Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | # SPDX-License-Identifier: GPL-2.0 |
| 2 | # |
| 3 | # Generic algorithms support |
| 4 | # |
| 5 | config XOR_BLOCKS |
| 6 | tristate |
| 7 | |
| 8 | # |
| 9 | # async_tx api: hardware offloaded memory transfer/transform support |
| 10 | # |
| 11 | source "crypto/async_tx/Kconfig" |
| 12 | |
| 13 | # |
| 14 | # Cryptographic API Configuration |
| 15 | # |
| 16 | menuconfig CRYPTO |
| 17 | tristate "Cryptographic API" |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 18 | select LIB_MEMNEQ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 19 | help |
| 20 | This option provides the core Cryptographic API. |
| 21 | |
| 22 | if CRYPTO |
| 23 | |
| 24 | comment "Crypto core or helper" |
| 25 | |
| 26 | config CRYPTO_FIPS |
| 27 | bool "FIPS 200 compliance" |
| 28 | depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS |
| 29 | depends on (MODULE_SIG || !MODULES) |
| 30 | help |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 31 | This option enables the fips boot option which is |
| 32 | required if you want the system to operate in a FIPS 200 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 33 | certification. You should say no unless you know what |
| 34 | this is. |
| 35 | |
| 36 | config CRYPTO_ALGAPI |
| 37 | tristate |
| 38 | select CRYPTO_ALGAPI2 |
| 39 | help |
| 40 | This option provides the API for cryptographic algorithms. |
| 41 | |
| 42 | config CRYPTO_ALGAPI2 |
| 43 | tristate |
| 44 | |
| 45 | config CRYPTO_AEAD |
| 46 | tristate |
| 47 | select CRYPTO_AEAD2 |
| 48 | select CRYPTO_ALGAPI |
| 49 | |
| 50 | config CRYPTO_AEAD2 |
| 51 | tristate |
| 52 | select CRYPTO_ALGAPI2 |
| 53 | select CRYPTO_NULL2 |
| 54 | select CRYPTO_RNG2 |
| 55 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 56 | config CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 57 | tristate |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 58 | select CRYPTO_SKCIPHER2 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 59 | select CRYPTO_ALGAPI |
| 60 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 61 | config CRYPTO_SKCIPHER2 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 62 | tristate |
| 63 | select CRYPTO_ALGAPI2 |
| 64 | select CRYPTO_RNG2 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 65 | |
| 66 | config CRYPTO_HASH |
| 67 | tristate |
| 68 | select CRYPTO_HASH2 |
| 69 | select CRYPTO_ALGAPI |
| 70 | |
| 71 | config CRYPTO_HASH2 |
| 72 | tristate |
| 73 | select CRYPTO_ALGAPI2 |
| 74 | |
| 75 | config CRYPTO_RNG |
| 76 | tristate |
| 77 | select CRYPTO_RNG2 |
| 78 | select CRYPTO_ALGAPI |
| 79 | |
| 80 | config CRYPTO_RNG2 |
| 81 | tristate |
| 82 | select CRYPTO_ALGAPI2 |
| 83 | |
| 84 | config CRYPTO_RNG_DEFAULT |
| 85 | tristate |
| 86 | select CRYPTO_DRBG_MENU |
| 87 | |
| 88 | config CRYPTO_AKCIPHER2 |
| 89 | tristate |
| 90 | select CRYPTO_ALGAPI2 |
| 91 | |
| 92 | config CRYPTO_AKCIPHER |
| 93 | tristate |
| 94 | select CRYPTO_AKCIPHER2 |
| 95 | select CRYPTO_ALGAPI |
| 96 | |
| 97 | config CRYPTO_KPP2 |
| 98 | tristate |
| 99 | select CRYPTO_ALGAPI2 |
| 100 | |
| 101 | config CRYPTO_KPP |
| 102 | tristate |
| 103 | select CRYPTO_ALGAPI |
| 104 | select CRYPTO_KPP2 |
| 105 | |
| 106 | config CRYPTO_ACOMP2 |
| 107 | tristate |
| 108 | select CRYPTO_ALGAPI2 |
| 109 | select SGL_ALLOC |
| 110 | |
| 111 | config CRYPTO_ACOMP |
| 112 | tristate |
| 113 | select CRYPTO_ALGAPI |
| 114 | select CRYPTO_ACOMP2 |
| 115 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 116 | config CRYPTO_MANAGER |
| 117 | tristate "Cryptographic algorithm manager" |
| 118 | select CRYPTO_MANAGER2 |
| 119 | help |
| 120 | Create default cryptographic template instantiations such as |
| 121 | cbc(aes). |
| 122 | |
| 123 | config CRYPTO_MANAGER2 |
| 124 | def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) |
| 125 | select CRYPTO_AEAD2 |
| 126 | select CRYPTO_HASH2 |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 127 | select CRYPTO_SKCIPHER2 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 128 | select CRYPTO_AKCIPHER2 |
| 129 | select CRYPTO_KPP2 |
| 130 | select CRYPTO_ACOMP2 |
| 131 | |
| 132 | config CRYPTO_USER |
| 133 | tristate "Userspace cryptographic algorithm configuration" |
| 134 | depends on NET |
| 135 | select CRYPTO_MANAGER |
| 136 | help |
| 137 | Userspace configuration for cryptographic instantiations such as |
| 138 | cbc(aes). |
| 139 | |
| 140 | config CRYPTO_MANAGER_DISABLE_TESTS |
| 141 | bool "Disable run-time self tests" |
| 142 | default y |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 143 | help |
| 144 | Disable run-time self tests that normally take place at |
| 145 | algorithm registration. |
| 146 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 147 | config CRYPTO_MANAGER_EXTRA_TESTS |
| 148 | bool "Enable extra run-time crypto self tests" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 149 | depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 150 | help |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 151 | Enable extra run-time self tests of registered crypto algorithms, |
| 152 | including randomized fuzz tests. |
| 153 | |
| 154 | This is intended for developer use only, as these tests take much |
| 155 | longer to run than the normal self tests. |
| 156 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 157 | config CRYPTO_GF128MUL |
| 158 | tristate |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 159 | |
| 160 | config CRYPTO_NULL |
| 161 | tristate "Null algorithms" |
| 162 | select CRYPTO_NULL2 |
| 163 | help |
| 164 | These are 'Null' algorithms, used by IPsec, which do nothing. |
| 165 | |
| 166 | config CRYPTO_NULL2 |
| 167 | tristate |
| 168 | select CRYPTO_ALGAPI2 |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 169 | select CRYPTO_SKCIPHER2 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 170 | select CRYPTO_HASH2 |
| 171 | |
| 172 | config CRYPTO_PCRYPT |
| 173 | tristate "Parallel crypto engine" |
| 174 | depends on SMP |
| 175 | select PADATA |
| 176 | select CRYPTO_MANAGER |
| 177 | select CRYPTO_AEAD |
| 178 | help |
| 179 | This converts an arbitrary crypto algorithm into a parallel |
| 180 | algorithm that executes in kernel threads. |
| 181 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 182 | config CRYPTO_CRYPTD |
| 183 | tristate "Software async crypto daemon" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 184 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 185 | select CRYPTO_HASH |
| 186 | select CRYPTO_MANAGER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 187 | help |
| 188 | This is a generic software asynchronous crypto daemon that |
| 189 | converts an arbitrary synchronous software crypto algorithm |
| 190 | into an asynchronous algorithm that executes in a kernel thread. |
| 191 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 192 | config CRYPTO_AUTHENC |
| 193 | tristate "Authenc support" |
| 194 | select CRYPTO_AEAD |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 195 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 196 | select CRYPTO_MANAGER |
| 197 | select CRYPTO_HASH |
| 198 | select CRYPTO_NULL |
| 199 | help |
| 200 | Authenc: Combined mode wrapper for IPsec. |
| 201 | This is required for IPSec. |
| 202 | |
| 203 | config CRYPTO_TEST |
| 204 | tristate "Testing module" |
| 205 | depends on m |
| 206 | select CRYPTO_MANAGER |
| 207 | help |
| 208 | Quick & dirty crypto test module. |
| 209 | |
| 210 | config CRYPTO_SIMD |
| 211 | tristate |
| 212 | select CRYPTO_CRYPTD |
| 213 | |
| 214 | config CRYPTO_GLUE_HELPER_X86 |
| 215 | tristate |
| 216 | depends on X86 |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 217 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 218 | |
| 219 | config CRYPTO_ENGINE |
| 220 | tristate |
| 221 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 222 | comment "Public-key cryptography" |
| 223 | |
| 224 | config CRYPTO_RSA |
| 225 | tristate "RSA algorithm" |
| 226 | select CRYPTO_AKCIPHER |
| 227 | select CRYPTO_MANAGER |
| 228 | select MPILIB |
| 229 | select ASN1 |
| 230 | help |
| 231 | Generic implementation of the RSA public key algorithm. |
| 232 | |
| 233 | config CRYPTO_DH |
| 234 | tristate "Diffie-Hellman algorithm" |
| 235 | select CRYPTO_KPP |
| 236 | select MPILIB |
| 237 | help |
| 238 | Generic implementation of the Diffie-Hellman algorithm. |
| 239 | |
| 240 | config CRYPTO_ECC |
| 241 | tristate |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 242 | select CRYPTO_RNG_DEFAULT |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 243 | |
| 244 | config CRYPTO_ECDH |
| 245 | tristate "ECDH algorithm" |
| 246 | select CRYPTO_ECC |
| 247 | select CRYPTO_KPP |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 248 | help |
| 249 | Generic implementation of the ECDH algorithm |
| 250 | |
| 251 | config CRYPTO_ECRDSA |
| 252 | tristate "EC-RDSA (GOST 34.10) algorithm" |
| 253 | select CRYPTO_ECC |
| 254 | select CRYPTO_AKCIPHER |
| 255 | select CRYPTO_STREEBOG |
| 256 | select OID_REGISTRY |
| 257 | select ASN1 |
| 258 | help |
| 259 | Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, |
| 260 | RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic |
| 261 | standard algorithms (called GOST algorithms). Only signature verification |
| 262 | is implemented. |
| 263 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 264 | config CRYPTO_SM2 |
| 265 | tristate "SM2 algorithm" |
| 266 | select CRYPTO_SM3 |
| 267 | select CRYPTO_AKCIPHER |
| 268 | select CRYPTO_MANAGER |
| 269 | select MPILIB |
| 270 | select ASN1 |
| 271 | help |
| 272 | Generic implementation of the SM2 public key algorithm. It was |
| 273 | published by State Encryption Management Bureau, China. |
| 274 | as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. |
| 275 | |
| 276 | References: |
| 277 | https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 |
| 278 | http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml |
| 279 | http://www.gmbz.org.cn/main/bzlb.html |
| 280 | |
| 281 | config CRYPTO_CURVE25519 |
| 282 | tristate "Curve25519 algorithm" |
| 283 | select CRYPTO_KPP |
| 284 | select CRYPTO_LIB_CURVE25519_GENERIC |
| 285 | |
| 286 | config CRYPTO_CURVE25519_X86 |
| 287 | tristate "x86_64 accelerated Curve25519 scalar multiplication library" |
| 288 | depends on X86 && 64BIT |
| 289 | select CRYPTO_LIB_CURVE25519_GENERIC |
| 290 | select CRYPTO_ARCH_HAVE_LIB_CURVE25519 |
| 291 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 292 | comment "Authenticated Encryption with Associated Data" |
| 293 | |
| 294 | config CRYPTO_CCM |
| 295 | tristate "CCM support" |
| 296 | select CRYPTO_CTR |
| 297 | select CRYPTO_HASH |
| 298 | select CRYPTO_AEAD |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 299 | select CRYPTO_MANAGER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 300 | help |
| 301 | Support for Counter with CBC MAC. Required for IPsec. |
| 302 | |
| 303 | config CRYPTO_GCM |
| 304 | tristate "GCM/GMAC support" |
| 305 | select CRYPTO_CTR |
| 306 | select CRYPTO_AEAD |
| 307 | select CRYPTO_GHASH |
| 308 | select CRYPTO_NULL |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 309 | select CRYPTO_MANAGER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 310 | help |
| 311 | Support for Galois/Counter Mode (GCM) and Galois Message |
| 312 | Authentication Code (GMAC). Required for IPSec. |
| 313 | |
| 314 | config CRYPTO_CHACHA20POLY1305 |
| 315 | tristate "ChaCha20-Poly1305 AEAD support" |
| 316 | select CRYPTO_CHACHA20 |
| 317 | select CRYPTO_POLY1305 |
| 318 | select CRYPTO_AEAD |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 319 | select CRYPTO_MANAGER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 320 | help |
| 321 | ChaCha20-Poly1305 AEAD support, RFC7539. |
| 322 | |
| 323 | Support for the AEAD wrapper using the ChaCha20 stream cipher combined |
| 324 | with the Poly1305 authenticator. It is defined in RFC7539 for use in |
| 325 | IETF protocols. |
| 326 | |
| 327 | config CRYPTO_AEGIS128 |
| 328 | tristate "AEGIS-128 AEAD algorithm" |
| 329 | select CRYPTO_AEAD |
| 330 | select CRYPTO_AES # for AES S-box tables |
| 331 | help |
| 332 | Support for the AEGIS-128 dedicated AEAD algorithm. |
| 333 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 334 | config CRYPTO_AEGIS128_SIMD |
| 335 | bool "Support SIMD acceleration for AEGIS-128" |
| 336 | depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) |
| 337 | default y |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 338 | |
| 339 | config CRYPTO_AEGIS128_AESNI_SSE2 |
| 340 | tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" |
| 341 | depends on X86 && 64BIT |
| 342 | select CRYPTO_AEAD |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 343 | select CRYPTO_SIMD |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 344 | help |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 345 | AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 346 | |
| 347 | config CRYPTO_SEQIV |
| 348 | tristate "Sequence Number IV Generator" |
| 349 | select CRYPTO_AEAD |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 350 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 351 | select CRYPTO_NULL |
| 352 | select CRYPTO_RNG_DEFAULT |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 353 | select CRYPTO_MANAGER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 354 | help |
| 355 | This IV generator generates an IV based on a sequence number by |
| 356 | xoring it with a salt. This algorithm is mainly useful for CTR |
| 357 | |
| 358 | config CRYPTO_ECHAINIV |
| 359 | tristate "Encrypted Chain IV Generator" |
| 360 | select CRYPTO_AEAD |
| 361 | select CRYPTO_NULL |
| 362 | select CRYPTO_RNG_DEFAULT |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 363 | select CRYPTO_MANAGER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 364 | help |
| 365 | This IV generator generates an IV based on the encryption of |
| 366 | a sequence number xored with a salt. This is the default |
| 367 | algorithm for CBC. |
| 368 | |
| 369 | comment "Block modes" |
| 370 | |
| 371 | config CRYPTO_CBC |
| 372 | tristate "CBC support" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 373 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 374 | select CRYPTO_MANAGER |
| 375 | help |
| 376 | CBC: Cipher Block Chaining mode |
| 377 | This block cipher algorithm is required for IPSec. |
| 378 | |
| 379 | config CRYPTO_CFB |
| 380 | tristate "CFB support" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 381 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 382 | select CRYPTO_MANAGER |
| 383 | help |
| 384 | CFB: Cipher FeedBack mode |
| 385 | This block cipher algorithm is required for TPM2 Cryptography. |
| 386 | |
| 387 | config CRYPTO_CTR |
| 388 | tristate "CTR support" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 389 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 390 | select CRYPTO_MANAGER |
| 391 | help |
| 392 | CTR: Counter mode |
| 393 | This block cipher algorithm is required for IPSec. |
| 394 | |
| 395 | config CRYPTO_CTS |
| 396 | tristate "CTS support" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 397 | select CRYPTO_SKCIPHER |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 398 | select CRYPTO_MANAGER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 399 | help |
| 400 | CTS: Cipher Text Stealing |
| 401 | This is the Cipher Text Stealing mode as described by |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 402 | Section 8 of rfc2040 and referenced by rfc3962 |
| 403 | (rfc3962 includes errata information in its Appendix A) or |
| 404 | CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 405 | This mode is required for Kerberos gss mechanism support |
| 406 | for AES encryption. |
| 407 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 408 | See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final |
| 409 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 410 | config CRYPTO_ECB |
| 411 | tristate "ECB support" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 412 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 413 | select CRYPTO_MANAGER |
| 414 | help |
| 415 | ECB: Electronic CodeBook mode |
| 416 | This is the simplest block cipher algorithm. It simply encrypts |
| 417 | the input block by block. |
| 418 | |
| 419 | config CRYPTO_LRW |
| 420 | tristate "LRW support" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 421 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 422 | select CRYPTO_MANAGER |
| 423 | select CRYPTO_GF128MUL |
| 424 | help |
| 425 | LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable |
| 426 | narrow block cipher mode for dm-crypt. Use it with cipher |
| 427 | specification string aes-lrw-benbi, the key must be 256, 320 or 384. |
| 428 | The first 128, 192 or 256 bits in the key are used for AES and the |
| 429 | rest is used to tie each cipher block to its logical position. |
| 430 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 431 | config CRYPTO_OFB |
| 432 | tristate "OFB support" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 433 | select CRYPTO_SKCIPHER |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 434 | select CRYPTO_MANAGER |
| 435 | help |
| 436 | OFB: the Output Feedback mode makes a block cipher into a synchronous |
| 437 | stream cipher. It generates keystream blocks, which are then XORed |
| 438 | with the plaintext blocks to get the ciphertext. Flipping a bit in the |
| 439 | ciphertext produces a flipped bit in the plaintext at the same |
| 440 | location. This property allows many error correcting codes to function |
| 441 | normally even when applied before encryption. |
| 442 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 443 | config CRYPTO_PCBC |
| 444 | tristate "PCBC support" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 445 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 446 | select CRYPTO_MANAGER |
| 447 | help |
| 448 | PCBC: Propagating Cipher Block Chaining mode |
| 449 | This block cipher algorithm is required for RxRPC. |
| 450 | |
| 451 | config CRYPTO_XTS |
| 452 | tristate "XTS support" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 453 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 454 | select CRYPTO_MANAGER |
| 455 | select CRYPTO_ECB |
| 456 | help |
| 457 | XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, |
| 458 | key size 256, 384 or 512 bits. This implementation currently |
| 459 | can't handle a sectorsize which is not a multiple of 16 bytes. |
| 460 | |
| 461 | config CRYPTO_KEYWRAP |
| 462 | tristate "Key wrapping support" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 463 | select CRYPTO_SKCIPHER |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 464 | select CRYPTO_MANAGER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 465 | help |
| 466 | Support for key wrapping (NIST SP800-38F / RFC3394) without |
| 467 | padding. |
| 468 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 469 | config CRYPTO_NHPOLY1305 |
| 470 | tristate |
| 471 | select CRYPTO_HASH |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 472 | select CRYPTO_LIB_POLY1305_GENERIC |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 473 | |
| 474 | config CRYPTO_NHPOLY1305_SSE2 |
| 475 | tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" |
| 476 | depends on X86 && 64BIT |
| 477 | select CRYPTO_NHPOLY1305 |
| 478 | help |
| 479 | SSE2 optimized implementation of the hash function used by the |
| 480 | Adiantum encryption mode. |
| 481 | |
| 482 | config CRYPTO_NHPOLY1305_AVX2 |
| 483 | tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" |
| 484 | depends on X86 && 64BIT |
| 485 | select CRYPTO_NHPOLY1305 |
| 486 | help |
| 487 | AVX2 optimized implementation of the hash function used by the |
| 488 | Adiantum encryption mode. |
| 489 | |
| 490 | config CRYPTO_ADIANTUM |
| 491 | tristate "Adiantum support" |
| 492 | select CRYPTO_CHACHA20 |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 493 | select CRYPTO_LIB_POLY1305_GENERIC |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 494 | select CRYPTO_NHPOLY1305 |
| 495 | select CRYPTO_MANAGER |
| 496 | help |
| 497 | Adiantum is a tweakable, length-preserving encryption mode |
| 498 | designed for fast and secure disk encryption, especially on |
| 499 | CPUs without dedicated crypto instructions. It encrypts |
| 500 | each sector using the XChaCha12 stream cipher, two passes of |
| 501 | an ε-almost-∆-universal hash function, and an invocation of |
| 502 | the AES-256 block cipher on a single 16-byte block. On CPUs |
| 503 | without AES instructions, Adiantum is much faster than |
| 504 | AES-XTS. |
| 505 | |
| 506 | Adiantum's security is provably reducible to that of its |
| 507 | underlying stream and block ciphers, subject to a security |
| 508 | bound. Unlike XTS, Adiantum is a true wide-block encryption |
| 509 | mode, so it actually provides an even stronger notion of |
| 510 | security than XTS, subject to the security bound. |
| 511 | |
| 512 | If unsure, say N. |
| 513 | |
| 514 | config CRYPTO_ESSIV |
| 515 | tristate "ESSIV support for block encryption" |
| 516 | select CRYPTO_AUTHENC |
| 517 | help |
| 518 | Encrypted salt-sector initialization vector (ESSIV) is an IV |
| 519 | generation method that is used in some cases by fscrypt and/or |
| 520 | dm-crypt. It uses the hash of the block encryption key as the |
| 521 | symmetric key for a block encryption pass applied to the input |
| 522 | IV, making low entropy IV sources more suitable for block |
| 523 | encryption. |
| 524 | |
| 525 | This driver implements a crypto API template that can be |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 526 | instantiated either as an skcipher or as an AEAD (depending on the |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 527 | type of the first template argument), and which defers encryption |
| 528 | and decryption requests to the encapsulated cipher after applying |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 529 | ESSIV to the input IV. Note that in the AEAD case, it is assumed |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 530 | that the keys are presented in the same format used by the authenc |
| 531 | template, and that the IV appears at the end of the authenticated |
| 532 | associated data (AAD) region (which is how dm-crypt uses it.) |
| 533 | |
| 534 | Note that the use of ESSIV is not recommended for new deployments, |
| 535 | and so this only needs to be enabled when interoperability with |
| 536 | existing encrypted volumes of filesystems is required, or when |
| 537 | building for a particular system that requires it (e.g., when |
| 538 | the SoC in question has accelerated CBC but not XTS, making CBC |
| 539 | combined with ESSIV the only feasible mode for h/w accelerated |
| 540 | block encryption) |
| 541 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 542 | comment "Hash modes" |
| 543 | |
| 544 | config CRYPTO_CMAC |
| 545 | tristate "CMAC support" |
| 546 | select CRYPTO_HASH |
| 547 | select CRYPTO_MANAGER |
| 548 | help |
| 549 | Cipher-based Message Authentication Code (CMAC) specified by |
| 550 | The National Institute of Standards and Technology (NIST). |
| 551 | |
| 552 | https://tools.ietf.org/html/rfc4493 |
| 553 | http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf |
| 554 | |
| 555 | config CRYPTO_HMAC |
| 556 | tristate "HMAC support" |
| 557 | select CRYPTO_HASH |
| 558 | select CRYPTO_MANAGER |
| 559 | help |
| 560 | HMAC: Keyed-Hashing for Message Authentication (RFC2104). |
| 561 | This is required for IPSec. |
| 562 | |
| 563 | config CRYPTO_XCBC |
| 564 | tristate "XCBC support" |
| 565 | select CRYPTO_HASH |
| 566 | select CRYPTO_MANAGER |
| 567 | help |
| 568 | XCBC: Keyed-Hashing with encryption algorithm |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 569 | https://www.ietf.org/rfc/rfc3566.txt |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 570 | http://csrc.nist.gov/encryption/modes/proposedmodes/ |
| 571 | xcbc-mac/xcbc-mac-spec.pdf |
| 572 | |
| 573 | config CRYPTO_VMAC |
| 574 | tristate "VMAC support" |
| 575 | select CRYPTO_HASH |
| 576 | select CRYPTO_MANAGER |
| 577 | help |
| 578 | VMAC is a message authentication algorithm designed for |
| 579 | very high speed on 64-bit architectures. |
| 580 | |
| 581 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 582 | <https://fastcrypto.org/vmac> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 583 | |
| 584 | comment "Digest" |
| 585 | |
| 586 | config CRYPTO_CRC32C |
| 587 | tristate "CRC32c CRC algorithm" |
| 588 | select CRYPTO_HASH |
| 589 | select CRC32 |
| 590 | help |
| 591 | Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used |
| 592 | by iSCSI for header and data digests and by others. |
| 593 | See Castagnoli93. Module will be crc32c. |
| 594 | |
| 595 | config CRYPTO_CRC32C_INTEL |
| 596 | tristate "CRC32c INTEL hardware acceleration" |
| 597 | depends on X86 |
| 598 | select CRYPTO_HASH |
| 599 | help |
| 600 | In Intel processor with SSE4.2 supported, the processor will |
| 601 | support CRC32C implementation using hardware accelerated CRC32 |
| 602 | instruction. This option will create 'crc32c-intel' module, |
| 603 | which will enable any routine to use the CRC32 instruction to |
| 604 | gain performance compared with software implementation. |
| 605 | Module will be crc32c-intel. |
| 606 | |
| 607 | config CRYPTO_CRC32C_VPMSUM |
| 608 | tristate "CRC32c CRC algorithm (powerpc64)" |
| 609 | depends on PPC64 && ALTIVEC |
| 610 | select CRYPTO_HASH |
| 611 | select CRC32 |
| 612 | help |
| 613 | CRC32c algorithm implemented using vector polynomial multiply-sum |
| 614 | (vpmsum) instructions, introduced in POWER8. Enable on POWER8 |
| 615 | and newer processors for improved performance. |
| 616 | |
| 617 | |
| 618 | config CRYPTO_CRC32C_SPARC64 |
| 619 | tristate "CRC32c CRC algorithm (SPARC64)" |
| 620 | depends on SPARC64 |
| 621 | select CRYPTO_HASH |
| 622 | select CRC32 |
| 623 | help |
| 624 | CRC32c CRC algorithm implemented using sparc64 crypto instructions, |
| 625 | when available. |
| 626 | |
| 627 | config CRYPTO_CRC32 |
| 628 | tristate "CRC32 CRC algorithm" |
| 629 | select CRYPTO_HASH |
| 630 | select CRC32 |
| 631 | help |
| 632 | CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. |
| 633 | Shash crypto api wrappers to crc32_le function. |
| 634 | |
| 635 | config CRYPTO_CRC32_PCLMUL |
| 636 | tristate "CRC32 PCLMULQDQ hardware acceleration" |
| 637 | depends on X86 |
| 638 | select CRYPTO_HASH |
| 639 | select CRC32 |
| 640 | help |
| 641 | From Intel Westmere and AMD Bulldozer processor with SSE4.2 |
| 642 | and PCLMULQDQ supported, the processor will support |
| 643 | CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 644 | instruction. This option will create 'crc32-pclmul' module, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 645 | which will enable any routine to use the CRC-32-IEEE 802.3 checksum |
| 646 | and gain better performance as compared with the table implementation. |
| 647 | |
| 648 | config CRYPTO_CRC32_MIPS |
| 649 | tristate "CRC32c and CRC32 CRC algorithm (MIPS)" |
| 650 | depends on MIPS_CRC_SUPPORT |
| 651 | select CRYPTO_HASH |
| 652 | help |
| 653 | CRC32c and CRC32 CRC algorithms implemented using mips crypto |
| 654 | instructions, when available. |
| 655 | |
| 656 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 657 | config CRYPTO_XXHASH |
| 658 | tristate "xxHash hash algorithm" |
| 659 | select CRYPTO_HASH |
| 660 | select XXHASH |
| 661 | help |
| 662 | xxHash non-cryptographic hash algorithm. Extremely fast, working at |
| 663 | speeds close to RAM limits. |
| 664 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 665 | config CRYPTO_BLAKE2B |
| 666 | tristate "BLAKE2b digest algorithm" |
| 667 | select CRYPTO_HASH |
| 668 | help |
| 669 | Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), |
| 670 | optimized for 64bit platforms and can produce digests of any size |
| 671 | between 1 to 64. The keyed hash is also implemented. |
| 672 | |
| 673 | This module provides the following algorithms: |
| 674 | |
| 675 | - blake2b-160 |
| 676 | - blake2b-256 |
| 677 | - blake2b-384 |
| 678 | - blake2b-512 |
| 679 | |
| 680 | See https://blake2.net for further information. |
| 681 | |
| 682 | config CRYPTO_BLAKE2S |
| 683 | tristate "BLAKE2s digest algorithm" |
| 684 | select CRYPTO_LIB_BLAKE2S_GENERIC |
| 685 | select CRYPTO_HASH |
| 686 | help |
| 687 | Implementation of cryptographic hash function BLAKE2s |
| 688 | optimized for 8-32bit platforms and can produce digests of any size |
| 689 | between 1 to 32. The keyed hash is also implemented. |
| 690 | |
| 691 | This module provides the following algorithms: |
| 692 | |
| 693 | - blake2s-128 |
| 694 | - blake2s-160 |
| 695 | - blake2s-224 |
| 696 | - blake2s-256 |
| 697 | |
| 698 | See https://blake2.net for further information. |
| 699 | |
| 700 | config CRYPTO_BLAKE2S_X86 |
| 701 | tristate "BLAKE2s digest algorithm (x86 accelerated version)" |
| 702 | depends on X86 && 64BIT |
| 703 | select CRYPTO_LIB_BLAKE2S_GENERIC |
| 704 | select CRYPTO_ARCH_HAVE_LIB_BLAKE2S |
| 705 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 706 | config CRYPTO_CRCT10DIF |
| 707 | tristate "CRCT10DIF algorithm" |
| 708 | select CRYPTO_HASH |
| 709 | help |
| 710 | CRC T10 Data Integrity Field computation is being cast as |
| 711 | a crypto transform. This allows for faster crc t10 diff |
| 712 | transforms to be used if they are available. |
| 713 | |
| 714 | config CRYPTO_CRCT10DIF_PCLMUL |
| 715 | tristate "CRCT10DIF PCLMULQDQ hardware acceleration" |
| 716 | depends on X86 && 64BIT && CRC_T10DIF |
| 717 | select CRYPTO_HASH |
| 718 | help |
| 719 | For x86_64 processors with SSE4.2 and PCLMULQDQ supported, |
| 720 | CRC T10 DIF PCLMULQDQ computation can be hardware |
| 721 | accelerated PCLMULQDQ instruction. This option will create |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 722 | 'crct10dif-pclmul' module, which is faster when computing the |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 723 | crct10dif checksum as compared with the generic table implementation. |
| 724 | |
| 725 | config CRYPTO_CRCT10DIF_VPMSUM |
| 726 | tristate "CRC32T10DIF powerpc64 hardware acceleration" |
| 727 | depends on PPC64 && ALTIVEC && CRC_T10DIF |
| 728 | select CRYPTO_HASH |
| 729 | help |
| 730 | CRC10T10DIF algorithm implemented using vector polynomial |
| 731 | multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on |
| 732 | POWER8 and newer processors for improved performance. |
| 733 | |
| 734 | config CRYPTO_VPMSUM_TESTER |
| 735 | tristate "Powerpc64 vpmsum hardware acceleration tester" |
| 736 | depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM |
| 737 | help |
| 738 | Stress test for CRC32c and CRC-T10DIF algorithms implemented with |
| 739 | POWER8 vpmsum instructions. |
| 740 | Unless you are testing these algorithms, you don't need this. |
| 741 | |
| 742 | config CRYPTO_GHASH |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 743 | tristate "GHASH hash function" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 744 | select CRYPTO_GF128MUL |
| 745 | select CRYPTO_HASH |
| 746 | help |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 747 | GHASH is the hash function used in GCM (Galois/Counter Mode). |
| 748 | It is not a general-purpose cryptographic hash function. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 749 | |
| 750 | config CRYPTO_POLY1305 |
| 751 | tristate "Poly1305 authenticator algorithm" |
| 752 | select CRYPTO_HASH |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 753 | select CRYPTO_LIB_POLY1305_GENERIC |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 754 | help |
| 755 | Poly1305 authenticator algorithm, RFC7539. |
| 756 | |
| 757 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. |
| 758 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use |
| 759 | in IETF protocols. This is the portable C implementation of Poly1305. |
| 760 | |
| 761 | config CRYPTO_POLY1305_X86_64 |
| 762 | tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" |
| 763 | depends on X86 && 64BIT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 764 | select CRYPTO_LIB_POLY1305_GENERIC |
| 765 | select CRYPTO_ARCH_HAVE_LIB_POLY1305 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 766 | help |
| 767 | Poly1305 authenticator algorithm, RFC7539. |
| 768 | |
| 769 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. |
| 770 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use |
| 771 | in IETF protocols. This is the x86_64 assembler implementation using SIMD |
| 772 | instructions. |
| 773 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 774 | config CRYPTO_POLY1305_MIPS |
| 775 | tristate "Poly1305 authenticator algorithm (MIPS optimized)" |
| 776 | depends on MIPS |
| 777 | select CRYPTO_ARCH_HAVE_LIB_POLY1305 |
| 778 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 779 | config CRYPTO_MD4 |
| 780 | tristate "MD4 digest algorithm" |
| 781 | select CRYPTO_HASH |
| 782 | help |
| 783 | MD4 message digest algorithm (RFC1320). |
| 784 | |
| 785 | config CRYPTO_MD5 |
| 786 | tristate "MD5 digest algorithm" |
| 787 | select CRYPTO_HASH |
| 788 | help |
| 789 | MD5 message digest algorithm (RFC1321). |
| 790 | |
| 791 | config CRYPTO_MD5_OCTEON |
| 792 | tristate "MD5 digest algorithm (OCTEON)" |
| 793 | depends on CPU_CAVIUM_OCTEON |
| 794 | select CRYPTO_MD5 |
| 795 | select CRYPTO_HASH |
| 796 | help |
| 797 | MD5 message digest algorithm (RFC1321) implemented |
| 798 | using OCTEON crypto instructions, when available. |
| 799 | |
| 800 | config CRYPTO_MD5_PPC |
| 801 | tristate "MD5 digest algorithm (PPC)" |
| 802 | depends on PPC |
| 803 | select CRYPTO_HASH |
| 804 | help |
| 805 | MD5 message digest algorithm (RFC1321) implemented |
| 806 | in PPC assembler. |
| 807 | |
| 808 | config CRYPTO_MD5_SPARC64 |
| 809 | tristate "MD5 digest algorithm (SPARC64)" |
| 810 | depends on SPARC64 |
| 811 | select CRYPTO_MD5 |
| 812 | select CRYPTO_HASH |
| 813 | help |
| 814 | MD5 message digest algorithm (RFC1321) implemented |
| 815 | using sparc64 crypto instructions, when available. |
| 816 | |
| 817 | config CRYPTO_MICHAEL_MIC |
| 818 | tristate "Michael MIC keyed digest algorithm" |
| 819 | select CRYPTO_HASH |
| 820 | help |
| 821 | Michael MIC is used for message integrity protection in TKIP |
| 822 | (IEEE 802.11i). This algorithm is required for TKIP, but it |
| 823 | should not be used for other purposes because of the weakness |
| 824 | of the algorithm. |
| 825 | |
| 826 | config CRYPTO_RMD128 |
| 827 | tristate "RIPEMD-128 digest algorithm" |
| 828 | select CRYPTO_HASH |
| 829 | help |
| 830 | RIPEMD-128 (ISO/IEC 10118-3:2004). |
| 831 | |
| 832 | RIPEMD-128 is a 128-bit cryptographic hash function. It should only |
| 833 | be used as a secure replacement for RIPEMD. For other use cases, |
| 834 | RIPEMD-160 should be used. |
| 835 | |
| 836 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 837 | See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 838 | |
| 839 | config CRYPTO_RMD160 |
| 840 | tristate "RIPEMD-160 digest algorithm" |
| 841 | select CRYPTO_HASH |
| 842 | help |
| 843 | RIPEMD-160 (ISO/IEC 10118-3:2004). |
| 844 | |
| 845 | RIPEMD-160 is a 160-bit cryptographic hash function. It is intended |
| 846 | to be used as a secure replacement for the 128-bit hash functions |
| 847 | MD4, MD5 and it's predecessor RIPEMD |
| 848 | (not to be confused with RIPEMD-128). |
| 849 | |
| 850 | It's speed is comparable to SHA1 and there are no known attacks |
| 851 | against RIPEMD-160. |
| 852 | |
| 853 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 854 | See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 855 | |
| 856 | config CRYPTO_RMD256 |
| 857 | tristate "RIPEMD-256 digest algorithm" |
| 858 | select CRYPTO_HASH |
| 859 | help |
| 860 | RIPEMD-256 is an optional extension of RIPEMD-128 with a |
| 861 | 256 bit hash. It is intended for applications that require |
| 862 | longer hash-results, without needing a larger security level |
| 863 | (than RIPEMD-128). |
| 864 | |
| 865 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 866 | See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 867 | |
| 868 | config CRYPTO_RMD320 |
| 869 | tristate "RIPEMD-320 digest algorithm" |
| 870 | select CRYPTO_HASH |
| 871 | help |
| 872 | RIPEMD-320 is an optional extension of RIPEMD-160 with a |
| 873 | 320 bit hash. It is intended for applications that require |
| 874 | longer hash-results, without needing a larger security level |
| 875 | (than RIPEMD-160). |
| 876 | |
| 877 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 878 | See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 879 | |
| 880 | config CRYPTO_SHA1 |
| 881 | tristate "SHA1 digest algorithm" |
| 882 | select CRYPTO_HASH |
| 883 | help |
| 884 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). |
| 885 | |
| 886 | config CRYPTO_SHA1_SSSE3 |
| 887 | tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
| 888 | depends on X86 && 64BIT |
| 889 | select CRYPTO_SHA1 |
| 890 | select CRYPTO_HASH |
| 891 | help |
| 892 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented |
| 893 | using Supplemental SSE3 (SSSE3) instructions or Advanced Vector |
| 894 | Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), |
| 895 | when available. |
| 896 | |
| 897 | config CRYPTO_SHA256_SSSE3 |
| 898 | tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
| 899 | depends on X86 && 64BIT |
| 900 | select CRYPTO_SHA256 |
| 901 | select CRYPTO_HASH |
| 902 | help |
| 903 | SHA-256 secure hash standard (DFIPS 180-2) implemented |
| 904 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector |
| 905 | Extensions version 1 (AVX1), or Advanced Vector Extensions |
| 906 | version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New |
| 907 | Instructions) when available. |
| 908 | |
| 909 | config CRYPTO_SHA512_SSSE3 |
| 910 | tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" |
| 911 | depends on X86 && 64BIT |
| 912 | select CRYPTO_SHA512 |
| 913 | select CRYPTO_HASH |
| 914 | help |
| 915 | SHA-512 secure hash standard (DFIPS 180-2) implemented |
| 916 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector |
| 917 | Extensions version 1 (AVX1), or Advanced Vector Extensions |
| 918 | version 2 (AVX2) instructions, when available. |
| 919 | |
| 920 | config CRYPTO_SHA1_OCTEON |
| 921 | tristate "SHA1 digest algorithm (OCTEON)" |
| 922 | depends on CPU_CAVIUM_OCTEON |
| 923 | select CRYPTO_SHA1 |
| 924 | select CRYPTO_HASH |
| 925 | help |
| 926 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented |
| 927 | using OCTEON crypto instructions, when available. |
| 928 | |
| 929 | config CRYPTO_SHA1_SPARC64 |
| 930 | tristate "SHA1 digest algorithm (SPARC64)" |
| 931 | depends on SPARC64 |
| 932 | select CRYPTO_SHA1 |
| 933 | select CRYPTO_HASH |
| 934 | help |
| 935 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented |
| 936 | using sparc64 crypto instructions, when available. |
| 937 | |
| 938 | config CRYPTO_SHA1_PPC |
| 939 | tristate "SHA1 digest algorithm (powerpc)" |
| 940 | depends on PPC |
| 941 | help |
| 942 | This is the powerpc hardware accelerated implementation of the |
| 943 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). |
| 944 | |
| 945 | config CRYPTO_SHA1_PPC_SPE |
| 946 | tristate "SHA1 digest algorithm (PPC SPE)" |
| 947 | depends on PPC && SPE |
| 948 | help |
| 949 | SHA-1 secure hash standard (DFIPS 180-4) implemented |
| 950 | using powerpc SPE SIMD instruction set. |
| 951 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 952 | config CRYPTO_SHA256 |
| 953 | tristate "SHA224 and SHA256 digest algorithm" |
| 954 | select CRYPTO_HASH |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 955 | select CRYPTO_LIB_SHA256 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 956 | help |
| 957 | SHA256 secure hash standard (DFIPS 180-2). |
| 958 | |
| 959 | This version of SHA implements a 256 bit hash with 128 bits of |
| 960 | security against collision attacks. |
| 961 | |
| 962 | This code also includes SHA-224, a 224 bit hash with 112 bits |
| 963 | of security against collision attacks. |
| 964 | |
| 965 | config CRYPTO_SHA256_PPC_SPE |
| 966 | tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" |
| 967 | depends on PPC && SPE |
| 968 | select CRYPTO_SHA256 |
| 969 | select CRYPTO_HASH |
| 970 | help |
| 971 | SHA224 and SHA256 secure hash standard (DFIPS 180-2) |
| 972 | implemented using powerpc SPE SIMD instruction set. |
| 973 | |
| 974 | config CRYPTO_SHA256_OCTEON |
| 975 | tristate "SHA224 and SHA256 digest algorithm (OCTEON)" |
| 976 | depends on CPU_CAVIUM_OCTEON |
| 977 | select CRYPTO_SHA256 |
| 978 | select CRYPTO_HASH |
| 979 | help |
| 980 | SHA-256 secure hash standard (DFIPS 180-2) implemented |
| 981 | using OCTEON crypto instructions, when available. |
| 982 | |
| 983 | config CRYPTO_SHA256_SPARC64 |
| 984 | tristate "SHA224 and SHA256 digest algorithm (SPARC64)" |
| 985 | depends on SPARC64 |
| 986 | select CRYPTO_SHA256 |
| 987 | select CRYPTO_HASH |
| 988 | help |
| 989 | SHA-256 secure hash standard (DFIPS 180-2) implemented |
| 990 | using sparc64 crypto instructions, when available. |
| 991 | |
| 992 | config CRYPTO_SHA512 |
| 993 | tristate "SHA384 and SHA512 digest algorithms" |
| 994 | select CRYPTO_HASH |
| 995 | help |
| 996 | SHA512 secure hash standard (DFIPS 180-2). |
| 997 | |
| 998 | This version of SHA implements a 512 bit hash with 256 bits of |
| 999 | security against collision attacks. |
| 1000 | |
| 1001 | This code also includes SHA-384, a 384 bit hash with 192 bits |
| 1002 | of security against collision attacks. |
| 1003 | |
| 1004 | config CRYPTO_SHA512_OCTEON |
| 1005 | tristate "SHA384 and SHA512 digest algorithms (OCTEON)" |
| 1006 | depends on CPU_CAVIUM_OCTEON |
| 1007 | select CRYPTO_SHA512 |
| 1008 | select CRYPTO_HASH |
| 1009 | help |
| 1010 | SHA-512 secure hash standard (DFIPS 180-2) implemented |
| 1011 | using OCTEON crypto instructions, when available. |
| 1012 | |
| 1013 | config CRYPTO_SHA512_SPARC64 |
| 1014 | tristate "SHA384 and SHA512 digest algorithm (SPARC64)" |
| 1015 | depends on SPARC64 |
| 1016 | select CRYPTO_SHA512 |
| 1017 | select CRYPTO_HASH |
| 1018 | help |
| 1019 | SHA-512 secure hash standard (DFIPS 180-2) implemented |
| 1020 | using sparc64 crypto instructions, when available. |
| 1021 | |
| 1022 | config CRYPTO_SHA3 |
| 1023 | tristate "SHA3 digest algorithm" |
| 1024 | select CRYPTO_HASH |
| 1025 | help |
| 1026 | SHA-3 secure hash standard (DFIPS 202). It's based on |
| 1027 | cryptographic sponge function family called Keccak. |
| 1028 | |
| 1029 | References: |
| 1030 | http://keccak.noekeon.org/ |
| 1031 | |
| 1032 | config CRYPTO_SM3 |
| 1033 | tristate "SM3 digest algorithm" |
| 1034 | select CRYPTO_HASH |
| 1035 | help |
| 1036 | SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). |
| 1037 | It is part of the Chinese Commercial Cryptography suite. |
| 1038 | |
| 1039 | References: |
| 1040 | http://www.oscca.gov.cn/UpFile/20101222141857786.pdf |
| 1041 | https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash |
| 1042 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1043 | config CRYPTO_STREEBOG |
| 1044 | tristate "Streebog Hash Function" |
| 1045 | select CRYPTO_HASH |
| 1046 | help |
| 1047 | Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian |
| 1048 | cryptographic standard algorithms (called GOST algorithms). |
| 1049 | This setting enables two hash algorithms with 256 and 512 bits output. |
| 1050 | |
| 1051 | References: |
| 1052 | https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf |
| 1053 | https://tools.ietf.org/html/rfc6986 |
| 1054 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1055 | config CRYPTO_TGR192 |
| 1056 | tristate "Tiger digest algorithms" |
| 1057 | select CRYPTO_HASH |
| 1058 | help |
| 1059 | Tiger hash algorithm 192, 160 and 128-bit hashes |
| 1060 | |
| 1061 | Tiger is a hash function optimized for 64-bit processors while |
| 1062 | still having decent performance on 32-bit processors. |
| 1063 | Tiger was developed by Ross Anderson and Eli Biham. |
| 1064 | |
| 1065 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1066 | <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1067 | |
| 1068 | config CRYPTO_WP512 |
| 1069 | tristate "Whirlpool digest algorithms" |
| 1070 | select CRYPTO_HASH |
| 1071 | help |
| 1072 | Whirlpool hash algorithm 512, 384 and 256-bit hashes |
| 1073 | |
| 1074 | Whirlpool-512 is part of the NESSIE cryptographic primitives. |
| 1075 | Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard |
| 1076 | |
| 1077 | See also: |
| 1078 | <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> |
| 1079 | |
| 1080 | config CRYPTO_GHASH_CLMUL_NI_INTEL |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1081 | tristate "GHASH hash function (CLMUL-NI accelerated)" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1082 | depends on X86 && 64BIT |
| 1083 | select CRYPTO_CRYPTD |
| 1084 | help |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1085 | This is the x86_64 CLMUL-NI accelerated implementation of |
| 1086 | GHASH, the hash function used in GCM (Galois/Counter mode). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1087 | |
| 1088 | comment "Ciphers" |
| 1089 | |
| 1090 | config CRYPTO_AES |
| 1091 | tristate "AES cipher algorithms" |
| 1092 | select CRYPTO_ALGAPI |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1093 | select CRYPTO_LIB_AES |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1094 | help |
| 1095 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
| 1096 | algorithm. |
| 1097 | |
| 1098 | Rijndael appears to be consistently a very good performer in |
| 1099 | both hardware and software across a wide range of computing |
| 1100 | environments regardless of its use in feedback or non-feedback |
| 1101 | modes. Its key setup time is excellent, and its key agility is |
| 1102 | good. Rijndael's very low memory requirements make it very well |
| 1103 | suited for restricted-space environments, in which it also |
| 1104 | demonstrates excellent performance. Rijndael's operations are |
| 1105 | among the easiest to defend against power and timing attacks. |
| 1106 | |
| 1107 | The AES specifies three key sizes: 128, 192 and 256 bits |
| 1108 | |
| 1109 | See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. |
| 1110 | |
| 1111 | config CRYPTO_AES_TI |
| 1112 | tristate "Fixed time AES cipher" |
| 1113 | select CRYPTO_ALGAPI |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1114 | select CRYPTO_LIB_AES |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1115 | help |
| 1116 | This is a generic implementation of AES that attempts to eliminate |
| 1117 | data dependent latencies as much as possible without affecting |
| 1118 | performance too much. It is intended for use by the generic CCM |
| 1119 | and GCM drivers, and other CTR or CMAC/XCBC based modes that rely |
| 1120 | solely on encryption (although decryption is supported as well, but |
| 1121 | with a more dramatic performance hit) |
| 1122 | |
| 1123 | Instead of using 16 lookup tables of 1 KB each, (8 for encryption and |
| 1124 | 8 for decryption), this implementation only uses just two S-boxes of |
| 1125 | 256 bytes each, and attempts to eliminate data dependent latencies by |
| 1126 | prefetching the entire table into the cache at the start of each |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1127 | block. Interrupts are also disabled to avoid races where cachelines |
| 1128 | are evicted when the CPU is interrupted to do something else. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1129 | |
| 1130 | config CRYPTO_AES_NI_INTEL |
| 1131 | tristate "AES cipher algorithms (AES-NI)" |
| 1132 | depends on X86 |
| 1133 | select CRYPTO_AEAD |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1134 | select CRYPTO_LIB_AES |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1135 | select CRYPTO_ALGAPI |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1136 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1137 | select CRYPTO_GLUE_HELPER_X86 if 64BIT |
| 1138 | select CRYPTO_SIMD |
| 1139 | help |
| 1140 | Use Intel AES-NI instructions for AES algorithm. |
| 1141 | |
| 1142 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
| 1143 | algorithm. |
| 1144 | |
| 1145 | Rijndael appears to be consistently a very good performer in |
| 1146 | both hardware and software across a wide range of computing |
| 1147 | environments regardless of its use in feedback or non-feedback |
| 1148 | modes. Its key setup time is excellent, and its key agility is |
| 1149 | good. Rijndael's very low memory requirements make it very well |
| 1150 | suited for restricted-space environments, in which it also |
| 1151 | demonstrates excellent performance. Rijndael's operations are |
| 1152 | among the easiest to defend against power and timing attacks. |
| 1153 | |
| 1154 | The AES specifies three key sizes: 128, 192 and 256 bits |
| 1155 | |
| 1156 | See <http://csrc.nist.gov/encryption/aes/> for more information. |
| 1157 | |
| 1158 | In addition to AES cipher algorithm support, the acceleration |
| 1159 | for some popular block cipher mode is supported too, including |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1160 | ECB, CBC, LRW, XTS. The 64 bit version has additional |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1161 | acceleration for CTR. |
| 1162 | |
| 1163 | config CRYPTO_AES_SPARC64 |
| 1164 | tristate "AES cipher algorithms (SPARC64)" |
| 1165 | depends on SPARC64 |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1166 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1167 | help |
| 1168 | Use SPARC64 crypto opcodes for AES algorithm. |
| 1169 | |
| 1170 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
| 1171 | algorithm. |
| 1172 | |
| 1173 | Rijndael appears to be consistently a very good performer in |
| 1174 | both hardware and software across a wide range of computing |
| 1175 | environments regardless of its use in feedback or non-feedback |
| 1176 | modes. Its key setup time is excellent, and its key agility is |
| 1177 | good. Rijndael's very low memory requirements make it very well |
| 1178 | suited for restricted-space environments, in which it also |
| 1179 | demonstrates excellent performance. Rijndael's operations are |
| 1180 | among the easiest to defend against power and timing attacks. |
| 1181 | |
| 1182 | The AES specifies three key sizes: 128, 192 and 256 bits |
| 1183 | |
| 1184 | See <http://csrc.nist.gov/encryption/aes/> for more information. |
| 1185 | |
| 1186 | In addition to AES cipher algorithm support, the acceleration |
| 1187 | for some popular block cipher mode is supported too, including |
| 1188 | ECB and CBC. |
| 1189 | |
| 1190 | config CRYPTO_AES_PPC_SPE |
| 1191 | tristate "AES cipher algorithms (PPC SPE)" |
| 1192 | depends on PPC && SPE |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1193 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1194 | help |
| 1195 | AES cipher algorithms (FIPS-197). Additionally the acceleration |
| 1196 | for popular block cipher modes ECB, CBC, CTR and XTS is supported. |
| 1197 | This module should only be used for low power (router) devices |
| 1198 | without hardware AES acceleration (e.g. caam crypto). It reduces the |
| 1199 | size of the AES tables from 16KB to 8KB + 256 bytes and mitigates |
| 1200 | timining attacks. Nevertheless it might be not as secure as other |
| 1201 | architecture specific assembler implementations that work on 1KB |
| 1202 | tables or 256 bytes S-boxes. |
| 1203 | |
| 1204 | config CRYPTO_ANUBIS |
| 1205 | tristate "Anubis cipher algorithm" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1206 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1207 | select CRYPTO_ALGAPI |
| 1208 | help |
| 1209 | Anubis cipher algorithm. |
| 1210 | |
| 1211 | Anubis is a variable key length cipher which can use keys from |
| 1212 | 128 bits to 320 bits in length. It was evaluated as a entrant |
| 1213 | in the NESSIE competition. |
| 1214 | |
| 1215 | See also: |
| 1216 | <https://www.cosic.esat.kuleuven.be/nessie/reports/> |
| 1217 | <http://www.larc.usp.br/~pbarreto/AnubisPage.html> |
| 1218 | |
| 1219 | config CRYPTO_ARC4 |
| 1220 | tristate "ARC4 cipher algorithm" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1221 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
| 1222 | select CRYPTO_SKCIPHER |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1223 | select CRYPTO_LIB_ARC4 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1224 | help |
| 1225 | ARC4 cipher algorithm. |
| 1226 | |
| 1227 | ARC4 is a stream cipher using keys ranging from 8 bits to 2048 |
| 1228 | bits in length. This algorithm is required for driver-based |
| 1229 | WEP, but it should not be for other purposes because of the |
| 1230 | weakness of the algorithm. |
| 1231 | |
| 1232 | config CRYPTO_BLOWFISH |
| 1233 | tristate "Blowfish cipher algorithm" |
| 1234 | select CRYPTO_ALGAPI |
| 1235 | select CRYPTO_BLOWFISH_COMMON |
| 1236 | help |
| 1237 | Blowfish cipher algorithm, by Bruce Schneier. |
| 1238 | |
| 1239 | This is a variable key length cipher which can use keys from 32 |
| 1240 | bits to 448 bits in length. It's fast, simple and specifically |
| 1241 | designed for use on "large microprocessors". |
| 1242 | |
| 1243 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1244 | <https://www.schneier.com/blowfish.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1245 | |
| 1246 | config CRYPTO_BLOWFISH_COMMON |
| 1247 | tristate |
| 1248 | help |
| 1249 | Common parts of the Blowfish cipher algorithm shared by the |
| 1250 | generic c and the assembler implementations. |
| 1251 | |
| 1252 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1253 | <https://www.schneier.com/blowfish.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1254 | |
| 1255 | config CRYPTO_BLOWFISH_X86_64 |
| 1256 | tristate "Blowfish cipher algorithm (x86_64)" |
| 1257 | depends on X86 && 64BIT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1258 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1259 | select CRYPTO_BLOWFISH_COMMON |
| 1260 | help |
| 1261 | Blowfish cipher algorithm (x86_64), by Bruce Schneier. |
| 1262 | |
| 1263 | This is a variable key length cipher which can use keys from 32 |
| 1264 | bits to 448 bits in length. It's fast, simple and specifically |
| 1265 | designed for use on "large microprocessors". |
| 1266 | |
| 1267 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1268 | <https://www.schneier.com/blowfish.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1269 | |
| 1270 | config CRYPTO_CAMELLIA |
| 1271 | tristate "Camellia cipher algorithms" |
| 1272 | depends on CRYPTO |
| 1273 | select CRYPTO_ALGAPI |
| 1274 | help |
| 1275 | Camellia cipher algorithms module. |
| 1276 | |
| 1277 | Camellia is a symmetric key block cipher developed jointly |
| 1278 | at NTT and Mitsubishi Electric Corporation. |
| 1279 | |
| 1280 | The Camellia specifies three key sizes: 128, 192 and 256 bits. |
| 1281 | |
| 1282 | See also: |
| 1283 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
| 1284 | |
| 1285 | config CRYPTO_CAMELLIA_X86_64 |
| 1286 | tristate "Camellia cipher algorithm (x86_64)" |
| 1287 | depends on X86 && 64BIT |
| 1288 | depends on CRYPTO |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1289 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1290 | select CRYPTO_GLUE_HELPER_X86 |
| 1291 | help |
| 1292 | Camellia cipher algorithm module (x86_64). |
| 1293 | |
| 1294 | Camellia is a symmetric key block cipher developed jointly |
| 1295 | at NTT and Mitsubishi Electric Corporation. |
| 1296 | |
| 1297 | The Camellia specifies three key sizes: 128, 192 and 256 bits. |
| 1298 | |
| 1299 | See also: |
| 1300 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
| 1301 | |
| 1302 | config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 |
| 1303 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" |
| 1304 | depends on X86 && 64BIT |
| 1305 | depends on CRYPTO |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1306 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1307 | select CRYPTO_CAMELLIA_X86_64 |
| 1308 | select CRYPTO_GLUE_HELPER_X86 |
| 1309 | select CRYPTO_SIMD |
| 1310 | select CRYPTO_XTS |
| 1311 | help |
| 1312 | Camellia cipher algorithm module (x86_64/AES-NI/AVX). |
| 1313 | |
| 1314 | Camellia is a symmetric key block cipher developed jointly |
| 1315 | at NTT and Mitsubishi Electric Corporation. |
| 1316 | |
| 1317 | The Camellia specifies three key sizes: 128, 192 and 256 bits. |
| 1318 | |
| 1319 | See also: |
| 1320 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
| 1321 | |
| 1322 | config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 |
| 1323 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" |
| 1324 | depends on X86 && 64BIT |
| 1325 | depends on CRYPTO |
| 1326 | select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 |
| 1327 | help |
| 1328 | Camellia cipher algorithm module (x86_64/AES-NI/AVX2). |
| 1329 | |
| 1330 | Camellia is a symmetric key block cipher developed jointly |
| 1331 | at NTT and Mitsubishi Electric Corporation. |
| 1332 | |
| 1333 | The Camellia specifies three key sizes: 128, 192 and 256 bits. |
| 1334 | |
| 1335 | See also: |
| 1336 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
| 1337 | |
| 1338 | config CRYPTO_CAMELLIA_SPARC64 |
| 1339 | tristate "Camellia cipher algorithm (SPARC64)" |
| 1340 | depends on SPARC64 |
| 1341 | depends on CRYPTO |
| 1342 | select CRYPTO_ALGAPI |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1343 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1344 | help |
| 1345 | Camellia cipher algorithm module (SPARC64). |
| 1346 | |
| 1347 | Camellia is a symmetric key block cipher developed jointly |
| 1348 | at NTT and Mitsubishi Electric Corporation. |
| 1349 | |
| 1350 | The Camellia specifies three key sizes: 128, 192 and 256 bits. |
| 1351 | |
| 1352 | See also: |
| 1353 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
| 1354 | |
| 1355 | config CRYPTO_CAST_COMMON |
| 1356 | tristate |
| 1357 | help |
| 1358 | Common parts of the CAST cipher algorithms shared by the |
| 1359 | generic c and the assembler implementations. |
| 1360 | |
| 1361 | config CRYPTO_CAST5 |
| 1362 | tristate "CAST5 (CAST-128) cipher algorithm" |
| 1363 | select CRYPTO_ALGAPI |
| 1364 | select CRYPTO_CAST_COMMON |
| 1365 | help |
| 1366 | The CAST5 encryption algorithm (synonymous with CAST-128) is |
| 1367 | described in RFC2144. |
| 1368 | |
| 1369 | config CRYPTO_CAST5_AVX_X86_64 |
| 1370 | tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" |
| 1371 | depends on X86 && 64BIT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1372 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1373 | select CRYPTO_CAST5 |
| 1374 | select CRYPTO_CAST_COMMON |
| 1375 | select CRYPTO_SIMD |
| 1376 | help |
| 1377 | The CAST5 encryption algorithm (synonymous with CAST-128) is |
| 1378 | described in RFC2144. |
| 1379 | |
| 1380 | This module provides the Cast5 cipher algorithm that processes |
| 1381 | sixteen blocks parallel using the AVX instruction set. |
| 1382 | |
| 1383 | config CRYPTO_CAST6 |
| 1384 | tristate "CAST6 (CAST-256) cipher algorithm" |
| 1385 | select CRYPTO_ALGAPI |
| 1386 | select CRYPTO_CAST_COMMON |
| 1387 | help |
| 1388 | The CAST6 encryption algorithm (synonymous with CAST-256) is |
| 1389 | described in RFC2612. |
| 1390 | |
| 1391 | config CRYPTO_CAST6_AVX_X86_64 |
| 1392 | tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" |
| 1393 | depends on X86 && 64BIT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1394 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1395 | select CRYPTO_CAST6 |
| 1396 | select CRYPTO_CAST_COMMON |
| 1397 | select CRYPTO_GLUE_HELPER_X86 |
| 1398 | select CRYPTO_SIMD |
| 1399 | select CRYPTO_XTS |
| 1400 | help |
| 1401 | The CAST6 encryption algorithm (synonymous with CAST-256) is |
| 1402 | described in RFC2612. |
| 1403 | |
| 1404 | This module provides the Cast6 cipher algorithm that processes |
| 1405 | eight blocks parallel using the AVX instruction set. |
| 1406 | |
| 1407 | config CRYPTO_DES |
| 1408 | tristate "DES and Triple DES EDE cipher algorithms" |
| 1409 | select CRYPTO_ALGAPI |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1410 | select CRYPTO_LIB_DES |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1411 | help |
| 1412 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). |
| 1413 | |
| 1414 | config CRYPTO_DES_SPARC64 |
| 1415 | tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" |
| 1416 | depends on SPARC64 |
| 1417 | select CRYPTO_ALGAPI |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1418 | select CRYPTO_LIB_DES |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1419 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1420 | help |
| 1421 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), |
| 1422 | optimized using SPARC64 crypto opcodes. |
| 1423 | |
| 1424 | config CRYPTO_DES3_EDE_X86_64 |
| 1425 | tristate "Triple DES EDE cipher algorithm (x86-64)" |
| 1426 | depends on X86 && 64BIT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1427 | select CRYPTO_SKCIPHER |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1428 | select CRYPTO_LIB_DES |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1429 | help |
| 1430 | Triple DES EDE (FIPS 46-3) algorithm. |
| 1431 | |
| 1432 | This module provides implementation of the Triple DES EDE cipher |
| 1433 | algorithm that is optimized for x86-64 processors. Two versions of |
| 1434 | algorithm are provided; regular processing one input block and |
| 1435 | one that processes three blocks parallel. |
| 1436 | |
| 1437 | config CRYPTO_FCRYPT |
| 1438 | tristate "FCrypt cipher algorithm" |
| 1439 | select CRYPTO_ALGAPI |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1440 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1441 | help |
| 1442 | FCrypt algorithm used by RxRPC. |
| 1443 | |
| 1444 | config CRYPTO_KHAZAD |
| 1445 | tristate "Khazad cipher algorithm" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1446 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1447 | select CRYPTO_ALGAPI |
| 1448 | help |
| 1449 | Khazad cipher algorithm. |
| 1450 | |
| 1451 | Khazad was a finalist in the initial NESSIE competition. It is |
| 1452 | an algorithm optimized for 64-bit processors with good performance |
| 1453 | on 32-bit processors. Khazad uses an 128 bit key size. |
| 1454 | |
| 1455 | See also: |
| 1456 | <http://www.larc.usp.br/~pbarreto/KhazadPage.html> |
| 1457 | |
| 1458 | config CRYPTO_SALSA20 |
| 1459 | tristate "Salsa20 stream cipher algorithm" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1460 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1461 | help |
| 1462 | Salsa20 stream cipher algorithm. |
| 1463 | |
| 1464 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1465 | Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1466 | |
| 1467 | The Salsa20 stream cipher algorithm is designed by Daniel J. |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1468 | Bernstein <djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1469 | |
| 1470 | config CRYPTO_CHACHA20 |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1471 | tristate "ChaCha stream cipher algorithms" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1472 | select CRYPTO_LIB_CHACHA_GENERIC |
| 1473 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1474 | help |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1475 | The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1476 | |
| 1477 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. |
| 1478 | Bernstein and further specified in RFC7539 for use in IETF protocols. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1479 | This is the portable C implementation of ChaCha20. See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1480 | <https://cr.yp.to/chacha/chacha-20080128.pdf> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1481 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1482 | XChaCha20 is the application of the XSalsa20 construction to ChaCha20 |
| 1483 | rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length |
| 1484 | from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, |
| 1485 | while provably retaining ChaCha20's security. See also: |
| 1486 | <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> |
| 1487 | |
| 1488 | XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly |
| 1489 | reduced security margin but increased performance. It can be needed |
| 1490 | in some performance-sensitive scenarios. |
| 1491 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1492 | config CRYPTO_CHACHA20_X86_64 |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1493 | tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1494 | depends on X86 && 64BIT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1495 | select CRYPTO_SKCIPHER |
| 1496 | select CRYPTO_LIB_CHACHA_GENERIC |
| 1497 | select CRYPTO_ARCH_HAVE_LIB_CHACHA |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1498 | help |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1499 | SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, |
| 1500 | XChaCha20, and XChaCha12 stream ciphers. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1501 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1502 | config CRYPTO_CHACHA_MIPS |
| 1503 | tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" |
| 1504 | depends on CPU_MIPS32_R2 |
| 1505 | select CRYPTO_SKCIPHER |
| 1506 | select CRYPTO_ARCH_HAVE_LIB_CHACHA |
| 1507 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1508 | config CRYPTO_SEED |
| 1509 | tristate "SEED cipher algorithm" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1510 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1511 | select CRYPTO_ALGAPI |
| 1512 | help |
| 1513 | SEED cipher algorithm (RFC4269). |
| 1514 | |
| 1515 | SEED is a 128-bit symmetric key block cipher that has been |
| 1516 | developed by KISA (Korea Information Security Agency) as a |
| 1517 | national standard encryption algorithm of the Republic of Korea. |
| 1518 | It is a 16 round block cipher with the key size of 128 bit. |
| 1519 | |
| 1520 | See also: |
| 1521 | <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> |
| 1522 | |
| 1523 | config CRYPTO_SERPENT |
| 1524 | tristate "Serpent cipher algorithm" |
| 1525 | select CRYPTO_ALGAPI |
| 1526 | help |
| 1527 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
| 1528 | |
| 1529 | Keys are allowed to be from 0 to 256 bits in length, in steps |
| 1530 | of 8 bits. Also includes the 'Tnepres' algorithm, a reversed |
| 1531 | variant of Serpent for compatibility with old kerneli.org code. |
| 1532 | |
| 1533 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1534 | <https://www.cl.cam.ac.uk/~rja14/serpent.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1535 | |
| 1536 | config CRYPTO_SERPENT_SSE2_X86_64 |
| 1537 | tristate "Serpent cipher algorithm (x86_64/SSE2)" |
| 1538 | depends on X86 && 64BIT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1539 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1540 | select CRYPTO_GLUE_HELPER_X86 |
| 1541 | select CRYPTO_SERPENT |
| 1542 | select CRYPTO_SIMD |
| 1543 | help |
| 1544 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
| 1545 | |
| 1546 | Keys are allowed to be from 0 to 256 bits in length, in steps |
| 1547 | of 8 bits. |
| 1548 | |
| 1549 | This module provides Serpent cipher algorithm that processes eight |
| 1550 | blocks parallel using SSE2 instruction set. |
| 1551 | |
| 1552 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1553 | <https://www.cl.cam.ac.uk/~rja14/serpent.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1554 | |
| 1555 | config CRYPTO_SERPENT_SSE2_586 |
| 1556 | tristate "Serpent cipher algorithm (i586/SSE2)" |
| 1557 | depends on X86 && !64BIT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1558 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1559 | select CRYPTO_GLUE_HELPER_X86 |
| 1560 | select CRYPTO_SERPENT |
| 1561 | select CRYPTO_SIMD |
| 1562 | help |
| 1563 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
| 1564 | |
| 1565 | Keys are allowed to be from 0 to 256 bits in length, in steps |
| 1566 | of 8 bits. |
| 1567 | |
| 1568 | This module provides Serpent cipher algorithm that processes four |
| 1569 | blocks parallel using SSE2 instruction set. |
| 1570 | |
| 1571 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1572 | <https://www.cl.cam.ac.uk/~rja14/serpent.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1573 | |
| 1574 | config CRYPTO_SERPENT_AVX_X86_64 |
| 1575 | tristate "Serpent cipher algorithm (x86_64/AVX)" |
| 1576 | depends on X86 && 64BIT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1577 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1578 | select CRYPTO_GLUE_HELPER_X86 |
| 1579 | select CRYPTO_SERPENT |
| 1580 | select CRYPTO_SIMD |
| 1581 | select CRYPTO_XTS |
| 1582 | help |
| 1583 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
| 1584 | |
| 1585 | Keys are allowed to be from 0 to 256 bits in length, in steps |
| 1586 | of 8 bits. |
| 1587 | |
| 1588 | This module provides the Serpent cipher algorithm that processes |
| 1589 | eight blocks parallel using the AVX instruction set. |
| 1590 | |
| 1591 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1592 | <https://www.cl.cam.ac.uk/~rja14/serpent.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1593 | |
| 1594 | config CRYPTO_SERPENT_AVX2_X86_64 |
| 1595 | tristate "Serpent cipher algorithm (x86_64/AVX2)" |
| 1596 | depends on X86 && 64BIT |
| 1597 | select CRYPTO_SERPENT_AVX_X86_64 |
| 1598 | help |
| 1599 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
| 1600 | |
| 1601 | Keys are allowed to be from 0 to 256 bits in length, in steps |
| 1602 | of 8 bits. |
| 1603 | |
| 1604 | This module provides Serpent cipher algorithm that processes 16 |
| 1605 | blocks parallel using AVX2 instruction set. |
| 1606 | |
| 1607 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1608 | <https://www.cl.cam.ac.uk/~rja14/serpent.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1609 | |
| 1610 | config CRYPTO_SM4 |
| 1611 | tristate "SM4 cipher algorithm" |
| 1612 | select CRYPTO_ALGAPI |
| 1613 | help |
| 1614 | SM4 cipher algorithms (OSCCA GB/T 32907-2016). |
| 1615 | |
| 1616 | SM4 (GBT.32907-2016) is a cryptographic standard issued by the |
| 1617 | Organization of State Commercial Administration of China (OSCCA) |
| 1618 | as an authorized cryptographic algorithms for the use within China. |
| 1619 | |
| 1620 | SMS4 was originally created for use in protecting wireless |
| 1621 | networks, and is mandated in the Chinese National Standard for |
| 1622 | Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) |
| 1623 | (GB.15629.11-2003). |
| 1624 | |
| 1625 | The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and |
| 1626 | standardized through TC 260 of the Standardization Administration |
| 1627 | of the People's Republic of China (SAC). |
| 1628 | |
| 1629 | The input, output, and key of SMS4 are each 128 bits. |
| 1630 | |
| 1631 | See also: <https://eprint.iacr.org/2008/329.pdf> |
| 1632 | |
| 1633 | If unsure, say N. |
| 1634 | |
| 1635 | config CRYPTO_TEA |
| 1636 | tristate "TEA, XTEA and XETA cipher algorithms" |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1637 | depends on CRYPTO_USER_API_ENABLE_OBSOLETE |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1638 | select CRYPTO_ALGAPI |
| 1639 | help |
| 1640 | TEA cipher algorithm. |
| 1641 | |
| 1642 | Tiny Encryption Algorithm is a simple cipher that uses |
| 1643 | many rounds for security. It is very fast and uses |
| 1644 | little memory. |
| 1645 | |
| 1646 | Xtendend Tiny Encryption Algorithm is a modification to |
| 1647 | the TEA algorithm to address a potential key weakness |
| 1648 | in the TEA algorithm. |
| 1649 | |
| 1650 | Xtendend Encryption Tiny Algorithm is a mis-implementation |
| 1651 | of the XTEA algorithm for compatibility purposes. |
| 1652 | |
| 1653 | config CRYPTO_TWOFISH |
| 1654 | tristate "Twofish cipher algorithm" |
| 1655 | select CRYPTO_ALGAPI |
| 1656 | select CRYPTO_TWOFISH_COMMON |
| 1657 | help |
| 1658 | Twofish cipher algorithm. |
| 1659 | |
| 1660 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 1661 | candidate cipher by researchers at CounterPane Systems. It is a |
| 1662 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 1663 | bits. |
| 1664 | |
| 1665 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1666 | <https://www.schneier.com/twofish.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1667 | |
| 1668 | config CRYPTO_TWOFISH_COMMON |
| 1669 | tristate |
| 1670 | help |
| 1671 | Common parts of the Twofish cipher algorithm shared by the |
| 1672 | generic c and the assembler implementations. |
| 1673 | |
| 1674 | config CRYPTO_TWOFISH_586 |
| 1675 | tristate "Twofish cipher algorithms (i586)" |
| 1676 | depends on (X86 || UML_X86) && !64BIT |
| 1677 | select CRYPTO_ALGAPI |
| 1678 | select CRYPTO_TWOFISH_COMMON |
| 1679 | help |
| 1680 | Twofish cipher algorithm. |
| 1681 | |
| 1682 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 1683 | candidate cipher by researchers at CounterPane Systems. It is a |
| 1684 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 1685 | bits. |
| 1686 | |
| 1687 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1688 | <https://www.schneier.com/twofish.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1689 | |
| 1690 | config CRYPTO_TWOFISH_X86_64 |
| 1691 | tristate "Twofish cipher algorithm (x86_64)" |
| 1692 | depends on (X86 || UML_X86) && 64BIT |
| 1693 | select CRYPTO_ALGAPI |
| 1694 | select CRYPTO_TWOFISH_COMMON |
| 1695 | help |
| 1696 | Twofish cipher algorithm (x86_64). |
| 1697 | |
| 1698 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 1699 | candidate cipher by researchers at CounterPane Systems. It is a |
| 1700 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 1701 | bits. |
| 1702 | |
| 1703 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1704 | <https://www.schneier.com/twofish.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1705 | |
| 1706 | config CRYPTO_TWOFISH_X86_64_3WAY |
| 1707 | tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" |
| 1708 | depends on X86 && 64BIT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1709 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1710 | select CRYPTO_TWOFISH_COMMON |
| 1711 | select CRYPTO_TWOFISH_X86_64 |
| 1712 | select CRYPTO_GLUE_HELPER_X86 |
| 1713 | help |
| 1714 | Twofish cipher algorithm (x86_64, 3-way parallel). |
| 1715 | |
| 1716 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 1717 | candidate cipher by researchers at CounterPane Systems. It is a |
| 1718 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 1719 | bits. |
| 1720 | |
| 1721 | This module provides Twofish cipher algorithm that processes three |
| 1722 | blocks parallel, utilizing resources of out-of-order CPUs better. |
| 1723 | |
| 1724 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1725 | <https://www.schneier.com/twofish.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1726 | |
| 1727 | config CRYPTO_TWOFISH_AVX_X86_64 |
| 1728 | tristate "Twofish cipher algorithm (x86_64/AVX)" |
| 1729 | depends on X86 && 64BIT |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1730 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1731 | select CRYPTO_GLUE_HELPER_X86 |
| 1732 | select CRYPTO_SIMD |
| 1733 | select CRYPTO_TWOFISH_COMMON |
| 1734 | select CRYPTO_TWOFISH_X86_64 |
| 1735 | select CRYPTO_TWOFISH_X86_64_3WAY |
| 1736 | help |
| 1737 | Twofish cipher algorithm (x86_64/AVX). |
| 1738 | |
| 1739 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 1740 | candidate cipher by researchers at CounterPane Systems. It is a |
| 1741 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 1742 | bits. |
| 1743 | |
| 1744 | This module provides the Twofish cipher algorithm that processes |
| 1745 | eight blocks parallel using the AVX Instruction Set. |
| 1746 | |
| 1747 | See also: |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1748 | <https://www.schneier.com/twofish.html> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1749 | |
| 1750 | comment "Compression" |
| 1751 | |
| 1752 | config CRYPTO_DEFLATE |
| 1753 | tristate "Deflate compression algorithm" |
| 1754 | select CRYPTO_ALGAPI |
| 1755 | select CRYPTO_ACOMP2 |
| 1756 | select ZLIB_INFLATE |
| 1757 | select ZLIB_DEFLATE |
| 1758 | help |
| 1759 | This is the Deflate algorithm (RFC1951), specified for use in |
| 1760 | IPSec with the IPCOMP protocol (RFC3173, RFC2394). |
| 1761 | |
| 1762 | You will most probably want this if using IPSec. |
| 1763 | |
| 1764 | config CRYPTO_LZO |
| 1765 | tristate "LZO compression algorithm" |
| 1766 | select CRYPTO_ALGAPI |
| 1767 | select CRYPTO_ACOMP2 |
| 1768 | select LZO_COMPRESS |
| 1769 | select LZO_DECOMPRESS |
| 1770 | help |
| 1771 | This is the LZO algorithm. |
| 1772 | |
| 1773 | config CRYPTO_842 |
| 1774 | tristate "842 compression algorithm" |
| 1775 | select CRYPTO_ALGAPI |
| 1776 | select CRYPTO_ACOMP2 |
| 1777 | select 842_COMPRESS |
| 1778 | select 842_DECOMPRESS |
| 1779 | help |
| 1780 | This is the 842 algorithm. |
| 1781 | |
| 1782 | config CRYPTO_LZ4 |
| 1783 | tristate "LZ4 compression algorithm" |
| 1784 | select CRYPTO_ALGAPI |
| 1785 | select CRYPTO_ACOMP2 |
| 1786 | select LZ4_COMPRESS |
| 1787 | select LZ4_DECOMPRESS |
| 1788 | help |
| 1789 | This is the LZ4 algorithm. |
| 1790 | |
| 1791 | config CRYPTO_LZ4HC |
| 1792 | tristate "LZ4HC compression algorithm" |
| 1793 | select CRYPTO_ALGAPI |
| 1794 | select CRYPTO_ACOMP2 |
| 1795 | select LZ4HC_COMPRESS |
| 1796 | select LZ4_DECOMPRESS |
| 1797 | help |
| 1798 | This is the LZ4 high compression mode algorithm. |
| 1799 | |
| 1800 | config CRYPTO_ZSTD |
| 1801 | tristate "Zstd compression algorithm" |
| 1802 | select CRYPTO_ALGAPI |
| 1803 | select CRYPTO_ACOMP2 |
| 1804 | select ZSTD_COMPRESS |
| 1805 | select ZSTD_DECOMPRESS |
| 1806 | help |
| 1807 | This is the zstd algorithm. |
| 1808 | |
| 1809 | comment "Random Number Generation" |
| 1810 | |
| 1811 | config CRYPTO_ANSI_CPRNG |
| 1812 | tristate "Pseudo Random Number Generation for Cryptographic modules" |
| 1813 | select CRYPTO_AES |
| 1814 | select CRYPTO_RNG |
| 1815 | help |
| 1816 | This option enables the generic pseudo random number generator |
| 1817 | for cryptographic modules. Uses the Algorithm specified in |
| 1818 | ANSI X9.31 A.2.4. Note that this option must be enabled if |
| 1819 | CRYPTO_FIPS is selected |
| 1820 | |
| 1821 | menuconfig CRYPTO_DRBG_MENU |
| 1822 | tristate "NIST SP800-90A DRBG" |
| 1823 | help |
| 1824 | NIST SP800-90A compliant DRBG. In the following submenu, one or |
| 1825 | more of the DRBG types must be selected. |
| 1826 | |
| 1827 | if CRYPTO_DRBG_MENU |
| 1828 | |
| 1829 | config CRYPTO_DRBG_HMAC |
| 1830 | bool |
| 1831 | default y |
| 1832 | select CRYPTO_HMAC |
| 1833 | select CRYPTO_SHA256 |
| 1834 | |
| 1835 | config CRYPTO_DRBG_HASH |
| 1836 | bool "Enable Hash DRBG" |
| 1837 | select CRYPTO_SHA256 |
| 1838 | help |
| 1839 | Enable the Hash DRBG variant as defined in NIST SP800-90A. |
| 1840 | |
| 1841 | config CRYPTO_DRBG_CTR |
| 1842 | bool "Enable CTR DRBG" |
| 1843 | select CRYPTO_AES |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1844 | select CRYPTO_CTR |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1845 | help |
| 1846 | Enable the CTR DRBG variant as defined in NIST SP800-90A. |
| 1847 | |
| 1848 | config CRYPTO_DRBG |
| 1849 | tristate |
| 1850 | default CRYPTO_DRBG_MENU |
| 1851 | select CRYPTO_RNG |
| 1852 | select CRYPTO_JITTERENTROPY |
| 1853 | |
| 1854 | endif # if CRYPTO_DRBG_MENU |
| 1855 | |
| 1856 | config CRYPTO_JITTERENTROPY |
| 1857 | tristate "Jitterentropy Non-Deterministic Random Number Generator" |
| 1858 | select CRYPTO_RNG |
| 1859 | help |
| 1860 | The Jitterentropy RNG is a noise that is intended |
| 1861 | to provide seed to another RNG. The RNG does not |
| 1862 | perform any cryptographic whitening of the generated |
| 1863 | random numbers. This Jitterentropy RNG registers with |
| 1864 | the kernel crypto API and can be used by any caller. |
| 1865 | |
| 1866 | config CRYPTO_USER_API |
| 1867 | tristate |
| 1868 | |
| 1869 | config CRYPTO_USER_API_HASH |
| 1870 | tristate "User-space interface for hash algorithms" |
| 1871 | depends on NET |
| 1872 | select CRYPTO_HASH |
| 1873 | select CRYPTO_USER_API |
| 1874 | help |
| 1875 | This option enables the user-spaces interface for hash |
| 1876 | algorithms. |
| 1877 | |
| 1878 | config CRYPTO_USER_API_SKCIPHER |
| 1879 | tristate "User-space interface for symmetric key cipher algorithms" |
| 1880 | depends on NET |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1881 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1882 | select CRYPTO_USER_API |
| 1883 | help |
| 1884 | This option enables the user-spaces interface for symmetric |
| 1885 | key cipher algorithms. |
| 1886 | |
| 1887 | config CRYPTO_USER_API_RNG |
| 1888 | tristate "User-space interface for random number generator algorithms" |
| 1889 | depends on NET |
| 1890 | select CRYPTO_RNG |
| 1891 | select CRYPTO_USER_API |
| 1892 | help |
| 1893 | This option enables the user-spaces interface for random |
| 1894 | number generator algorithms. |
| 1895 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1896 | config CRYPTO_USER_API_RNG_CAVP |
| 1897 | bool "Enable CAVP testing of DRBG" |
| 1898 | depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG |
| 1899 | help |
| 1900 | This option enables extra API for CAVP testing via the user-space |
| 1901 | interface: resetting of DRBG entropy, and providing Additional Data. |
| 1902 | This should only be enabled for CAVP testing. You should say |
| 1903 | no unless you know what this is. |
| 1904 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1905 | config CRYPTO_USER_API_AEAD |
| 1906 | tristate "User-space interface for AEAD cipher algorithms" |
| 1907 | depends on NET |
| 1908 | select CRYPTO_AEAD |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1909 | select CRYPTO_SKCIPHER |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1910 | select CRYPTO_NULL |
| 1911 | select CRYPTO_USER_API |
| 1912 | help |
| 1913 | This option enables the user-spaces interface for AEAD |
| 1914 | cipher algorithms. |
| 1915 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1916 | config CRYPTO_USER_API_ENABLE_OBSOLETE |
| 1917 | bool "Enable obsolete cryptographic algorithms for userspace" |
| 1918 | depends on CRYPTO_USER_API |
| 1919 | default y |
| 1920 | help |
| 1921 | Allow obsolete cryptographic algorithms to be selected that have |
| 1922 | already been phased out from internal use by the kernel, and are |
| 1923 | only useful for userspace clients that still rely on them. |
| 1924 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1925 | config CRYPTO_STATS |
| 1926 | bool "Crypto usage statistics for User-space" |
| 1927 | depends on CRYPTO_USER |
| 1928 | help |
| 1929 | This option enables the gathering of crypto stats. |
| 1930 | This will collect: |
| 1931 | - encrypt/decrypt size and numbers of symmeric operations |
| 1932 | - compress/decompress size and numbers of compress operations |
| 1933 | - size and numbers of hash operations |
| 1934 | - encrypt/decrypt/sign/verify numbers for asymmetric operations |
| 1935 | - generate/seed numbers for rng operations |
| 1936 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1937 | config CRYPTO_HASH_INFO |
| 1938 | bool |
| 1939 | |
| 1940 | source "drivers/crypto/Kconfig" |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1941 | source "crypto/asymmetric_keys/Kconfig" |
| 1942 | source "certs/Kconfig" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1943 | |
| 1944 | endif # if CRYPTO |