Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. |
| 3 | * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. |
| 4 | * |
| 5 | * This software is available to you under a choice of one of two |
| 6 | * licenses. You may choose to be licensed under the terms of the GNU |
| 7 | * General Public License (GPL) Version 2, available from the file |
| 8 | * COPYING in the main directory of this source tree, or the |
| 9 | * OpenIB.org BSD license below: |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or |
| 12 | * without modification, are permitted provided that the following |
| 13 | * conditions are met: |
| 14 | * |
| 15 | * - Redistributions of source code must retain the above |
| 16 | * copyright notice, this list of conditions and the following |
| 17 | * disclaimer. |
| 18 | * |
| 19 | * - Redistributions in binary form must reproduce the above |
| 20 | * copyright notice, this list of conditions and the following |
| 21 | * disclaimer in the documentation and/or other materials |
| 22 | * provided with the distribution. |
| 23 | * |
| 24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 25 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 26 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 27 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 28 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 29 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 30 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 31 | * SOFTWARE. |
| 32 | */ |
| 33 | |
| 34 | #include <linux/module.h> |
| 35 | |
| 36 | #include <net/tcp.h> |
| 37 | #include <net/inet_common.h> |
| 38 | #include <linux/highmem.h> |
| 39 | #include <linux/netdevice.h> |
| 40 | #include <linux/sched/signal.h> |
| 41 | #include <linux/inetdevice.h> |
| 42 | |
| 43 | #include <net/tls.h> |
| 44 | |
| 45 | MODULE_AUTHOR("Mellanox Technologies"); |
| 46 | MODULE_DESCRIPTION("Transport Layer Security Support"); |
| 47 | MODULE_LICENSE("Dual BSD/GPL"); |
| 48 | MODULE_ALIAS_TCP_ULP("tls"); |
| 49 | |
| 50 | enum { |
| 51 | TLSV4, |
| 52 | TLSV6, |
| 53 | TLS_NUM_PROTS, |
| 54 | }; |
| 55 | |
| 56 | static struct proto *saved_tcpv6_prot; |
| 57 | static DEFINE_MUTEX(tcpv6_prot_mutex); |
| 58 | static LIST_HEAD(device_list); |
| 59 | static DEFINE_MUTEX(device_mutex); |
| 60 | static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; |
| 61 | static struct proto_ops tls_sw_proto_ops; |
| 62 | |
| 63 | static void update_sk_prot(struct sock *sk, struct tls_context *ctx) |
| 64 | { |
| 65 | int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; |
| 66 | |
| 67 | sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; |
| 68 | } |
| 69 | |
| 70 | int wait_on_pending_writer(struct sock *sk, long *timeo) |
| 71 | { |
| 72 | int rc = 0; |
| 73 | DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| 74 | |
| 75 | add_wait_queue(sk_sleep(sk), &wait); |
| 76 | while (1) { |
| 77 | if (!*timeo) { |
| 78 | rc = -EAGAIN; |
| 79 | break; |
| 80 | } |
| 81 | |
| 82 | if (signal_pending(current)) { |
| 83 | rc = sock_intr_errno(*timeo); |
| 84 | break; |
| 85 | } |
| 86 | |
| 87 | if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) |
| 88 | break; |
| 89 | } |
| 90 | remove_wait_queue(sk_sleep(sk), &wait); |
| 91 | return rc; |
| 92 | } |
| 93 | |
| 94 | int tls_push_sg(struct sock *sk, |
| 95 | struct tls_context *ctx, |
| 96 | struct scatterlist *sg, |
| 97 | u16 first_offset, |
| 98 | int flags) |
| 99 | { |
| 100 | int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; |
| 101 | int ret = 0; |
| 102 | struct page *p; |
| 103 | size_t size; |
| 104 | int offset = first_offset; |
| 105 | |
| 106 | size = sg->length - offset; |
| 107 | offset += sg->offset; |
| 108 | |
| 109 | ctx->in_tcp_sendpages = true; |
| 110 | while (1) { |
| 111 | if (sg_is_last(sg)) |
| 112 | sendpage_flags = flags; |
| 113 | |
| 114 | /* is sending application-limited? */ |
| 115 | tcp_rate_check_app_limited(sk); |
| 116 | p = sg_page(sg); |
| 117 | retry: |
| 118 | ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); |
| 119 | |
| 120 | if (ret != size) { |
| 121 | if (ret > 0) { |
| 122 | offset += ret; |
| 123 | size -= ret; |
| 124 | goto retry; |
| 125 | } |
| 126 | |
| 127 | offset -= sg->offset; |
| 128 | ctx->partially_sent_offset = offset; |
| 129 | ctx->partially_sent_record = (void *)sg; |
| 130 | ctx->in_tcp_sendpages = false; |
| 131 | return ret; |
| 132 | } |
| 133 | |
| 134 | put_page(p); |
| 135 | sk_mem_uncharge(sk, sg->length); |
| 136 | sg = sg_next(sg); |
| 137 | if (!sg) |
| 138 | break; |
| 139 | |
| 140 | offset = sg->offset; |
| 141 | size = sg->length; |
| 142 | } |
| 143 | |
| 144 | clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags); |
| 145 | ctx->in_tcp_sendpages = false; |
| 146 | ctx->sk_write_space(sk); |
| 147 | |
| 148 | return 0; |
| 149 | } |
| 150 | |
| 151 | static int tls_handle_open_record(struct sock *sk, int flags) |
| 152 | { |
| 153 | struct tls_context *ctx = tls_get_ctx(sk); |
| 154 | |
| 155 | if (tls_is_pending_open_record(ctx)) |
| 156 | return ctx->push_pending_record(sk, flags); |
| 157 | |
| 158 | return 0; |
| 159 | } |
| 160 | |
| 161 | int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, |
| 162 | unsigned char *record_type) |
| 163 | { |
| 164 | struct cmsghdr *cmsg; |
| 165 | int rc = -EINVAL; |
| 166 | |
| 167 | for_each_cmsghdr(cmsg, msg) { |
| 168 | if (!CMSG_OK(msg, cmsg)) |
| 169 | return -EINVAL; |
| 170 | if (cmsg->cmsg_level != SOL_TLS) |
| 171 | continue; |
| 172 | |
| 173 | switch (cmsg->cmsg_type) { |
| 174 | case TLS_SET_RECORD_TYPE: |
| 175 | if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) |
| 176 | return -EINVAL; |
| 177 | |
| 178 | if (msg->msg_flags & MSG_MORE) |
| 179 | return -EINVAL; |
| 180 | |
| 181 | rc = tls_handle_open_record(sk, msg->msg_flags); |
| 182 | if (rc) |
| 183 | return rc; |
| 184 | |
| 185 | *record_type = *(unsigned char *)CMSG_DATA(cmsg); |
| 186 | rc = 0; |
| 187 | break; |
| 188 | default: |
| 189 | return -EINVAL; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | return rc; |
| 194 | } |
| 195 | |
| 196 | int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx, |
| 197 | int flags, long *timeo) |
| 198 | { |
| 199 | struct scatterlist *sg; |
| 200 | u16 offset; |
| 201 | |
| 202 | if (!tls_is_partially_sent_record(ctx)) |
| 203 | return ctx->push_pending_record(sk, flags); |
| 204 | |
| 205 | sg = ctx->partially_sent_record; |
| 206 | offset = ctx->partially_sent_offset; |
| 207 | |
| 208 | ctx->partially_sent_record = NULL; |
| 209 | return tls_push_sg(sk, ctx, sg, offset, flags); |
| 210 | } |
| 211 | |
| 212 | static void tls_write_space(struct sock *sk) |
| 213 | { |
| 214 | struct tls_context *ctx = tls_get_ctx(sk); |
| 215 | |
| 216 | /* If in_tcp_sendpages call lower protocol write space handler |
| 217 | * to ensure we wake up any waiting operations there. For example |
| 218 | * if do_tcp_sendpages where to call sk_wait_event. |
| 219 | */ |
| 220 | if (ctx->in_tcp_sendpages) { |
| 221 | ctx->sk_write_space(sk); |
| 222 | return; |
| 223 | } |
| 224 | |
| 225 | if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) { |
| 226 | gfp_t sk_allocation = sk->sk_allocation; |
| 227 | int rc; |
| 228 | long timeo = 0; |
| 229 | |
| 230 | sk->sk_allocation = GFP_ATOMIC; |
| 231 | rc = tls_push_pending_closed_record(sk, ctx, |
| 232 | MSG_DONTWAIT | |
| 233 | MSG_NOSIGNAL, |
| 234 | &timeo); |
| 235 | sk->sk_allocation = sk_allocation; |
| 236 | |
| 237 | if (rc < 0) |
| 238 | return; |
| 239 | } |
| 240 | |
| 241 | ctx->sk_write_space(sk); |
| 242 | } |
| 243 | |
| 244 | static void tls_ctx_free(struct tls_context *ctx) |
| 245 | { |
| 246 | if (!ctx) |
| 247 | return; |
| 248 | |
| 249 | memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); |
| 250 | memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); |
| 251 | kfree(ctx); |
| 252 | } |
| 253 | |
| 254 | static void tls_sk_proto_close(struct sock *sk, long timeout) |
| 255 | { |
| 256 | struct tls_context *ctx = tls_get_ctx(sk); |
| 257 | long timeo = sock_sndtimeo(sk, 0); |
| 258 | void (*sk_proto_close)(struct sock *sk, long timeout); |
| 259 | bool free_ctx = false; |
| 260 | |
| 261 | lock_sock(sk); |
| 262 | sk_proto_close = ctx->sk_proto_close; |
| 263 | |
| 264 | if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) || |
| 265 | (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) { |
| 266 | free_ctx = true; |
| 267 | goto skip_tx_cleanup; |
| 268 | } |
| 269 | |
| 270 | if (!tls_complete_pending_work(sk, ctx, 0, &timeo)) |
| 271 | tls_handle_open_record(sk, 0); |
| 272 | |
| 273 | if (ctx->partially_sent_record) { |
| 274 | struct scatterlist *sg = ctx->partially_sent_record; |
| 275 | |
| 276 | while (1) { |
| 277 | put_page(sg_page(sg)); |
| 278 | sk_mem_uncharge(sk, sg->length); |
| 279 | |
| 280 | if (sg_is_last(sg)) |
| 281 | break; |
| 282 | sg++; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | /* We need these for tls_sw_fallback handling of other packets */ |
| 287 | if (ctx->tx_conf == TLS_SW) { |
| 288 | kfree(ctx->tx.rec_seq); |
| 289 | kfree(ctx->tx.iv); |
| 290 | tls_sw_free_resources_tx(sk); |
| 291 | } |
| 292 | |
| 293 | if (ctx->rx_conf == TLS_SW) { |
| 294 | kfree(ctx->rx.rec_seq); |
| 295 | kfree(ctx->rx.iv); |
| 296 | tls_sw_free_resources_rx(sk); |
| 297 | } |
| 298 | |
| 299 | #ifdef CONFIG_TLS_DEVICE |
| 300 | if (ctx->rx_conf == TLS_HW) |
| 301 | tls_device_offload_cleanup_rx(sk); |
| 302 | |
| 303 | if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) { |
| 304 | #else |
| 305 | { |
| 306 | #endif |
| 307 | tls_ctx_free(ctx); |
| 308 | ctx = NULL; |
| 309 | } |
| 310 | |
| 311 | skip_tx_cleanup: |
| 312 | release_sock(sk); |
| 313 | sk_proto_close(sk, timeout); |
| 314 | /* free ctx for TLS_HW_RECORD, used by tcp_set_state |
| 315 | * for sk->sk_prot->unhash [tls_hw_unhash] |
| 316 | */ |
| 317 | if (free_ctx) |
| 318 | tls_ctx_free(ctx); |
| 319 | } |
| 320 | |
| 321 | static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, |
| 322 | int __user *optlen) |
| 323 | { |
| 324 | int rc = 0; |
| 325 | struct tls_context *ctx = tls_get_ctx(sk); |
| 326 | struct tls_crypto_info *crypto_info; |
| 327 | int len; |
| 328 | |
| 329 | if (get_user(len, optlen)) |
| 330 | return -EFAULT; |
| 331 | |
| 332 | if (!optval || (len < sizeof(*crypto_info))) { |
| 333 | rc = -EINVAL; |
| 334 | goto out; |
| 335 | } |
| 336 | |
| 337 | if (!ctx) { |
| 338 | rc = -EBUSY; |
| 339 | goto out; |
| 340 | } |
| 341 | |
| 342 | /* get user crypto info */ |
| 343 | crypto_info = &ctx->crypto_send.info; |
| 344 | |
| 345 | if (!TLS_CRYPTO_INFO_READY(crypto_info)) { |
| 346 | rc = -EBUSY; |
| 347 | goto out; |
| 348 | } |
| 349 | |
| 350 | if (len == sizeof(*crypto_info)) { |
| 351 | if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) |
| 352 | rc = -EFAULT; |
| 353 | goto out; |
| 354 | } |
| 355 | |
| 356 | switch (crypto_info->cipher_type) { |
| 357 | case TLS_CIPHER_AES_GCM_128: { |
| 358 | struct tls12_crypto_info_aes_gcm_128 * |
| 359 | crypto_info_aes_gcm_128 = |
| 360 | container_of(crypto_info, |
| 361 | struct tls12_crypto_info_aes_gcm_128, |
| 362 | info); |
| 363 | |
| 364 | if (len != sizeof(*crypto_info_aes_gcm_128)) { |
| 365 | rc = -EINVAL; |
| 366 | goto out; |
| 367 | } |
| 368 | lock_sock(sk); |
| 369 | memcpy(crypto_info_aes_gcm_128->iv, |
| 370 | ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, |
| 371 | TLS_CIPHER_AES_GCM_128_IV_SIZE); |
| 372 | memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, |
| 373 | TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); |
| 374 | release_sock(sk); |
| 375 | if (copy_to_user(optval, |
| 376 | crypto_info_aes_gcm_128, |
| 377 | sizeof(*crypto_info_aes_gcm_128))) |
| 378 | rc = -EFAULT; |
| 379 | break; |
| 380 | } |
| 381 | default: |
| 382 | rc = -EINVAL; |
| 383 | } |
| 384 | |
| 385 | out: |
| 386 | return rc; |
| 387 | } |
| 388 | |
| 389 | static int do_tls_getsockopt(struct sock *sk, int optname, |
| 390 | char __user *optval, int __user *optlen) |
| 391 | { |
| 392 | int rc = 0; |
| 393 | |
| 394 | switch (optname) { |
| 395 | case TLS_TX: |
| 396 | rc = do_tls_getsockopt_tx(sk, optval, optlen); |
| 397 | break; |
| 398 | default: |
| 399 | rc = -ENOPROTOOPT; |
| 400 | break; |
| 401 | } |
| 402 | return rc; |
| 403 | } |
| 404 | |
| 405 | static int tls_getsockopt(struct sock *sk, int level, int optname, |
| 406 | char __user *optval, int __user *optlen) |
| 407 | { |
| 408 | struct tls_context *ctx = tls_get_ctx(sk); |
| 409 | |
| 410 | if (level != SOL_TLS) |
| 411 | return ctx->getsockopt(sk, level, optname, optval, optlen); |
| 412 | |
| 413 | return do_tls_getsockopt(sk, optname, optval, optlen); |
| 414 | } |
| 415 | |
| 416 | static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, |
| 417 | unsigned int optlen, int tx) |
| 418 | { |
| 419 | struct tls_crypto_info *crypto_info; |
| 420 | struct tls_context *ctx = tls_get_ctx(sk); |
| 421 | int rc = 0; |
| 422 | int conf; |
| 423 | |
| 424 | if (!optval || (optlen < sizeof(*crypto_info))) { |
| 425 | rc = -EINVAL; |
| 426 | goto out; |
| 427 | } |
| 428 | |
| 429 | if (tx) |
| 430 | crypto_info = &ctx->crypto_send.info; |
| 431 | else |
| 432 | crypto_info = &ctx->crypto_recv.info; |
| 433 | |
| 434 | /* Currently we don't support set crypto info more than one time */ |
| 435 | if (TLS_CRYPTO_INFO_READY(crypto_info)) { |
| 436 | rc = -EBUSY; |
| 437 | goto out; |
| 438 | } |
| 439 | |
| 440 | rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); |
| 441 | if (rc) { |
| 442 | rc = -EFAULT; |
| 443 | goto err_crypto_info; |
| 444 | } |
| 445 | |
| 446 | /* check version */ |
| 447 | if (crypto_info->version != TLS_1_2_VERSION) { |
| 448 | rc = -ENOTSUPP; |
| 449 | goto err_crypto_info; |
| 450 | } |
| 451 | |
| 452 | switch (crypto_info->cipher_type) { |
| 453 | case TLS_CIPHER_AES_GCM_128: { |
| 454 | if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) { |
| 455 | rc = -EINVAL; |
| 456 | goto err_crypto_info; |
| 457 | } |
| 458 | rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), |
| 459 | optlen - sizeof(*crypto_info)); |
| 460 | if (rc) { |
| 461 | rc = -EFAULT; |
| 462 | goto err_crypto_info; |
| 463 | } |
| 464 | break; |
| 465 | } |
| 466 | default: |
| 467 | rc = -EINVAL; |
| 468 | goto err_crypto_info; |
| 469 | } |
| 470 | |
| 471 | if (tx) { |
| 472 | #ifdef CONFIG_TLS_DEVICE |
| 473 | rc = tls_set_device_offload(sk, ctx); |
| 474 | conf = TLS_HW; |
| 475 | if (rc) { |
| 476 | #else |
| 477 | { |
| 478 | #endif |
| 479 | rc = tls_set_sw_offload(sk, ctx, 1); |
| 480 | conf = TLS_SW; |
| 481 | } |
| 482 | } else { |
| 483 | #ifdef CONFIG_TLS_DEVICE |
| 484 | rc = tls_set_device_offload_rx(sk, ctx); |
| 485 | conf = TLS_HW; |
| 486 | if (rc) { |
| 487 | #else |
| 488 | { |
| 489 | #endif |
| 490 | rc = tls_set_sw_offload(sk, ctx, 0); |
| 491 | conf = TLS_SW; |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | if (rc) |
| 496 | goto err_crypto_info; |
| 497 | |
| 498 | if (tx) |
| 499 | ctx->tx_conf = conf; |
| 500 | else |
| 501 | ctx->rx_conf = conf; |
| 502 | update_sk_prot(sk, ctx); |
| 503 | if (tx) { |
| 504 | ctx->sk_write_space = sk->sk_write_space; |
| 505 | sk->sk_write_space = tls_write_space; |
| 506 | } else { |
| 507 | sk->sk_socket->ops = &tls_sw_proto_ops; |
| 508 | } |
| 509 | goto out; |
| 510 | |
| 511 | err_crypto_info: |
| 512 | memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); |
| 513 | out: |
| 514 | return rc; |
| 515 | } |
| 516 | |
| 517 | static int do_tls_setsockopt(struct sock *sk, int optname, |
| 518 | char __user *optval, unsigned int optlen) |
| 519 | { |
| 520 | int rc = 0; |
| 521 | |
| 522 | switch (optname) { |
| 523 | case TLS_TX: |
| 524 | case TLS_RX: |
| 525 | lock_sock(sk); |
| 526 | rc = do_tls_setsockopt_conf(sk, optval, optlen, |
| 527 | optname == TLS_TX); |
| 528 | release_sock(sk); |
| 529 | break; |
| 530 | default: |
| 531 | rc = -ENOPROTOOPT; |
| 532 | break; |
| 533 | } |
| 534 | return rc; |
| 535 | } |
| 536 | |
| 537 | static int tls_setsockopt(struct sock *sk, int level, int optname, |
| 538 | char __user *optval, unsigned int optlen) |
| 539 | { |
| 540 | struct tls_context *ctx = tls_get_ctx(sk); |
| 541 | |
| 542 | if (level != SOL_TLS) |
| 543 | return ctx->setsockopt(sk, level, optname, optval, optlen); |
| 544 | |
| 545 | return do_tls_setsockopt(sk, optname, optval, optlen); |
| 546 | } |
| 547 | |
| 548 | static struct tls_context *create_ctx(struct sock *sk) |
| 549 | { |
| 550 | struct inet_connection_sock *icsk = inet_csk(sk); |
| 551 | struct tls_context *ctx; |
| 552 | |
| 553 | ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| 554 | if (!ctx) |
| 555 | return NULL; |
| 556 | |
| 557 | icsk->icsk_ulp_data = ctx; |
| 558 | return ctx; |
| 559 | } |
| 560 | |
| 561 | static int tls_hw_prot(struct sock *sk) |
| 562 | { |
| 563 | struct tls_context *ctx; |
| 564 | struct tls_device *dev; |
| 565 | int rc = 0; |
| 566 | |
| 567 | mutex_lock(&device_mutex); |
| 568 | list_for_each_entry(dev, &device_list, dev_list) { |
| 569 | if (dev->feature && dev->feature(dev)) { |
| 570 | ctx = create_ctx(sk); |
| 571 | if (!ctx) |
| 572 | goto out; |
| 573 | |
| 574 | ctx->hash = sk->sk_prot->hash; |
| 575 | ctx->unhash = sk->sk_prot->unhash; |
| 576 | ctx->sk_proto_close = sk->sk_prot->close; |
| 577 | ctx->rx_conf = TLS_HW_RECORD; |
| 578 | ctx->tx_conf = TLS_HW_RECORD; |
| 579 | update_sk_prot(sk, ctx); |
| 580 | rc = 1; |
| 581 | break; |
| 582 | } |
| 583 | } |
| 584 | out: |
| 585 | mutex_unlock(&device_mutex); |
| 586 | return rc; |
| 587 | } |
| 588 | |
| 589 | static void tls_hw_unhash(struct sock *sk) |
| 590 | { |
| 591 | struct tls_context *ctx = tls_get_ctx(sk); |
| 592 | struct tls_device *dev; |
| 593 | |
| 594 | mutex_lock(&device_mutex); |
| 595 | list_for_each_entry(dev, &device_list, dev_list) { |
| 596 | if (dev->unhash) |
| 597 | dev->unhash(dev, sk); |
| 598 | } |
| 599 | mutex_unlock(&device_mutex); |
| 600 | ctx->unhash(sk); |
| 601 | } |
| 602 | |
| 603 | static int tls_hw_hash(struct sock *sk) |
| 604 | { |
| 605 | struct tls_context *ctx = tls_get_ctx(sk); |
| 606 | struct tls_device *dev; |
| 607 | int err; |
| 608 | |
| 609 | err = ctx->hash(sk); |
| 610 | mutex_lock(&device_mutex); |
| 611 | list_for_each_entry(dev, &device_list, dev_list) { |
| 612 | if (dev->hash) |
| 613 | err |= dev->hash(dev, sk); |
| 614 | } |
| 615 | mutex_unlock(&device_mutex); |
| 616 | |
| 617 | if (err) |
| 618 | tls_hw_unhash(sk); |
| 619 | return err; |
| 620 | } |
| 621 | |
| 622 | static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], |
| 623 | struct proto *base) |
| 624 | { |
| 625 | prot[TLS_BASE][TLS_BASE] = *base; |
| 626 | prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; |
| 627 | prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; |
| 628 | prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; |
| 629 | |
| 630 | prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; |
| 631 | prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; |
| 632 | prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; |
| 633 | |
| 634 | prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; |
| 635 | prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; |
| 636 | prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; |
| 637 | |
| 638 | prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; |
| 639 | prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; |
| 640 | prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; |
| 641 | |
| 642 | #ifdef CONFIG_TLS_DEVICE |
| 643 | prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; |
| 644 | prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; |
| 645 | prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; |
| 646 | |
| 647 | prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; |
| 648 | prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; |
| 649 | prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; |
| 650 | |
| 651 | prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; |
| 652 | |
| 653 | prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; |
| 654 | |
| 655 | prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; |
| 656 | #endif |
| 657 | |
| 658 | prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; |
| 659 | prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash; |
| 660 | prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash; |
| 661 | prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close; |
| 662 | } |
| 663 | |
| 664 | static int tls_init(struct sock *sk) |
| 665 | { |
| 666 | int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; |
| 667 | struct tls_context *ctx; |
| 668 | int rc = 0; |
| 669 | |
| 670 | if (tls_hw_prot(sk)) |
| 671 | goto out; |
| 672 | |
| 673 | /* The TLS ulp is currently supported only for TCP sockets |
| 674 | * in ESTABLISHED state. |
| 675 | * Supporting sockets in LISTEN state will require us |
| 676 | * to modify the accept implementation to clone rather then |
| 677 | * share the ulp context. |
| 678 | */ |
| 679 | if (sk->sk_state != TCP_ESTABLISHED) |
| 680 | return -ENOTSUPP; |
| 681 | |
| 682 | /* allocate tls context */ |
| 683 | ctx = create_ctx(sk); |
| 684 | if (!ctx) { |
| 685 | rc = -ENOMEM; |
| 686 | goto out; |
| 687 | } |
| 688 | ctx->setsockopt = sk->sk_prot->setsockopt; |
| 689 | ctx->getsockopt = sk->sk_prot->getsockopt; |
| 690 | ctx->sk_proto_close = sk->sk_prot->close; |
| 691 | |
| 692 | /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ |
| 693 | if (ip_ver == TLSV6 && |
| 694 | unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { |
| 695 | mutex_lock(&tcpv6_prot_mutex); |
| 696 | if (likely(sk->sk_prot != saved_tcpv6_prot)) { |
| 697 | build_protos(tls_prots[TLSV6], sk->sk_prot); |
| 698 | smp_store_release(&saved_tcpv6_prot, sk->sk_prot); |
| 699 | } |
| 700 | mutex_unlock(&tcpv6_prot_mutex); |
| 701 | } |
| 702 | |
| 703 | ctx->tx_conf = TLS_BASE; |
| 704 | ctx->rx_conf = TLS_BASE; |
| 705 | update_sk_prot(sk, ctx); |
| 706 | out: |
| 707 | return rc; |
| 708 | } |
| 709 | |
| 710 | void tls_register_device(struct tls_device *device) |
| 711 | { |
| 712 | mutex_lock(&device_mutex); |
| 713 | list_add_tail(&device->dev_list, &device_list); |
| 714 | mutex_unlock(&device_mutex); |
| 715 | } |
| 716 | EXPORT_SYMBOL(tls_register_device); |
| 717 | |
| 718 | void tls_unregister_device(struct tls_device *device) |
| 719 | { |
| 720 | mutex_lock(&device_mutex); |
| 721 | list_del(&device->dev_list); |
| 722 | mutex_unlock(&device_mutex); |
| 723 | } |
| 724 | EXPORT_SYMBOL(tls_unregister_device); |
| 725 | |
| 726 | static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { |
| 727 | .name = "tls", |
| 728 | .uid = TCP_ULP_TLS, |
| 729 | .user_visible = true, |
| 730 | .owner = THIS_MODULE, |
| 731 | .init = tls_init, |
| 732 | }; |
| 733 | |
| 734 | static int __init tls_register(void) |
| 735 | { |
| 736 | build_protos(tls_prots[TLSV4], &tcp_prot); |
| 737 | |
| 738 | tls_sw_proto_ops = inet_stream_ops; |
| 739 | tls_sw_proto_ops.poll = tls_sw_poll; |
| 740 | tls_sw_proto_ops.splice_read = tls_sw_splice_read; |
| 741 | |
| 742 | #ifdef CONFIG_TLS_DEVICE |
| 743 | tls_device_init(); |
| 744 | #endif |
| 745 | tcp_register_ulp(&tcp_tls_ulp_ops); |
| 746 | |
| 747 | return 0; |
| 748 | } |
| 749 | |
| 750 | static void __exit tls_unregister(void) |
| 751 | { |
| 752 | tcp_unregister_ulp(&tcp_tls_ulp_ops); |
| 753 | #ifdef CONFIG_TLS_DEVICE |
| 754 | tls_device_cleanup(); |
| 755 | #endif |
| 756 | } |
| 757 | |
| 758 | module_init(tls_register); |
| 759 | module_exit(tls_unregister); |