David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 4 | */ |
| 5 | #include <linux/mm.h> |
| 6 | #include <linux/swap.h> |
| 7 | #include <linux/bio.h> |
| 8 | #include <linux/blkdev.h> |
| 9 | #include <linux/uio.h> |
| 10 | #include <linux/iocontext.h> |
| 11 | #include <linux/slab.h> |
| 12 | #include <linux/init.h> |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/export.h> |
| 15 | #include <linux/mempool.h> |
| 16 | #include <linux/workqueue.h> |
| 17 | #include <linux/cgroup.h> |
| 18 | #include <linux/blk-cgroup.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 19 | #include <linux/highmem.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 20 | #include <linux/sched/sysctl.h> |
| 21 | #include <linux/blk-crypto.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 22 | |
| 23 | #include <trace/events/block.h> |
| 24 | #include "blk.h" |
| 25 | #include "blk-rq-qos.h" |
| 26 | |
| 27 | /* |
| 28 | * Test patch to inline a certain number of bi_io_vec's inside the bio |
| 29 | * itself, to shrink a bio data allocation from two mempool calls to one |
| 30 | */ |
| 31 | #define BIO_INLINE_VECS 4 |
| 32 | |
| 33 | /* |
| 34 | * if you change this list, also change bvec_alloc or things will |
| 35 | * break badly! cannot be bigger than what you can fit into an |
| 36 | * unsigned short |
| 37 | */ |
| 38 | #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } |
| 39 | static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { |
| 40 | BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), |
| 41 | }; |
| 42 | #undef BV |
| 43 | |
| 44 | /* |
| 45 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by |
| 46 | * IO code that does not need private memory pools. |
| 47 | */ |
| 48 | struct bio_set fs_bio_set; |
| 49 | EXPORT_SYMBOL(fs_bio_set); |
| 50 | |
| 51 | /* |
| 52 | * Our slab pool management |
| 53 | */ |
| 54 | struct bio_slab { |
| 55 | struct kmem_cache *slab; |
| 56 | unsigned int slab_ref; |
| 57 | unsigned int slab_size; |
| 58 | char name[8]; |
| 59 | }; |
| 60 | static DEFINE_MUTEX(bio_slab_lock); |
| 61 | static struct bio_slab *bio_slabs; |
| 62 | static unsigned int bio_slab_nr, bio_slab_max; |
| 63 | |
| 64 | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) |
| 65 | { |
| 66 | unsigned int sz = sizeof(struct bio) + extra_size; |
| 67 | struct kmem_cache *slab = NULL; |
| 68 | struct bio_slab *bslab, *new_bio_slabs; |
| 69 | unsigned int new_bio_slab_max; |
| 70 | unsigned int i, entry = -1; |
| 71 | |
| 72 | mutex_lock(&bio_slab_lock); |
| 73 | |
| 74 | i = 0; |
| 75 | while (i < bio_slab_nr) { |
| 76 | bslab = &bio_slabs[i]; |
| 77 | |
| 78 | if (!bslab->slab && entry == -1) |
| 79 | entry = i; |
| 80 | else if (bslab->slab_size == sz) { |
| 81 | slab = bslab->slab; |
| 82 | bslab->slab_ref++; |
| 83 | break; |
| 84 | } |
| 85 | i++; |
| 86 | } |
| 87 | |
| 88 | if (slab) |
| 89 | goto out_unlock; |
| 90 | |
| 91 | if (bio_slab_nr == bio_slab_max && entry == -1) { |
| 92 | new_bio_slab_max = bio_slab_max << 1; |
| 93 | new_bio_slabs = krealloc(bio_slabs, |
| 94 | new_bio_slab_max * sizeof(struct bio_slab), |
| 95 | GFP_KERNEL); |
| 96 | if (!new_bio_slabs) |
| 97 | goto out_unlock; |
| 98 | bio_slab_max = new_bio_slab_max; |
| 99 | bio_slabs = new_bio_slabs; |
| 100 | } |
| 101 | if (entry == -1) |
| 102 | entry = bio_slab_nr++; |
| 103 | |
| 104 | bslab = &bio_slabs[entry]; |
| 105 | |
| 106 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); |
| 107 | slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, |
| 108 | SLAB_HWCACHE_ALIGN, NULL); |
| 109 | if (!slab) |
| 110 | goto out_unlock; |
| 111 | |
| 112 | bslab->slab = slab; |
| 113 | bslab->slab_ref = 1; |
| 114 | bslab->slab_size = sz; |
| 115 | out_unlock: |
| 116 | mutex_unlock(&bio_slab_lock); |
| 117 | return slab; |
| 118 | } |
| 119 | |
| 120 | static void bio_put_slab(struct bio_set *bs) |
| 121 | { |
| 122 | struct bio_slab *bslab = NULL; |
| 123 | unsigned int i; |
| 124 | |
| 125 | mutex_lock(&bio_slab_lock); |
| 126 | |
| 127 | for (i = 0; i < bio_slab_nr; i++) { |
| 128 | if (bs->bio_slab == bio_slabs[i].slab) { |
| 129 | bslab = &bio_slabs[i]; |
| 130 | break; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) |
| 135 | goto out; |
| 136 | |
| 137 | WARN_ON(!bslab->slab_ref); |
| 138 | |
| 139 | if (--bslab->slab_ref) |
| 140 | goto out; |
| 141 | |
| 142 | kmem_cache_destroy(bslab->slab); |
| 143 | bslab->slab = NULL; |
| 144 | |
| 145 | out: |
| 146 | mutex_unlock(&bio_slab_lock); |
| 147 | } |
| 148 | |
| 149 | unsigned int bvec_nr_vecs(unsigned short idx) |
| 150 | { |
| 151 | return bvec_slabs[--idx].nr_vecs; |
| 152 | } |
| 153 | |
| 154 | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) |
| 155 | { |
| 156 | if (!idx) |
| 157 | return; |
| 158 | idx--; |
| 159 | |
| 160 | BIO_BUG_ON(idx >= BVEC_POOL_NR); |
| 161 | |
| 162 | if (idx == BVEC_POOL_MAX) { |
| 163 | mempool_free(bv, pool); |
| 164 | } else { |
| 165 | struct biovec_slab *bvs = bvec_slabs + idx; |
| 166 | |
| 167 | kmem_cache_free(bvs->slab, bv); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, |
| 172 | mempool_t *pool) |
| 173 | { |
| 174 | struct bio_vec *bvl; |
| 175 | |
| 176 | /* |
| 177 | * see comment near bvec_array define! |
| 178 | */ |
| 179 | switch (nr) { |
| 180 | case 1: |
| 181 | *idx = 0; |
| 182 | break; |
| 183 | case 2 ... 4: |
| 184 | *idx = 1; |
| 185 | break; |
| 186 | case 5 ... 16: |
| 187 | *idx = 2; |
| 188 | break; |
| 189 | case 17 ... 64: |
| 190 | *idx = 3; |
| 191 | break; |
| 192 | case 65 ... 128: |
| 193 | *idx = 4; |
| 194 | break; |
| 195 | case 129 ... BIO_MAX_PAGES: |
| 196 | *idx = 5; |
| 197 | break; |
| 198 | default: |
| 199 | return NULL; |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * idx now points to the pool we want to allocate from. only the |
| 204 | * 1-vec entry pool is mempool backed. |
| 205 | */ |
| 206 | if (*idx == BVEC_POOL_MAX) { |
| 207 | fallback: |
| 208 | bvl = mempool_alloc(pool, gfp_mask); |
| 209 | } else { |
| 210 | struct biovec_slab *bvs = bvec_slabs + *idx; |
| 211 | gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); |
| 212 | |
| 213 | /* |
| 214 | * Make this allocation restricted and don't dump info on |
| 215 | * allocation failures, since we'll fallback to the mempool |
| 216 | * in case of failure. |
| 217 | */ |
| 218 | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; |
| 219 | |
| 220 | /* |
| 221 | * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM |
| 222 | * is set, retry with the 1-entry mempool |
| 223 | */ |
| 224 | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); |
| 225 | if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { |
| 226 | *idx = BVEC_POOL_MAX; |
| 227 | goto fallback; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | (*idx)++; |
| 232 | return bvl; |
| 233 | } |
| 234 | |
| 235 | void bio_uninit(struct bio *bio) |
| 236 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 237 | #ifdef CONFIG_BLK_CGROUP |
| 238 | if (bio->bi_blkg) { |
| 239 | blkg_put(bio->bi_blkg); |
| 240 | bio->bi_blkg = NULL; |
| 241 | } |
| 242 | #endif |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 243 | if (bio_integrity(bio)) |
| 244 | bio_integrity_free(bio); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 245 | |
| 246 | bio_crypt_free_ctx(bio); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 247 | } |
| 248 | EXPORT_SYMBOL(bio_uninit); |
| 249 | |
| 250 | static void bio_free(struct bio *bio) |
| 251 | { |
| 252 | struct bio_set *bs = bio->bi_pool; |
| 253 | void *p; |
| 254 | |
| 255 | bio_uninit(bio); |
| 256 | |
| 257 | if (bs) { |
| 258 | bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); |
| 259 | |
| 260 | /* |
| 261 | * If we have front padding, adjust the bio pointer before freeing |
| 262 | */ |
| 263 | p = bio; |
| 264 | p -= bs->front_pad; |
| 265 | |
| 266 | mempool_free(p, &bs->bio_pool); |
| 267 | } else { |
| 268 | /* Bio was allocated by bio_kmalloc() */ |
| 269 | kfree(bio); |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | /* |
| 274 | * Users of this function have their own bio allocation. Subsequently, |
| 275 | * they must remember to pair any call to bio_init() with bio_uninit() |
| 276 | * when IO has completed, or when the bio is released. |
| 277 | */ |
| 278 | void bio_init(struct bio *bio, struct bio_vec *table, |
| 279 | unsigned short max_vecs) |
| 280 | { |
| 281 | memset(bio, 0, sizeof(*bio)); |
| 282 | atomic_set(&bio->__bi_remaining, 1); |
| 283 | atomic_set(&bio->__bi_cnt, 1); |
| 284 | |
| 285 | bio->bi_io_vec = table; |
| 286 | bio->bi_max_vecs = max_vecs; |
| 287 | } |
| 288 | EXPORT_SYMBOL(bio_init); |
| 289 | |
| 290 | /** |
| 291 | * bio_reset - reinitialize a bio |
| 292 | * @bio: bio to reset |
| 293 | * |
| 294 | * Description: |
| 295 | * After calling bio_reset(), @bio will be in the same state as a freshly |
| 296 | * allocated bio returned bio bio_alloc_bioset() - the only fields that are |
| 297 | * preserved are the ones that are initialized by bio_alloc_bioset(). See |
| 298 | * comment in struct bio. |
| 299 | */ |
| 300 | void bio_reset(struct bio *bio) |
| 301 | { |
| 302 | unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); |
| 303 | |
| 304 | bio_uninit(bio); |
| 305 | |
| 306 | memset(bio, 0, BIO_RESET_BYTES); |
| 307 | bio->bi_flags = flags; |
| 308 | atomic_set(&bio->__bi_remaining, 1); |
| 309 | } |
| 310 | EXPORT_SYMBOL(bio_reset); |
| 311 | |
| 312 | static struct bio *__bio_chain_endio(struct bio *bio) |
| 313 | { |
| 314 | struct bio *parent = bio->bi_private; |
| 315 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 316 | if (bio->bi_status && !parent->bi_status) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 317 | parent->bi_status = bio->bi_status; |
| 318 | bio_put(bio); |
| 319 | return parent; |
| 320 | } |
| 321 | |
| 322 | static void bio_chain_endio(struct bio *bio) |
| 323 | { |
| 324 | bio_endio(__bio_chain_endio(bio)); |
| 325 | } |
| 326 | |
| 327 | /** |
| 328 | * bio_chain - chain bio completions |
| 329 | * @bio: the target bio |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 330 | * @parent: the parent bio of @bio |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 331 | * |
| 332 | * The caller won't have a bi_end_io called when @bio completes - instead, |
| 333 | * @parent's bi_end_io won't be called until both @parent and @bio have |
| 334 | * completed; the chained bio will also be freed when it completes. |
| 335 | * |
| 336 | * The caller must not set bi_private or bi_end_io in @bio. |
| 337 | */ |
| 338 | void bio_chain(struct bio *bio, struct bio *parent) |
| 339 | { |
| 340 | BUG_ON(bio->bi_private || bio->bi_end_io); |
| 341 | |
| 342 | bio->bi_private = parent; |
| 343 | bio->bi_end_io = bio_chain_endio; |
| 344 | bio_inc_remaining(parent); |
| 345 | } |
| 346 | EXPORT_SYMBOL(bio_chain); |
| 347 | |
| 348 | static void bio_alloc_rescue(struct work_struct *work) |
| 349 | { |
| 350 | struct bio_set *bs = container_of(work, struct bio_set, rescue_work); |
| 351 | struct bio *bio; |
| 352 | |
| 353 | while (1) { |
| 354 | spin_lock(&bs->rescue_lock); |
| 355 | bio = bio_list_pop(&bs->rescue_list); |
| 356 | spin_unlock(&bs->rescue_lock); |
| 357 | |
| 358 | if (!bio) |
| 359 | break; |
| 360 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 361 | submit_bio_noacct(bio); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 362 | } |
| 363 | } |
| 364 | |
| 365 | static void punt_bios_to_rescuer(struct bio_set *bs) |
| 366 | { |
| 367 | struct bio_list punt, nopunt; |
| 368 | struct bio *bio; |
| 369 | |
| 370 | if (WARN_ON_ONCE(!bs->rescue_workqueue)) |
| 371 | return; |
| 372 | /* |
| 373 | * In order to guarantee forward progress we must punt only bios that |
| 374 | * were allocated from this bio_set; otherwise, if there was a bio on |
| 375 | * there for a stacking driver higher up in the stack, processing it |
| 376 | * could require allocating bios from this bio_set, and doing that from |
| 377 | * our own rescuer would be bad. |
| 378 | * |
| 379 | * Since bio lists are singly linked, pop them all instead of trying to |
| 380 | * remove from the middle of the list: |
| 381 | */ |
| 382 | |
| 383 | bio_list_init(&punt); |
| 384 | bio_list_init(&nopunt); |
| 385 | |
| 386 | while ((bio = bio_list_pop(¤t->bio_list[0]))) |
| 387 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); |
| 388 | current->bio_list[0] = nopunt; |
| 389 | |
| 390 | bio_list_init(&nopunt); |
| 391 | while ((bio = bio_list_pop(¤t->bio_list[1]))) |
| 392 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); |
| 393 | current->bio_list[1] = nopunt; |
| 394 | |
| 395 | spin_lock(&bs->rescue_lock); |
| 396 | bio_list_merge(&bs->rescue_list, &punt); |
| 397 | spin_unlock(&bs->rescue_lock); |
| 398 | |
| 399 | queue_work(bs->rescue_workqueue, &bs->rescue_work); |
| 400 | } |
| 401 | |
| 402 | /** |
| 403 | * bio_alloc_bioset - allocate a bio for I/O |
| 404 | * @gfp_mask: the GFP_* mask given to the slab allocator |
| 405 | * @nr_iovecs: number of iovecs to pre-allocate |
| 406 | * @bs: the bio_set to allocate from. |
| 407 | * |
| 408 | * Description: |
| 409 | * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is |
| 410 | * backed by the @bs's mempool. |
| 411 | * |
| 412 | * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will |
| 413 | * always be able to allocate a bio. This is due to the mempool guarantees. |
| 414 | * To make this work, callers must never allocate more than 1 bio at a time |
| 415 | * from this pool. Callers that need to allocate more than 1 bio must always |
| 416 | * submit the previously allocated bio for IO before attempting to allocate |
| 417 | * a new one. Failure to do so can cause deadlocks under memory pressure. |
| 418 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 419 | * Note that when running under submit_bio_noacct() (i.e. any block |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 420 | * driver), bios are not submitted until after you return - see the code in |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 421 | * submit_bio_noacct() that converts recursion into iteration, to prevent |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 422 | * stack overflows. |
| 423 | * |
| 424 | * This would normally mean allocating multiple bios under |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 425 | * submit_bio_noacct() would be susceptible to deadlocks, but we have |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 426 | * deadlock avoidance code that resubmits any blocked bios from a rescuer |
| 427 | * thread. |
| 428 | * |
| 429 | * However, we do not guarantee forward progress for allocations from other |
| 430 | * mempools. Doing multiple allocations from the same mempool under |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 431 | * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 432 | * for per bio allocations. |
| 433 | * |
| 434 | * RETURNS: |
| 435 | * Pointer to new bio on success, NULL on failure. |
| 436 | */ |
| 437 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, |
| 438 | struct bio_set *bs) |
| 439 | { |
| 440 | gfp_t saved_gfp = gfp_mask; |
| 441 | unsigned front_pad; |
| 442 | unsigned inline_vecs; |
| 443 | struct bio_vec *bvl = NULL; |
| 444 | struct bio *bio; |
| 445 | void *p; |
| 446 | |
| 447 | if (!bs) { |
| 448 | if (nr_iovecs > UIO_MAXIOV) |
| 449 | return NULL; |
| 450 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 451 | p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 452 | front_pad = 0; |
| 453 | inline_vecs = nr_iovecs; |
| 454 | } else { |
| 455 | /* should not use nobvec bioset for nr_iovecs > 0 */ |
| 456 | if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && |
| 457 | nr_iovecs > 0)) |
| 458 | return NULL; |
| 459 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 460 | * submit_bio_noacct() converts recursion to iteration; this |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 461 | * means if we're running beneath it, any bios we allocate and |
| 462 | * submit will not be submitted (and thus freed) until after we |
| 463 | * return. |
| 464 | * |
| 465 | * This exposes us to a potential deadlock if we allocate |
| 466 | * multiple bios from the same bio_set() while running |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 467 | * underneath submit_bio_noacct(). If we were to allocate |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 468 | * multiple bios (say a stacking block driver that was splitting |
| 469 | * bios), we would deadlock if we exhausted the mempool's |
| 470 | * reserve. |
| 471 | * |
| 472 | * We solve this, and guarantee forward progress, with a rescuer |
| 473 | * workqueue per bio_set. If we go to allocate and there are |
| 474 | * bios on current->bio_list, we first try the allocation |
| 475 | * without __GFP_DIRECT_RECLAIM; if that fails, we punt those |
| 476 | * bios we would be blocking to the rescuer workqueue before |
| 477 | * we retry with the original gfp_flags. |
| 478 | */ |
| 479 | |
| 480 | if (current->bio_list && |
| 481 | (!bio_list_empty(¤t->bio_list[0]) || |
| 482 | !bio_list_empty(¤t->bio_list[1])) && |
| 483 | bs->rescue_workqueue) |
| 484 | gfp_mask &= ~__GFP_DIRECT_RECLAIM; |
| 485 | |
| 486 | p = mempool_alloc(&bs->bio_pool, gfp_mask); |
| 487 | if (!p && gfp_mask != saved_gfp) { |
| 488 | punt_bios_to_rescuer(bs); |
| 489 | gfp_mask = saved_gfp; |
| 490 | p = mempool_alloc(&bs->bio_pool, gfp_mask); |
| 491 | } |
| 492 | |
| 493 | front_pad = bs->front_pad; |
| 494 | inline_vecs = BIO_INLINE_VECS; |
| 495 | } |
| 496 | |
| 497 | if (unlikely(!p)) |
| 498 | return NULL; |
| 499 | |
| 500 | bio = p + front_pad; |
| 501 | bio_init(bio, NULL, 0); |
| 502 | |
| 503 | if (nr_iovecs > inline_vecs) { |
| 504 | unsigned long idx = 0; |
| 505 | |
| 506 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); |
| 507 | if (!bvl && gfp_mask != saved_gfp) { |
| 508 | punt_bios_to_rescuer(bs); |
| 509 | gfp_mask = saved_gfp; |
| 510 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); |
| 511 | } |
| 512 | |
| 513 | if (unlikely(!bvl)) |
| 514 | goto err_free; |
| 515 | |
| 516 | bio->bi_flags |= idx << BVEC_POOL_OFFSET; |
| 517 | } else if (nr_iovecs) { |
| 518 | bvl = bio->bi_inline_vecs; |
| 519 | } |
| 520 | |
| 521 | bio->bi_pool = bs; |
| 522 | bio->bi_max_vecs = nr_iovecs; |
| 523 | bio->bi_io_vec = bvl; |
| 524 | return bio; |
| 525 | |
| 526 | err_free: |
| 527 | mempool_free(p, &bs->bio_pool); |
| 528 | return NULL; |
| 529 | } |
| 530 | EXPORT_SYMBOL(bio_alloc_bioset); |
| 531 | |
| 532 | void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) |
| 533 | { |
| 534 | unsigned long flags; |
| 535 | struct bio_vec bv; |
| 536 | struct bvec_iter iter; |
| 537 | |
| 538 | __bio_for_each_segment(bv, bio, iter, start) { |
| 539 | char *data = bvec_kmap_irq(&bv, &flags); |
| 540 | memset(data, 0, bv.bv_len); |
| 541 | flush_dcache_page(bv.bv_page); |
| 542 | bvec_kunmap_irq(data, &flags); |
| 543 | } |
| 544 | } |
| 545 | EXPORT_SYMBOL(zero_fill_bio_iter); |
| 546 | |
| 547 | /** |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 548 | * bio_truncate - truncate the bio to small size of @new_size |
| 549 | * @bio: the bio to be truncated |
| 550 | * @new_size: new size for truncating the bio |
| 551 | * |
| 552 | * Description: |
| 553 | * Truncate the bio to new size of @new_size. If bio_op(bio) is |
| 554 | * REQ_OP_READ, zero the truncated part. This function should only |
| 555 | * be used for handling corner cases, such as bio eod. |
| 556 | */ |
| 557 | void bio_truncate(struct bio *bio, unsigned new_size) |
| 558 | { |
| 559 | struct bio_vec bv; |
| 560 | struct bvec_iter iter; |
| 561 | unsigned int done = 0; |
| 562 | bool truncated = false; |
| 563 | |
| 564 | if (new_size >= bio->bi_iter.bi_size) |
| 565 | return; |
| 566 | |
| 567 | if (bio_op(bio) != REQ_OP_READ) |
| 568 | goto exit; |
| 569 | |
| 570 | bio_for_each_segment(bv, bio, iter) { |
| 571 | if (done + bv.bv_len > new_size) { |
| 572 | unsigned offset; |
| 573 | |
| 574 | if (!truncated) |
| 575 | offset = new_size - done; |
| 576 | else |
| 577 | offset = 0; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 578 | zero_user(bv.bv_page, bv.bv_offset + offset, |
| 579 | bv.bv_len - offset); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 580 | truncated = true; |
| 581 | } |
| 582 | done += bv.bv_len; |
| 583 | } |
| 584 | |
| 585 | exit: |
| 586 | /* |
| 587 | * Don't touch bvec table here and make it really immutable, since |
| 588 | * fs bio user has to retrieve all pages via bio_for_each_segment_all |
| 589 | * in its .end_bio() callback. |
| 590 | * |
| 591 | * It is enough to truncate bio by updating .bi_size since we can make |
| 592 | * correct bvec with the updated .bi_size for drivers. |
| 593 | */ |
| 594 | bio->bi_iter.bi_size = new_size; |
| 595 | } |
| 596 | |
| 597 | /** |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 598 | * guard_bio_eod - truncate a BIO to fit the block device |
| 599 | * @bio: bio to truncate |
| 600 | * |
| 601 | * This allows us to do IO even on the odd last sectors of a device, even if the |
| 602 | * block size is some multiple of the physical sector size. |
| 603 | * |
| 604 | * We'll just truncate the bio to the size of the device, and clear the end of |
| 605 | * the buffer head manually. Truly out-of-range accesses will turn into actual |
| 606 | * I/O errors, this only handles the "we need to be able to do I/O at the final |
| 607 | * sector" case. |
| 608 | */ |
| 609 | void guard_bio_eod(struct bio *bio) |
| 610 | { |
| 611 | sector_t maxsector; |
| 612 | struct hd_struct *part; |
| 613 | |
| 614 | rcu_read_lock(); |
| 615 | part = __disk_get_part(bio->bi_disk, bio->bi_partno); |
| 616 | if (part) |
| 617 | maxsector = part_nr_sects_read(part); |
| 618 | else |
| 619 | maxsector = get_capacity(bio->bi_disk); |
| 620 | rcu_read_unlock(); |
| 621 | |
| 622 | if (!maxsector) |
| 623 | return; |
| 624 | |
| 625 | /* |
| 626 | * If the *whole* IO is past the end of the device, |
| 627 | * let it through, and the IO layer will turn it into |
| 628 | * an EIO. |
| 629 | */ |
| 630 | if (unlikely(bio->bi_iter.bi_sector >= maxsector)) |
| 631 | return; |
| 632 | |
| 633 | maxsector -= bio->bi_iter.bi_sector; |
| 634 | if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) |
| 635 | return; |
| 636 | |
| 637 | bio_truncate(bio, maxsector << 9); |
| 638 | } |
| 639 | |
| 640 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 641 | * bio_put - release a reference to a bio |
| 642 | * @bio: bio to release reference to |
| 643 | * |
| 644 | * Description: |
| 645 | * Put a reference to a &struct bio, either one you have gotten with |
| 646 | * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. |
| 647 | **/ |
| 648 | void bio_put(struct bio *bio) |
| 649 | { |
| 650 | if (!bio_flagged(bio, BIO_REFFED)) |
| 651 | bio_free(bio); |
| 652 | else { |
| 653 | BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); |
| 654 | |
| 655 | /* |
| 656 | * last put frees it |
| 657 | */ |
| 658 | if (atomic_dec_and_test(&bio->__bi_cnt)) |
| 659 | bio_free(bio); |
| 660 | } |
| 661 | } |
| 662 | EXPORT_SYMBOL(bio_put); |
| 663 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 664 | /** |
| 665 | * __bio_clone_fast - clone a bio that shares the original bio's biovec |
| 666 | * @bio: destination bio |
| 667 | * @bio_src: bio to clone |
| 668 | * |
| 669 | * Clone a &bio. Caller will own the returned bio, but not |
| 670 | * the actual data it points to. Reference count of returned |
| 671 | * bio will be one. |
| 672 | * |
| 673 | * Caller must ensure that @bio_src is not freed before @bio. |
| 674 | */ |
| 675 | void __bio_clone_fast(struct bio *bio, struct bio *bio_src) |
| 676 | { |
| 677 | BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); |
| 678 | |
| 679 | /* |
| 680 | * most users will be overriding ->bi_disk with a new target, |
| 681 | * so we don't set nor calculate new physical/hw segment counts here |
| 682 | */ |
| 683 | bio->bi_disk = bio_src->bi_disk; |
| 684 | bio->bi_partno = bio_src->bi_partno; |
| 685 | bio_set_flag(bio, BIO_CLONED); |
| 686 | if (bio_flagged(bio_src, BIO_THROTTLED)) |
| 687 | bio_set_flag(bio, BIO_THROTTLED); |
| 688 | bio->bi_opf = bio_src->bi_opf; |
| 689 | bio->bi_ioprio = bio_src->bi_ioprio; |
| 690 | bio->bi_write_hint = bio_src->bi_write_hint; |
| 691 | bio->bi_iter = bio_src->bi_iter; |
| 692 | bio->bi_io_vec = bio_src->bi_io_vec; |
| 693 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 694 | bio_clone_blkg_association(bio, bio_src); |
| 695 | blkcg_bio_issue_init(bio); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 696 | } |
| 697 | EXPORT_SYMBOL(__bio_clone_fast); |
| 698 | |
| 699 | /** |
| 700 | * bio_clone_fast - clone a bio that shares the original bio's biovec |
| 701 | * @bio: bio to clone |
| 702 | * @gfp_mask: allocation priority |
| 703 | * @bs: bio_set to allocate from |
| 704 | * |
| 705 | * Like __bio_clone_fast, only also allocates the returned bio |
| 706 | */ |
| 707 | struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) |
| 708 | { |
| 709 | struct bio *b; |
| 710 | |
| 711 | b = bio_alloc_bioset(gfp_mask, 0, bs); |
| 712 | if (!b) |
| 713 | return NULL; |
| 714 | |
| 715 | __bio_clone_fast(b, bio); |
| 716 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 717 | if (bio_crypt_clone(b, bio, gfp_mask) < 0) |
| 718 | goto err_put; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 719 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 720 | if (bio_integrity(bio) && |
| 721 | bio_integrity_clone(b, bio, gfp_mask) < 0) |
| 722 | goto err_put; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 723 | |
| 724 | return b; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 725 | |
| 726 | err_put: |
| 727 | bio_put(b); |
| 728 | return NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 729 | } |
| 730 | EXPORT_SYMBOL(bio_clone_fast); |
| 731 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 732 | const char *bio_devname(struct bio *bio, char *buf) |
| 733 | { |
| 734 | return disk_name(bio->bi_disk, bio->bi_partno, buf); |
| 735 | } |
| 736 | EXPORT_SYMBOL(bio_devname); |
| 737 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 738 | static inline bool page_is_mergeable(const struct bio_vec *bv, |
| 739 | struct page *page, unsigned int len, unsigned int off, |
| 740 | bool *same_page) |
| 741 | { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 742 | size_t bv_end = bv->bv_offset + bv->bv_len; |
| 743 | phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 744 | phys_addr_t page_addr = page_to_phys(page); |
| 745 | |
| 746 | if (vec_end_addr + 1 != page_addr + off) |
| 747 | return false; |
| 748 | if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) |
| 749 | return false; |
| 750 | |
| 751 | *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 752 | if (*same_page) |
| 753 | return true; |
| 754 | return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 755 | } |
| 756 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 757 | /* |
| 758 | * Try to merge a page into a segment, while obeying the hardware segment |
| 759 | * size limit. This is not for normal read/write bios, but for passthrough |
| 760 | * or Zone Append operations that we can't split. |
| 761 | */ |
| 762 | static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, |
| 763 | struct page *page, unsigned len, |
| 764 | unsigned offset, bool *same_page) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 765 | { |
| 766 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
| 767 | unsigned long mask = queue_segment_boundary(q); |
| 768 | phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; |
| 769 | phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; |
| 770 | |
| 771 | if ((addr1 | mask) != (addr2 | mask)) |
| 772 | return false; |
| 773 | if (bv->bv_len + len > queue_max_segment_size(q)) |
| 774 | return false; |
| 775 | return __bio_try_merge_page(bio, page, len, offset, same_page); |
| 776 | } |
| 777 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 778 | /** |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 779 | * bio_add_hw_page - attempt to add a page to a bio with hw constraints |
| 780 | * @q: the target queue |
| 781 | * @bio: destination bio |
| 782 | * @page: page to add |
| 783 | * @len: vec entry length |
| 784 | * @offset: vec entry offset |
| 785 | * @max_sectors: maximum number of sectors that can be added |
| 786 | * @same_page: return if the segment has been merged inside the same page |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 787 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 788 | * Add a page to a bio while respecting the hardware max_sectors, max_segment |
| 789 | * and gap limitations. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 790 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 791 | int bio_add_hw_page(struct request_queue *q, struct bio *bio, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 792 | struct page *page, unsigned int len, unsigned int offset, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 793 | unsigned int max_sectors, bool *same_page) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 794 | { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 795 | struct bio_vec *bvec; |
| 796 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 797 | if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 798 | return 0; |
| 799 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 800 | if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 801 | return 0; |
| 802 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 803 | if (bio->bi_vcnt > 0) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 804 | if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 805 | return len; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 806 | |
| 807 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 808 | * If the queue doesn't support SG gaps and adding this segment |
| 809 | * would create a gap, disallow it. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 810 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 811 | bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
| 812 | if (bvec_gap_to_prev(q, bvec, offset)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 813 | return 0; |
| 814 | } |
| 815 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 816 | if (bio_full(bio, len)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 817 | return 0; |
| 818 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 819 | if (bio->bi_vcnt >= queue_max_segments(q)) |
| 820 | return 0; |
| 821 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 822 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; |
| 823 | bvec->bv_page = page; |
| 824 | bvec->bv_len = len; |
| 825 | bvec->bv_offset = offset; |
| 826 | bio->bi_vcnt++; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 827 | bio->bi_iter.bi_size += len; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 828 | return len; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 829 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 830 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 831 | /** |
| 832 | * bio_add_pc_page - attempt to add page to passthrough bio |
| 833 | * @q: the target queue |
| 834 | * @bio: destination bio |
| 835 | * @page: page to add |
| 836 | * @len: vec entry length |
| 837 | * @offset: vec entry offset |
| 838 | * |
| 839 | * Attempt to add a page to the bio_vec maplist. This can fail for a |
| 840 | * number of reasons, such as the bio being full or target block device |
| 841 | * limitations. The target block device must allow bio's up to PAGE_SIZE, |
| 842 | * so it is always possible to add a single page to an empty bio. |
| 843 | * |
| 844 | * This should only be used by passthrough bios. |
| 845 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 846 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, |
| 847 | struct page *page, unsigned int len, unsigned int offset) |
| 848 | { |
| 849 | bool same_page = false; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 850 | return bio_add_hw_page(q, bio, page, len, offset, |
| 851 | queue_max_hw_sectors(q), &same_page); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 852 | } |
| 853 | EXPORT_SYMBOL(bio_add_pc_page); |
| 854 | |
| 855 | /** |
| 856 | * __bio_try_merge_page - try appending data to an existing bvec. |
| 857 | * @bio: destination bio |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 858 | * @page: start page to add |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 859 | * @len: length of the data to add |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 860 | * @off: offset of the data relative to @page |
| 861 | * @same_page: return if the segment has been merged inside the same page |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 862 | * |
| 863 | * Try to add the data at @page + @off to the last bvec of @bio. This is a |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 864 | * useful optimisation for file systems with a block size smaller than the |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 865 | * page size. |
| 866 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 867 | * Warn if (@len, @off) crosses pages in case that @same_page is true. |
| 868 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 869 | * Return %true on success or %false on failure. |
| 870 | */ |
| 871 | bool __bio_try_merge_page(struct bio *bio, struct page *page, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 872 | unsigned int len, unsigned int off, bool *same_page) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 873 | { |
| 874 | if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) |
| 875 | return false; |
| 876 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 877 | if (bio->bi_vcnt > 0) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 878 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
| 879 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 880 | if (page_is_mergeable(bv, page, len, off, same_page)) { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 881 | if (bio->bi_iter.bi_size > UINT_MAX - len) { |
| 882 | *same_page = false; |
| 883 | return false; |
| 884 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 885 | bv->bv_len += len; |
| 886 | bio->bi_iter.bi_size += len; |
| 887 | return true; |
| 888 | } |
| 889 | } |
| 890 | return false; |
| 891 | } |
| 892 | EXPORT_SYMBOL_GPL(__bio_try_merge_page); |
| 893 | |
| 894 | /** |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 895 | * __bio_add_page - add page(s) to a bio in a new segment |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 896 | * @bio: destination bio |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 897 | * @page: start page to add |
| 898 | * @len: length of the data to add, may cross pages |
| 899 | * @off: offset of the data relative to @page, may cross pages |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 900 | * |
| 901 | * Add the data at @page + @off to @bio as a new bvec. The caller must ensure |
| 902 | * that @bio has space for another bvec. |
| 903 | */ |
| 904 | void __bio_add_page(struct bio *bio, struct page *page, |
| 905 | unsigned int len, unsigned int off) |
| 906 | { |
| 907 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; |
| 908 | |
| 909 | WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 910 | WARN_ON_ONCE(bio_full(bio, len)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 911 | |
| 912 | bv->bv_page = page; |
| 913 | bv->bv_offset = off; |
| 914 | bv->bv_len = len; |
| 915 | |
| 916 | bio->bi_iter.bi_size += len; |
| 917 | bio->bi_vcnt++; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 918 | |
| 919 | if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) |
| 920 | bio_set_flag(bio, BIO_WORKINGSET); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 921 | } |
| 922 | EXPORT_SYMBOL_GPL(__bio_add_page); |
| 923 | |
| 924 | /** |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 925 | * bio_add_page - attempt to add page(s) to bio |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 926 | * @bio: destination bio |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 927 | * @page: start page to add |
| 928 | * @len: vec entry length, may cross pages |
| 929 | * @offset: vec entry offset relative to @page, may cross pages |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 930 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 931 | * Attempt to add page(s) to the bio_vec maplist. This will only fail |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 932 | * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. |
| 933 | */ |
| 934 | int bio_add_page(struct bio *bio, struct page *page, |
| 935 | unsigned int len, unsigned int offset) |
| 936 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 937 | bool same_page = false; |
| 938 | |
| 939 | if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { |
| 940 | if (bio_full(bio, len)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 941 | return 0; |
| 942 | __bio_add_page(bio, page, len, offset); |
| 943 | } |
| 944 | return len; |
| 945 | } |
| 946 | EXPORT_SYMBOL(bio_add_page); |
| 947 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 948 | void bio_release_pages(struct bio *bio, bool mark_dirty) |
| 949 | { |
| 950 | struct bvec_iter_all iter_all; |
| 951 | struct bio_vec *bvec; |
| 952 | |
| 953 | if (bio_flagged(bio, BIO_NO_PAGE_REF)) |
| 954 | return; |
| 955 | |
| 956 | bio_for_each_segment_all(bvec, bio, iter_all) { |
| 957 | if (mark_dirty && !PageCompound(bvec->bv_page)) |
| 958 | set_page_dirty_lock(bvec->bv_page); |
| 959 | put_page(bvec->bv_page); |
| 960 | } |
| 961 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 962 | EXPORT_SYMBOL_GPL(bio_release_pages); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 963 | |
| 964 | static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) |
| 965 | { |
| 966 | const struct bio_vec *bv = iter->bvec; |
| 967 | unsigned int len; |
| 968 | size_t size; |
| 969 | |
| 970 | if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) |
| 971 | return -EINVAL; |
| 972 | |
| 973 | len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); |
| 974 | size = bio_add_page(bio, bv->bv_page, len, |
| 975 | bv->bv_offset + iter->iov_offset); |
| 976 | if (unlikely(size != len)) |
| 977 | return -EINVAL; |
| 978 | iov_iter_advance(iter, size); |
| 979 | return 0; |
| 980 | } |
| 981 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 982 | static void bio_put_pages(struct page **pages, size_t size, size_t off) |
| 983 | { |
| 984 | size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE); |
| 985 | |
| 986 | for (i = 0; i < nr; i++) |
| 987 | put_page(pages[i]); |
| 988 | } |
| 989 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 990 | #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) |
| 991 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 992 | /** |
| 993 | * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio |
| 994 | * @bio: bio to add pages to |
| 995 | * @iter: iov iterator describing the region to be mapped |
| 996 | * |
| 997 | * Pins pages from *iter and appends them to @bio's bvec array. The |
| 998 | * pages will have to be released using put_page() when done. |
| 999 | * For multi-segment *iter, this function only adds pages from the |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1000 | * next non-empty segment of the iov iterator. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1001 | */ |
| 1002 | static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) |
| 1003 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1004 | unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; |
| 1005 | unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1006 | struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; |
| 1007 | struct page **pages = (struct page **)bv; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1008 | bool same_page = false; |
| 1009 | ssize_t size, left; |
| 1010 | unsigned len, i; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1011 | size_t offset; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1012 | |
| 1013 | /* |
| 1014 | * Move page array up in the allocated memory for the bio vecs as far as |
| 1015 | * possible so that we can start filling biovecs from the beginning |
| 1016 | * without overwriting the temporary page array. |
| 1017 | */ |
| 1018 | BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); |
| 1019 | pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1020 | |
| 1021 | size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); |
| 1022 | if (unlikely(size <= 0)) |
| 1023 | return size ? size : -EFAULT; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1024 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1025 | for (left = size, i = 0; left > 0; left -= len, i++) { |
| 1026 | struct page *page = pages[i]; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1027 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1028 | len = min_t(size_t, PAGE_SIZE - offset, left); |
| 1029 | |
| 1030 | if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { |
| 1031 | if (same_page) |
| 1032 | put_page(page); |
| 1033 | } else { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1034 | if (WARN_ON_ONCE(bio_full(bio, len))) { |
| 1035 | bio_put_pages(pages + i, left, offset); |
| 1036 | return -EINVAL; |
| 1037 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1038 | __bio_add_page(bio, page, len, offset); |
| 1039 | } |
| 1040 | offset = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1041 | } |
| 1042 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1043 | iov_iter_advance(iter, size); |
| 1044 | return 0; |
| 1045 | } |
| 1046 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1047 | static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter) |
| 1048 | { |
| 1049 | unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; |
| 1050 | unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; |
| 1051 | struct request_queue *q = bio->bi_disk->queue; |
| 1052 | unsigned int max_append_sectors = queue_max_zone_append_sectors(q); |
| 1053 | struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; |
| 1054 | struct page **pages = (struct page **)bv; |
| 1055 | ssize_t size, left; |
| 1056 | unsigned len, i; |
| 1057 | size_t offset; |
| 1058 | int ret = 0; |
| 1059 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1060 | /* |
| 1061 | * Move page array up in the allocated memory for the bio vecs as far as |
| 1062 | * possible so that we can start filling biovecs from the beginning |
| 1063 | * without overwriting the temporary page array. |
| 1064 | */ |
| 1065 | BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); |
| 1066 | pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); |
| 1067 | |
| 1068 | size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); |
| 1069 | if (unlikely(size <= 0)) |
| 1070 | return size ? size : -EFAULT; |
| 1071 | |
| 1072 | for (left = size, i = 0; left > 0; left -= len, i++) { |
| 1073 | struct page *page = pages[i]; |
| 1074 | bool same_page = false; |
| 1075 | |
| 1076 | len = min_t(size_t, PAGE_SIZE - offset, left); |
| 1077 | if (bio_add_hw_page(q, bio, page, len, offset, |
| 1078 | max_append_sectors, &same_page) != len) { |
| 1079 | bio_put_pages(pages + i, left, offset); |
| 1080 | ret = -EINVAL; |
| 1081 | break; |
| 1082 | } |
| 1083 | if (same_page) |
| 1084 | put_page(page); |
| 1085 | offset = 0; |
| 1086 | } |
| 1087 | |
| 1088 | iov_iter_advance(iter, size - left); |
| 1089 | return ret; |
| 1090 | } |
| 1091 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1092 | /** |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1093 | * bio_iov_iter_get_pages - add user or kernel pages to a bio |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1094 | * @bio: bio to add pages to |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1095 | * @iter: iov iterator describing the region to be added |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1096 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1097 | * This takes either an iterator pointing to user memory, or one pointing to |
| 1098 | * kernel pages (BVEC iterator). If we're adding user pages, we pin them and |
| 1099 | * map them into the kernel. On IO completion, the caller should put those |
| 1100 | * pages. If we're adding kernel pages, and the caller told us it's safe to |
| 1101 | * do so, we just have to add the pages to the bio directly. We don't grab an |
| 1102 | * extra reference to those pages (the user should already have that), and we |
| 1103 | * don't put the page on IO completion. The caller needs to check if the bio is |
| 1104 | * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be |
| 1105 | * released. |
| 1106 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1107 | * The function tries, but does not guarantee, to pin as many pages as |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1108 | * fit into the bio, or are requested in @iter, whatever is smaller. If |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1109 | * MM encounters an error pinning the requested pages, it stops. Error |
| 1110 | * is returned only if 0 pages could be pinned. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1111 | */ |
| 1112 | int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) |
| 1113 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1114 | const bool is_bvec = iov_iter_is_bvec(iter); |
| 1115 | int ret; |
| 1116 | |
| 1117 | if (WARN_ON_ONCE(bio->bi_vcnt)) |
| 1118 | return -EINVAL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1119 | |
| 1120 | do { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1121 | if (bio_op(bio) == REQ_OP_ZONE_APPEND) { |
| 1122 | if (WARN_ON_ONCE(is_bvec)) |
| 1123 | return -EINVAL; |
| 1124 | ret = __bio_iov_append_get_pages(bio, iter); |
| 1125 | } else { |
| 1126 | if (is_bvec) |
| 1127 | ret = __bio_iov_bvec_add_pages(bio, iter); |
| 1128 | else |
| 1129 | ret = __bio_iov_iter_get_pages(bio, iter); |
| 1130 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1131 | } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1132 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1133 | if (is_bvec) |
| 1134 | bio_set_flag(bio, BIO_NO_PAGE_REF); |
| 1135 | return bio->bi_vcnt ? 0 : ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1136 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1137 | EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1138 | |
| 1139 | static void submit_bio_wait_endio(struct bio *bio) |
| 1140 | { |
| 1141 | complete(bio->bi_private); |
| 1142 | } |
| 1143 | |
| 1144 | /** |
| 1145 | * submit_bio_wait - submit a bio, and wait until it completes |
| 1146 | * @bio: The &struct bio which describes the I/O |
| 1147 | * |
| 1148 | * Simple wrapper around submit_bio(). Returns 0 on success, or the error from |
| 1149 | * bio_endio() on failure. |
| 1150 | * |
| 1151 | * WARNING: Unlike to how submit_bio() is usually used, this function does not |
| 1152 | * result in bio reference to be consumed. The caller must drop the reference |
| 1153 | * on his own. |
| 1154 | */ |
| 1155 | int submit_bio_wait(struct bio *bio) |
| 1156 | { |
| 1157 | DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1158 | unsigned long hang_check; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1159 | |
| 1160 | bio->bi_private = &done; |
| 1161 | bio->bi_end_io = submit_bio_wait_endio; |
| 1162 | bio->bi_opf |= REQ_SYNC; |
| 1163 | submit_bio(bio); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1164 | |
| 1165 | /* Prevent hang_check timer from firing at us during very long I/O */ |
| 1166 | hang_check = sysctl_hung_task_timeout_secs; |
| 1167 | if (hang_check) |
| 1168 | while (!wait_for_completion_io_timeout(&done, |
| 1169 | hang_check * (HZ/2))) |
| 1170 | ; |
| 1171 | else |
| 1172 | wait_for_completion_io(&done); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1173 | |
| 1174 | return blk_status_to_errno(bio->bi_status); |
| 1175 | } |
| 1176 | EXPORT_SYMBOL(submit_bio_wait); |
| 1177 | |
| 1178 | /** |
| 1179 | * bio_advance - increment/complete a bio by some number of bytes |
| 1180 | * @bio: bio to advance |
| 1181 | * @bytes: number of bytes to complete |
| 1182 | * |
| 1183 | * This updates bi_sector, bi_size and bi_idx; if the number of bytes to |
| 1184 | * complete doesn't align with a bvec boundary, then bv_len and bv_offset will |
| 1185 | * be updated on the last bvec as well. |
| 1186 | * |
| 1187 | * @bio will then represent the remaining, uncompleted portion of the io. |
| 1188 | */ |
| 1189 | void bio_advance(struct bio *bio, unsigned bytes) |
| 1190 | { |
| 1191 | if (bio_integrity(bio)) |
| 1192 | bio_integrity_advance(bio, bytes); |
| 1193 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1194 | bio_crypt_advance(bio, bytes); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1195 | bio_advance_iter(bio, &bio->bi_iter, bytes); |
| 1196 | } |
| 1197 | EXPORT_SYMBOL(bio_advance); |
| 1198 | |
| 1199 | void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, |
| 1200 | struct bio *src, struct bvec_iter *src_iter) |
| 1201 | { |
| 1202 | struct bio_vec src_bv, dst_bv; |
| 1203 | void *src_p, *dst_p; |
| 1204 | unsigned bytes; |
| 1205 | |
| 1206 | while (src_iter->bi_size && dst_iter->bi_size) { |
| 1207 | src_bv = bio_iter_iovec(src, *src_iter); |
| 1208 | dst_bv = bio_iter_iovec(dst, *dst_iter); |
| 1209 | |
| 1210 | bytes = min(src_bv.bv_len, dst_bv.bv_len); |
| 1211 | |
| 1212 | src_p = kmap_atomic(src_bv.bv_page); |
| 1213 | dst_p = kmap_atomic(dst_bv.bv_page); |
| 1214 | |
| 1215 | memcpy(dst_p + dst_bv.bv_offset, |
| 1216 | src_p + src_bv.bv_offset, |
| 1217 | bytes); |
| 1218 | |
| 1219 | kunmap_atomic(dst_p); |
| 1220 | kunmap_atomic(src_p); |
| 1221 | |
| 1222 | flush_dcache_page(dst_bv.bv_page); |
| 1223 | |
| 1224 | bio_advance_iter(src, src_iter, bytes); |
| 1225 | bio_advance_iter(dst, dst_iter, bytes); |
| 1226 | } |
| 1227 | } |
| 1228 | EXPORT_SYMBOL(bio_copy_data_iter); |
| 1229 | |
| 1230 | /** |
| 1231 | * bio_copy_data - copy contents of data buffers from one bio to another |
| 1232 | * @src: source bio |
| 1233 | * @dst: destination bio |
| 1234 | * |
| 1235 | * Stops when it reaches the end of either @src or @dst - that is, copies |
| 1236 | * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). |
| 1237 | */ |
| 1238 | void bio_copy_data(struct bio *dst, struct bio *src) |
| 1239 | { |
| 1240 | struct bvec_iter src_iter = src->bi_iter; |
| 1241 | struct bvec_iter dst_iter = dst->bi_iter; |
| 1242 | |
| 1243 | bio_copy_data_iter(dst, &dst_iter, src, &src_iter); |
| 1244 | } |
| 1245 | EXPORT_SYMBOL(bio_copy_data); |
| 1246 | |
| 1247 | /** |
| 1248 | * bio_list_copy_data - copy contents of data buffers from one chain of bios to |
| 1249 | * another |
| 1250 | * @src: source bio list |
| 1251 | * @dst: destination bio list |
| 1252 | * |
| 1253 | * Stops when it reaches the end of either the @src list or @dst list - that is, |
| 1254 | * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of |
| 1255 | * bios). |
| 1256 | */ |
| 1257 | void bio_list_copy_data(struct bio *dst, struct bio *src) |
| 1258 | { |
| 1259 | struct bvec_iter src_iter = src->bi_iter; |
| 1260 | struct bvec_iter dst_iter = dst->bi_iter; |
| 1261 | |
| 1262 | while (1) { |
| 1263 | if (!src_iter.bi_size) { |
| 1264 | src = src->bi_next; |
| 1265 | if (!src) |
| 1266 | break; |
| 1267 | |
| 1268 | src_iter = src->bi_iter; |
| 1269 | } |
| 1270 | |
| 1271 | if (!dst_iter.bi_size) { |
| 1272 | dst = dst->bi_next; |
| 1273 | if (!dst) |
| 1274 | break; |
| 1275 | |
| 1276 | dst_iter = dst->bi_iter; |
| 1277 | } |
| 1278 | |
| 1279 | bio_copy_data_iter(dst, &dst_iter, src, &src_iter); |
| 1280 | } |
| 1281 | } |
| 1282 | EXPORT_SYMBOL(bio_list_copy_data); |
| 1283 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1284 | void bio_free_pages(struct bio *bio) |
| 1285 | { |
| 1286 | struct bio_vec *bvec; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1287 | struct bvec_iter_all iter_all; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1288 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1289 | bio_for_each_segment_all(bvec, bio, iter_all) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1290 | __free_page(bvec->bv_page); |
| 1291 | } |
| 1292 | EXPORT_SYMBOL(bio_free_pages); |
| 1293 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1294 | /* |
| 1295 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions |
| 1296 | * for performing direct-IO in BIOs. |
| 1297 | * |
| 1298 | * The problem is that we cannot run set_page_dirty() from interrupt context |
| 1299 | * because the required locks are not interrupt-safe. So what we can do is to |
| 1300 | * mark the pages dirty _before_ performing IO. And in interrupt context, |
| 1301 | * check that the pages are still dirty. If so, fine. If not, redirty them |
| 1302 | * in process context. |
| 1303 | * |
| 1304 | * We special-case compound pages here: normally this means reads into hugetlb |
| 1305 | * pages. The logic in here doesn't really work right for compound pages |
| 1306 | * because the VM does not uniformly chase down the head page in all cases. |
| 1307 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't |
| 1308 | * handle them at all. So we skip compound pages here at an early stage. |
| 1309 | * |
| 1310 | * Note that this code is very hard to test under normal circumstances because |
| 1311 | * direct-io pins the pages with get_user_pages(). This makes |
| 1312 | * is_page_cache_freeable return false, and the VM will not clean the pages. |
| 1313 | * But other code (eg, flusher threads) could clean the pages if they are mapped |
| 1314 | * pagecache. |
| 1315 | * |
| 1316 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the |
| 1317 | * deferred bio dirtying paths. |
| 1318 | */ |
| 1319 | |
| 1320 | /* |
| 1321 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. |
| 1322 | */ |
| 1323 | void bio_set_pages_dirty(struct bio *bio) |
| 1324 | { |
| 1325 | struct bio_vec *bvec; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1326 | struct bvec_iter_all iter_all; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1327 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1328 | bio_for_each_segment_all(bvec, bio, iter_all) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1329 | if (!PageCompound(bvec->bv_page)) |
| 1330 | set_page_dirty_lock(bvec->bv_page); |
| 1331 | } |
| 1332 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1333 | |
| 1334 | /* |
| 1335 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. |
| 1336 | * If they are, then fine. If, however, some pages are clean then they must |
| 1337 | * have been written out during the direct-IO read. So we take another ref on |
| 1338 | * the BIO and re-dirty the pages in process context. |
| 1339 | * |
| 1340 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from |
| 1341 | * here on. It will run one put_page() against each page and will run one |
| 1342 | * bio_put() against the BIO. |
| 1343 | */ |
| 1344 | |
| 1345 | static void bio_dirty_fn(struct work_struct *work); |
| 1346 | |
| 1347 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
| 1348 | static DEFINE_SPINLOCK(bio_dirty_lock); |
| 1349 | static struct bio *bio_dirty_list; |
| 1350 | |
| 1351 | /* |
| 1352 | * This runs in process context |
| 1353 | */ |
| 1354 | static void bio_dirty_fn(struct work_struct *work) |
| 1355 | { |
| 1356 | struct bio *bio, *next; |
| 1357 | |
| 1358 | spin_lock_irq(&bio_dirty_lock); |
| 1359 | next = bio_dirty_list; |
| 1360 | bio_dirty_list = NULL; |
| 1361 | spin_unlock_irq(&bio_dirty_lock); |
| 1362 | |
| 1363 | while ((bio = next) != NULL) { |
| 1364 | next = bio->bi_private; |
| 1365 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1366 | bio_release_pages(bio, true); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1367 | bio_put(bio); |
| 1368 | } |
| 1369 | } |
| 1370 | |
| 1371 | void bio_check_pages_dirty(struct bio *bio) |
| 1372 | { |
| 1373 | struct bio_vec *bvec; |
| 1374 | unsigned long flags; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1375 | struct bvec_iter_all iter_all; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1376 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1377 | bio_for_each_segment_all(bvec, bio, iter_all) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1378 | if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) |
| 1379 | goto defer; |
| 1380 | } |
| 1381 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1382 | bio_release_pages(bio, false); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1383 | bio_put(bio); |
| 1384 | return; |
| 1385 | defer: |
| 1386 | spin_lock_irqsave(&bio_dirty_lock, flags); |
| 1387 | bio->bi_private = bio_dirty_list; |
| 1388 | bio_dirty_list = bio; |
| 1389 | spin_unlock_irqrestore(&bio_dirty_lock, flags); |
| 1390 | schedule_work(&bio_dirty_work); |
| 1391 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1392 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1393 | static inline bool bio_remaining_done(struct bio *bio) |
| 1394 | { |
| 1395 | /* |
| 1396 | * If we're not chaining, then ->__bi_remaining is always 1 and |
| 1397 | * we always end io on the first invocation. |
| 1398 | */ |
| 1399 | if (!bio_flagged(bio, BIO_CHAIN)) |
| 1400 | return true; |
| 1401 | |
| 1402 | BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); |
| 1403 | |
| 1404 | if (atomic_dec_and_test(&bio->__bi_remaining)) { |
| 1405 | bio_clear_flag(bio, BIO_CHAIN); |
| 1406 | return true; |
| 1407 | } |
| 1408 | |
| 1409 | return false; |
| 1410 | } |
| 1411 | |
| 1412 | /** |
| 1413 | * bio_endio - end I/O on a bio |
| 1414 | * @bio: bio |
| 1415 | * |
| 1416 | * Description: |
| 1417 | * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred |
| 1418 | * way to end I/O on a bio. No one should call bi_end_io() directly on a |
| 1419 | * bio unless they own it and thus know that it has an end_io function. |
| 1420 | * |
| 1421 | * bio_endio() can be called several times on a bio that has been chained |
| 1422 | * using bio_chain(). The ->bi_end_io() function will only be called the |
| 1423 | * last time. At this point the BLK_TA_COMPLETE tracing event will be |
| 1424 | * generated if BIO_TRACE_COMPLETION is set. |
| 1425 | **/ |
| 1426 | void bio_endio(struct bio *bio) |
| 1427 | { |
| 1428 | again: |
| 1429 | if (!bio_remaining_done(bio)) |
| 1430 | return; |
| 1431 | if (!bio_integrity_endio(bio)) |
| 1432 | return; |
| 1433 | |
| 1434 | if (bio->bi_disk) |
| 1435 | rq_qos_done_bio(bio->bi_disk->queue, bio); |
| 1436 | |
| 1437 | /* |
| 1438 | * Need to have a real endio function for chained bios, otherwise |
| 1439 | * various corner cases will break (like stacking block devices that |
| 1440 | * save/restore bi_end_io) - however, we want to avoid unbounded |
| 1441 | * recursion and blowing the stack. Tail call optimization would |
| 1442 | * handle this, but compiling with frame pointers also disables |
| 1443 | * gcc's sibling call optimization. |
| 1444 | */ |
| 1445 | if (bio->bi_end_io == bio_chain_endio) { |
| 1446 | bio = __bio_chain_endio(bio); |
| 1447 | goto again; |
| 1448 | } |
| 1449 | |
| 1450 | if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1451 | trace_block_bio_complete(bio->bi_disk->queue, bio); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1452 | bio_clear_flag(bio, BIO_TRACE_COMPLETION); |
| 1453 | } |
| 1454 | |
| 1455 | blk_throtl_bio_endio(bio); |
| 1456 | /* release cgroup info */ |
| 1457 | bio_uninit(bio); |
| 1458 | if (bio->bi_end_io) |
| 1459 | bio->bi_end_io(bio); |
| 1460 | } |
| 1461 | EXPORT_SYMBOL(bio_endio); |
| 1462 | |
| 1463 | /** |
| 1464 | * bio_split - split a bio |
| 1465 | * @bio: bio to split |
| 1466 | * @sectors: number of sectors to split from the front of @bio |
| 1467 | * @gfp: gfp mask |
| 1468 | * @bs: bio set to allocate from |
| 1469 | * |
| 1470 | * Allocates and returns a new bio which represents @sectors from the start of |
| 1471 | * @bio, and updates @bio to represent the remaining sectors. |
| 1472 | * |
| 1473 | * Unless this is a discard request the newly allocated bio will point |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1474 | * to @bio's bi_io_vec. It is the caller's responsibility to ensure that |
| 1475 | * neither @bio nor @bs are freed before the split bio. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1476 | */ |
| 1477 | struct bio *bio_split(struct bio *bio, int sectors, |
| 1478 | gfp_t gfp, struct bio_set *bs) |
| 1479 | { |
| 1480 | struct bio *split; |
| 1481 | |
| 1482 | BUG_ON(sectors <= 0); |
| 1483 | BUG_ON(sectors >= bio_sectors(bio)); |
| 1484 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1485 | /* Zone append commands cannot be split */ |
| 1486 | if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) |
| 1487 | return NULL; |
| 1488 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1489 | split = bio_clone_fast(bio, gfp, bs); |
| 1490 | if (!split) |
| 1491 | return NULL; |
| 1492 | |
| 1493 | split->bi_iter.bi_size = sectors << 9; |
| 1494 | |
| 1495 | if (bio_integrity(split)) |
| 1496 | bio_integrity_trim(split); |
| 1497 | |
| 1498 | bio_advance(bio, split->bi_iter.bi_size); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1499 | |
| 1500 | if (bio_flagged(bio, BIO_TRACE_COMPLETION)) |
| 1501 | bio_set_flag(split, BIO_TRACE_COMPLETION); |
| 1502 | |
| 1503 | return split; |
| 1504 | } |
| 1505 | EXPORT_SYMBOL(bio_split); |
| 1506 | |
| 1507 | /** |
| 1508 | * bio_trim - trim a bio |
| 1509 | * @bio: bio to trim |
| 1510 | * @offset: number of sectors to trim from the front of @bio |
| 1511 | * @size: size we want to trim @bio to, in sectors |
| 1512 | */ |
| 1513 | void bio_trim(struct bio *bio, int offset, int size) |
| 1514 | { |
| 1515 | /* 'bio' is a cloned bio which we need to trim to match |
| 1516 | * the given offset and size. |
| 1517 | */ |
| 1518 | |
| 1519 | size <<= 9; |
| 1520 | if (offset == 0 && size == bio->bi_iter.bi_size) |
| 1521 | return; |
| 1522 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1523 | bio_advance(bio, offset << 9); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1524 | bio->bi_iter.bi_size = size; |
| 1525 | |
| 1526 | if (bio_integrity(bio)) |
| 1527 | bio_integrity_trim(bio); |
| 1528 | |
| 1529 | } |
| 1530 | EXPORT_SYMBOL_GPL(bio_trim); |
| 1531 | |
| 1532 | /* |
| 1533 | * create memory pools for biovec's in a bio_set. |
| 1534 | * use the global biovec slabs created for general use. |
| 1535 | */ |
| 1536 | int biovec_init_pool(mempool_t *pool, int pool_entries) |
| 1537 | { |
| 1538 | struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; |
| 1539 | |
| 1540 | return mempool_init_slab_pool(pool, pool_entries, bp->slab); |
| 1541 | } |
| 1542 | |
| 1543 | /* |
| 1544 | * bioset_exit - exit a bioset initialized with bioset_init() |
| 1545 | * |
| 1546 | * May be called on a zeroed but uninitialized bioset (i.e. allocated with |
| 1547 | * kzalloc()). |
| 1548 | */ |
| 1549 | void bioset_exit(struct bio_set *bs) |
| 1550 | { |
| 1551 | if (bs->rescue_workqueue) |
| 1552 | destroy_workqueue(bs->rescue_workqueue); |
| 1553 | bs->rescue_workqueue = NULL; |
| 1554 | |
| 1555 | mempool_exit(&bs->bio_pool); |
| 1556 | mempool_exit(&bs->bvec_pool); |
| 1557 | |
| 1558 | bioset_integrity_free(bs); |
| 1559 | if (bs->bio_slab) |
| 1560 | bio_put_slab(bs); |
| 1561 | bs->bio_slab = NULL; |
| 1562 | } |
| 1563 | EXPORT_SYMBOL(bioset_exit); |
| 1564 | |
| 1565 | /** |
| 1566 | * bioset_init - Initialize a bio_set |
| 1567 | * @bs: pool to initialize |
| 1568 | * @pool_size: Number of bio and bio_vecs to cache in the mempool |
| 1569 | * @front_pad: Number of bytes to allocate in front of the returned bio |
| 1570 | * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS |
| 1571 | * and %BIOSET_NEED_RESCUER |
| 1572 | * |
| 1573 | * Description: |
| 1574 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller |
| 1575 | * to ask for a number of bytes to be allocated in front of the bio. |
| 1576 | * Front pad allocation is useful for embedding the bio inside |
| 1577 | * another structure, to avoid allocating extra data to go with the bio. |
| 1578 | * Note that the bio must be embedded at the END of that structure always, |
| 1579 | * or things will break badly. |
| 1580 | * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated |
| 1581 | * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). |
| 1582 | * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to |
| 1583 | * dispatch queued requests when the mempool runs out of space. |
| 1584 | * |
| 1585 | */ |
| 1586 | int bioset_init(struct bio_set *bs, |
| 1587 | unsigned int pool_size, |
| 1588 | unsigned int front_pad, |
| 1589 | int flags) |
| 1590 | { |
| 1591 | unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); |
| 1592 | |
| 1593 | bs->front_pad = front_pad; |
| 1594 | |
| 1595 | spin_lock_init(&bs->rescue_lock); |
| 1596 | bio_list_init(&bs->rescue_list); |
| 1597 | INIT_WORK(&bs->rescue_work, bio_alloc_rescue); |
| 1598 | |
| 1599 | bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); |
| 1600 | if (!bs->bio_slab) |
| 1601 | return -ENOMEM; |
| 1602 | |
| 1603 | if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) |
| 1604 | goto bad; |
| 1605 | |
| 1606 | if ((flags & BIOSET_NEED_BVECS) && |
| 1607 | biovec_init_pool(&bs->bvec_pool, pool_size)) |
| 1608 | goto bad; |
| 1609 | |
| 1610 | if (!(flags & BIOSET_NEED_RESCUER)) |
| 1611 | return 0; |
| 1612 | |
| 1613 | bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); |
| 1614 | if (!bs->rescue_workqueue) |
| 1615 | goto bad; |
| 1616 | |
| 1617 | return 0; |
| 1618 | bad: |
| 1619 | bioset_exit(bs); |
| 1620 | return -ENOMEM; |
| 1621 | } |
| 1622 | EXPORT_SYMBOL(bioset_init); |
| 1623 | |
| 1624 | /* |
| 1625 | * Initialize and setup a new bio_set, based on the settings from |
| 1626 | * another bio_set. |
| 1627 | */ |
| 1628 | int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) |
| 1629 | { |
| 1630 | int flags; |
| 1631 | |
| 1632 | flags = 0; |
| 1633 | if (src->bvec_pool.min_nr) |
| 1634 | flags |= BIOSET_NEED_BVECS; |
| 1635 | if (src->rescue_workqueue) |
| 1636 | flags |= BIOSET_NEED_RESCUER; |
| 1637 | |
| 1638 | return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); |
| 1639 | } |
| 1640 | EXPORT_SYMBOL(bioset_init_from_src); |
| 1641 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1642 | static void __init biovec_init_slabs(void) |
| 1643 | { |
| 1644 | int i; |
| 1645 | |
| 1646 | for (i = 0; i < BVEC_POOL_NR; i++) { |
| 1647 | int size; |
| 1648 | struct biovec_slab *bvs = bvec_slabs + i; |
| 1649 | |
| 1650 | if (bvs->nr_vecs <= BIO_INLINE_VECS) { |
| 1651 | bvs->slab = NULL; |
| 1652 | continue; |
| 1653 | } |
| 1654 | |
| 1655 | size = bvs->nr_vecs * sizeof(struct bio_vec); |
| 1656 | bvs->slab = kmem_cache_create(bvs->name, size, 0, |
| 1657 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | static int __init init_bio(void) |
| 1662 | { |
| 1663 | bio_slab_max = 2; |
| 1664 | bio_slab_nr = 0; |
| 1665 | bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), |
| 1666 | GFP_KERNEL); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1667 | |
| 1668 | BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); |
| 1669 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1670 | if (!bio_slabs) |
| 1671 | panic("bio: can't allocate bios\n"); |
| 1672 | |
| 1673 | bio_integrity_init(); |
| 1674 | biovec_init_slabs(); |
| 1675 | |
| 1676 | if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) |
| 1677 | panic("bio: can't allocate bios\n"); |
| 1678 | |
| 1679 | if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) |
| 1680 | panic("bio: can't create integrity pool\n"); |
| 1681 | |
| 1682 | return 0; |
| 1683 | } |
| 1684 | subsys_initcall(init_bio); |