687 struct spi_transfer *xfer)
688{
David Brazdil0f672f62019-12-10 10:32:29 +0000689 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000690
691 return __rspi_can_dma(rspi, xfer);
692}
693
694static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
695 struct spi_transfer *xfer)
696{
David Brazdil0f672f62019-12-10 10:32:29 +0000697 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000698 return -EAGAIN;
699
700 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
701 return rspi_dma_transfer(rspi, &xfer->tx_sg,
702 xfer->rx_buf ? &xfer->rx_sg : NULL);
703}
704
705static int rspi_common_transfer(struct rspi_data *rspi,
706 struct spi_transfer *xfer)
707{
708 int ret;
709
Olivier Deprez157378f2022-04-04 15:47:50 +0200710 xfer->effective_speed_hz = rspi->speed_hz;
711
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000712 ret = rspi_dma_check_then_transfer(rspi, xfer);
713 if (ret != -EAGAIN)
714 return ret;
715
716 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
717 if (ret < 0)
718 return ret;
719
720 /* Wait for the last transmission */
721 rspi_wait_for_tx_empty(rspi);
722
723 return 0;
724}
725
David Brazdil0f672f62019-12-10 10:32:29 +0000726static int rspi_transfer_one(struct spi_controller *ctlr,
727 struct spi_device *spi, struct spi_transfer *xfer)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000728{
David Brazdil0f672f62019-12-10 10:32:29 +0000729 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000730 u8 spcr;
731
732 spcr = rspi_read8(rspi, RSPI_SPCR);
733 if (xfer->rx_buf) {
734 rspi_receive_init(rspi);
735 spcr &= ~SPCR_TXMD;
736 } else {
737 spcr |= SPCR_TXMD;
738 }
739 rspi_write8(rspi, spcr, RSPI_SPCR);
740
741 return rspi_common_transfer(rspi, xfer);
742}
743
David Brazdil0f672f62019-12-10 10:32:29 +0000744static int rspi_rz_transfer_one(struct spi_controller *ctlr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000745 struct spi_device *spi,
746 struct spi_transfer *xfer)
747{
David Brazdil0f672f62019-12-10 10:32:29 +0000748 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000749
750 rspi_rz_receive_init(rspi);
751
752 return rspi_common_transfer(rspi, xfer);
753}
754
755static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
756 u8 *rx, unsigned int len)
757{
758 unsigned int i, n;
759 int ret;
760
761 while (len > 0) {
762 n = qspi_set_send_trigger(rspi, len);
763 qspi_set_receive_trigger(rspi, len);
David Brazdil0f672f62019-12-10 10:32:29 +0000764 ret = rspi_wait_for_tx_empty(rspi);
765 if (ret < 0) {
766 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
767 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000768 }
David Brazdil0f672f62019-12-10 10:32:29 +0000769 for (i = 0; i < n; i++)
770 rspi_write_data(rspi, *tx++);
771
772 ret = rspi_wait_for_rx_full(rspi);
773 if (ret < 0) {
774 dev_err(&rspi->ctlr->dev, "receive timeout\n");
775 return ret;
776 }
777 for (i = 0; i < n; i++)
778 *rx++ = rspi_read_data(rspi);
779
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000780 len -= n;
781 }
782
783 return 0;
784}
785
786static int qspi_transfer_out_in(struct rspi_data *rspi,
787 struct spi_transfer *xfer)
788{
789 int ret;
790
791 qspi_receive_init(rspi);
792
793 ret = rspi_dma_check_then_transfer(rspi, xfer);
794 if (ret != -EAGAIN)
795 return ret;
796
797 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
798 xfer->rx_buf, xfer->len);
799}
800
801static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
802{
803 const u8 *tx = xfer->tx_buf;
804 unsigned int n = xfer->len;
805 unsigned int i, len;
806 int ret;
807
David Brazdil0f672f62019-12-10 10:32:29 +0000808 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000809 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
810 if (ret != -EAGAIN)
811 return ret;
812 }
813
814 while (n > 0) {
815 len = qspi_set_send_trigger(rspi, n);
David Brazdil0f672f62019-12-10 10:32:29 +0000816 ret = rspi_wait_for_tx_empty(rspi);
817 if (ret < 0) {
818 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
819 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000820 }
David Brazdil0f672f62019-12-10 10:32:29 +0000821 for (i = 0; i < len; i++)
822 rspi_write_data(rspi, *tx++);
823
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000824 n -= len;
825 }
826
827 /* Wait for the last transmission */
828 rspi_wait_for_tx_empty(rspi);
829
830 return 0;
831}
832
833static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
834{
835 u8 *rx = xfer->rx_buf;
836 unsigned int n = xfer->len;
837 unsigned int i, len;
838 int ret;
839
David Brazdil0f672f62019-12-10 10:32:29 +0000840 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000841 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
842 if (ret != -EAGAIN)
843 return ret;
844 }
845
846 while (n > 0) {
847 len = qspi_set_receive_trigger(rspi, n);
David Brazdil0f672f62019-12-10 10:32:29 +0000848 ret = rspi_wait_for_rx_full(rspi);
849 if (ret < 0) {
850 dev_err(&rspi->ctlr->dev, "receive timeout\n");
851 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000852 }
David Brazdil0f672f62019-12-10 10:32:29 +0000853 for (i = 0; i < len; i++)
854 *rx++ = rspi_read_data(rspi);
855
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000856 n -= len;
857 }
858
859 return 0;
860}
861
David Brazdil0f672f62019-12-10 10:32:29 +0000862static int qspi_transfer_one(struct spi_controller *ctlr,
863 struct spi_device *spi, struct spi_transfer *xfer)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000864{
David Brazdil0f672f62019-12-10 10:32:29 +0000865 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000866
Olivier Deprez157378f2022-04-04 15:47:50 +0200867 xfer->effective_speed_hz = rspi->speed_hz;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000868 if (spi->mode & SPI_LOOP) {
869 return qspi_transfer_out_in(rspi, xfer);
870 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
871 /* Quad or Dual SPI Write */
872 return qspi_transfer_out(rspi, xfer);
873 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
874 /* Quad or Dual SPI Read */
875 return qspi_transfer_in(rspi, xfer);
876 } else {
877 /* Single SPI Transfer */
878 return qspi_transfer_out_in(rspi, xfer);
879 }
880}
881
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000882static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
883{
884 if (xfer->tx_buf)
885 switch (xfer->tx_nbits) {
886 case SPI_NBITS_QUAD:
887 return SPCMD_SPIMOD_QUAD;
888 case SPI_NBITS_DUAL:
889 return SPCMD_SPIMOD_DUAL;
890 default:
891 return 0;
892 }
893 if (xfer->rx_buf)
894 switch (xfer->rx_nbits) {
895 case SPI_NBITS_QUAD:
896 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
897 case SPI_NBITS_DUAL:
898 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
899 default:
900 return 0;
901 }
902
903 return 0;
904}
905
906static int qspi_setup_sequencer(struct rspi_data *rspi,
907 const struct spi_message *msg)
908{
909 const struct spi_transfer *xfer;
910 unsigned int i = 0, len = 0;
911 u16 current_mode = 0xffff, mode;
912
913 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
914 mode = qspi_transfer_mode(xfer);
915 if (mode == current_mode) {
916 len += xfer->len;
917 continue;
918 }
919
920 /* Transfer mode change */
921 if (i) {
922 /* Set transfer data length of previous transfer */
923 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
924 }
925
926 if (i >= QSPI_NUM_SPCMD) {
927 dev_err(&msg->spi->dev,
928 "Too many different transfer modes");
929 return -EINVAL;
930 }
931
932 /* Program transfer mode for this transfer */
933 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
934 current_mode = mode;
935 len = xfer->len;
936 i++;
937 }
938 if (i) {
939 /* Set final transfer data length and sequence length */
940 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
941 rspi_write8(rspi, i - 1, RSPI_SPSCR);
942 }
943
944 return 0;
945}
946
Olivier Deprez157378f2022-04-04 15:47:50 +0200947static int rspi_setup(struct spi_device *spi)
948{
949 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
950 u8 sslp;
951
952 if (spi->cs_gpiod)
953 return 0;
954
955 pm_runtime_get_sync(&rspi->pdev->dev);
956 spin_lock_irq(&rspi->lock);
957
958 sslp = rspi_read8(rspi, RSPI_SSLP);
959 if (spi->mode & SPI_CS_HIGH)
960 sslp |= SSLP_SSLP(spi->chip_select);
961 else
962 sslp &= ~SSLP_SSLP(spi->chip_select);
963 rspi_write8(rspi, sslp, RSPI_SSLP);
964
965 spin_unlock_irq(&rspi->lock);
966 pm_runtime_put(&rspi->pdev->dev);
967 return 0;
968}
969
David Brazdil0f672f62019-12-10 10:32:29 +0000970static int rspi_prepare_message(struct spi_controller *ctlr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000971 struct spi_message *msg)
972{
David Brazdil0f672f62019-12-10 10:32:29 +0000973 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
974 struct spi_device *spi = msg->spi;
Olivier Deprez157378f2022-04-04 15:47:50 +0200975 const struct spi_transfer *xfer;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000976 int ret;
977
Olivier Deprez157378f2022-04-04 15:47:50 +0200978 /*
979 * As the Bit Rate Register must not be changed while the device is
980 * active, all transfers in a message must use the same bit rate.
981 * In theory, the sequencer could be enabled, and each Command Register
982 * could divide the base bit rate by a different value.
983 * However, most RSPI variants do not have Transfer Data Length
984 * Multiplier Setting Registers, so each sequence step would be limited
985 * to a single word, making this feature unsuitable for large
986 * transfers, which would gain most from it.
987 */
988 rspi->speed_hz = spi->max_speed_hz;
989 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
990 if (xfer->speed_hz < rspi->speed_hz)
991 rspi->speed_hz = xfer->speed_hz;
992 }
David Brazdil0f672f62019-12-10 10:32:29 +0000993
994 rspi->spcmd = SPCMD_SSLKP;
995 if (spi->mode & SPI_CPOL)
996 rspi->spcmd |= SPCMD_CPOL;
997 if (spi->mode & SPI_CPHA)
998 rspi->spcmd |= SPCMD_CPHA;
Olivier Deprez157378f2022-04-04 15:47:50 +0200999 if (spi->mode & SPI_LSB_FIRST)
1000 rspi->spcmd |= SPCMD_LSBF;
1001
1002 /* Configure slave signal to assert */
1003 rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
1004 : spi->chip_select);
David Brazdil0f672f62019-12-10 10:32:29 +00001005
1006 /* CMOS output mode and MOSI signal from previous transfer */
1007 rspi->sppcr = 0;
1008 if (spi->mode & SPI_LOOP)
1009 rspi->sppcr |= SPPCR_SPLP;
1010
Olivier Deprez157378f2022-04-04 15:47:50 +02001011 rspi->ops->set_config_register(rspi, 8);
David Brazdil0f672f62019-12-10 10:32:29 +00001012
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001013 if (msg->spi->mode &
1014 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1015 /* Setup sequencer for messages with multiple transfer modes */
1016 ret = qspi_setup_sequencer(rspi, msg);
1017 if (ret < 0)
1018 return ret;
1019 }
1020
1021 /* Enable SPI function in master mode */
1022 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1023 return 0;
1024}
1025
David Brazdil0f672f62019-12-10 10:32:29 +00001026static int rspi_unprepare_message(struct spi_controller *ctlr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001027 struct spi_message *msg)
1028{
David Brazdil0f672f62019-12-10 10:32:29 +00001029 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001030
1031 /* Disable SPI function */
1032 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1033
1034 /* Reset sequencer for Single SPI Transfers */
1035 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1036 rspi_write8(rspi, 0, RSPI_SPSCR);
1037 return 0;
1038}
1039
1040static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1041{
1042 struct rspi_data *rspi = _sr;
1043 u8 spsr;
1044 irqreturn_t ret = IRQ_NONE;
1045 u8 disable_irq = 0;
1046
1047 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1048 if (spsr & SPSR_SPRF)
1049 disable_irq |= SPCR_SPRIE;
1050 if (spsr & SPSR_SPTEF)
1051 disable_irq |= SPCR_SPTIE;
1052
1053 if (disable_irq) {
1054 ret = IRQ_HANDLED;
1055 rspi_disable_irq(rspi, disable_irq);
1056 wake_up(&rspi->wait);
1057 }
1058
1059 return ret;
1060}
1061
1062static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1063{
1064 struct rspi_data *rspi = _sr;
1065 u8 spsr;
1066
1067 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1068 if (spsr & SPSR_SPRF) {
1069 rspi_disable_irq(rspi, SPCR_SPRIE);
1070 wake_up(&rspi->wait);
1071 return IRQ_HANDLED;
1072 }
1073
1074 return 0;
1075}
1076
1077static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1078{
1079 struct rspi_data *rspi = _sr;
1080 u8 spsr;
1081
1082 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1083 if (spsr & SPSR_SPTEF) {
1084 rspi_disable_irq(rspi, SPCR_SPTIE);
1085 wake_up(&rspi->wait);
1086 return IRQ_HANDLED;
1087 }
1088
1089 return 0;
1090}
1091
1092static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1093 enum dma_transfer_direction dir,
1094 unsigned int id,
1095 dma_addr_t port_addr)
1096{
1097 dma_cap_mask_t mask;
1098 struct dma_chan *chan;
1099 struct dma_slave_config cfg;
1100 int ret;
1101
1102 dma_cap_zero(mask);
1103 dma_cap_set(DMA_SLAVE, mask);
1104
1105 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1106 (void *)(unsigned long)id, dev,
1107 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1108 if (!chan) {
1109 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1110 return NULL;
1111 }
1112
1113 memset(&cfg, 0, sizeof(cfg));
Olivier Deprez92d4c212022-12-06 15:05:30 +01001114 cfg.dst_addr = port_addr + RSPI_SPDR;
1115 cfg.src_addr = port_addr + RSPI_SPDR;
1116 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1117 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001118 cfg.direction = dir;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001119
1120 ret = dmaengine_slave_config(chan, &cfg);
1121 if (ret) {
1122 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1123 dma_release_channel(chan);
1124 return NULL;
1125 }
1126
1127 return chan;
1128}
1129
David Brazdil0f672f62019-12-10 10:32:29 +00001130static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001131 const struct resource *res)
1132{
1133 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1134 unsigned int dma_tx_id, dma_rx_id;
1135
1136 if (dev->of_node) {
1137 /* In the OF case we will get the slave IDs from the DT */
1138 dma_tx_id = 0;
1139 dma_rx_id = 0;
1140 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1141 dma_tx_id = rspi_pd->dma_tx_id;
1142 dma_rx_id = rspi_pd->dma_rx_id;
1143 } else {
1144 /* The driver assumes no error. */
1145 return 0;
1146 }
1147
David Brazdil0f672f62019-12-10 10:32:29 +00001148 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
Olivier Deprez92d4c212022-12-06 15:05:30 +01001149 res->start);
David Brazdil0f672f62019-12-10 10:32:29 +00001150 if (!ctlr->dma_tx)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001151 return -ENODEV;
1152
David Brazdil0f672f62019-12-10 10:32:29 +00001153 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
Olivier Deprez92d4c212022-12-06 15:05:30 +01001154 res->start);
David Brazdil0f672f62019-12-10 10:32:29 +00001155 if (!ctlr->dma_rx) {
1156 dma_release_channel(ctlr->dma_tx);
1157 ctlr->dma_tx = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001158 return -ENODEV;
1159 }
1160
David Brazdil0f672f62019-12-10 10:32:29 +00001161 ctlr->can_dma = rspi_can_dma;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001162 dev_info(dev, "DMA available");
1163 return 0;
1164}
1165
David Brazdil0f672f62019-12-10 10:32:29 +00001166static void rspi_release_dma(struct spi_controller *ctlr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001167{
David Brazdil0f672f62019-12-10 10:32:29 +00001168 if (ctlr->dma_tx)
1169 dma_release_channel(ctlr->dma_tx);
1170 if (ctlr->dma_rx)
1171 dma_release_channel(ctlr->dma_rx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001172}
1173
1174static int rspi_remove(struct platform_device *pdev)
1175{
1176 struct rspi_data *rspi = platform_get_drvdata(pdev);
1177
David Brazdil0f672f62019-12-10 10:32:29 +00001178 rspi_release_dma(rspi->ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001179 pm_runtime_disable(&pdev->dev);
1180
1181 return 0;
1182}
1183
1184static const struct spi_ops rspi_ops = {
1185 .set_config_register = rspi_set_config_register,
1186 .transfer_one = rspi_transfer_one,
Olivier Deprez157378f2022-04-04 15:47:50 +02001187 .min_div = 2,
1188 .max_div = 4096,
David Brazdil0f672f62019-12-10 10:32:29 +00001189 .flags = SPI_CONTROLLER_MUST_TX,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001190 .fifo_size = 8,
Olivier Deprez157378f2022-04-04 15:47:50 +02001191 .num_hw_ss = 2,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001192};
1193
1194static const struct spi_ops rspi_rz_ops = {
1195 .set_config_register = rspi_rz_set_config_register,
1196 .transfer_one = rspi_rz_transfer_one,
Olivier Deprez157378f2022-04-04 15:47:50 +02001197 .min_div = 2,
1198 .max_div = 4096,
David Brazdil0f672f62019-12-10 10:32:29 +00001199 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001200 .fifo_size = 8, /* 8 for TX, 32 for RX */
Olivier Deprez157378f2022-04-04 15:47:50 +02001201 .num_hw_ss = 1,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001202};
1203
1204static const struct spi_ops qspi_ops = {
1205 .set_config_register = qspi_set_config_register,
1206 .transfer_one = qspi_transfer_one,
Olivier Deprez157378f2022-04-04 15:47:50 +02001207 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001208 SPI_RX_DUAL | SPI_RX_QUAD,
Olivier Deprez157378f2022-04-04 15:47:50 +02001209 .min_div = 1,
1210 .max_div = 4080,
David Brazdil0f672f62019-12-10 10:32:29 +00001211 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001212 .fifo_size = 32,
Olivier Deprez157378f2022-04-04 15:47:50 +02001213 .num_hw_ss = 1,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001214};
1215
1216#ifdef CONFIG_OF
1217static const struct of_device_id rspi_of_match[] = {
1218 /* RSPI on legacy SH */
1219 { .compatible = "renesas,rspi", .data = &rspi_ops },
1220 /* RSPI on RZ/A1H */
1221 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1222 /* QSPI on R-Car Gen2 */
1223 { .compatible = "renesas,qspi", .data = &qspi_ops },
1224 { /* sentinel */ }
1225};
1226
1227MODULE_DEVICE_TABLE(of, rspi_of_match);
1228
David Brazdil0f672f62019-12-10 10:32:29 +00001229static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001230{
1231 u32 num_cs;
1232 int error;
1233
1234 /* Parse DT properties */
1235 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1236 if (error) {
1237 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1238 return error;
1239 }
1240
David Brazdil0f672f62019-12-10 10:32:29 +00001241 ctlr->num_chipselect = num_cs;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001242 return 0;
1243}
1244#else
1245#define rspi_of_match NULL
David Brazdil0f672f62019-12-10 10:32:29 +00001246static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001247{
1248 return -EINVAL;
1249}
1250#endif /* CONFIG_OF */
1251
1252static int rspi_request_irq(struct device *dev, unsigned int irq,
1253 irq_handler_t handler, const char *suffix,
1254 void *dev_id)
1255{
1256 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1257 dev_name(dev), suffix);
1258 if (!name)
1259 return -ENOMEM;
1260
1261 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1262}
1263
1264static int rspi_probe(struct platform_device *pdev)
1265{
1266 struct resource *res;
David Brazdil0f672f62019-12-10 10:32:29 +00001267 struct spi_controller *ctlr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001268 struct rspi_data *rspi;
1269 int ret;
1270 const struct rspi_plat_data *rspi_pd;
1271 const struct spi_ops *ops;
Olivier Deprez157378f2022-04-04 15:47:50 +02001272 unsigned long clksrc;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001273
David Brazdil0f672f62019-12-10 10:32:29 +00001274 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1275 if (ctlr == NULL)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001276 return -ENOMEM;
1277
1278 ops = of_device_get_match_data(&pdev->dev);
1279 if (ops) {
David Brazdil0f672f62019-12-10 10:32:29 +00001280 ret = rspi_parse_dt(&pdev->dev, ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001281 if (ret)
1282 goto error1;
1283 } else {
1284 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1285 rspi_pd = dev_get_platdata(&pdev->dev);
1286 if (rspi_pd && rspi_pd->num_chipselect)
David Brazdil0f672f62019-12-10 10:32:29 +00001287 ctlr->num_chipselect = rspi_pd->num_chipselect;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001288 else
David Brazdil0f672f62019-12-10 10:32:29 +00001289 ctlr->num_chipselect = 2; /* default */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001290 }
1291
David Brazdil0f672f62019-12-10 10:32:29 +00001292 rspi = spi_controller_get_devdata(ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001293 platform_set_drvdata(pdev, rspi);
1294 rspi->ops = ops;
David Brazdil0f672f62019-12-10 10:32:29 +00001295 rspi->ctlr = ctlr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001296
1297 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1298 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1299 if (IS_ERR(rspi->addr)) {
1300 ret = PTR_ERR(rspi->addr);
1301 goto error1;
1302 }
1303
1304 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1305 if (IS_ERR(rspi->clk)) {
1306 dev_err(&pdev->dev, "cannot get clock\n");
1307 ret = PTR_ERR(rspi->clk);
1308 goto error1;
1309 }
1310
Olivier Deprez157378f2022-04-04 15:47:50 +02001311 rspi->pdev = pdev;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001312 pm_runtime_enable(&pdev->dev);
1313
1314 init_waitqueue_head(&rspi->wait);
Olivier Deprez157378f2022-04-04 15:47:50 +02001315 spin_lock_init(&rspi->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001316
David Brazdil0f672f62019-12-10 10:32:29 +00001317 ctlr->bus_num = pdev->id;
Olivier Deprez157378f2022-04-04 15:47:50 +02001318 ctlr->setup = rspi_setup;
David Brazdil0f672f62019-12-10 10:32:29 +00001319 ctlr->auto_runtime_pm = true;
1320 ctlr->transfer_one = ops->transfer_one;
1321 ctlr->prepare_message = rspi_prepare_message;
1322 ctlr->unprepare_message = rspi_unprepare_message;
Olivier Deprez157378f2022-04-04 15:47:50 +02001323 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1324 SPI_LOOP | ops->extra_mode_bits;
1325 clksrc = clk_get_rate(rspi->clk);
1326 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1327 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
David Brazdil0f672f62019-12-10 10:32:29 +00001328 ctlr->flags = ops->flags;
1329 ctlr->dev.of_node = pdev->dev.of_node;
Olivier Deprez157378f2022-04-04 15:47:50 +02001330 ctlr->use_gpio_descriptors = true;
1331 ctlr->max_native_cs = rspi->ops->num_hw_ss;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001332
Olivier Deprez0e641232021-09-23 10:07:05 +02001333 ret = platform_get_irq_byname_optional(pdev, "rx");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001334 if (ret < 0) {
Olivier Deprez0e641232021-09-23 10:07:05 +02001335 ret = platform_get_irq_byname_optional(pdev, "mux");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001336 if (ret < 0)
1337 ret = platform_get_irq(pdev, 0);
1338 if (ret >= 0)
1339 rspi->rx_irq = rspi->tx_irq = ret;
1340 } else {
1341 rspi->rx_irq = ret;
1342 ret = platform_get_irq_byname(pdev, "tx");
1343 if (ret >= 0)
1344 rspi->tx_irq = ret;
1345 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001346
1347 if (rspi->rx_irq == rspi->tx_irq) {
1348 /* Single multiplexed interrupt */
1349 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1350 "mux", rspi);
1351 } else {
1352 /* Multi-interrupt mode, only SPRI and SPTI are used */
1353 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1354 "rx", rspi);
1355 if (!ret)
1356 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1357 rspi_irq_tx, "tx", rspi);
1358 }
1359 if (ret < 0) {
1360 dev_err(&pdev->dev, "request_irq error\n");
1361 goto error2;
1362 }
1363
David Brazdil0f672f62019-12-10 10:32:29 +00001364 ret = rspi_request_dma(&pdev->dev, ctlr, res);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001365 if (ret < 0)
1366 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1367
David Brazdil0f672f62019-12-10 10:32:29 +00001368 ret = devm_spi_register_controller(&pdev->dev, ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001369 if (ret < 0) {
David Brazdil0f672f62019-12-10 10:32:29 +00001370 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001371 goto error3;
1372 }
1373
1374 dev_info(&pdev->dev, "probed\n");
1375
1376 return 0;
1377
1378error3:
David Brazdil0f672f62019-12-10 10:32:29 +00001379 rspi_release_dma(ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001380error2:
1381 pm_runtime_disable(&pdev->dev);
1382error1:
David Brazdil0f672f62019-12-10 10:32:29 +00001383 spi_controller_put(ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001384
1385 return ret;
1386}
1387
1388static const struct platform_device_id spi_driver_ids[] = {
1389 { "rspi", (kernel_ulong_t)&rspi_ops },
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001390 {},
1391};
1392
1393MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1394
1395#ifdef CONFIG_PM_SLEEP
1396static int rspi_suspend(struct device *dev)
1397{
David Brazdil0f672f62019-12-10 10:32:29 +00001398 struct rspi_data *rspi = dev_get_drvdata(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001399
David Brazdil0f672f62019-12-10 10:32:29 +00001400 return spi_controller_suspend(rspi->ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001401}
1402
1403static int rspi_resume(struct device *dev)
1404{
David Brazdil0f672f62019-12-10 10:32:29 +00001405 struct rspi_data *rspi = dev_get_drvdata(dev);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001406
David Brazdil0f672f62019-12-10 10:32:29 +00001407 return spi_controller_resume(rspi->ctlr);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001408}
1409
1410static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1411#define DEV_PM_OPS &rspi_pm_ops
1412#else
1413#define DEV_PM_OPS NULL
1414#endif /* CONFIG_PM_SLEEP */
1415
1416static struct platform_driver rspi_driver = {
1417 .probe = rspi_probe,
1418 .remove = rspi_remove,
1419 .id_table = spi_driver_ids,
1420 .driver = {
1421 .name = "renesas_spi",
1422 .pm = DEV_PM_OPS,
1423 .of_match_table = of_match_ptr(rspi_of_match),
1424 },
1425};
1426module_platform_driver(rspi_driver);
1427
1428MODULE_DESCRIPTION("Renesas RSPI bus driver");
1429MODULE_LICENSE("GPL v2");
1430MODULE_AUTHOR("Yoshihiro Shimoda");
1431MODULE_ALIAS("platform:rspi");