Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * multiorder.c: Multi-order radix tree entry testing |
| 3 | * Copyright (c) 2016 Intel Corporation |
| 4 | * Author: Ross Zwisler <ross.zwisler@linux.intel.com> |
| 5 | * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify it |
| 8 | * under the terms and conditions of the GNU General Public License, |
| 9 | * version 2, as published by the Free Software Foundation. |
| 10 | * |
| 11 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 14 | * more details. |
| 15 | */ |
| 16 | #include <linux/radix-tree.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/errno.h> |
| 19 | #include <pthread.h> |
| 20 | |
| 21 | #include "test.h" |
| 22 | |
| 23 | #define for_each_index(i, base, order) \ |
| 24 | for (i = base; i < base + (1 << order); i++) |
| 25 | |
| 26 | static void __multiorder_tag_test(int index, int order) |
| 27 | { |
| 28 | RADIX_TREE(tree, GFP_KERNEL); |
| 29 | int base, err, i; |
| 30 | |
| 31 | /* our canonical entry */ |
| 32 | base = index & ~((1 << order) - 1); |
| 33 | |
| 34 | printv(2, "Multiorder tag test with index %d, canonical entry %d\n", |
| 35 | index, base); |
| 36 | |
| 37 | err = item_insert_order(&tree, index, order); |
| 38 | assert(!err); |
| 39 | |
| 40 | /* |
| 41 | * Verify we get collisions for covered indices. We try and fail to |
| 42 | * insert an exceptional entry so we don't leak memory via |
| 43 | * item_insert_order(). |
| 44 | */ |
| 45 | for_each_index(i, base, order) { |
| 46 | err = __radix_tree_insert(&tree, i, order, |
| 47 | (void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY)); |
| 48 | assert(err == -EEXIST); |
| 49 | } |
| 50 | |
| 51 | for_each_index(i, base, order) { |
| 52 | assert(!radix_tree_tag_get(&tree, i, 0)); |
| 53 | assert(!radix_tree_tag_get(&tree, i, 1)); |
| 54 | } |
| 55 | |
| 56 | assert(radix_tree_tag_set(&tree, index, 0)); |
| 57 | |
| 58 | for_each_index(i, base, order) { |
| 59 | assert(radix_tree_tag_get(&tree, i, 0)); |
| 60 | assert(!radix_tree_tag_get(&tree, i, 1)); |
| 61 | } |
| 62 | |
| 63 | assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1); |
| 64 | assert(radix_tree_tag_clear(&tree, index, 0)); |
| 65 | |
| 66 | for_each_index(i, base, order) { |
| 67 | assert(!radix_tree_tag_get(&tree, i, 0)); |
| 68 | assert(radix_tree_tag_get(&tree, i, 1)); |
| 69 | } |
| 70 | |
| 71 | assert(radix_tree_tag_clear(&tree, index, 1)); |
| 72 | |
| 73 | assert(!radix_tree_tagged(&tree, 0)); |
| 74 | assert(!radix_tree_tagged(&tree, 1)); |
| 75 | |
| 76 | item_kill_tree(&tree); |
| 77 | } |
| 78 | |
| 79 | static void __multiorder_tag_test2(unsigned order, unsigned long index2) |
| 80 | { |
| 81 | RADIX_TREE(tree, GFP_KERNEL); |
| 82 | unsigned long index = (1 << order); |
| 83 | index2 += index; |
| 84 | |
| 85 | assert(item_insert_order(&tree, 0, order) == 0); |
| 86 | assert(item_insert(&tree, index2) == 0); |
| 87 | |
| 88 | assert(radix_tree_tag_set(&tree, 0, 0)); |
| 89 | assert(radix_tree_tag_set(&tree, index2, 0)); |
| 90 | |
| 91 | assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2); |
| 92 | |
| 93 | item_kill_tree(&tree); |
| 94 | } |
| 95 | |
| 96 | static void multiorder_tag_tests(void) |
| 97 | { |
| 98 | int i, j; |
| 99 | |
| 100 | /* test multi-order entry for indices 0-7 with no sibling pointers */ |
| 101 | __multiorder_tag_test(0, 3); |
| 102 | __multiorder_tag_test(5, 3); |
| 103 | |
| 104 | /* test multi-order entry for indices 8-15 with no sibling pointers */ |
| 105 | __multiorder_tag_test(8, 3); |
| 106 | __multiorder_tag_test(15, 3); |
| 107 | |
| 108 | /* |
| 109 | * Our order 5 entry covers indices 0-31 in a tree with height=2. |
| 110 | * This is broken up as follows: |
| 111 | * 0-7: canonical entry |
| 112 | * 8-15: sibling 1 |
| 113 | * 16-23: sibling 2 |
| 114 | * 24-31: sibling 3 |
| 115 | */ |
| 116 | __multiorder_tag_test(0, 5); |
| 117 | __multiorder_tag_test(29, 5); |
| 118 | |
| 119 | /* same test, but with indices 32-63 */ |
| 120 | __multiorder_tag_test(32, 5); |
| 121 | __multiorder_tag_test(44, 5); |
| 122 | |
| 123 | /* |
| 124 | * Our order 8 entry covers indices 0-255 in a tree with height=3. |
| 125 | * This is broken up as follows: |
| 126 | * 0-63: canonical entry |
| 127 | * 64-127: sibling 1 |
| 128 | * 128-191: sibling 2 |
| 129 | * 192-255: sibling 3 |
| 130 | */ |
| 131 | __multiorder_tag_test(0, 8); |
| 132 | __multiorder_tag_test(190, 8); |
| 133 | |
| 134 | /* same test, but with indices 256-511 */ |
| 135 | __multiorder_tag_test(256, 8); |
| 136 | __multiorder_tag_test(300, 8); |
| 137 | |
| 138 | __multiorder_tag_test(0x12345678UL, 8); |
| 139 | |
| 140 | for (i = 1; i < 10; i++) |
| 141 | for (j = 0; j < (10 << i); j++) |
| 142 | __multiorder_tag_test2(i, j); |
| 143 | } |
| 144 | |
| 145 | static void multiorder_check(unsigned long index, int order) |
| 146 | { |
| 147 | unsigned long i; |
| 148 | unsigned long min = index & ~((1UL << order) - 1); |
| 149 | unsigned long max = min + (1UL << order); |
| 150 | void **slot; |
| 151 | struct item *item2 = item_create(min, order); |
| 152 | RADIX_TREE(tree, GFP_KERNEL); |
| 153 | |
| 154 | printv(2, "Multiorder index %ld, order %d\n", index, order); |
| 155 | |
| 156 | assert(item_insert_order(&tree, index, order) == 0); |
| 157 | |
| 158 | for (i = min; i < max; i++) { |
| 159 | struct item *item = item_lookup(&tree, i); |
| 160 | assert(item != 0); |
| 161 | assert(item->index == index); |
| 162 | } |
| 163 | for (i = 0; i < min; i++) |
| 164 | item_check_absent(&tree, i); |
| 165 | for (i = max; i < 2*max; i++) |
| 166 | item_check_absent(&tree, i); |
| 167 | for (i = min; i < max; i++) |
| 168 | assert(radix_tree_insert(&tree, i, item2) == -EEXIST); |
| 169 | |
| 170 | slot = radix_tree_lookup_slot(&tree, index); |
| 171 | free(*slot); |
| 172 | radix_tree_replace_slot(&tree, slot, item2); |
| 173 | for (i = min; i < max; i++) { |
| 174 | struct item *item = item_lookup(&tree, i); |
| 175 | assert(item != 0); |
| 176 | assert(item->index == min); |
| 177 | } |
| 178 | |
| 179 | assert(item_delete(&tree, min) != 0); |
| 180 | |
| 181 | for (i = 0; i < 2*max; i++) |
| 182 | item_check_absent(&tree, i); |
| 183 | } |
| 184 | |
| 185 | static void multiorder_shrink(unsigned long index, int order) |
| 186 | { |
| 187 | unsigned long i; |
| 188 | unsigned long max = 1 << order; |
| 189 | RADIX_TREE(tree, GFP_KERNEL); |
| 190 | struct radix_tree_node *node; |
| 191 | |
| 192 | printv(2, "Multiorder shrink index %ld, order %d\n", index, order); |
| 193 | |
| 194 | assert(item_insert_order(&tree, 0, order) == 0); |
| 195 | |
| 196 | node = tree.rnode; |
| 197 | |
| 198 | assert(item_insert(&tree, index) == 0); |
| 199 | assert(node != tree.rnode); |
| 200 | |
| 201 | assert(item_delete(&tree, index) != 0); |
| 202 | assert(node == tree.rnode); |
| 203 | |
| 204 | for (i = 0; i < max; i++) { |
| 205 | struct item *item = item_lookup(&tree, i); |
| 206 | assert(item != 0); |
| 207 | assert(item->index == 0); |
| 208 | } |
| 209 | for (i = max; i < 2*max; i++) |
| 210 | item_check_absent(&tree, i); |
| 211 | |
| 212 | if (!item_delete(&tree, 0)) { |
| 213 | printv(2, "failed to delete index %ld (order %d)\n", index, order); |
| 214 | abort(); |
| 215 | } |
| 216 | |
| 217 | for (i = 0; i < 2*max; i++) |
| 218 | item_check_absent(&tree, i); |
| 219 | } |
| 220 | |
| 221 | static void multiorder_insert_bug(void) |
| 222 | { |
| 223 | RADIX_TREE(tree, GFP_KERNEL); |
| 224 | |
| 225 | item_insert(&tree, 0); |
| 226 | radix_tree_tag_set(&tree, 0, 0); |
| 227 | item_insert_order(&tree, 3 << 6, 6); |
| 228 | |
| 229 | item_kill_tree(&tree); |
| 230 | } |
| 231 | |
| 232 | void multiorder_iteration(void) |
| 233 | { |
| 234 | RADIX_TREE(tree, GFP_KERNEL); |
| 235 | struct radix_tree_iter iter; |
| 236 | void **slot; |
| 237 | int i, j, err; |
| 238 | |
| 239 | printv(1, "Multiorder iteration test\n"); |
| 240 | |
| 241 | #define NUM_ENTRIES 11 |
| 242 | int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128}; |
| 243 | int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7}; |
| 244 | |
| 245 | for (i = 0; i < NUM_ENTRIES; i++) { |
| 246 | err = item_insert_order(&tree, index[i], order[i]); |
| 247 | assert(!err); |
| 248 | } |
| 249 | |
| 250 | for (j = 0; j < 256; j++) { |
| 251 | for (i = 0; i < NUM_ENTRIES; i++) |
| 252 | if (j <= (index[i] | ((1 << order[i]) - 1))) |
| 253 | break; |
| 254 | |
| 255 | radix_tree_for_each_slot(slot, &tree, &iter, j) { |
| 256 | int height = order[i] / RADIX_TREE_MAP_SHIFT; |
| 257 | int shift = height * RADIX_TREE_MAP_SHIFT; |
| 258 | unsigned long mask = (1UL << order[i]) - 1; |
| 259 | struct item *item = *slot; |
| 260 | |
| 261 | assert((iter.index | mask) == (index[i] | mask)); |
| 262 | assert(iter.shift == shift); |
| 263 | assert(!radix_tree_is_internal_node(item)); |
| 264 | assert((item->index | mask) == (index[i] | mask)); |
| 265 | assert(item->order == order[i]); |
| 266 | i++; |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | item_kill_tree(&tree); |
| 271 | } |
| 272 | |
| 273 | void multiorder_tagged_iteration(void) |
| 274 | { |
| 275 | RADIX_TREE(tree, GFP_KERNEL); |
| 276 | struct radix_tree_iter iter; |
| 277 | void **slot; |
| 278 | int i, j; |
| 279 | |
| 280 | printv(1, "Multiorder tagged iteration test\n"); |
| 281 | |
| 282 | #define MT_NUM_ENTRIES 9 |
| 283 | int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128}; |
| 284 | int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7}; |
| 285 | |
| 286 | #define TAG_ENTRIES 7 |
| 287 | int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128}; |
| 288 | |
| 289 | for (i = 0; i < MT_NUM_ENTRIES; i++) |
| 290 | assert(!item_insert_order(&tree, index[i], order[i])); |
| 291 | |
| 292 | assert(!radix_tree_tagged(&tree, 1)); |
| 293 | |
| 294 | for (i = 0; i < TAG_ENTRIES; i++) |
| 295 | assert(radix_tree_tag_set(&tree, tag_index[i], 1)); |
| 296 | |
| 297 | for (j = 0; j < 256; j++) { |
| 298 | int k; |
| 299 | |
| 300 | for (i = 0; i < TAG_ENTRIES; i++) { |
| 301 | for (k = i; index[k] < tag_index[i]; k++) |
| 302 | ; |
| 303 | if (j <= (index[k] | ((1 << order[k]) - 1))) |
| 304 | break; |
| 305 | } |
| 306 | |
| 307 | radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) { |
| 308 | unsigned long mask; |
| 309 | struct item *item = *slot; |
| 310 | for (k = i; index[k] < tag_index[i]; k++) |
| 311 | ; |
| 312 | mask = (1UL << order[k]) - 1; |
| 313 | |
| 314 | assert((iter.index | mask) == (tag_index[i] | mask)); |
| 315 | assert(!radix_tree_is_internal_node(item)); |
| 316 | assert((item->index | mask) == (tag_index[i] | mask)); |
| 317 | assert(item->order == order[k]); |
| 318 | i++; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) == |
| 323 | TAG_ENTRIES); |
| 324 | |
| 325 | for (j = 0; j < 256; j++) { |
| 326 | int mask, k; |
| 327 | |
| 328 | for (i = 0; i < TAG_ENTRIES; i++) { |
| 329 | for (k = i; index[k] < tag_index[i]; k++) |
| 330 | ; |
| 331 | if (j <= (index[k] | ((1 << order[k]) - 1))) |
| 332 | break; |
| 333 | } |
| 334 | |
| 335 | radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) { |
| 336 | struct item *item = *slot; |
| 337 | for (k = i; index[k] < tag_index[i]; k++) |
| 338 | ; |
| 339 | mask = (1 << order[k]) - 1; |
| 340 | |
| 341 | assert((iter.index | mask) == (tag_index[i] | mask)); |
| 342 | assert(!radix_tree_is_internal_node(item)); |
| 343 | assert((item->index | mask) == (tag_index[i] | mask)); |
| 344 | assert(item->order == order[k]); |
| 345 | i++; |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0) |
| 350 | == TAG_ENTRIES); |
| 351 | i = 0; |
| 352 | radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) { |
| 353 | assert(iter.index == tag_index[i]); |
| 354 | i++; |
| 355 | } |
| 356 | |
| 357 | item_kill_tree(&tree); |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * Basic join checks: make sure we can't find an entry in the tree after |
| 362 | * a larger entry has replaced it |
| 363 | */ |
| 364 | static void multiorder_join1(unsigned long index, |
| 365 | unsigned order1, unsigned order2) |
| 366 | { |
| 367 | unsigned long loc; |
| 368 | void *item, *item2 = item_create(index + 1, order1); |
| 369 | RADIX_TREE(tree, GFP_KERNEL); |
| 370 | |
| 371 | item_insert_order(&tree, index, order2); |
| 372 | item = radix_tree_lookup(&tree, index); |
| 373 | radix_tree_join(&tree, index + 1, order1, item2); |
| 374 | loc = find_item(&tree, item); |
| 375 | if (loc == -1) |
| 376 | free(item); |
| 377 | item = radix_tree_lookup(&tree, index + 1); |
| 378 | assert(item == item2); |
| 379 | item_kill_tree(&tree); |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Check that the accounting of exceptional entries is handled correctly |
| 384 | * by joining an exceptional entry to a normal pointer. |
| 385 | */ |
| 386 | static void multiorder_join2(unsigned order1, unsigned order2) |
| 387 | { |
| 388 | RADIX_TREE(tree, GFP_KERNEL); |
| 389 | struct radix_tree_node *node; |
| 390 | void *item1 = item_create(0, order1); |
| 391 | void *item2; |
| 392 | |
| 393 | item_insert_order(&tree, 0, order2); |
| 394 | radix_tree_insert(&tree, 1 << order2, (void *)0x12UL); |
| 395 | item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL); |
| 396 | assert(item2 == (void *)0x12UL); |
| 397 | assert(node->exceptional == 1); |
| 398 | |
| 399 | item2 = radix_tree_lookup(&tree, 0); |
| 400 | free(item2); |
| 401 | |
| 402 | radix_tree_join(&tree, 0, order1, item1); |
| 403 | item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL); |
| 404 | assert(item2 == item1); |
| 405 | assert(node->exceptional == 0); |
| 406 | item_kill_tree(&tree); |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * This test revealed an accounting bug for exceptional entries at one point. |
| 411 | * Nodes were being freed back into the pool with an elevated exception count |
| 412 | * by radix_tree_join() and then radix_tree_split() was failing to zero the |
| 413 | * count of exceptional entries. |
| 414 | */ |
| 415 | static void multiorder_join3(unsigned int order) |
| 416 | { |
| 417 | RADIX_TREE(tree, GFP_KERNEL); |
| 418 | struct radix_tree_node *node; |
| 419 | void **slot; |
| 420 | struct radix_tree_iter iter; |
| 421 | unsigned long i; |
| 422 | |
| 423 | for (i = 0; i < (1 << order); i++) { |
| 424 | radix_tree_insert(&tree, i, (void *)0x12UL); |
| 425 | } |
| 426 | |
| 427 | radix_tree_join(&tree, 0, order, (void *)0x16UL); |
| 428 | rcu_barrier(); |
| 429 | |
| 430 | radix_tree_split(&tree, 0, 0); |
| 431 | |
| 432 | radix_tree_for_each_slot(slot, &tree, &iter, 0) { |
| 433 | radix_tree_iter_replace(&tree, &iter, slot, (void *)0x12UL); |
| 434 | } |
| 435 | |
| 436 | __radix_tree_lookup(&tree, 0, &node, NULL); |
| 437 | assert(node->exceptional == node->count); |
| 438 | |
| 439 | item_kill_tree(&tree); |
| 440 | } |
| 441 | |
| 442 | static void multiorder_join(void) |
| 443 | { |
| 444 | int i, j, idx; |
| 445 | |
| 446 | for (idx = 0; idx < 1024; idx = idx * 2 + 3) { |
| 447 | for (i = 1; i < 15; i++) { |
| 448 | for (j = 0; j < i; j++) { |
| 449 | multiorder_join1(idx, i, j); |
| 450 | } |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | for (i = 1; i < 15; i++) { |
| 455 | for (j = 0; j < i; j++) { |
| 456 | multiorder_join2(i, j); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | for (i = 3; i < 10; i++) { |
| 461 | multiorder_join3(i); |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc) |
| 466 | { |
| 467 | struct radix_tree_preload *rtp = &radix_tree_preloads; |
| 468 | if (rtp->nr != 0) |
| 469 | printv(2, "split(%u %u) remaining %u\n", old_order, new_order, |
| 470 | rtp->nr); |
| 471 | /* |
| 472 | * Can't check for equality here as some nodes may have been |
| 473 | * RCU-freed while we ran. But we should never finish with more |
| 474 | * nodes allocated since they should have all been preloaded. |
| 475 | */ |
| 476 | if (nr_allocated > alloc) |
| 477 | printv(2, "split(%u %u) allocated %u %u\n", old_order, new_order, |
| 478 | alloc, nr_allocated); |
| 479 | } |
| 480 | |
| 481 | static void __multiorder_split(int old_order, int new_order) |
| 482 | { |
| 483 | RADIX_TREE(tree, GFP_ATOMIC); |
| 484 | void **slot; |
| 485 | struct radix_tree_iter iter; |
| 486 | unsigned alloc; |
| 487 | struct item *item; |
| 488 | |
| 489 | radix_tree_preload(GFP_KERNEL); |
| 490 | assert(item_insert_order(&tree, 0, old_order) == 0); |
| 491 | radix_tree_preload_end(); |
| 492 | |
| 493 | /* Wipe out the preloaded cache or it'll confuse check_mem() */ |
| 494 | radix_tree_cpu_dead(0); |
| 495 | |
| 496 | item = radix_tree_tag_set(&tree, 0, 2); |
| 497 | |
| 498 | radix_tree_split_preload(old_order, new_order, GFP_KERNEL); |
| 499 | alloc = nr_allocated; |
| 500 | radix_tree_split(&tree, 0, new_order); |
| 501 | check_mem(old_order, new_order, alloc); |
| 502 | radix_tree_for_each_slot(slot, &tree, &iter, 0) { |
| 503 | radix_tree_iter_replace(&tree, &iter, slot, |
| 504 | item_create(iter.index, new_order)); |
| 505 | } |
| 506 | radix_tree_preload_end(); |
| 507 | |
| 508 | item_kill_tree(&tree); |
| 509 | free(item); |
| 510 | } |
| 511 | |
| 512 | static void __multiorder_split2(int old_order, int new_order) |
| 513 | { |
| 514 | RADIX_TREE(tree, GFP_KERNEL); |
| 515 | void **slot; |
| 516 | struct radix_tree_iter iter; |
| 517 | struct radix_tree_node *node; |
| 518 | void *item; |
| 519 | |
| 520 | __radix_tree_insert(&tree, 0, old_order, (void *)0x12); |
| 521 | |
| 522 | item = __radix_tree_lookup(&tree, 0, &node, NULL); |
| 523 | assert(item == (void *)0x12); |
| 524 | assert(node->exceptional > 0); |
| 525 | |
| 526 | radix_tree_split(&tree, 0, new_order); |
| 527 | radix_tree_for_each_slot(slot, &tree, &iter, 0) { |
| 528 | radix_tree_iter_replace(&tree, &iter, slot, |
| 529 | item_create(iter.index, new_order)); |
| 530 | } |
| 531 | |
| 532 | item = __radix_tree_lookup(&tree, 0, &node, NULL); |
| 533 | assert(item != (void *)0x12); |
| 534 | assert(node->exceptional == 0); |
| 535 | |
| 536 | item_kill_tree(&tree); |
| 537 | } |
| 538 | |
| 539 | static void __multiorder_split3(int old_order, int new_order) |
| 540 | { |
| 541 | RADIX_TREE(tree, GFP_KERNEL); |
| 542 | void **slot; |
| 543 | struct radix_tree_iter iter; |
| 544 | struct radix_tree_node *node; |
| 545 | void *item; |
| 546 | |
| 547 | __radix_tree_insert(&tree, 0, old_order, (void *)0x12); |
| 548 | |
| 549 | item = __radix_tree_lookup(&tree, 0, &node, NULL); |
| 550 | assert(item == (void *)0x12); |
| 551 | assert(node->exceptional > 0); |
| 552 | |
| 553 | radix_tree_split(&tree, 0, new_order); |
| 554 | radix_tree_for_each_slot(slot, &tree, &iter, 0) { |
| 555 | radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16); |
| 556 | } |
| 557 | |
| 558 | item = __radix_tree_lookup(&tree, 0, &node, NULL); |
| 559 | assert(item == (void *)0x16); |
| 560 | assert(node->exceptional > 0); |
| 561 | |
| 562 | item_kill_tree(&tree); |
| 563 | |
| 564 | __radix_tree_insert(&tree, 0, old_order, (void *)0x12); |
| 565 | |
| 566 | item = __radix_tree_lookup(&tree, 0, &node, NULL); |
| 567 | assert(item == (void *)0x12); |
| 568 | assert(node->exceptional > 0); |
| 569 | |
| 570 | radix_tree_split(&tree, 0, new_order); |
| 571 | radix_tree_for_each_slot(slot, &tree, &iter, 0) { |
| 572 | if (iter.index == (1 << new_order)) |
| 573 | radix_tree_iter_replace(&tree, &iter, slot, |
| 574 | (void *)0x16); |
| 575 | else |
| 576 | radix_tree_iter_replace(&tree, &iter, slot, NULL); |
| 577 | } |
| 578 | |
| 579 | item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL); |
| 580 | assert(item == (void *)0x16); |
| 581 | assert(node->count == node->exceptional); |
| 582 | do { |
| 583 | node = node->parent; |
| 584 | if (!node) |
| 585 | break; |
| 586 | assert(node->count == 1); |
| 587 | assert(node->exceptional == 0); |
| 588 | } while (1); |
| 589 | |
| 590 | item_kill_tree(&tree); |
| 591 | } |
| 592 | |
| 593 | static void multiorder_split(void) |
| 594 | { |
| 595 | int i, j; |
| 596 | |
| 597 | for (i = 3; i < 11; i++) |
| 598 | for (j = 0; j < i; j++) { |
| 599 | __multiorder_split(i, j); |
| 600 | __multiorder_split2(i, j); |
| 601 | __multiorder_split3(i, j); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | static void multiorder_account(void) |
| 606 | { |
| 607 | RADIX_TREE(tree, GFP_KERNEL); |
| 608 | struct radix_tree_node *node; |
| 609 | void **slot; |
| 610 | |
| 611 | item_insert_order(&tree, 0, 5); |
| 612 | |
| 613 | __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12); |
| 614 | __radix_tree_lookup(&tree, 0, &node, NULL); |
| 615 | assert(node->count == node->exceptional * 2); |
| 616 | radix_tree_delete(&tree, 1 << 5); |
| 617 | assert(node->exceptional == 0); |
| 618 | |
| 619 | __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12); |
| 620 | __radix_tree_lookup(&tree, 1 << 5, &node, &slot); |
| 621 | assert(node->count == node->exceptional * 2); |
| 622 | __radix_tree_replace(&tree, node, slot, NULL, NULL); |
| 623 | assert(node->exceptional == 0); |
| 624 | |
| 625 | item_kill_tree(&tree); |
| 626 | } |
| 627 | |
| 628 | bool stop_iteration = false; |
| 629 | |
| 630 | static void *creator_func(void *ptr) |
| 631 | { |
| 632 | /* 'order' is set up to ensure we have sibling entries */ |
| 633 | unsigned int order = RADIX_TREE_MAP_SHIFT - 1; |
| 634 | struct radix_tree_root *tree = ptr; |
| 635 | int i; |
| 636 | |
| 637 | for (i = 0; i < 10000; i++) { |
| 638 | item_insert_order(tree, 0, order); |
| 639 | item_delete_rcu(tree, 0); |
| 640 | } |
| 641 | |
| 642 | stop_iteration = true; |
| 643 | return NULL; |
| 644 | } |
| 645 | |
| 646 | static void *iterator_func(void *ptr) |
| 647 | { |
| 648 | struct radix_tree_root *tree = ptr; |
| 649 | struct radix_tree_iter iter; |
| 650 | struct item *item; |
| 651 | void **slot; |
| 652 | |
| 653 | while (!stop_iteration) { |
| 654 | rcu_read_lock(); |
| 655 | radix_tree_for_each_slot(slot, tree, &iter, 0) { |
| 656 | item = radix_tree_deref_slot(slot); |
| 657 | |
| 658 | if (!item) |
| 659 | continue; |
| 660 | if (radix_tree_deref_retry(item)) { |
| 661 | slot = radix_tree_iter_retry(&iter); |
| 662 | continue; |
| 663 | } |
| 664 | |
| 665 | item_sanity(item, iter.index); |
| 666 | } |
| 667 | rcu_read_unlock(); |
| 668 | } |
| 669 | return NULL; |
| 670 | } |
| 671 | |
| 672 | static void multiorder_iteration_race(void) |
| 673 | { |
| 674 | const int num_threads = sysconf(_SC_NPROCESSORS_ONLN); |
| 675 | pthread_t worker_thread[num_threads]; |
| 676 | RADIX_TREE(tree, GFP_KERNEL); |
| 677 | int i; |
| 678 | |
| 679 | pthread_create(&worker_thread[0], NULL, &creator_func, &tree); |
| 680 | for (i = 1; i < num_threads; i++) |
| 681 | pthread_create(&worker_thread[i], NULL, &iterator_func, &tree); |
| 682 | |
| 683 | for (i = 0; i < num_threads; i++) |
| 684 | pthread_join(worker_thread[i], NULL); |
| 685 | |
| 686 | item_kill_tree(&tree); |
| 687 | } |
| 688 | |
| 689 | void multiorder_checks(void) |
| 690 | { |
| 691 | int i; |
| 692 | |
| 693 | for (i = 0; i < 20; i++) { |
| 694 | multiorder_check(200, i); |
| 695 | multiorder_check(0, i); |
| 696 | multiorder_check((1UL << i) + 1, i); |
| 697 | } |
| 698 | |
| 699 | for (i = 0; i < 15; i++) |
| 700 | multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i); |
| 701 | |
| 702 | multiorder_insert_bug(); |
| 703 | multiorder_tag_tests(); |
| 704 | multiorder_iteration(); |
| 705 | multiorder_tagged_iteration(); |
| 706 | multiorder_join(); |
| 707 | multiorder_split(); |
| 708 | multiorder_account(); |
| 709 | multiorder_iteration_race(); |
| 710 | |
| 711 | radix_tree_cpu_dead(0); |
| 712 | } |
| 713 | |
| 714 | int __weak main(void) |
| 715 | { |
| 716 | radix_tree_init(); |
| 717 | multiorder_checks(); |
| 718 | return 0; |
| 719 | } |