blob: e7dbdcc8d46532a320dedc5019034bbe3bda7868 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10#include <byteswap.h>
11#include <errno.h>
12#include <inttypes.h>
13#include <linux/bitops.h>
14#include <api/fs/fs.h>
15#include <api/fs/tracing_path.h>
16#include <traceevent/event-parse.h>
17#include <linux/hw_breakpoint.h>
18#include <linux/perf_event.h>
19#include <linux/compiler.h>
20#include <linux/err.h>
21#include <sys/ioctl.h>
22#include <sys/resource.h>
23#include <sys/types.h>
24#include <dirent.h>
25#include "asm/bug.h"
26#include "callchain.h"
27#include "cgroup.h"
28#include "event.h"
29#include "evsel.h"
30#include "evlist.h"
31#include "util.h"
32#include "cpumap.h"
33#include "thread_map.h"
34#include "target.h"
35#include "perf_regs.h"
36#include "debug.h"
37#include "trace-event.h"
38#include "stat.h"
39#include "memswap.h"
40#include "util/parse-branch-options.h"
41
42#include "sane_ctype.h"
43
44struct perf_missing_features perf_missing_features;
45
46static clockid_t clockid;
47
48static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49{
50 return 0;
51}
52
53void __weak test_attr__ready(void) { }
54
55static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56{
57}
58
59static struct {
60 size_t size;
61 int (*init)(struct perf_evsel *evsel);
62 void (*fini)(struct perf_evsel *evsel);
63} perf_evsel__object = {
64 .size = sizeof(struct perf_evsel),
65 .init = perf_evsel__no_extra_init,
66 .fini = perf_evsel__no_extra_fini,
67};
68
69int perf_evsel__object_config(size_t object_size,
70 int (*init)(struct perf_evsel *evsel),
71 void (*fini)(struct perf_evsel *evsel))
72{
73
74 if (object_size == 0)
75 goto set_methods;
76
77 if (perf_evsel__object.size > object_size)
78 return -EINVAL;
79
80 perf_evsel__object.size = object_size;
81
82set_methods:
83 if (init != NULL)
84 perf_evsel__object.init = init;
85
86 if (fini != NULL)
87 perf_evsel__object.fini = fini;
88
89 return 0;
90}
91
92#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93
94int __perf_evsel__sample_size(u64 sample_type)
95{
96 u64 mask = sample_type & PERF_SAMPLE_MASK;
97 int size = 0;
98 int i;
99
100 for (i = 0; i < 64; i++) {
101 if (mask & (1ULL << i))
102 size++;
103 }
104
105 size *= sizeof(u64);
106
107 return size;
108}
109
110/**
111 * __perf_evsel__calc_id_pos - calculate id_pos.
112 * @sample_type: sample type
113 *
114 * This function returns the position of the event id (PERF_SAMPLE_ID or
115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116 * sample_event.
117 */
118static int __perf_evsel__calc_id_pos(u64 sample_type)
119{
120 int idx = 0;
121
122 if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 return 0;
124
125 if (!(sample_type & PERF_SAMPLE_ID))
126 return -1;
127
128 if (sample_type & PERF_SAMPLE_IP)
129 idx += 1;
130
131 if (sample_type & PERF_SAMPLE_TID)
132 idx += 1;
133
134 if (sample_type & PERF_SAMPLE_TIME)
135 idx += 1;
136
137 if (sample_type & PERF_SAMPLE_ADDR)
138 idx += 1;
139
140 return idx;
141}
142
143/**
144 * __perf_evsel__calc_is_pos - calculate is_pos.
145 * @sample_type: sample type
146 *
147 * This function returns the position (counting backwards) of the event id
148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149 * sample_id_all is used there is an id sample appended to non-sample events.
150 */
151static int __perf_evsel__calc_is_pos(u64 sample_type)
152{
153 int idx = 1;
154
155 if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 return 1;
157
158 if (!(sample_type & PERF_SAMPLE_ID))
159 return -1;
160
161 if (sample_type & PERF_SAMPLE_CPU)
162 idx += 1;
163
164 if (sample_type & PERF_SAMPLE_STREAM_ID)
165 idx += 1;
166
167 return idx;
168}
169
170void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171{
172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174}
175
176void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 enum perf_event_sample_format bit)
178{
179 if (!(evsel->attr.sample_type & bit)) {
180 evsel->attr.sample_type |= bit;
181 evsel->sample_size += sizeof(u64);
182 perf_evsel__calc_id_pos(evsel);
183 }
184}
185
186void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 enum perf_event_sample_format bit)
188{
189 if (evsel->attr.sample_type & bit) {
190 evsel->attr.sample_type &= ~bit;
191 evsel->sample_size -= sizeof(u64);
192 perf_evsel__calc_id_pos(evsel);
193 }
194}
195
196void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 bool can_sample_identifier)
198{
199 if (can_sample_identifier) {
200 perf_evsel__reset_sample_bit(evsel, ID);
201 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 } else {
203 perf_evsel__set_sample_bit(evsel, ID);
204 }
205 evsel->attr.read_format |= PERF_FORMAT_ID;
206}
207
208/**
209 * perf_evsel__is_function_event - Return whether given evsel is a function
210 * trace event
211 *
212 * @evsel - evsel selector to be tested
213 *
214 * Return %true if event is function trace event
215 */
216bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217{
218#define FUNCTION_EVENT "ftrace:function"
219
220 return evsel->name &&
221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222
223#undef FUNCTION_EVENT
224}
225
226void perf_evsel__init(struct perf_evsel *evsel,
227 struct perf_event_attr *attr, int idx)
228{
229 evsel->idx = idx;
230 evsel->tracking = !idx;
231 evsel->attr = *attr;
232 evsel->leader = evsel;
233 evsel->unit = "";
234 evsel->scale = 1.0;
235 evsel->evlist = NULL;
236 evsel->bpf_fd = -1;
237 INIT_LIST_HEAD(&evsel->node);
238 INIT_LIST_HEAD(&evsel->config_terms);
239 perf_evsel__object.init(evsel);
240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 perf_evsel__calc_id_pos(evsel);
242 evsel->cmdline_group_boundary = false;
243 evsel->metric_expr = NULL;
244 evsel->metric_name = NULL;
245 evsel->metric_events = NULL;
246 evsel->collect_stat = false;
247 evsel->pmu_name = NULL;
248}
249
250struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251{
252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253
254 if (!evsel)
255 return NULL;
256 perf_evsel__init(evsel, attr, idx);
257
258 if (perf_evsel__is_bpf_output(evsel)) {
259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261 evsel->attr.sample_period = 1;
262 }
263
264 if (perf_evsel__is_clock(evsel)) {
265 /*
266 * The evsel->unit points to static alias->unit
267 * so it's ok to use static string in here.
268 */
269 static const char *unit = "msec";
270
271 evsel->unit = unit;
272 evsel->scale = 1e-6;
273 }
274
275 return evsel;
276}
277
278static bool perf_event_can_profile_kernel(void)
279{
280 return geteuid() == 0 || perf_event_paranoid() == -1;
281}
282
283struct perf_evsel *perf_evsel__new_cycles(bool precise)
284{
285 struct perf_event_attr attr = {
286 .type = PERF_TYPE_HARDWARE,
287 .config = PERF_COUNT_HW_CPU_CYCLES,
288 .exclude_kernel = !perf_event_can_profile_kernel(),
289 };
290 struct perf_evsel *evsel;
291
292 event_attr_init(&attr);
293
294 if (!precise)
295 goto new_event;
296 /*
297 * Unnamed union member, not supported as struct member named
298 * initializer in older compilers such as gcc 4.4.7
299 *
300 * Just for probing the precise_ip:
301 */
302 attr.sample_period = 1;
303
304 perf_event_attr__set_max_precise_ip(&attr);
305 /*
306 * Now let the usual logic to set up the perf_event_attr defaults
307 * to kick in when we return and before perf_evsel__open() is called.
308 */
309 attr.sample_period = 0;
310new_event:
311 evsel = perf_evsel__new(&attr);
312 if (evsel == NULL)
313 goto out;
314
315 /* use asprintf() because free(evsel) assumes name is allocated */
316 if (asprintf(&evsel->name, "cycles%s%s%.*s",
317 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
318 attr.exclude_kernel ? "u" : "",
319 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
320 goto error_free;
321out:
322 return evsel;
323error_free:
324 perf_evsel__delete(evsel);
325 evsel = NULL;
326 goto out;
327}
328
329/*
330 * Returns pointer with encoded error via <linux/err.h> interface.
331 */
332struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
333{
334 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
335 int err = -ENOMEM;
336
337 if (evsel == NULL) {
338 goto out_err;
339 } else {
340 struct perf_event_attr attr = {
341 .type = PERF_TYPE_TRACEPOINT,
342 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
343 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
344 };
345
346 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
347 goto out_free;
348
349 evsel->tp_format = trace_event__tp_format(sys, name);
350 if (IS_ERR(evsel->tp_format)) {
351 err = PTR_ERR(evsel->tp_format);
352 goto out_free;
353 }
354
355 event_attr_init(&attr);
356 attr.config = evsel->tp_format->id;
357 attr.sample_period = 1;
358 perf_evsel__init(evsel, &attr, idx);
359 }
360
361 return evsel;
362
363out_free:
364 zfree(&evsel->name);
365 free(evsel);
366out_err:
367 return ERR_PTR(err);
368}
369
370const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
371 "cycles",
372 "instructions",
373 "cache-references",
374 "cache-misses",
375 "branches",
376 "branch-misses",
377 "bus-cycles",
378 "stalled-cycles-frontend",
379 "stalled-cycles-backend",
380 "ref-cycles",
381};
382
383static const char *__perf_evsel__hw_name(u64 config)
384{
385 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
386 return perf_evsel__hw_names[config];
387
388 return "unknown-hardware";
389}
390
391static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
392{
393 int colon = 0, r = 0;
394 struct perf_event_attr *attr = &evsel->attr;
395 bool exclude_guest_default = false;
396
397#define MOD_PRINT(context, mod) do { \
398 if (!attr->exclude_##context) { \
399 if (!colon) colon = ++r; \
400 r += scnprintf(bf + r, size - r, "%c", mod); \
401 } } while(0)
402
403 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
404 MOD_PRINT(kernel, 'k');
405 MOD_PRINT(user, 'u');
406 MOD_PRINT(hv, 'h');
407 exclude_guest_default = true;
408 }
409
410 if (attr->precise_ip) {
411 if (!colon)
412 colon = ++r;
413 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
414 exclude_guest_default = true;
415 }
416
417 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
418 MOD_PRINT(host, 'H');
419 MOD_PRINT(guest, 'G');
420 }
421#undef MOD_PRINT
422 if (colon)
423 bf[colon - 1] = ':';
424 return r;
425}
426
427static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
428{
429 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
430 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
431}
432
433const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
434 "cpu-clock",
435 "task-clock",
436 "page-faults",
437 "context-switches",
438 "cpu-migrations",
439 "minor-faults",
440 "major-faults",
441 "alignment-faults",
442 "emulation-faults",
443 "dummy",
444};
445
446static const char *__perf_evsel__sw_name(u64 config)
447{
448 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
449 return perf_evsel__sw_names[config];
450 return "unknown-software";
451}
452
453static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
454{
455 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
456 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
457}
458
459static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
460{
461 int r;
462
463 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
464
465 if (type & HW_BREAKPOINT_R)
466 r += scnprintf(bf + r, size - r, "r");
467
468 if (type & HW_BREAKPOINT_W)
469 r += scnprintf(bf + r, size - r, "w");
470
471 if (type & HW_BREAKPOINT_X)
472 r += scnprintf(bf + r, size - r, "x");
473
474 return r;
475}
476
477static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
478{
479 struct perf_event_attr *attr = &evsel->attr;
480 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
481 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
482}
483
484const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
485 [PERF_EVSEL__MAX_ALIASES] = {
486 { "L1-dcache", "l1-d", "l1d", "L1-data", },
487 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
488 { "LLC", "L2", },
489 { "dTLB", "d-tlb", "Data-TLB", },
490 { "iTLB", "i-tlb", "Instruction-TLB", },
491 { "branch", "branches", "bpu", "btb", "bpc", },
492 { "node", },
493};
494
495const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
496 [PERF_EVSEL__MAX_ALIASES] = {
497 { "load", "loads", "read", },
498 { "store", "stores", "write", },
499 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
500};
501
502const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
503 [PERF_EVSEL__MAX_ALIASES] = {
504 { "refs", "Reference", "ops", "access", },
505 { "misses", "miss", },
506};
507
508#define C(x) PERF_COUNT_HW_CACHE_##x
509#define CACHE_READ (1 << C(OP_READ))
510#define CACHE_WRITE (1 << C(OP_WRITE))
511#define CACHE_PREFETCH (1 << C(OP_PREFETCH))
512#define COP(x) (1 << x)
513
514/*
515 * cache operartion stat
516 * L1I : Read and prefetch only
517 * ITLB and BPU : Read-only
518 */
519static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
520 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
522 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
523 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524 [C(ITLB)] = (CACHE_READ),
525 [C(BPU)] = (CACHE_READ),
526 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
527};
528
529bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
530{
531 if (perf_evsel__hw_cache_stat[type] & COP(op))
532 return true; /* valid */
533 else
534 return false; /* invalid */
535}
536
537int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
538 char *bf, size_t size)
539{
540 if (result) {
541 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
542 perf_evsel__hw_cache_op[op][0],
543 perf_evsel__hw_cache_result[result][0]);
544 }
545
546 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
547 perf_evsel__hw_cache_op[op][1]);
548}
549
550static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
551{
552 u8 op, result, type = (config >> 0) & 0xff;
553 const char *err = "unknown-ext-hardware-cache-type";
554
555 if (type >= PERF_COUNT_HW_CACHE_MAX)
556 goto out_err;
557
558 op = (config >> 8) & 0xff;
559 err = "unknown-ext-hardware-cache-op";
560 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
561 goto out_err;
562
563 result = (config >> 16) & 0xff;
564 err = "unknown-ext-hardware-cache-result";
565 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
566 goto out_err;
567
568 err = "invalid-cache";
569 if (!perf_evsel__is_cache_op_valid(type, op))
570 goto out_err;
571
572 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
573out_err:
574 return scnprintf(bf, size, "%s", err);
575}
576
577static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
578{
579 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
581}
582
583static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
584{
585 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
586 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
587}
588
589const char *perf_evsel__name(struct perf_evsel *evsel)
590{
591 char bf[128];
592
593 if (evsel->name)
594 return evsel->name;
595
596 switch (evsel->attr.type) {
597 case PERF_TYPE_RAW:
598 perf_evsel__raw_name(evsel, bf, sizeof(bf));
599 break;
600
601 case PERF_TYPE_HARDWARE:
602 perf_evsel__hw_name(evsel, bf, sizeof(bf));
603 break;
604
605 case PERF_TYPE_HW_CACHE:
606 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
607 break;
608
609 case PERF_TYPE_SOFTWARE:
610 perf_evsel__sw_name(evsel, bf, sizeof(bf));
611 break;
612
613 case PERF_TYPE_TRACEPOINT:
614 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
615 break;
616
617 case PERF_TYPE_BREAKPOINT:
618 perf_evsel__bp_name(evsel, bf, sizeof(bf));
619 break;
620
621 default:
622 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
623 evsel->attr.type);
624 break;
625 }
626
627 evsel->name = strdup(bf);
628
629 return evsel->name ?: "unknown";
630}
631
632const char *perf_evsel__group_name(struct perf_evsel *evsel)
633{
634 return evsel->group_name ?: "anon group";
635}
636
637/*
638 * Returns the group details for the specified leader,
639 * with following rules.
640 *
641 * For record -e '{cycles,instructions}'
642 * 'anon group { cycles:u, instructions:u }'
643 *
644 * For record -e 'cycles,instructions' and report --group
645 * 'cycles:u, instructions:u'
646 */
647int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
648{
649 int ret = 0;
650 struct perf_evsel *pos;
651 const char *group_name = perf_evsel__group_name(evsel);
652
653 if (!evsel->forced_leader)
654 ret = scnprintf(buf, size, "%s { ", group_name);
655
656 ret += scnprintf(buf + ret, size - ret, "%s",
657 perf_evsel__name(evsel));
658
659 for_each_group_member(pos, evsel)
660 ret += scnprintf(buf + ret, size - ret, ", %s",
661 perf_evsel__name(pos));
662
663 if (!evsel->forced_leader)
664 ret += scnprintf(buf + ret, size - ret, " }");
665
666 return ret;
667}
668
669static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
670 struct record_opts *opts,
671 struct callchain_param *param)
672{
673 bool function = perf_evsel__is_function_event(evsel);
674 struct perf_event_attr *attr = &evsel->attr;
675
676 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
677
678 attr->sample_max_stack = param->max_stack;
679
680 if (param->record_mode == CALLCHAIN_LBR) {
681 if (!opts->branch_stack) {
682 if (attr->exclude_user) {
683 pr_warning("LBR callstack option is only available "
684 "to get user callchain information. "
685 "Falling back to framepointers.\n");
686 } else {
687 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
688 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
689 PERF_SAMPLE_BRANCH_CALL_STACK |
690 PERF_SAMPLE_BRANCH_NO_CYCLES |
691 PERF_SAMPLE_BRANCH_NO_FLAGS;
692 }
693 } else
694 pr_warning("Cannot use LBR callstack with branch stack. "
695 "Falling back to framepointers.\n");
696 }
697
698 if (param->record_mode == CALLCHAIN_DWARF) {
699 if (!function) {
700 perf_evsel__set_sample_bit(evsel, REGS_USER);
701 perf_evsel__set_sample_bit(evsel, STACK_USER);
702 attr->sample_regs_user |= PERF_REGS_MASK;
703 attr->sample_stack_user = param->dump_size;
704 attr->exclude_callchain_user = 1;
705 } else {
706 pr_info("Cannot use DWARF unwind for function trace event,"
707 " falling back to framepointers.\n");
708 }
709 }
710
711 if (function) {
712 pr_info("Disabling user space callchains for function trace event.\n");
713 attr->exclude_callchain_user = 1;
714 }
715}
716
717void perf_evsel__config_callchain(struct perf_evsel *evsel,
718 struct record_opts *opts,
719 struct callchain_param *param)
720{
721 if (param->enabled)
722 return __perf_evsel__config_callchain(evsel, opts, param);
723}
724
725static void
726perf_evsel__reset_callgraph(struct perf_evsel *evsel,
727 struct callchain_param *param)
728{
729 struct perf_event_attr *attr = &evsel->attr;
730
731 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
732 if (param->record_mode == CALLCHAIN_LBR) {
733 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
734 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
735 PERF_SAMPLE_BRANCH_CALL_STACK);
736 }
737 if (param->record_mode == CALLCHAIN_DWARF) {
738 perf_evsel__reset_sample_bit(evsel, REGS_USER);
739 perf_evsel__reset_sample_bit(evsel, STACK_USER);
740 }
741}
742
743static void apply_config_terms(struct perf_evsel *evsel,
744 struct record_opts *opts, bool track)
745{
746 struct perf_evsel_config_term *term;
747 struct list_head *config_terms = &evsel->config_terms;
748 struct perf_event_attr *attr = &evsel->attr;
749 /* callgraph default */
750 struct callchain_param param = {
751 .record_mode = callchain_param.record_mode,
752 };
753 u32 dump_size = 0;
754 int max_stack = 0;
755 const char *callgraph_buf = NULL;
756
757 list_for_each_entry(term, config_terms, list) {
758 switch (term->type) {
759 case PERF_EVSEL__CONFIG_TERM_PERIOD:
760 if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
761 attr->sample_period = term->val.period;
762 attr->freq = 0;
763 perf_evsel__reset_sample_bit(evsel, PERIOD);
764 }
765 break;
766 case PERF_EVSEL__CONFIG_TERM_FREQ:
767 if (!(term->weak && opts->user_freq != UINT_MAX)) {
768 attr->sample_freq = term->val.freq;
769 attr->freq = 1;
770 perf_evsel__set_sample_bit(evsel, PERIOD);
771 }
772 break;
773 case PERF_EVSEL__CONFIG_TERM_TIME:
774 if (term->val.time)
775 perf_evsel__set_sample_bit(evsel, TIME);
776 else
777 perf_evsel__reset_sample_bit(evsel, TIME);
778 break;
779 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
780 callgraph_buf = term->val.callgraph;
781 break;
782 case PERF_EVSEL__CONFIG_TERM_BRANCH:
783 if (term->val.branch && strcmp(term->val.branch, "no")) {
784 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
785 parse_branch_str(term->val.branch,
786 &attr->branch_sample_type);
787 } else
788 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
789 break;
790 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
791 dump_size = term->val.stack_user;
792 break;
793 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
794 max_stack = term->val.max_stack;
795 break;
796 case PERF_EVSEL__CONFIG_TERM_INHERIT:
797 /*
798 * attr->inherit should has already been set by
799 * perf_evsel__config. If user explicitly set
800 * inherit using config terms, override global
801 * opt->no_inherit setting.
802 */
803 attr->inherit = term->val.inherit ? 1 : 0;
804 break;
805 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
806 attr->write_backward = term->val.overwrite ? 1 : 0;
807 break;
808 case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
809 break;
810 default:
811 break;
812 }
813 }
814
815 /* User explicitly set per-event callgraph, clear the old setting and reset. */
816 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
817 bool sample_address = false;
818
819 if (max_stack) {
820 param.max_stack = max_stack;
821 if (callgraph_buf == NULL)
822 callgraph_buf = "fp";
823 }
824
825 /* parse callgraph parameters */
826 if (callgraph_buf != NULL) {
827 if (!strcmp(callgraph_buf, "no")) {
828 param.enabled = false;
829 param.record_mode = CALLCHAIN_NONE;
830 } else {
831 param.enabled = true;
832 if (parse_callchain_record(callgraph_buf, &param)) {
833 pr_err("per-event callgraph setting for %s failed. "
834 "Apply callgraph global setting for it\n",
835 evsel->name);
836 return;
837 }
838 if (param.record_mode == CALLCHAIN_DWARF)
839 sample_address = true;
840 }
841 }
842 if (dump_size > 0) {
843 dump_size = round_up(dump_size, sizeof(u64));
844 param.dump_size = dump_size;
845 }
846
847 /* If global callgraph set, clear it */
848 if (callchain_param.enabled)
849 perf_evsel__reset_callgraph(evsel, &callchain_param);
850
851 /* set perf-event callgraph */
852 if (param.enabled) {
853 if (sample_address) {
854 perf_evsel__set_sample_bit(evsel, ADDR);
855 perf_evsel__set_sample_bit(evsel, DATA_SRC);
856 evsel->attr.mmap_data = track;
857 }
858 perf_evsel__config_callchain(evsel, opts, &param);
859 }
860 }
861}
862
863static bool is_dummy_event(struct perf_evsel *evsel)
864{
865 return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
866 (evsel->attr.config == PERF_COUNT_SW_DUMMY);
867}
868
869/*
870 * The enable_on_exec/disabled value strategy:
871 *
872 * 1) For any type of traced program:
873 * - all independent events and group leaders are disabled
874 * - all group members are enabled
875 *
876 * Group members are ruled by group leaders. They need to
877 * be enabled, because the group scheduling relies on that.
878 *
879 * 2) For traced programs executed by perf:
880 * - all independent events and group leaders have
881 * enable_on_exec set
882 * - we don't specifically enable or disable any event during
883 * the record command
884 *
885 * Independent events and group leaders are initially disabled
886 * and get enabled by exec. Group members are ruled by group
887 * leaders as stated in 1).
888 *
889 * 3) For traced programs attached by perf (pid/tid):
890 * - we specifically enable or disable all events during
891 * the record command
892 *
893 * When attaching events to already running traced we
894 * enable/disable events specifically, as there's no
895 * initial traced exec call.
896 */
897void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
898 struct callchain_param *callchain)
899{
900 struct perf_evsel *leader = evsel->leader;
901 struct perf_event_attr *attr = &evsel->attr;
902 int track = evsel->tracking;
903 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
904
905 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
906 attr->inherit = !opts->no_inherit;
907 attr->write_backward = opts->overwrite ? 1 : 0;
908
909 perf_evsel__set_sample_bit(evsel, IP);
910 perf_evsel__set_sample_bit(evsel, TID);
911
912 if (evsel->sample_read) {
913 perf_evsel__set_sample_bit(evsel, READ);
914
915 /*
916 * We need ID even in case of single event, because
917 * PERF_SAMPLE_READ process ID specific data.
918 */
919 perf_evsel__set_sample_id(evsel, false);
920
921 /*
922 * Apply group format only if we belong to group
923 * with more than one members.
924 */
925 if (leader->nr_members > 1) {
926 attr->read_format |= PERF_FORMAT_GROUP;
927 attr->inherit = 0;
928 }
929 }
930
931 /*
932 * We default some events to have a default interval. But keep
933 * it a weak assumption overridable by the user.
934 */
935 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
936 opts->user_interval != ULLONG_MAX)) {
937 if (opts->freq) {
938 perf_evsel__set_sample_bit(evsel, PERIOD);
939 attr->freq = 1;
940 attr->sample_freq = opts->freq;
941 } else {
942 attr->sample_period = opts->default_interval;
943 }
944 }
945
946 /*
947 * Disable sampling for all group members other
948 * than leader in case leader 'leads' the sampling.
949 */
950 if ((leader != evsel) && leader->sample_read) {
951 attr->freq = 0;
952 attr->sample_freq = 0;
953 attr->sample_period = 0;
954 attr->write_backward = 0;
955 }
956
957 if (opts->no_samples)
958 attr->sample_freq = 0;
959
960 if (opts->inherit_stat) {
961 evsel->attr.read_format |=
962 PERF_FORMAT_TOTAL_TIME_ENABLED |
963 PERF_FORMAT_TOTAL_TIME_RUNNING |
964 PERF_FORMAT_ID;
965 attr->inherit_stat = 1;
966 }
967
968 if (opts->sample_address) {
969 perf_evsel__set_sample_bit(evsel, ADDR);
970 attr->mmap_data = track;
971 }
972
973 /*
974 * We don't allow user space callchains for function trace
975 * event, due to issues with page faults while tracing page
976 * fault handler and its overall trickiness nature.
977 */
978 if (perf_evsel__is_function_event(evsel))
979 evsel->attr.exclude_callchain_user = 1;
980
981 if (callchain && callchain->enabled && !evsel->no_aux_samples)
982 perf_evsel__config_callchain(evsel, opts, callchain);
983
984 if (opts->sample_intr_regs) {
985 attr->sample_regs_intr = opts->sample_intr_regs;
986 perf_evsel__set_sample_bit(evsel, REGS_INTR);
987 }
988
989 if (opts->sample_user_regs) {
990 attr->sample_regs_user |= opts->sample_user_regs;
991 perf_evsel__set_sample_bit(evsel, REGS_USER);
992 }
993
994 if (target__has_cpu(&opts->target) || opts->sample_cpu)
995 perf_evsel__set_sample_bit(evsel, CPU);
996
997 /*
998 * When the user explicitly disabled time don't force it here.
999 */
1000 if (opts->sample_time &&
1001 (!perf_missing_features.sample_id_all &&
1002 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1003 opts->sample_time_set)))
1004 perf_evsel__set_sample_bit(evsel, TIME);
1005
1006 if (opts->raw_samples && !evsel->no_aux_samples) {
1007 perf_evsel__set_sample_bit(evsel, TIME);
1008 perf_evsel__set_sample_bit(evsel, RAW);
1009 perf_evsel__set_sample_bit(evsel, CPU);
1010 }
1011
1012 if (opts->sample_address)
1013 perf_evsel__set_sample_bit(evsel, DATA_SRC);
1014
1015 if (opts->sample_phys_addr)
1016 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1017
1018 if (opts->no_buffering) {
1019 attr->watermark = 0;
1020 attr->wakeup_events = 1;
1021 }
1022 if (opts->branch_stack && !evsel->no_aux_samples) {
1023 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1024 attr->branch_sample_type = opts->branch_stack;
1025 }
1026
1027 if (opts->sample_weight)
1028 perf_evsel__set_sample_bit(evsel, WEIGHT);
1029
1030 attr->task = track;
1031 attr->mmap = track;
1032 attr->mmap2 = track && !perf_missing_features.mmap2;
1033 attr->comm = track;
1034
1035 if (opts->record_namespaces)
1036 attr->namespaces = track;
1037
1038 if (opts->record_switch_events)
1039 attr->context_switch = track;
1040
1041 if (opts->sample_transaction)
1042 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1043
1044 if (opts->running_time) {
1045 evsel->attr.read_format |=
1046 PERF_FORMAT_TOTAL_TIME_ENABLED |
1047 PERF_FORMAT_TOTAL_TIME_RUNNING;
1048 }
1049
1050 /*
1051 * XXX see the function comment above
1052 *
1053 * Disabling only independent events or group leaders,
1054 * keeping group members enabled.
1055 */
1056 if (perf_evsel__is_group_leader(evsel))
1057 attr->disabled = 1;
1058
1059 /*
1060 * Setting enable_on_exec for independent events and
1061 * group leaders for traced executed by perf.
1062 */
1063 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1064 !opts->initial_delay)
1065 attr->enable_on_exec = 1;
1066
1067 if (evsel->immediate) {
1068 attr->disabled = 0;
1069 attr->enable_on_exec = 0;
1070 }
1071
1072 clockid = opts->clockid;
1073 if (opts->use_clockid) {
1074 attr->use_clockid = 1;
1075 attr->clockid = opts->clockid;
1076 }
1077
1078 if (evsel->precise_max)
1079 perf_event_attr__set_max_precise_ip(attr);
1080
1081 if (opts->all_user) {
1082 attr->exclude_kernel = 1;
1083 attr->exclude_user = 0;
1084 }
1085
1086 if (opts->all_kernel) {
1087 attr->exclude_kernel = 0;
1088 attr->exclude_user = 1;
1089 }
1090
1091 if (evsel->own_cpus || evsel->unit)
1092 evsel->attr.read_format |= PERF_FORMAT_ID;
1093
1094 /*
1095 * Apply event specific term settings,
1096 * it overloads any global configuration.
1097 */
1098 apply_config_terms(evsel, opts, track);
1099
1100 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1101
1102 /* The --period option takes the precedence. */
1103 if (opts->period_set) {
1104 if (opts->period)
1105 perf_evsel__set_sample_bit(evsel, PERIOD);
1106 else
1107 perf_evsel__reset_sample_bit(evsel, PERIOD);
1108 }
1109
1110 /*
1111 * For initial_delay, a dummy event is added implicitly.
1112 * The software event will trigger -EOPNOTSUPP error out,
1113 * if BRANCH_STACK bit is set.
1114 */
1115 if (opts->initial_delay && is_dummy_event(evsel))
1116 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1117}
1118
1119static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1120{
1121 if (evsel->system_wide)
1122 nthreads = 1;
1123
1124 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1125
1126 if (evsel->fd) {
1127 int cpu, thread;
1128 for (cpu = 0; cpu < ncpus; cpu++) {
1129 for (thread = 0; thread < nthreads; thread++) {
1130 FD(evsel, cpu, thread) = -1;
1131 }
1132 }
1133 }
1134
1135 return evsel->fd != NULL ? 0 : -ENOMEM;
1136}
1137
1138static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1139 int ioc, void *arg)
1140{
1141 int cpu, thread;
1142
1143 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1144 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1145 int fd = FD(evsel, cpu, thread),
1146 err = ioctl(fd, ioc, arg);
1147
1148 if (err)
1149 return err;
1150 }
1151 }
1152
1153 return 0;
1154}
1155
1156int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1157{
1158 return perf_evsel__run_ioctl(evsel,
1159 PERF_EVENT_IOC_SET_FILTER,
1160 (void *)filter);
1161}
1162
1163int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1164{
1165 char *new_filter = strdup(filter);
1166
1167 if (new_filter != NULL) {
1168 free(evsel->filter);
1169 evsel->filter = new_filter;
1170 return 0;
1171 }
1172
1173 return -1;
1174}
1175
1176static int perf_evsel__append_filter(struct perf_evsel *evsel,
1177 const char *fmt, const char *filter)
1178{
1179 char *new_filter;
1180
1181 if (evsel->filter == NULL)
1182 return perf_evsel__set_filter(evsel, filter);
1183
1184 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1185 free(evsel->filter);
1186 evsel->filter = new_filter;
1187 return 0;
1188 }
1189
1190 return -1;
1191}
1192
1193int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1194{
1195 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1196}
1197
1198int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1199{
1200 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1201}
1202
1203int perf_evsel__enable(struct perf_evsel *evsel)
1204{
1205 return perf_evsel__run_ioctl(evsel,
1206 PERF_EVENT_IOC_ENABLE,
1207 0);
1208}
1209
1210int perf_evsel__disable(struct perf_evsel *evsel)
1211{
1212 return perf_evsel__run_ioctl(evsel,
1213 PERF_EVENT_IOC_DISABLE,
1214 0);
1215}
1216
1217int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1218{
1219 if (ncpus == 0 || nthreads == 0)
1220 return 0;
1221
1222 if (evsel->system_wide)
1223 nthreads = 1;
1224
1225 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1226 if (evsel->sample_id == NULL)
1227 return -ENOMEM;
1228
1229 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1230 if (evsel->id == NULL) {
1231 xyarray__delete(evsel->sample_id);
1232 evsel->sample_id = NULL;
1233 return -ENOMEM;
1234 }
1235
1236 return 0;
1237}
1238
1239static void perf_evsel__free_fd(struct perf_evsel *evsel)
1240{
1241 xyarray__delete(evsel->fd);
1242 evsel->fd = NULL;
1243}
1244
1245static void perf_evsel__free_id(struct perf_evsel *evsel)
1246{
1247 xyarray__delete(evsel->sample_id);
1248 evsel->sample_id = NULL;
1249 zfree(&evsel->id);
1250}
1251
1252static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1253{
1254 struct perf_evsel_config_term *term, *h;
1255
1256 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1257 list_del(&term->list);
1258 free(term);
1259 }
1260}
1261
1262void perf_evsel__close_fd(struct perf_evsel *evsel)
1263{
1264 int cpu, thread;
1265
1266 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1267 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1268 close(FD(evsel, cpu, thread));
1269 FD(evsel, cpu, thread) = -1;
1270 }
1271}
1272
1273void perf_evsel__exit(struct perf_evsel *evsel)
1274{
1275 assert(list_empty(&evsel->node));
1276 assert(evsel->evlist == NULL);
1277 perf_evsel__free_fd(evsel);
1278 perf_evsel__free_id(evsel);
1279 perf_evsel__free_config_terms(evsel);
1280 cgroup__put(evsel->cgrp);
1281 cpu_map__put(evsel->cpus);
1282 cpu_map__put(evsel->own_cpus);
1283 thread_map__put(evsel->threads);
1284 zfree(&evsel->group_name);
1285 zfree(&evsel->name);
1286 perf_evsel__object.fini(evsel);
1287}
1288
1289void perf_evsel__delete(struct perf_evsel *evsel)
1290{
1291 perf_evsel__exit(evsel);
1292 free(evsel);
1293}
1294
1295void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1296 struct perf_counts_values *count)
1297{
1298 struct perf_counts_values tmp;
1299
1300 if (!evsel->prev_raw_counts)
1301 return;
1302
1303 if (cpu == -1) {
1304 tmp = evsel->prev_raw_counts->aggr;
1305 evsel->prev_raw_counts->aggr = *count;
1306 } else {
1307 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1308 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1309 }
1310
1311 count->val = count->val - tmp.val;
1312 count->ena = count->ena - tmp.ena;
1313 count->run = count->run - tmp.run;
1314}
1315
1316void perf_counts_values__scale(struct perf_counts_values *count,
1317 bool scale, s8 *pscaled)
1318{
1319 s8 scaled = 0;
1320
1321 if (scale) {
1322 if (count->run == 0) {
1323 scaled = -1;
1324 count->val = 0;
1325 } else if (count->run < count->ena) {
1326 scaled = 1;
1327 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1328 }
1329 } else
1330 count->ena = count->run = 0;
1331
1332 if (pscaled)
1333 *pscaled = scaled;
1334}
1335
1336static int perf_evsel__read_size(struct perf_evsel *evsel)
1337{
1338 u64 read_format = evsel->attr.read_format;
1339 int entry = sizeof(u64); /* value */
1340 int size = 0;
1341 int nr = 1;
1342
1343 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1344 size += sizeof(u64);
1345
1346 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1347 size += sizeof(u64);
1348
1349 if (read_format & PERF_FORMAT_ID)
1350 entry += sizeof(u64);
1351
1352 if (read_format & PERF_FORMAT_GROUP) {
1353 nr = evsel->nr_members;
1354 size += sizeof(u64);
1355 }
1356
1357 size += entry * nr;
1358 return size;
1359}
1360
1361int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1362 struct perf_counts_values *count)
1363{
1364 size_t size = perf_evsel__read_size(evsel);
1365
1366 memset(count, 0, sizeof(*count));
1367
1368 if (FD(evsel, cpu, thread) < 0)
1369 return -EINVAL;
1370
1371 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1372 return -errno;
1373
1374 return 0;
1375}
1376
1377static int
1378perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1379{
1380 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1381
1382 return perf_evsel__read(evsel, cpu, thread, count);
1383}
1384
1385static void
1386perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1387 u64 val, u64 ena, u64 run)
1388{
1389 struct perf_counts_values *count;
1390
1391 count = perf_counts(counter->counts, cpu, thread);
1392
1393 count->val = val;
1394 count->ena = ena;
1395 count->run = run;
1396 count->loaded = true;
1397}
1398
1399static int
1400perf_evsel__process_group_data(struct perf_evsel *leader,
1401 int cpu, int thread, u64 *data)
1402{
1403 u64 read_format = leader->attr.read_format;
1404 struct sample_read_value *v;
1405 u64 nr, ena = 0, run = 0, i;
1406
1407 nr = *data++;
1408
1409 if (nr != (u64) leader->nr_members)
1410 return -EINVAL;
1411
1412 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1413 ena = *data++;
1414
1415 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1416 run = *data++;
1417
1418 v = (struct sample_read_value *) data;
1419
1420 perf_evsel__set_count(leader, cpu, thread,
1421 v[0].value, ena, run);
1422
1423 for (i = 1; i < nr; i++) {
1424 struct perf_evsel *counter;
1425
1426 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1427 if (!counter)
1428 return -EINVAL;
1429
1430 perf_evsel__set_count(counter, cpu, thread,
1431 v[i].value, ena, run);
1432 }
1433
1434 return 0;
1435}
1436
1437static int
1438perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1439{
1440 struct perf_stat_evsel *ps = leader->stats;
1441 u64 read_format = leader->attr.read_format;
1442 int size = perf_evsel__read_size(leader);
1443 u64 *data = ps->group_data;
1444
1445 if (!(read_format & PERF_FORMAT_ID))
1446 return -EINVAL;
1447
1448 if (!perf_evsel__is_group_leader(leader))
1449 return -EINVAL;
1450
1451 if (!data) {
1452 data = zalloc(size);
1453 if (!data)
1454 return -ENOMEM;
1455
1456 ps->group_data = data;
1457 }
1458
1459 if (FD(leader, cpu, thread) < 0)
1460 return -EINVAL;
1461
1462 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1463 return -errno;
1464
1465 return perf_evsel__process_group_data(leader, cpu, thread, data);
1466}
1467
1468int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1469{
1470 u64 read_format = evsel->attr.read_format;
1471
1472 if (read_format & PERF_FORMAT_GROUP)
1473 return perf_evsel__read_group(evsel, cpu, thread);
1474 else
1475 return perf_evsel__read_one(evsel, cpu, thread);
1476}
1477
1478int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1479 int cpu, int thread, bool scale)
1480{
1481 struct perf_counts_values count;
1482 size_t nv = scale ? 3 : 1;
1483
1484 if (FD(evsel, cpu, thread) < 0)
1485 return -EINVAL;
1486
1487 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1488 return -ENOMEM;
1489
1490 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1491 return -errno;
1492
1493 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1494 perf_counts_values__scale(&count, scale, NULL);
1495 *perf_counts(evsel->counts, cpu, thread) = count;
1496 return 0;
1497}
1498
1499static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1500{
1501 struct perf_evsel *leader = evsel->leader;
1502 int fd;
1503
1504 if (perf_evsel__is_group_leader(evsel))
1505 return -1;
1506
1507 /*
1508 * Leader must be already processed/open,
1509 * if not it's a bug.
1510 */
1511 BUG_ON(!leader->fd);
1512
1513 fd = FD(leader, cpu, thread);
1514 BUG_ON(fd == -1);
1515
1516 return fd;
1517}
1518
1519struct bit_names {
1520 int bit;
1521 const char *name;
1522};
1523
1524static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1525{
1526 bool first_bit = true;
1527 int i = 0;
1528
1529 do {
1530 if (value & bits[i].bit) {
1531 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1532 first_bit = false;
1533 }
1534 } while (bits[++i].name != NULL);
1535}
1536
1537static void __p_sample_type(char *buf, size_t size, u64 value)
1538{
1539#define bit_name(n) { PERF_SAMPLE_##n, #n }
1540 struct bit_names bits[] = {
1541 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1542 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1543 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1544 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1545 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1546 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1547 { .name = NULL, }
1548 };
1549#undef bit_name
1550 __p_bits(buf, size, value, bits);
1551}
1552
1553static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1554{
1555#define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1556 struct bit_names bits[] = {
1557 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1558 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1559 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1560 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1561 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1562 { .name = NULL, }
1563 };
1564#undef bit_name
1565 __p_bits(buf, size, value, bits);
1566}
1567
1568static void __p_read_format(char *buf, size_t size, u64 value)
1569{
1570#define bit_name(n) { PERF_FORMAT_##n, #n }
1571 struct bit_names bits[] = {
1572 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1573 bit_name(ID), bit_name(GROUP),
1574 { .name = NULL, }
1575 };
1576#undef bit_name
1577 __p_bits(buf, size, value, bits);
1578}
1579
1580#define BUF_SIZE 1024
1581
1582#define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1583#define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1584#define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1585#define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1586#define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1587#define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1588
1589#define PRINT_ATTRn(_n, _f, _p) \
1590do { \
1591 if (attr->_f) { \
1592 _p(attr->_f); \
1593 ret += attr__fprintf(fp, _n, buf, priv);\
1594 } \
1595} while (0)
1596
1597#define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1598
1599int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1600 attr__fprintf_f attr__fprintf, void *priv)
1601{
1602 char buf[BUF_SIZE];
1603 int ret = 0;
1604
1605 PRINT_ATTRf(type, p_unsigned);
1606 PRINT_ATTRf(size, p_unsigned);
1607 PRINT_ATTRf(config, p_hex);
1608 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1609 PRINT_ATTRf(sample_type, p_sample_type);
1610 PRINT_ATTRf(read_format, p_read_format);
1611
1612 PRINT_ATTRf(disabled, p_unsigned);
1613 PRINT_ATTRf(inherit, p_unsigned);
1614 PRINT_ATTRf(pinned, p_unsigned);
1615 PRINT_ATTRf(exclusive, p_unsigned);
1616 PRINT_ATTRf(exclude_user, p_unsigned);
1617 PRINT_ATTRf(exclude_kernel, p_unsigned);
1618 PRINT_ATTRf(exclude_hv, p_unsigned);
1619 PRINT_ATTRf(exclude_idle, p_unsigned);
1620 PRINT_ATTRf(mmap, p_unsigned);
1621 PRINT_ATTRf(comm, p_unsigned);
1622 PRINT_ATTRf(freq, p_unsigned);
1623 PRINT_ATTRf(inherit_stat, p_unsigned);
1624 PRINT_ATTRf(enable_on_exec, p_unsigned);
1625 PRINT_ATTRf(task, p_unsigned);
1626 PRINT_ATTRf(watermark, p_unsigned);
1627 PRINT_ATTRf(precise_ip, p_unsigned);
1628 PRINT_ATTRf(mmap_data, p_unsigned);
1629 PRINT_ATTRf(sample_id_all, p_unsigned);
1630 PRINT_ATTRf(exclude_host, p_unsigned);
1631 PRINT_ATTRf(exclude_guest, p_unsigned);
1632 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1633 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1634 PRINT_ATTRf(mmap2, p_unsigned);
1635 PRINT_ATTRf(comm_exec, p_unsigned);
1636 PRINT_ATTRf(use_clockid, p_unsigned);
1637 PRINT_ATTRf(context_switch, p_unsigned);
1638 PRINT_ATTRf(write_backward, p_unsigned);
1639 PRINT_ATTRf(namespaces, p_unsigned);
1640
1641 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1642 PRINT_ATTRf(bp_type, p_unsigned);
1643 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1644 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1645 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1646 PRINT_ATTRf(sample_regs_user, p_hex);
1647 PRINT_ATTRf(sample_stack_user, p_unsigned);
1648 PRINT_ATTRf(clockid, p_signed);
1649 PRINT_ATTRf(sample_regs_intr, p_hex);
1650 PRINT_ATTRf(aux_watermark, p_unsigned);
1651 PRINT_ATTRf(sample_max_stack, p_unsigned);
1652
1653 return ret;
1654}
1655
1656static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1657 void *priv __maybe_unused)
1658{
1659 return fprintf(fp, " %-32s %s\n", name, val);
1660}
1661
1662static void perf_evsel__remove_fd(struct perf_evsel *pos,
1663 int nr_cpus, int nr_threads,
1664 int thread_idx)
1665{
1666 for (int cpu = 0; cpu < nr_cpus; cpu++)
1667 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1668 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1669}
1670
1671static int update_fds(struct perf_evsel *evsel,
1672 int nr_cpus, int cpu_idx,
1673 int nr_threads, int thread_idx)
1674{
1675 struct perf_evsel *pos;
1676
1677 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1678 return -EINVAL;
1679
1680 evlist__for_each_entry(evsel->evlist, pos) {
1681 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1682
1683 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1684
1685 /*
1686 * Since fds for next evsel has not been created,
1687 * there is no need to iterate whole event list.
1688 */
1689 if (pos == evsel)
1690 break;
1691 }
1692 return 0;
1693}
1694
1695static bool ignore_missing_thread(struct perf_evsel *evsel,
1696 int nr_cpus, int cpu,
1697 struct thread_map *threads,
1698 int thread, int err)
1699{
1700 pid_t ignore_pid = thread_map__pid(threads, thread);
1701
1702 if (!evsel->ignore_missing_thread)
1703 return false;
1704
1705 /* The system wide setup does not work with threads. */
1706 if (evsel->system_wide)
1707 return false;
1708
1709 /* The -ESRCH is perf event syscall errno for pid's not found. */
1710 if (err != -ESRCH)
1711 return false;
1712
1713 /* If there's only one thread, let it fail. */
1714 if (threads->nr == 1)
1715 return false;
1716
1717 /*
1718 * We should remove fd for missing_thread first
1719 * because thread_map__remove() will decrease threads->nr.
1720 */
1721 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1722 return false;
1723
1724 if (thread_map__remove(threads, thread))
1725 return false;
1726
1727 pr_warning("WARNING: Ignored open failure for pid %d\n",
1728 ignore_pid);
1729 return true;
1730}
1731
1732int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1733 struct thread_map *threads)
1734{
1735 int cpu, thread, nthreads;
1736 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1737 int pid = -1, err;
1738 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1739
1740 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1741 return -EINVAL;
1742
1743 if (cpus == NULL) {
1744 static struct cpu_map *empty_cpu_map;
1745
1746 if (empty_cpu_map == NULL) {
1747 empty_cpu_map = cpu_map__dummy_new();
1748 if (empty_cpu_map == NULL)
1749 return -ENOMEM;
1750 }
1751
1752 cpus = empty_cpu_map;
1753 }
1754
1755 if (threads == NULL) {
1756 static struct thread_map *empty_thread_map;
1757
1758 if (empty_thread_map == NULL) {
1759 empty_thread_map = thread_map__new_by_tid(-1);
1760 if (empty_thread_map == NULL)
1761 return -ENOMEM;
1762 }
1763
1764 threads = empty_thread_map;
1765 }
1766
1767 if (evsel->system_wide)
1768 nthreads = 1;
1769 else
1770 nthreads = threads->nr;
1771
1772 if (evsel->fd == NULL &&
1773 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1774 return -ENOMEM;
1775
1776 if (evsel->cgrp) {
1777 flags |= PERF_FLAG_PID_CGROUP;
1778 pid = evsel->cgrp->fd;
1779 }
1780
1781fallback_missing_features:
1782 if (perf_missing_features.clockid_wrong)
1783 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1784 if (perf_missing_features.clockid) {
1785 evsel->attr.use_clockid = 0;
1786 evsel->attr.clockid = 0;
1787 }
1788 if (perf_missing_features.cloexec)
1789 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1790 if (perf_missing_features.mmap2)
1791 evsel->attr.mmap2 = 0;
1792 if (perf_missing_features.exclude_guest)
1793 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1794 if (perf_missing_features.lbr_flags)
1795 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1796 PERF_SAMPLE_BRANCH_NO_CYCLES);
1797 if (perf_missing_features.group_read && evsel->attr.inherit)
1798 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1799retry_sample_id:
1800 if (perf_missing_features.sample_id_all)
1801 evsel->attr.sample_id_all = 0;
1802
1803 if (verbose >= 2) {
1804 fprintf(stderr, "%.60s\n", graph_dotted_line);
1805 fprintf(stderr, "perf_event_attr:\n");
1806 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1807 fprintf(stderr, "%.60s\n", graph_dotted_line);
1808 }
1809
1810 for (cpu = 0; cpu < cpus->nr; cpu++) {
1811
1812 for (thread = 0; thread < nthreads; thread++) {
1813 int fd, group_fd;
1814
1815 if (!evsel->cgrp && !evsel->system_wide)
1816 pid = thread_map__pid(threads, thread);
1817
1818 group_fd = get_group_fd(evsel, cpu, thread);
1819retry_open:
1820 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1821 pid, cpus->map[cpu], group_fd, flags);
1822
1823 test_attr__ready();
1824
1825 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1826 group_fd, flags);
1827
1828 FD(evsel, cpu, thread) = fd;
1829
1830 if (fd < 0) {
1831 err = -errno;
1832
1833 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1834 /*
1835 * We just removed 1 thread, so take a step
1836 * back on thread index and lower the upper
1837 * nthreads limit.
1838 */
1839 nthreads--;
1840 thread--;
1841
1842 /* ... and pretend like nothing have happened. */
1843 err = 0;
1844 continue;
1845 }
1846
1847 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1848 err);
1849 goto try_fallback;
1850 }
1851
1852 pr_debug2(" = %d\n", fd);
1853
1854 if (evsel->bpf_fd >= 0) {
1855 int evt_fd = fd;
1856 int bpf_fd = evsel->bpf_fd;
1857
1858 err = ioctl(evt_fd,
1859 PERF_EVENT_IOC_SET_BPF,
1860 bpf_fd);
1861 if (err && errno != EEXIST) {
1862 pr_err("failed to attach bpf fd %d: %s\n",
1863 bpf_fd, strerror(errno));
1864 err = -EINVAL;
1865 goto out_close;
1866 }
1867 }
1868
1869 set_rlimit = NO_CHANGE;
1870
1871 /*
1872 * If we succeeded but had to kill clockid, fail and
1873 * have perf_evsel__open_strerror() print us a nice
1874 * error.
1875 */
1876 if (perf_missing_features.clockid ||
1877 perf_missing_features.clockid_wrong) {
1878 err = -EINVAL;
1879 goto out_close;
1880 }
1881 }
1882 }
1883
1884 return 0;
1885
1886try_fallback:
1887 /*
1888 * perf stat needs between 5 and 22 fds per CPU. When we run out
1889 * of them try to increase the limits.
1890 */
1891 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1892 struct rlimit l;
1893 int old_errno = errno;
1894
1895 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1896 if (set_rlimit == NO_CHANGE)
1897 l.rlim_cur = l.rlim_max;
1898 else {
1899 l.rlim_cur = l.rlim_max + 1000;
1900 l.rlim_max = l.rlim_cur;
1901 }
1902 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1903 set_rlimit++;
1904 errno = old_errno;
1905 goto retry_open;
1906 }
1907 }
1908 errno = old_errno;
1909 }
1910
1911 if (err != -EINVAL || cpu > 0 || thread > 0)
1912 goto out_close;
1913
1914 /*
1915 * Must probe features in the order they were added to the
1916 * perf_event_attr interface.
1917 */
1918 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1919 perf_missing_features.write_backward = true;
1920 pr_debug2("switching off write_backward\n");
1921 goto out_close;
1922 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1923 perf_missing_features.clockid_wrong = true;
1924 pr_debug2("switching off clockid\n");
1925 goto fallback_missing_features;
1926 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1927 perf_missing_features.clockid = true;
1928 pr_debug2("switching off use_clockid\n");
1929 goto fallback_missing_features;
1930 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1931 perf_missing_features.cloexec = true;
1932 pr_debug2("switching off cloexec flag\n");
1933 goto fallback_missing_features;
1934 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1935 perf_missing_features.mmap2 = true;
1936 pr_debug2("switching off mmap2\n");
1937 goto fallback_missing_features;
1938 } else if (!perf_missing_features.exclude_guest &&
1939 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1940 perf_missing_features.exclude_guest = true;
1941 pr_debug2("switching off exclude_guest, exclude_host\n");
1942 goto fallback_missing_features;
1943 } else if (!perf_missing_features.sample_id_all) {
1944 perf_missing_features.sample_id_all = true;
1945 pr_debug2("switching off sample_id_all\n");
1946 goto retry_sample_id;
1947 } else if (!perf_missing_features.lbr_flags &&
1948 (evsel->attr.branch_sample_type &
1949 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1950 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1951 perf_missing_features.lbr_flags = true;
1952 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1953 goto fallback_missing_features;
1954 } else if (!perf_missing_features.group_read &&
1955 evsel->attr.inherit &&
1956 (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1957 perf_evsel__is_group_leader(evsel)) {
1958 perf_missing_features.group_read = true;
1959 pr_debug2("switching off group read\n");
1960 goto fallback_missing_features;
1961 }
1962out_close:
1963 if (err)
1964 threads->err_thread = thread;
1965
1966 do {
1967 while (--thread >= 0) {
1968 close(FD(evsel, cpu, thread));
1969 FD(evsel, cpu, thread) = -1;
1970 }
1971 thread = nthreads;
1972 } while (--cpu >= 0);
1973 return err;
1974}
1975
1976void perf_evsel__close(struct perf_evsel *evsel)
1977{
1978 if (evsel->fd == NULL)
1979 return;
1980
1981 perf_evsel__close_fd(evsel);
1982 perf_evsel__free_fd(evsel);
1983}
1984
1985int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1986 struct cpu_map *cpus)
1987{
1988 return perf_evsel__open(evsel, cpus, NULL);
1989}
1990
1991int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1992 struct thread_map *threads)
1993{
1994 return perf_evsel__open(evsel, NULL, threads);
1995}
1996
1997static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1998 const union perf_event *event,
1999 struct perf_sample *sample)
2000{
2001 u64 type = evsel->attr.sample_type;
2002 const u64 *array = event->sample.array;
2003 bool swapped = evsel->needs_swap;
2004 union u64_swap u;
2005
2006 array += ((event->header.size -
2007 sizeof(event->header)) / sizeof(u64)) - 1;
2008
2009 if (type & PERF_SAMPLE_IDENTIFIER) {
2010 sample->id = *array;
2011 array--;
2012 }
2013
2014 if (type & PERF_SAMPLE_CPU) {
2015 u.val64 = *array;
2016 if (swapped) {
2017 /* undo swap of u64, then swap on individual u32s */
2018 u.val64 = bswap_64(u.val64);
2019 u.val32[0] = bswap_32(u.val32[0]);
2020 }
2021
2022 sample->cpu = u.val32[0];
2023 array--;
2024 }
2025
2026 if (type & PERF_SAMPLE_STREAM_ID) {
2027 sample->stream_id = *array;
2028 array--;
2029 }
2030
2031 if (type & PERF_SAMPLE_ID) {
2032 sample->id = *array;
2033 array--;
2034 }
2035
2036 if (type & PERF_SAMPLE_TIME) {
2037 sample->time = *array;
2038 array--;
2039 }
2040
2041 if (type & PERF_SAMPLE_TID) {
2042 u.val64 = *array;
2043 if (swapped) {
2044 /* undo swap of u64, then swap on individual u32s */
2045 u.val64 = bswap_64(u.val64);
2046 u.val32[0] = bswap_32(u.val32[0]);
2047 u.val32[1] = bswap_32(u.val32[1]);
2048 }
2049
2050 sample->pid = u.val32[0];
2051 sample->tid = u.val32[1];
2052 array--;
2053 }
2054
2055 return 0;
2056}
2057
2058static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2059 u64 size)
2060{
2061 return size > max_size || offset + size > endp;
2062}
2063
2064#define OVERFLOW_CHECK(offset, size, max_size) \
2065 do { \
2066 if (overflow(endp, (max_size), (offset), (size))) \
2067 return -EFAULT; \
2068 } while (0)
2069
2070#define OVERFLOW_CHECK_u64(offset) \
2071 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2072
2073static int
2074perf_event__check_size(union perf_event *event, unsigned int sample_size)
2075{
2076 /*
2077 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2078 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2079 * check the format does not go past the end of the event.
2080 */
2081 if (sample_size + sizeof(event->header) > event->header.size)
2082 return -EFAULT;
2083
2084 return 0;
2085}
2086
2087int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2088 struct perf_sample *data)
2089{
2090 u64 type = evsel->attr.sample_type;
2091 bool swapped = evsel->needs_swap;
2092 const u64 *array;
2093 u16 max_size = event->header.size;
2094 const void *endp = (void *)event + max_size;
2095 u64 sz;
2096
2097 /*
2098 * used for cross-endian analysis. See git commit 65014ab3
2099 * for why this goofiness is needed.
2100 */
2101 union u64_swap u;
2102
2103 memset(data, 0, sizeof(*data));
2104 data->cpu = data->pid = data->tid = -1;
2105 data->stream_id = data->id = data->time = -1ULL;
2106 data->period = evsel->attr.sample_period;
2107 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2108 data->misc = event->header.misc;
2109 data->id = -1ULL;
2110 data->data_src = PERF_MEM_DATA_SRC_NONE;
2111
2112 if (event->header.type != PERF_RECORD_SAMPLE) {
2113 if (!evsel->attr.sample_id_all)
2114 return 0;
2115 return perf_evsel__parse_id_sample(evsel, event, data);
2116 }
2117
2118 array = event->sample.array;
2119
2120 if (perf_event__check_size(event, evsel->sample_size))
2121 return -EFAULT;
2122
2123 if (type & PERF_SAMPLE_IDENTIFIER) {
2124 data->id = *array;
2125 array++;
2126 }
2127
2128 if (type & PERF_SAMPLE_IP) {
2129 data->ip = *array;
2130 array++;
2131 }
2132
2133 if (type & PERF_SAMPLE_TID) {
2134 u.val64 = *array;
2135 if (swapped) {
2136 /* undo swap of u64, then swap on individual u32s */
2137 u.val64 = bswap_64(u.val64);
2138 u.val32[0] = bswap_32(u.val32[0]);
2139 u.val32[1] = bswap_32(u.val32[1]);
2140 }
2141
2142 data->pid = u.val32[0];
2143 data->tid = u.val32[1];
2144 array++;
2145 }
2146
2147 if (type & PERF_SAMPLE_TIME) {
2148 data->time = *array;
2149 array++;
2150 }
2151
2152 if (type & PERF_SAMPLE_ADDR) {
2153 data->addr = *array;
2154 array++;
2155 }
2156
2157 if (type & PERF_SAMPLE_ID) {
2158 data->id = *array;
2159 array++;
2160 }
2161
2162 if (type & PERF_SAMPLE_STREAM_ID) {
2163 data->stream_id = *array;
2164 array++;
2165 }
2166
2167 if (type & PERF_SAMPLE_CPU) {
2168
2169 u.val64 = *array;
2170 if (swapped) {
2171 /* undo swap of u64, then swap on individual u32s */
2172 u.val64 = bswap_64(u.val64);
2173 u.val32[0] = bswap_32(u.val32[0]);
2174 }
2175
2176 data->cpu = u.val32[0];
2177 array++;
2178 }
2179
2180 if (type & PERF_SAMPLE_PERIOD) {
2181 data->period = *array;
2182 array++;
2183 }
2184
2185 if (type & PERF_SAMPLE_READ) {
2186 u64 read_format = evsel->attr.read_format;
2187
2188 OVERFLOW_CHECK_u64(array);
2189 if (read_format & PERF_FORMAT_GROUP)
2190 data->read.group.nr = *array;
2191 else
2192 data->read.one.value = *array;
2193
2194 array++;
2195
2196 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2197 OVERFLOW_CHECK_u64(array);
2198 data->read.time_enabled = *array;
2199 array++;
2200 }
2201
2202 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2203 OVERFLOW_CHECK_u64(array);
2204 data->read.time_running = *array;
2205 array++;
2206 }
2207
2208 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2209 if (read_format & PERF_FORMAT_GROUP) {
2210 const u64 max_group_nr = UINT64_MAX /
2211 sizeof(struct sample_read_value);
2212
2213 if (data->read.group.nr > max_group_nr)
2214 return -EFAULT;
2215 sz = data->read.group.nr *
2216 sizeof(struct sample_read_value);
2217 OVERFLOW_CHECK(array, sz, max_size);
2218 data->read.group.values =
2219 (struct sample_read_value *)array;
2220 array = (void *)array + sz;
2221 } else {
2222 OVERFLOW_CHECK_u64(array);
2223 data->read.one.id = *array;
2224 array++;
2225 }
2226 }
2227
2228 if (evsel__has_callchain(evsel)) {
2229 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2230
2231 OVERFLOW_CHECK_u64(array);
2232 data->callchain = (struct ip_callchain *)array++;
2233 if (data->callchain->nr > max_callchain_nr)
2234 return -EFAULT;
2235 sz = data->callchain->nr * sizeof(u64);
2236 OVERFLOW_CHECK(array, sz, max_size);
2237 array = (void *)array + sz;
2238 }
2239
2240 if (type & PERF_SAMPLE_RAW) {
2241 OVERFLOW_CHECK_u64(array);
2242 u.val64 = *array;
2243
2244 /*
2245 * Undo swap of u64, then swap on individual u32s,
2246 * get the size of the raw area and undo all of the
2247 * swap. The pevent interface handles endianity by
2248 * itself.
2249 */
2250 if (swapped) {
2251 u.val64 = bswap_64(u.val64);
2252 u.val32[0] = bswap_32(u.val32[0]);
2253 u.val32[1] = bswap_32(u.val32[1]);
2254 }
2255 data->raw_size = u.val32[0];
2256
2257 /*
2258 * The raw data is aligned on 64bits including the
2259 * u32 size, so it's safe to use mem_bswap_64.
2260 */
2261 if (swapped)
2262 mem_bswap_64((void *) array, data->raw_size);
2263
2264 array = (void *)array + sizeof(u32);
2265
2266 OVERFLOW_CHECK(array, data->raw_size, max_size);
2267 data->raw_data = (void *)array;
2268 array = (void *)array + data->raw_size;
2269 }
2270
2271 if (type & PERF_SAMPLE_BRANCH_STACK) {
2272 const u64 max_branch_nr = UINT64_MAX /
2273 sizeof(struct branch_entry);
2274
2275 OVERFLOW_CHECK_u64(array);
2276 data->branch_stack = (struct branch_stack *)array++;
2277
2278 if (data->branch_stack->nr > max_branch_nr)
2279 return -EFAULT;
2280 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2281 OVERFLOW_CHECK(array, sz, max_size);
2282 array = (void *)array + sz;
2283 }
2284
2285 if (type & PERF_SAMPLE_REGS_USER) {
2286 OVERFLOW_CHECK_u64(array);
2287 data->user_regs.abi = *array;
2288 array++;
2289
2290 if (data->user_regs.abi) {
2291 u64 mask = evsel->attr.sample_regs_user;
2292
2293 sz = hweight_long(mask) * sizeof(u64);
2294 OVERFLOW_CHECK(array, sz, max_size);
2295 data->user_regs.mask = mask;
2296 data->user_regs.regs = (u64 *)array;
2297 array = (void *)array + sz;
2298 }
2299 }
2300
2301 if (type & PERF_SAMPLE_STACK_USER) {
2302 OVERFLOW_CHECK_u64(array);
2303 sz = *array++;
2304
2305 data->user_stack.offset = ((char *)(array - 1)
2306 - (char *) event);
2307
2308 if (!sz) {
2309 data->user_stack.size = 0;
2310 } else {
2311 OVERFLOW_CHECK(array, sz, max_size);
2312 data->user_stack.data = (char *)array;
2313 array = (void *)array + sz;
2314 OVERFLOW_CHECK_u64(array);
2315 data->user_stack.size = *array++;
2316 if (WARN_ONCE(data->user_stack.size > sz,
2317 "user stack dump failure\n"))
2318 return -EFAULT;
2319 }
2320 }
2321
2322 if (type & PERF_SAMPLE_WEIGHT) {
2323 OVERFLOW_CHECK_u64(array);
2324 data->weight = *array;
2325 array++;
2326 }
2327
2328 if (type & PERF_SAMPLE_DATA_SRC) {
2329 OVERFLOW_CHECK_u64(array);
2330 data->data_src = *array;
2331 array++;
2332 }
2333
2334 if (type & PERF_SAMPLE_TRANSACTION) {
2335 OVERFLOW_CHECK_u64(array);
2336 data->transaction = *array;
2337 array++;
2338 }
2339
2340 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2341 if (type & PERF_SAMPLE_REGS_INTR) {
2342 OVERFLOW_CHECK_u64(array);
2343 data->intr_regs.abi = *array;
2344 array++;
2345
2346 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2347 u64 mask = evsel->attr.sample_regs_intr;
2348
2349 sz = hweight_long(mask) * sizeof(u64);
2350 OVERFLOW_CHECK(array, sz, max_size);
2351 data->intr_regs.mask = mask;
2352 data->intr_regs.regs = (u64 *)array;
2353 array = (void *)array + sz;
2354 }
2355 }
2356
2357 data->phys_addr = 0;
2358 if (type & PERF_SAMPLE_PHYS_ADDR) {
2359 data->phys_addr = *array;
2360 array++;
2361 }
2362
2363 return 0;
2364}
2365
2366int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2367 union perf_event *event,
2368 u64 *timestamp)
2369{
2370 u64 type = evsel->attr.sample_type;
2371 const u64 *array;
2372
2373 if (!(type & PERF_SAMPLE_TIME))
2374 return -1;
2375
2376 if (event->header.type != PERF_RECORD_SAMPLE) {
2377 struct perf_sample data = {
2378 .time = -1ULL,
2379 };
2380
2381 if (!evsel->attr.sample_id_all)
2382 return -1;
2383 if (perf_evsel__parse_id_sample(evsel, event, &data))
2384 return -1;
2385
2386 *timestamp = data.time;
2387 return 0;
2388 }
2389
2390 array = event->sample.array;
2391
2392 if (perf_event__check_size(event, evsel->sample_size))
2393 return -EFAULT;
2394
2395 if (type & PERF_SAMPLE_IDENTIFIER)
2396 array++;
2397
2398 if (type & PERF_SAMPLE_IP)
2399 array++;
2400
2401 if (type & PERF_SAMPLE_TID)
2402 array++;
2403
2404 if (type & PERF_SAMPLE_TIME)
2405 *timestamp = *array;
2406
2407 return 0;
2408}
2409
2410size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2411 u64 read_format)
2412{
2413 size_t sz, result = sizeof(struct sample_event);
2414
2415 if (type & PERF_SAMPLE_IDENTIFIER)
2416 result += sizeof(u64);
2417
2418 if (type & PERF_SAMPLE_IP)
2419 result += sizeof(u64);
2420
2421 if (type & PERF_SAMPLE_TID)
2422 result += sizeof(u64);
2423
2424 if (type & PERF_SAMPLE_TIME)
2425 result += sizeof(u64);
2426
2427 if (type & PERF_SAMPLE_ADDR)
2428 result += sizeof(u64);
2429
2430 if (type & PERF_SAMPLE_ID)
2431 result += sizeof(u64);
2432
2433 if (type & PERF_SAMPLE_STREAM_ID)
2434 result += sizeof(u64);
2435
2436 if (type & PERF_SAMPLE_CPU)
2437 result += sizeof(u64);
2438
2439 if (type & PERF_SAMPLE_PERIOD)
2440 result += sizeof(u64);
2441
2442 if (type & PERF_SAMPLE_READ) {
2443 result += sizeof(u64);
2444 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2445 result += sizeof(u64);
2446 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2447 result += sizeof(u64);
2448 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2449 if (read_format & PERF_FORMAT_GROUP) {
2450 sz = sample->read.group.nr *
2451 sizeof(struct sample_read_value);
2452 result += sz;
2453 } else {
2454 result += sizeof(u64);
2455 }
2456 }
2457
2458 if (type & PERF_SAMPLE_CALLCHAIN) {
2459 sz = (sample->callchain->nr + 1) * sizeof(u64);
2460 result += sz;
2461 }
2462
2463 if (type & PERF_SAMPLE_RAW) {
2464 result += sizeof(u32);
2465 result += sample->raw_size;
2466 }
2467
2468 if (type & PERF_SAMPLE_BRANCH_STACK) {
2469 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2470 sz += sizeof(u64);
2471 result += sz;
2472 }
2473
2474 if (type & PERF_SAMPLE_REGS_USER) {
2475 if (sample->user_regs.abi) {
2476 result += sizeof(u64);
2477 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2478 result += sz;
2479 } else {
2480 result += sizeof(u64);
2481 }
2482 }
2483
2484 if (type & PERF_SAMPLE_STACK_USER) {
2485 sz = sample->user_stack.size;
2486 result += sizeof(u64);
2487 if (sz) {
2488 result += sz;
2489 result += sizeof(u64);
2490 }
2491 }
2492
2493 if (type & PERF_SAMPLE_WEIGHT)
2494 result += sizeof(u64);
2495
2496 if (type & PERF_SAMPLE_DATA_SRC)
2497 result += sizeof(u64);
2498
2499 if (type & PERF_SAMPLE_TRANSACTION)
2500 result += sizeof(u64);
2501
2502 if (type & PERF_SAMPLE_REGS_INTR) {
2503 if (sample->intr_regs.abi) {
2504 result += sizeof(u64);
2505 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2506 result += sz;
2507 } else {
2508 result += sizeof(u64);
2509 }
2510 }
2511
2512 if (type & PERF_SAMPLE_PHYS_ADDR)
2513 result += sizeof(u64);
2514
2515 return result;
2516}
2517
2518int perf_event__synthesize_sample(union perf_event *event, u64 type,
2519 u64 read_format,
2520 const struct perf_sample *sample)
2521{
2522 u64 *array;
2523 size_t sz;
2524 /*
2525 * used for cross-endian analysis. See git commit 65014ab3
2526 * for why this goofiness is needed.
2527 */
2528 union u64_swap u;
2529
2530 array = event->sample.array;
2531
2532 if (type & PERF_SAMPLE_IDENTIFIER) {
2533 *array = sample->id;
2534 array++;
2535 }
2536
2537 if (type & PERF_SAMPLE_IP) {
2538 *array = sample->ip;
2539 array++;
2540 }
2541
2542 if (type & PERF_SAMPLE_TID) {
2543 u.val32[0] = sample->pid;
2544 u.val32[1] = sample->tid;
2545 *array = u.val64;
2546 array++;
2547 }
2548
2549 if (type & PERF_SAMPLE_TIME) {
2550 *array = sample->time;
2551 array++;
2552 }
2553
2554 if (type & PERF_SAMPLE_ADDR) {
2555 *array = sample->addr;
2556 array++;
2557 }
2558
2559 if (type & PERF_SAMPLE_ID) {
2560 *array = sample->id;
2561 array++;
2562 }
2563
2564 if (type & PERF_SAMPLE_STREAM_ID) {
2565 *array = sample->stream_id;
2566 array++;
2567 }
2568
2569 if (type & PERF_SAMPLE_CPU) {
2570 u.val32[0] = sample->cpu;
2571 u.val32[1] = 0;
2572 *array = u.val64;
2573 array++;
2574 }
2575
2576 if (type & PERF_SAMPLE_PERIOD) {
2577 *array = sample->period;
2578 array++;
2579 }
2580
2581 if (type & PERF_SAMPLE_READ) {
2582 if (read_format & PERF_FORMAT_GROUP)
2583 *array = sample->read.group.nr;
2584 else
2585 *array = sample->read.one.value;
2586 array++;
2587
2588 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2589 *array = sample->read.time_enabled;
2590 array++;
2591 }
2592
2593 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2594 *array = sample->read.time_running;
2595 array++;
2596 }
2597
2598 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2599 if (read_format & PERF_FORMAT_GROUP) {
2600 sz = sample->read.group.nr *
2601 sizeof(struct sample_read_value);
2602 memcpy(array, sample->read.group.values, sz);
2603 array = (void *)array + sz;
2604 } else {
2605 *array = sample->read.one.id;
2606 array++;
2607 }
2608 }
2609
2610 if (type & PERF_SAMPLE_CALLCHAIN) {
2611 sz = (sample->callchain->nr + 1) * sizeof(u64);
2612 memcpy(array, sample->callchain, sz);
2613 array = (void *)array + sz;
2614 }
2615
2616 if (type & PERF_SAMPLE_RAW) {
2617 u.val32[0] = sample->raw_size;
2618 *array = u.val64;
2619 array = (void *)array + sizeof(u32);
2620
2621 memcpy(array, sample->raw_data, sample->raw_size);
2622 array = (void *)array + sample->raw_size;
2623 }
2624
2625 if (type & PERF_SAMPLE_BRANCH_STACK) {
2626 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2627 sz += sizeof(u64);
2628 memcpy(array, sample->branch_stack, sz);
2629 array = (void *)array + sz;
2630 }
2631
2632 if (type & PERF_SAMPLE_REGS_USER) {
2633 if (sample->user_regs.abi) {
2634 *array++ = sample->user_regs.abi;
2635 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2636 memcpy(array, sample->user_regs.regs, sz);
2637 array = (void *)array + sz;
2638 } else {
2639 *array++ = 0;
2640 }
2641 }
2642
2643 if (type & PERF_SAMPLE_STACK_USER) {
2644 sz = sample->user_stack.size;
2645 *array++ = sz;
2646 if (sz) {
2647 memcpy(array, sample->user_stack.data, sz);
2648 array = (void *)array + sz;
2649 *array++ = sz;
2650 }
2651 }
2652
2653 if (type & PERF_SAMPLE_WEIGHT) {
2654 *array = sample->weight;
2655 array++;
2656 }
2657
2658 if (type & PERF_SAMPLE_DATA_SRC) {
2659 *array = sample->data_src;
2660 array++;
2661 }
2662
2663 if (type & PERF_SAMPLE_TRANSACTION) {
2664 *array = sample->transaction;
2665 array++;
2666 }
2667
2668 if (type & PERF_SAMPLE_REGS_INTR) {
2669 if (sample->intr_regs.abi) {
2670 *array++ = sample->intr_regs.abi;
2671 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2672 memcpy(array, sample->intr_regs.regs, sz);
2673 array = (void *)array + sz;
2674 } else {
2675 *array++ = 0;
2676 }
2677 }
2678
2679 if (type & PERF_SAMPLE_PHYS_ADDR) {
2680 *array = sample->phys_addr;
2681 array++;
2682 }
2683
2684 return 0;
2685}
2686
2687struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2688{
2689 return tep_find_field(evsel->tp_format, name);
2690}
2691
2692void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2693 const char *name)
2694{
2695 struct format_field *field = perf_evsel__field(evsel, name);
2696 int offset;
2697
2698 if (!field)
2699 return NULL;
2700
2701 offset = field->offset;
2702
2703 if (field->flags & FIELD_IS_DYNAMIC) {
2704 offset = *(int *)(sample->raw_data + field->offset);
2705 offset &= 0xffff;
2706 }
2707
2708 return sample->raw_data + offset;
2709}
2710
2711u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2712 bool needs_swap)
2713{
2714 u64 value;
2715 void *ptr = sample->raw_data + field->offset;
2716
2717 switch (field->size) {
2718 case 1:
2719 return *(u8 *)ptr;
2720 case 2:
2721 value = *(u16 *)ptr;
2722 break;
2723 case 4:
2724 value = *(u32 *)ptr;
2725 break;
2726 case 8:
2727 memcpy(&value, ptr, sizeof(u64));
2728 break;
2729 default:
2730 return 0;
2731 }
2732
2733 if (!needs_swap)
2734 return value;
2735
2736 switch (field->size) {
2737 case 2:
2738 return bswap_16(value);
2739 case 4:
2740 return bswap_32(value);
2741 case 8:
2742 return bswap_64(value);
2743 default:
2744 return 0;
2745 }
2746
2747 return 0;
2748}
2749
2750u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2751 const char *name)
2752{
2753 struct format_field *field = perf_evsel__field(evsel, name);
2754
2755 if (!field)
2756 return 0;
2757
2758 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2759}
2760
2761bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2762 char *msg, size_t msgsize)
2763{
2764 int paranoid;
2765
2766 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2767 evsel->attr.type == PERF_TYPE_HARDWARE &&
2768 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2769 /*
2770 * If it's cycles then fall back to hrtimer based
2771 * cpu-clock-tick sw counter, which is always available even if
2772 * no PMU support.
2773 *
2774 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2775 * b0a873e).
2776 */
2777 scnprintf(msg, msgsize, "%s",
2778"The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2779
2780 evsel->attr.type = PERF_TYPE_SOFTWARE;
2781 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2782
2783 zfree(&evsel->name);
2784 return true;
2785 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2786 (paranoid = perf_event_paranoid()) > 1) {
2787 const char *name = perf_evsel__name(evsel);
2788 char *new_name;
2789 const char *sep = ":";
2790
2791 /* Is there already the separator in the name. */
2792 if (strchr(name, '/') ||
2793 strchr(name, ':'))
2794 sep = "";
2795
2796 if (asprintf(&new_name, "%s%su", name, sep) < 0)
2797 return false;
2798
2799 if (evsel->name)
2800 free(evsel->name);
2801 evsel->name = new_name;
2802 scnprintf(msg, msgsize,
2803"kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2804 evsel->attr.exclude_kernel = 1;
2805
2806 return true;
2807 }
2808
2809 return false;
2810}
2811
2812static bool find_process(const char *name)
2813{
2814 size_t len = strlen(name);
2815 DIR *dir;
2816 struct dirent *d;
2817 int ret = -1;
2818
2819 dir = opendir(procfs__mountpoint());
2820 if (!dir)
2821 return false;
2822
2823 /* Walk through the directory. */
2824 while (ret && (d = readdir(dir)) != NULL) {
2825 char path[PATH_MAX];
2826 char *data;
2827 size_t size;
2828
2829 if ((d->d_type != DT_DIR) ||
2830 !strcmp(".", d->d_name) ||
2831 !strcmp("..", d->d_name))
2832 continue;
2833
2834 scnprintf(path, sizeof(path), "%s/%s/comm",
2835 procfs__mountpoint(), d->d_name);
2836
2837 if (filename__read_str(path, &data, &size))
2838 continue;
2839
2840 ret = strncmp(name, data, len);
2841 free(data);
2842 }
2843
2844 closedir(dir);
2845 return ret ? false : true;
2846}
2847
2848int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2849 int err, char *msg, size_t size)
2850{
2851 char sbuf[STRERR_BUFSIZE];
2852 int printed = 0;
2853
2854 switch (err) {
2855 case EPERM:
2856 case EACCES:
2857 if (err == EPERM)
2858 printed = scnprintf(msg, size,
2859 "No permission to enable %s event.\n\n",
2860 perf_evsel__name(evsel));
2861
2862 return scnprintf(msg + printed, size - printed,
2863 "You may not have permission to collect %sstats.\n\n"
2864 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2865 "which controls use of the performance events system by\n"
2866 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2867 "The current value is %d:\n\n"
2868 " -1: Allow use of (almost) all events by all users\n"
2869 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2870 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2871 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2872 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2873 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2874 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2875 " kernel.perf_event_paranoid = -1\n" ,
2876 target->system_wide ? "system-wide " : "",
2877 perf_event_paranoid());
2878 case ENOENT:
2879 return scnprintf(msg, size, "The %s event is not supported.",
2880 perf_evsel__name(evsel));
2881 case EMFILE:
2882 return scnprintf(msg, size, "%s",
2883 "Too many events are opened.\n"
2884 "Probably the maximum number of open file descriptors has been reached.\n"
2885 "Hint: Try again after reducing the number of events.\n"
2886 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2887 case ENOMEM:
2888 if (evsel__has_callchain(evsel) &&
2889 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2890 return scnprintf(msg, size,
2891 "Not enough memory to setup event with callchain.\n"
2892 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2893 "Hint: Current value: %d", sysctl__max_stack());
2894 break;
2895 case ENODEV:
2896 if (target->cpu_list)
2897 return scnprintf(msg, size, "%s",
2898 "No such device - did you specify an out-of-range profile CPU?");
2899 break;
2900 case EOPNOTSUPP:
2901 if (evsel->attr.sample_period != 0)
2902 return scnprintf(msg, size,
2903 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2904 perf_evsel__name(evsel));
2905 if (evsel->attr.precise_ip)
2906 return scnprintf(msg, size, "%s",
2907 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2908#if defined(__i386__) || defined(__x86_64__)
2909 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2910 return scnprintf(msg, size, "%s",
2911 "No hardware sampling interrupt available.\n");
2912#endif
2913 break;
2914 case EBUSY:
2915 if (find_process("oprofiled"))
2916 return scnprintf(msg, size,
2917 "The PMU counters are busy/taken by another profiler.\n"
2918 "We found oprofile daemon running, please stop it and try again.");
2919 break;
2920 case EINVAL:
2921 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2922 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2923 if (perf_missing_features.clockid)
2924 return scnprintf(msg, size, "clockid feature not supported.");
2925 if (perf_missing_features.clockid_wrong)
2926 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2927 break;
2928 default:
2929 break;
2930 }
2931
2932 return scnprintf(msg, size,
2933 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2934 "/bin/dmesg | grep -i perf may provide additional information.\n",
2935 err, str_error_r(err, sbuf, sizeof(sbuf)),
2936 perf_evsel__name(evsel));
2937}
2938
2939struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2940{
2941 if (evsel && evsel->evlist)
2942 return evsel->evlist->env;
2943 return NULL;
2944}