Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 4 | * operating system. INET is implemented using the BSD Socket |
| 5 | * interface as the means of communication with the user level. |
| 6 | * |
| 7 | * The IP fragmentation functionality. |
| 8 | * |
| 9 | * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> |
| 10 | * Alan Cox <alan@lxorguk.ukuu.org.uk> |
| 11 | * |
| 12 | * Fixes: |
| 13 | * Alan Cox : Split from ip.c , see ip_input.c for history. |
| 14 | * David S. Miller : Begin massive cleanup... |
| 15 | * Andi Kleen : Add sysctls. |
| 16 | * xxxx : Overlapfrag bug. |
| 17 | * Ultima : ip_expire() kernel panic. |
| 18 | * Bill Hawes : Frag accounting and evictor fixes. |
| 19 | * John McDonald : 0 length frag bug. |
| 20 | * Alexey Kuznetsov: SMP races, threading, cleanup. |
| 21 | * Patrick McHardy : LRU queue of frag heads for evictor. |
| 22 | */ |
| 23 | |
| 24 | #define pr_fmt(fmt) "IPv4: " fmt |
| 25 | |
| 26 | #include <linux/compiler.h> |
| 27 | #include <linux/module.h> |
| 28 | #include <linux/types.h> |
| 29 | #include <linux/mm.h> |
| 30 | #include <linux/jiffies.h> |
| 31 | #include <linux/skbuff.h> |
| 32 | #include <linux/list.h> |
| 33 | #include <linux/ip.h> |
| 34 | #include <linux/icmp.h> |
| 35 | #include <linux/netdevice.h> |
| 36 | #include <linux/jhash.h> |
| 37 | #include <linux/random.h> |
| 38 | #include <linux/slab.h> |
| 39 | #include <net/route.h> |
| 40 | #include <net/dst.h> |
| 41 | #include <net/sock.h> |
| 42 | #include <net/ip.h> |
| 43 | #include <net/icmp.h> |
| 44 | #include <net/checksum.h> |
| 45 | #include <net/inetpeer.h> |
| 46 | #include <net/inet_frag.h> |
| 47 | #include <linux/tcp.h> |
| 48 | #include <linux/udp.h> |
| 49 | #include <linux/inet.h> |
| 50 | #include <linux/netfilter_ipv4.h> |
| 51 | #include <net/inet_ecn.h> |
| 52 | #include <net/l3mdev.h> |
| 53 | |
| 54 | /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 |
| 55 | * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c |
| 56 | * as well. Or notify me, at least. --ANK |
| 57 | */ |
| 58 | static const char ip_frag_cache_name[] = "ip4-frags"; |
| 59 | |
| 60 | /* Use skb->cb to track consecutive/adjacent fragments coming at |
| 61 | * the end of the queue. Nodes in the rb-tree queue will |
| 62 | * contain "runs" of one or more adjacent fragments. |
| 63 | * |
| 64 | * Invariants: |
| 65 | * - next_frag is NULL at the tail of a "run"; |
| 66 | * - the head of a "run" has the sum of all fragment lengths in frag_run_len. |
| 67 | */ |
| 68 | struct ipfrag_skb_cb { |
| 69 | struct inet_skb_parm h; |
| 70 | struct sk_buff *next_frag; |
| 71 | int frag_run_len; |
| 72 | }; |
| 73 | |
| 74 | #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) |
| 75 | |
| 76 | static void ip4_frag_init_run(struct sk_buff *skb) |
| 77 | { |
| 78 | BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb)); |
| 79 | |
| 80 | FRAG_CB(skb)->next_frag = NULL; |
| 81 | FRAG_CB(skb)->frag_run_len = skb->len; |
| 82 | } |
| 83 | |
| 84 | /* Append skb to the last "run". */ |
| 85 | static void ip4_frag_append_to_last_run(struct inet_frag_queue *q, |
| 86 | struct sk_buff *skb) |
| 87 | { |
| 88 | RB_CLEAR_NODE(&skb->rbnode); |
| 89 | FRAG_CB(skb)->next_frag = NULL; |
| 90 | |
| 91 | FRAG_CB(q->last_run_head)->frag_run_len += skb->len; |
| 92 | FRAG_CB(q->fragments_tail)->next_frag = skb; |
| 93 | q->fragments_tail = skb; |
| 94 | } |
| 95 | |
| 96 | /* Create a new "run" with the skb. */ |
| 97 | static void ip4_frag_create_run(struct inet_frag_queue *q, struct sk_buff *skb) |
| 98 | { |
| 99 | if (q->last_run_head) |
| 100 | rb_link_node(&skb->rbnode, &q->last_run_head->rbnode, |
| 101 | &q->last_run_head->rbnode.rb_right); |
| 102 | else |
| 103 | rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node); |
| 104 | rb_insert_color(&skb->rbnode, &q->rb_fragments); |
| 105 | |
| 106 | ip4_frag_init_run(skb); |
| 107 | q->fragments_tail = skb; |
| 108 | q->last_run_head = skb; |
| 109 | } |
| 110 | |
| 111 | /* Describe an entry in the "incomplete datagrams" queue. */ |
| 112 | struct ipq { |
| 113 | struct inet_frag_queue q; |
| 114 | |
| 115 | u8 ecn; /* RFC3168 support */ |
| 116 | u16 max_df_size; /* largest frag with DF set seen */ |
| 117 | int iif; |
| 118 | unsigned int rid; |
| 119 | struct inet_peer *peer; |
| 120 | }; |
| 121 | |
| 122 | static u8 ip4_frag_ecn(u8 tos) |
| 123 | { |
| 124 | return 1 << (tos & INET_ECN_MASK); |
| 125 | } |
| 126 | |
| 127 | static struct inet_frags ip4_frags; |
| 128 | |
| 129 | static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, |
| 130 | struct sk_buff *prev_tail, struct net_device *dev); |
| 131 | |
| 132 | |
| 133 | static void ip4_frag_init(struct inet_frag_queue *q, const void *a) |
| 134 | { |
| 135 | struct ipq *qp = container_of(q, struct ipq, q); |
| 136 | struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4, |
| 137 | frags); |
| 138 | struct net *net = container_of(ipv4, struct net, ipv4); |
| 139 | |
| 140 | const struct frag_v4_compare_key *key = a; |
| 141 | |
| 142 | q->key.v4 = *key; |
| 143 | qp->ecn = 0; |
| 144 | qp->peer = q->net->max_dist ? |
| 145 | inet_getpeer_v4(net->ipv4.peers, key->saddr, key->vif, 1) : |
| 146 | NULL; |
| 147 | } |
| 148 | |
| 149 | static void ip4_frag_free(struct inet_frag_queue *q) |
| 150 | { |
| 151 | struct ipq *qp; |
| 152 | |
| 153 | qp = container_of(q, struct ipq, q); |
| 154 | if (qp->peer) |
| 155 | inet_putpeer(qp->peer); |
| 156 | } |
| 157 | |
| 158 | |
| 159 | /* Destruction primitives. */ |
| 160 | |
| 161 | static void ipq_put(struct ipq *ipq) |
| 162 | { |
| 163 | inet_frag_put(&ipq->q); |
| 164 | } |
| 165 | |
| 166 | /* Kill ipq entry. It is not destroyed immediately, |
| 167 | * because caller (and someone more) holds reference count. |
| 168 | */ |
| 169 | static void ipq_kill(struct ipq *ipq) |
| 170 | { |
| 171 | inet_frag_kill(&ipq->q); |
| 172 | } |
| 173 | |
| 174 | static bool frag_expire_skip_icmp(u32 user) |
| 175 | { |
| 176 | return user == IP_DEFRAG_AF_PACKET || |
| 177 | ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN, |
| 178 | __IP_DEFRAG_CONNTRACK_IN_END) || |
| 179 | ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN, |
| 180 | __IP_DEFRAG_CONNTRACK_BRIDGE_IN); |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * Oops, a fragment queue timed out. Kill it and send an ICMP reply. |
| 185 | */ |
| 186 | static void ip_expire(struct timer_list *t) |
| 187 | { |
| 188 | struct inet_frag_queue *frag = from_timer(frag, t, timer); |
| 189 | const struct iphdr *iph; |
| 190 | struct sk_buff *head = NULL; |
| 191 | struct net *net; |
| 192 | struct ipq *qp; |
| 193 | int err; |
| 194 | |
| 195 | qp = container_of(frag, struct ipq, q); |
| 196 | net = container_of(qp->q.net, struct net, ipv4.frags); |
| 197 | |
| 198 | rcu_read_lock(); |
| 199 | spin_lock(&qp->q.lock); |
| 200 | |
| 201 | if (qp->q.flags & INET_FRAG_COMPLETE) |
| 202 | goto out; |
| 203 | |
| 204 | ipq_kill(qp); |
| 205 | __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); |
| 206 | __IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT); |
| 207 | |
| 208 | if (!(qp->q.flags & INET_FRAG_FIRST_IN)) |
| 209 | goto out; |
| 210 | |
| 211 | /* sk_buff::dev and sk_buff::rbnode are unionized. So we |
| 212 | * pull the head out of the tree in order to be able to |
| 213 | * deal with head->dev. |
| 214 | */ |
| 215 | if (qp->q.fragments) { |
| 216 | head = qp->q.fragments; |
| 217 | qp->q.fragments = head->next; |
| 218 | } else { |
| 219 | head = skb_rb_first(&qp->q.rb_fragments); |
| 220 | if (!head) |
| 221 | goto out; |
| 222 | if (FRAG_CB(head)->next_frag) |
| 223 | rb_replace_node(&head->rbnode, |
| 224 | &FRAG_CB(head)->next_frag->rbnode, |
| 225 | &qp->q.rb_fragments); |
| 226 | else |
| 227 | rb_erase(&head->rbnode, &qp->q.rb_fragments); |
| 228 | memset(&head->rbnode, 0, sizeof(head->rbnode)); |
| 229 | barrier(); |
| 230 | } |
| 231 | if (head == qp->q.fragments_tail) |
| 232 | qp->q.fragments_tail = NULL; |
| 233 | |
| 234 | sub_frag_mem_limit(qp->q.net, head->truesize); |
| 235 | |
| 236 | head->dev = dev_get_by_index_rcu(net, qp->iif); |
| 237 | if (!head->dev) |
| 238 | goto out; |
| 239 | |
| 240 | |
| 241 | /* skb has no dst, perform route lookup again */ |
| 242 | iph = ip_hdr(head); |
| 243 | err = ip_route_input_noref(head, iph->daddr, iph->saddr, |
| 244 | iph->tos, head->dev); |
| 245 | if (err) |
| 246 | goto out; |
| 247 | |
| 248 | /* Only an end host needs to send an ICMP |
| 249 | * "Fragment Reassembly Timeout" message, per RFC792. |
| 250 | */ |
| 251 | if (frag_expire_skip_icmp(qp->q.key.v4.user) && |
| 252 | (skb_rtable(head)->rt_type != RTN_LOCAL)) |
| 253 | goto out; |
| 254 | |
| 255 | spin_unlock(&qp->q.lock); |
| 256 | icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); |
| 257 | goto out_rcu_unlock; |
| 258 | |
| 259 | out: |
| 260 | spin_unlock(&qp->q.lock); |
| 261 | out_rcu_unlock: |
| 262 | rcu_read_unlock(); |
| 263 | if (head) |
| 264 | kfree_skb(head); |
| 265 | ipq_put(qp); |
| 266 | } |
| 267 | |
| 268 | /* Find the correct entry in the "incomplete datagrams" queue for |
| 269 | * this IP datagram, and create new one, if nothing is found. |
| 270 | */ |
| 271 | static struct ipq *ip_find(struct net *net, struct iphdr *iph, |
| 272 | u32 user, int vif) |
| 273 | { |
| 274 | struct frag_v4_compare_key key = { |
| 275 | .saddr = iph->saddr, |
| 276 | .daddr = iph->daddr, |
| 277 | .user = user, |
| 278 | .vif = vif, |
| 279 | .id = iph->id, |
| 280 | .protocol = iph->protocol, |
| 281 | }; |
| 282 | struct inet_frag_queue *q; |
| 283 | |
| 284 | q = inet_frag_find(&net->ipv4.frags, &key); |
| 285 | if (!q) |
| 286 | return NULL; |
| 287 | |
| 288 | return container_of(q, struct ipq, q); |
| 289 | } |
| 290 | |
| 291 | /* Is the fragment too far ahead to be part of ipq? */ |
| 292 | static int ip_frag_too_far(struct ipq *qp) |
| 293 | { |
| 294 | struct inet_peer *peer = qp->peer; |
| 295 | unsigned int max = qp->q.net->max_dist; |
| 296 | unsigned int start, end; |
| 297 | |
| 298 | int rc; |
| 299 | |
| 300 | if (!peer || !max) |
| 301 | return 0; |
| 302 | |
| 303 | start = qp->rid; |
| 304 | end = atomic_inc_return(&peer->rid); |
| 305 | qp->rid = end; |
| 306 | |
| 307 | rc = qp->q.fragments_tail && (end - start) > max; |
| 308 | |
| 309 | if (rc) { |
| 310 | struct net *net; |
| 311 | |
| 312 | net = container_of(qp->q.net, struct net, ipv4.frags); |
| 313 | __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); |
| 314 | } |
| 315 | |
| 316 | return rc; |
| 317 | } |
| 318 | |
| 319 | static int ip_frag_reinit(struct ipq *qp) |
| 320 | { |
| 321 | unsigned int sum_truesize = 0; |
| 322 | |
| 323 | if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) { |
| 324 | refcount_inc(&qp->q.refcnt); |
| 325 | return -ETIMEDOUT; |
| 326 | } |
| 327 | |
| 328 | sum_truesize = inet_frag_rbtree_purge(&qp->q.rb_fragments); |
| 329 | sub_frag_mem_limit(qp->q.net, sum_truesize); |
| 330 | |
| 331 | qp->q.flags = 0; |
| 332 | qp->q.len = 0; |
| 333 | qp->q.meat = 0; |
| 334 | qp->q.fragments = NULL; |
| 335 | qp->q.rb_fragments = RB_ROOT; |
| 336 | qp->q.fragments_tail = NULL; |
| 337 | qp->q.last_run_head = NULL; |
| 338 | qp->iif = 0; |
| 339 | qp->ecn = 0; |
| 340 | |
| 341 | return 0; |
| 342 | } |
| 343 | |
| 344 | /* Add new segment to existing queue. */ |
| 345 | static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) |
| 346 | { |
| 347 | struct net *net = container_of(qp->q.net, struct net, ipv4.frags); |
| 348 | struct rb_node **rbn, *parent; |
| 349 | struct sk_buff *skb1, *prev_tail; |
| 350 | struct net_device *dev; |
| 351 | unsigned int fragsize; |
| 352 | int flags, offset; |
| 353 | int ihl, end; |
| 354 | int err = -ENOENT; |
| 355 | u8 ecn; |
| 356 | |
| 357 | if (qp->q.flags & INET_FRAG_COMPLETE) |
| 358 | goto err; |
| 359 | |
| 360 | if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && |
| 361 | unlikely(ip_frag_too_far(qp)) && |
| 362 | unlikely(err = ip_frag_reinit(qp))) { |
| 363 | ipq_kill(qp); |
| 364 | goto err; |
| 365 | } |
| 366 | |
| 367 | ecn = ip4_frag_ecn(ip_hdr(skb)->tos); |
| 368 | offset = ntohs(ip_hdr(skb)->frag_off); |
| 369 | flags = offset & ~IP_OFFSET; |
| 370 | offset &= IP_OFFSET; |
| 371 | offset <<= 3; /* offset is in 8-byte chunks */ |
| 372 | ihl = ip_hdrlen(skb); |
| 373 | |
| 374 | /* Determine the position of this fragment. */ |
| 375 | end = offset + skb->len - skb_network_offset(skb) - ihl; |
| 376 | err = -EINVAL; |
| 377 | |
| 378 | /* Is this the final fragment? */ |
| 379 | if ((flags & IP_MF) == 0) { |
| 380 | /* If we already have some bits beyond end |
| 381 | * or have different end, the segment is corrupted. |
| 382 | */ |
| 383 | if (end < qp->q.len || |
| 384 | ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len)) |
| 385 | goto err; |
| 386 | qp->q.flags |= INET_FRAG_LAST_IN; |
| 387 | qp->q.len = end; |
| 388 | } else { |
| 389 | if (end&7) { |
| 390 | end &= ~7; |
| 391 | if (skb->ip_summed != CHECKSUM_UNNECESSARY) |
| 392 | skb->ip_summed = CHECKSUM_NONE; |
| 393 | } |
| 394 | if (end > qp->q.len) { |
| 395 | /* Some bits beyond end -> corruption. */ |
| 396 | if (qp->q.flags & INET_FRAG_LAST_IN) |
| 397 | goto err; |
| 398 | qp->q.len = end; |
| 399 | } |
| 400 | } |
| 401 | if (end == offset) |
| 402 | goto err; |
| 403 | |
| 404 | err = -ENOMEM; |
| 405 | if (!pskb_pull(skb, skb_network_offset(skb) + ihl)) |
| 406 | goto err; |
| 407 | |
| 408 | err = pskb_trim_rcsum(skb, end - offset); |
| 409 | if (err) |
| 410 | goto err; |
| 411 | |
| 412 | /* Note : skb->rbnode and skb->dev share the same location. */ |
| 413 | dev = skb->dev; |
| 414 | /* Makes sure compiler wont do silly aliasing games */ |
| 415 | barrier(); |
| 416 | |
| 417 | /* RFC5722, Section 4, amended by Errata ID : 3089 |
| 418 | * When reassembling an IPv6 datagram, if |
| 419 | * one or more its constituent fragments is determined to be an |
| 420 | * overlapping fragment, the entire datagram (and any constituent |
| 421 | * fragments) MUST be silently discarded. |
| 422 | * |
| 423 | * We do the same here for IPv4 (and increment an snmp counter). |
| 424 | */ |
| 425 | |
| 426 | /* Find out where to put this fragment. */ |
| 427 | prev_tail = qp->q.fragments_tail; |
| 428 | if (!prev_tail) |
| 429 | ip4_frag_create_run(&qp->q, skb); /* First fragment. */ |
| 430 | else if (prev_tail->ip_defrag_offset + prev_tail->len < end) { |
| 431 | /* This is the common case: skb goes to the end. */ |
| 432 | /* Detect and discard overlaps. */ |
| 433 | if (offset < prev_tail->ip_defrag_offset + prev_tail->len) |
| 434 | goto discard_qp; |
| 435 | if (offset == prev_tail->ip_defrag_offset + prev_tail->len) |
| 436 | ip4_frag_append_to_last_run(&qp->q, skb); |
| 437 | else |
| 438 | ip4_frag_create_run(&qp->q, skb); |
| 439 | } else { |
| 440 | /* Binary search. Note that skb can become the first fragment, |
| 441 | * but not the last (covered above). |
| 442 | */ |
| 443 | rbn = &qp->q.rb_fragments.rb_node; |
| 444 | do { |
| 445 | parent = *rbn; |
| 446 | skb1 = rb_to_skb(parent); |
| 447 | if (end <= skb1->ip_defrag_offset) |
| 448 | rbn = &parent->rb_left; |
| 449 | else if (offset >= skb1->ip_defrag_offset + |
| 450 | FRAG_CB(skb1)->frag_run_len) |
| 451 | rbn = &parent->rb_right; |
| 452 | else /* Found an overlap with skb1. */ |
| 453 | goto discard_qp; |
| 454 | } while (*rbn); |
| 455 | /* Here we have parent properly set, and rbn pointing to |
| 456 | * one of its NULL left/right children. Insert skb. |
| 457 | */ |
| 458 | ip4_frag_init_run(skb); |
| 459 | rb_link_node(&skb->rbnode, parent, rbn); |
| 460 | rb_insert_color(&skb->rbnode, &qp->q.rb_fragments); |
| 461 | } |
| 462 | |
| 463 | if (dev) |
| 464 | qp->iif = dev->ifindex; |
| 465 | skb->ip_defrag_offset = offset; |
| 466 | |
| 467 | qp->q.stamp = skb->tstamp; |
| 468 | qp->q.meat += skb->len; |
| 469 | qp->ecn |= ecn; |
| 470 | add_frag_mem_limit(qp->q.net, skb->truesize); |
| 471 | if (offset == 0) |
| 472 | qp->q.flags |= INET_FRAG_FIRST_IN; |
| 473 | |
| 474 | fragsize = skb->len + ihl; |
| 475 | |
| 476 | if (fragsize > qp->q.max_size) |
| 477 | qp->q.max_size = fragsize; |
| 478 | |
| 479 | if (ip_hdr(skb)->frag_off & htons(IP_DF) && |
| 480 | fragsize > qp->max_df_size) |
| 481 | qp->max_df_size = fragsize; |
| 482 | |
| 483 | if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && |
| 484 | qp->q.meat == qp->q.len) { |
| 485 | unsigned long orefdst = skb->_skb_refdst; |
| 486 | |
| 487 | skb->_skb_refdst = 0UL; |
| 488 | err = ip_frag_reasm(qp, skb, prev_tail, dev); |
| 489 | skb->_skb_refdst = orefdst; |
| 490 | return err; |
| 491 | } |
| 492 | |
| 493 | skb_dst_drop(skb); |
| 494 | return -EINPROGRESS; |
| 495 | |
| 496 | discard_qp: |
| 497 | inet_frag_kill(&qp->q); |
| 498 | err = -EINVAL; |
| 499 | __IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS); |
| 500 | err: |
| 501 | kfree_skb(skb); |
| 502 | return err; |
| 503 | } |
| 504 | |
| 505 | /* Build a new IP datagram from all its fragments. */ |
| 506 | static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, |
| 507 | struct sk_buff *prev_tail, struct net_device *dev) |
| 508 | { |
| 509 | struct net *net = container_of(qp->q.net, struct net, ipv4.frags); |
| 510 | struct iphdr *iph; |
| 511 | struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments); |
| 512 | struct sk_buff **nextp; /* To build frag_list. */ |
| 513 | struct rb_node *rbn; |
| 514 | int len; |
| 515 | int ihlen; |
| 516 | int delta; |
| 517 | int err; |
| 518 | u8 ecn; |
| 519 | |
| 520 | ipq_kill(qp); |
| 521 | |
| 522 | ecn = ip_frag_ecn_table[qp->ecn]; |
| 523 | if (unlikely(ecn == 0xff)) { |
| 524 | err = -EINVAL; |
| 525 | goto out_fail; |
| 526 | } |
| 527 | /* Make the one we just received the head. */ |
| 528 | if (head != skb) { |
| 529 | fp = skb_clone(skb, GFP_ATOMIC); |
| 530 | if (!fp) |
| 531 | goto out_nomem; |
| 532 | FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; |
| 533 | if (RB_EMPTY_NODE(&skb->rbnode)) |
| 534 | FRAG_CB(prev_tail)->next_frag = fp; |
| 535 | else |
| 536 | rb_replace_node(&skb->rbnode, &fp->rbnode, |
| 537 | &qp->q.rb_fragments); |
| 538 | if (qp->q.fragments_tail == skb) |
| 539 | qp->q.fragments_tail = fp; |
| 540 | skb_morph(skb, head); |
| 541 | FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; |
| 542 | rb_replace_node(&head->rbnode, &skb->rbnode, |
| 543 | &qp->q.rb_fragments); |
| 544 | consume_skb(head); |
| 545 | head = skb; |
| 546 | } |
| 547 | |
| 548 | WARN_ON(head->ip_defrag_offset != 0); |
| 549 | |
| 550 | /* Allocate a new buffer for the datagram. */ |
| 551 | ihlen = ip_hdrlen(head); |
| 552 | len = ihlen + qp->q.len; |
| 553 | |
| 554 | err = -E2BIG; |
| 555 | if (len > 65535) |
| 556 | goto out_oversize; |
| 557 | |
| 558 | delta = - head->truesize; |
| 559 | |
| 560 | /* Head of list must not be cloned. */ |
| 561 | if (skb_unclone(head, GFP_ATOMIC)) |
| 562 | goto out_nomem; |
| 563 | |
| 564 | delta += head->truesize; |
| 565 | if (delta) |
| 566 | add_frag_mem_limit(qp->q.net, delta); |
| 567 | |
| 568 | /* If the first fragment is fragmented itself, we split |
| 569 | * it to two chunks: the first with data and paged part |
| 570 | * and the second, holding only fragments. */ |
| 571 | if (skb_has_frag_list(head)) { |
| 572 | struct sk_buff *clone; |
| 573 | int i, plen = 0; |
| 574 | |
| 575 | clone = alloc_skb(0, GFP_ATOMIC); |
| 576 | if (!clone) |
| 577 | goto out_nomem; |
| 578 | skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; |
| 579 | skb_frag_list_init(head); |
| 580 | for (i = 0; i < skb_shinfo(head)->nr_frags; i++) |
| 581 | plen += skb_frag_size(&skb_shinfo(head)->frags[i]); |
| 582 | clone->len = clone->data_len = head->data_len - plen; |
| 583 | head->truesize += clone->truesize; |
| 584 | clone->csum = 0; |
| 585 | clone->ip_summed = head->ip_summed; |
| 586 | add_frag_mem_limit(qp->q.net, clone->truesize); |
| 587 | skb_shinfo(head)->frag_list = clone; |
| 588 | nextp = &clone->next; |
| 589 | } else { |
| 590 | nextp = &skb_shinfo(head)->frag_list; |
| 591 | } |
| 592 | |
| 593 | skb_push(head, head->data - skb_network_header(head)); |
| 594 | |
| 595 | /* Traverse the tree in order, to build frag_list. */ |
| 596 | fp = FRAG_CB(head)->next_frag; |
| 597 | rbn = rb_next(&head->rbnode); |
| 598 | rb_erase(&head->rbnode, &qp->q.rb_fragments); |
| 599 | while (rbn || fp) { |
| 600 | /* fp points to the next sk_buff in the current run; |
| 601 | * rbn points to the next run. |
| 602 | */ |
| 603 | /* Go through the current run. */ |
| 604 | while (fp) { |
| 605 | *nextp = fp; |
| 606 | nextp = &fp->next; |
| 607 | fp->prev = NULL; |
| 608 | memset(&fp->rbnode, 0, sizeof(fp->rbnode)); |
| 609 | fp->sk = NULL; |
| 610 | head->data_len += fp->len; |
| 611 | head->len += fp->len; |
| 612 | if (head->ip_summed != fp->ip_summed) |
| 613 | head->ip_summed = CHECKSUM_NONE; |
| 614 | else if (head->ip_summed == CHECKSUM_COMPLETE) |
| 615 | head->csum = csum_add(head->csum, fp->csum); |
| 616 | head->truesize += fp->truesize; |
| 617 | fp = FRAG_CB(fp)->next_frag; |
| 618 | } |
| 619 | /* Move to the next run. */ |
| 620 | if (rbn) { |
| 621 | struct rb_node *rbnext = rb_next(rbn); |
| 622 | |
| 623 | fp = rb_to_skb(rbn); |
| 624 | rb_erase(rbn, &qp->q.rb_fragments); |
| 625 | rbn = rbnext; |
| 626 | } |
| 627 | } |
| 628 | sub_frag_mem_limit(qp->q.net, head->truesize); |
| 629 | |
| 630 | *nextp = NULL; |
| 631 | head->next = NULL; |
| 632 | head->prev = NULL; |
| 633 | head->dev = dev; |
| 634 | head->tstamp = qp->q.stamp; |
| 635 | IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size); |
| 636 | |
| 637 | iph = ip_hdr(head); |
| 638 | iph->tot_len = htons(len); |
| 639 | iph->tos |= ecn; |
| 640 | |
| 641 | /* When we set IP_DF on a refragmented skb we must also force a |
| 642 | * call to ip_fragment to avoid forwarding a DF-skb of size s while |
| 643 | * original sender only sent fragments of size f (where f < s). |
| 644 | * |
| 645 | * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest |
| 646 | * frag seen to avoid sending tiny DF-fragments in case skb was built |
| 647 | * from one very small df-fragment and one large non-df frag. |
| 648 | */ |
| 649 | if (qp->max_df_size == qp->q.max_size) { |
| 650 | IPCB(head)->flags |= IPSKB_FRAG_PMTU; |
| 651 | iph->frag_off = htons(IP_DF); |
| 652 | } else { |
| 653 | iph->frag_off = 0; |
| 654 | } |
| 655 | |
| 656 | ip_send_check(iph); |
| 657 | |
| 658 | __IP_INC_STATS(net, IPSTATS_MIB_REASMOKS); |
| 659 | qp->q.fragments = NULL; |
| 660 | qp->q.rb_fragments = RB_ROOT; |
| 661 | qp->q.fragments_tail = NULL; |
| 662 | qp->q.last_run_head = NULL; |
| 663 | return 0; |
| 664 | |
| 665 | out_nomem: |
| 666 | net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp); |
| 667 | err = -ENOMEM; |
| 668 | goto out_fail; |
| 669 | out_oversize: |
| 670 | net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->q.key.v4.saddr); |
| 671 | out_fail: |
| 672 | __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); |
| 673 | return err; |
| 674 | } |
| 675 | |
| 676 | /* Process an incoming IP datagram fragment. */ |
| 677 | int ip_defrag(struct net *net, struct sk_buff *skb, u32 user) |
| 678 | { |
| 679 | struct net_device *dev = skb->dev ? : skb_dst(skb)->dev; |
| 680 | int vif = l3mdev_master_ifindex_rcu(dev); |
| 681 | struct ipq *qp; |
| 682 | |
| 683 | __IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS); |
| 684 | skb_orphan(skb); |
| 685 | |
| 686 | /* Lookup (or create) queue header */ |
| 687 | qp = ip_find(net, ip_hdr(skb), user, vif); |
| 688 | if (qp) { |
| 689 | int ret; |
| 690 | |
| 691 | spin_lock(&qp->q.lock); |
| 692 | |
| 693 | ret = ip_frag_queue(qp, skb); |
| 694 | |
| 695 | spin_unlock(&qp->q.lock); |
| 696 | ipq_put(qp); |
| 697 | return ret; |
| 698 | } |
| 699 | |
| 700 | __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); |
| 701 | kfree_skb(skb); |
| 702 | return -ENOMEM; |
| 703 | } |
| 704 | EXPORT_SYMBOL(ip_defrag); |
| 705 | |
| 706 | struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user) |
| 707 | { |
| 708 | struct iphdr iph; |
| 709 | int netoff; |
| 710 | u32 len; |
| 711 | |
| 712 | if (skb->protocol != htons(ETH_P_IP)) |
| 713 | return skb; |
| 714 | |
| 715 | netoff = skb_network_offset(skb); |
| 716 | |
| 717 | if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0) |
| 718 | return skb; |
| 719 | |
| 720 | if (iph.ihl < 5 || iph.version != 4) |
| 721 | return skb; |
| 722 | |
| 723 | len = ntohs(iph.tot_len); |
| 724 | if (skb->len < netoff + len || len < (iph.ihl * 4)) |
| 725 | return skb; |
| 726 | |
| 727 | if (ip_is_fragment(&iph)) { |
| 728 | skb = skb_share_check(skb, GFP_ATOMIC); |
| 729 | if (skb) { |
| 730 | if (!pskb_may_pull(skb, netoff + iph.ihl * 4)) { |
| 731 | kfree_skb(skb); |
| 732 | return NULL; |
| 733 | } |
| 734 | if (pskb_trim_rcsum(skb, netoff + len)) { |
| 735 | kfree_skb(skb); |
| 736 | return NULL; |
| 737 | } |
| 738 | memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); |
| 739 | if (ip_defrag(net, skb, user)) |
| 740 | return NULL; |
| 741 | skb_clear_hash(skb); |
| 742 | } |
| 743 | } |
| 744 | return skb; |
| 745 | } |
| 746 | EXPORT_SYMBOL(ip_check_defrag); |
| 747 | |
| 748 | unsigned int inet_frag_rbtree_purge(struct rb_root *root) |
| 749 | { |
| 750 | struct rb_node *p = rb_first(root); |
| 751 | unsigned int sum = 0; |
| 752 | |
| 753 | while (p) { |
| 754 | struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); |
| 755 | |
| 756 | p = rb_next(p); |
| 757 | rb_erase(&skb->rbnode, root); |
| 758 | while (skb) { |
| 759 | struct sk_buff *next = FRAG_CB(skb)->next_frag; |
| 760 | |
| 761 | sum += skb->truesize; |
| 762 | kfree_skb(skb); |
| 763 | skb = next; |
| 764 | } |
| 765 | } |
| 766 | return sum; |
| 767 | } |
| 768 | EXPORT_SYMBOL(inet_frag_rbtree_purge); |
| 769 | |
| 770 | #ifdef CONFIG_SYSCTL |
| 771 | static int dist_min; |
| 772 | |
| 773 | static struct ctl_table ip4_frags_ns_ctl_table[] = { |
| 774 | { |
| 775 | .procname = "ipfrag_high_thresh", |
| 776 | .data = &init_net.ipv4.frags.high_thresh, |
| 777 | .maxlen = sizeof(unsigned long), |
| 778 | .mode = 0644, |
| 779 | .proc_handler = proc_doulongvec_minmax, |
| 780 | .extra1 = &init_net.ipv4.frags.low_thresh |
| 781 | }, |
| 782 | { |
| 783 | .procname = "ipfrag_low_thresh", |
| 784 | .data = &init_net.ipv4.frags.low_thresh, |
| 785 | .maxlen = sizeof(unsigned long), |
| 786 | .mode = 0644, |
| 787 | .proc_handler = proc_doulongvec_minmax, |
| 788 | .extra2 = &init_net.ipv4.frags.high_thresh |
| 789 | }, |
| 790 | { |
| 791 | .procname = "ipfrag_time", |
| 792 | .data = &init_net.ipv4.frags.timeout, |
| 793 | .maxlen = sizeof(int), |
| 794 | .mode = 0644, |
| 795 | .proc_handler = proc_dointvec_jiffies, |
| 796 | }, |
| 797 | { |
| 798 | .procname = "ipfrag_max_dist", |
| 799 | .data = &init_net.ipv4.frags.max_dist, |
| 800 | .maxlen = sizeof(int), |
| 801 | .mode = 0644, |
| 802 | .proc_handler = proc_dointvec_minmax, |
| 803 | .extra1 = &dist_min, |
| 804 | }, |
| 805 | { } |
| 806 | }; |
| 807 | |
| 808 | /* secret interval has been deprecated */ |
| 809 | static int ip4_frags_secret_interval_unused; |
| 810 | static struct ctl_table ip4_frags_ctl_table[] = { |
| 811 | { |
| 812 | .procname = "ipfrag_secret_interval", |
| 813 | .data = &ip4_frags_secret_interval_unused, |
| 814 | .maxlen = sizeof(int), |
| 815 | .mode = 0644, |
| 816 | .proc_handler = proc_dointvec_jiffies, |
| 817 | }, |
| 818 | { } |
| 819 | }; |
| 820 | |
| 821 | static int __net_init ip4_frags_ns_ctl_register(struct net *net) |
| 822 | { |
| 823 | struct ctl_table *table; |
| 824 | struct ctl_table_header *hdr; |
| 825 | |
| 826 | table = ip4_frags_ns_ctl_table; |
| 827 | if (!net_eq(net, &init_net)) { |
| 828 | table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL); |
| 829 | if (!table) |
| 830 | goto err_alloc; |
| 831 | |
| 832 | table[0].data = &net->ipv4.frags.high_thresh; |
| 833 | table[0].extra1 = &net->ipv4.frags.low_thresh; |
| 834 | table[0].extra2 = &init_net.ipv4.frags.high_thresh; |
| 835 | table[1].data = &net->ipv4.frags.low_thresh; |
| 836 | table[1].extra2 = &net->ipv4.frags.high_thresh; |
| 837 | table[2].data = &net->ipv4.frags.timeout; |
| 838 | table[3].data = &net->ipv4.frags.max_dist; |
| 839 | } |
| 840 | |
| 841 | hdr = register_net_sysctl(net, "net/ipv4", table); |
| 842 | if (!hdr) |
| 843 | goto err_reg; |
| 844 | |
| 845 | net->ipv4.frags_hdr = hdr; |
| 846 | return 0; |
| 847 | |
| 848 | err_reg: |
| 849 | if (!net_eq(net, &init_net)) |
| 850 | kfree(table); |
| 851 | err_alloc: |
| 852 | return -ENOMEM; |
| 853 | } |
| 854 | |
| 855 | static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net) |
| 856 | { |
| 857 | struct ctl_table *table; |
| 858 | |
| 859 | table = net->ipv4.frags_hdr->ctl_table_arg; |
| 860 | unregister_net_sysctl_table(net->ipv4.frags_hdr); |
| 861 | kfree(table); |
| 862 | } |
| 863 | |
| 864 | static void __init ip4_frags_ctl_register(void) |
| 865 | { |
| 866 | register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table); |
| 867 | } |
| 868 | #else |
| 869 | static int ip4_frags_ns_ctl_register(struct net *net) |
| 870 | { |
| 871 | return 0; |
| 872 | } |
| 873 | |
| 874 | static void ip4_frags_ns_ctl_unregister(struct net *net) |
| 875 | { |
| 876 | } |
| 877 | |
| 878 | static void __init ip4_frags_ctl_register(void) |
| 879 | { |
| 880 | } |
| 881 | #endif |
| 882 | |
| 883 | static int __net_init ipv4_frags_init_net(struct net *net) |
| 884 | { |
| 885 | int res; |
| 886 | |
| 887 | /* Fragment cache limits. |
| 888 | * |
| 889 | * The fragment memory accounting code, (tries to) account for |
| 890 | * the real memory usage, by measuring both the size of frag |
| 891 | * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue)) |
| 892 | * and the SKB's truesize. |
| 893 | * |
| 894 | * A 64K fragment consumes 129736 bytes (44*2944)+200 |
| 895 | * (1500 truesize == 2944, sizeof(struct ipq) == 200) |
| 896 | * |
| 897 | * We will commit 4MB at one time. Should we cross that limit |
| 898 | * we will prune down to 3MB, making room for approx 8 big 64K |
| 899 | * fragments 8x128k. |
| 900 | */ |
| 901 | net->ipv4.frags.high_thresh = 4 * 1024 * 1024; |
| 902 | net->ipv4.frags.low_thresh = 3 * 1024 * 1024; |
| 903 | /* |
| 904 | * Important NOTE! Fragment queue must be destroyed before MSL expires. |
| 905 | * RFC791 is wrong proposing to prolongate timer each fragment arrival |
| 906 | * by TTL. |
| 907 | */ |
| 908 | net->ipv4.frags.timeout = IP_FRAG_TIME; |
| 909 | |
| 910 | net->ipv4.frags.max_dist = 64; |
| 911 | net->ipv4.frags.f = &ip4_frags; |
| 912 | |
| 913 | res = inet_frags_init_net(&net->ipv4.frags); |
| 914 | if (res < 0) |
| 915 | return res; |
| 916 | res = ip4_frags_ns_ctl_register(net); |
| 917 | if (res < 0) |
| 918 | inet_frags_exit_net(&net->ipv4.frags); |
| 919 | return res; |
| 920 | } |
| 921 | |
| 922 | static void __net_exit ipv4_frags_exit_net(struct net *net) |
| 923 | { |
| 924 | ip4_frags_ns_ctl_unregister(net); |
| 925 | inet_frags_exit_net(&net->ipv4.frags); |
| 926 | } |
| 927 | |
| 928 | static struct pernet_operations ip4_frags_ops = { |
| 929 | .init = ipv4_frags_init_net, |
| 930 | .exit = ipv4_frags_exit_net, |
| 931 | }; |
| 932 | |
| 933 | |
| 934 | static u32 ip4_key_hashfn(const void *data, u32 len, u32 seed) |
| 935 | { |
| 936 | return jhash2(data, |
| 937 | sizeof(struct frag_v4_compare_key) / sizeof(u32), seed); |
| 938 | } |
| 939 | |
| 940 | static u32 ip4_obj_hashfn(const void *data, u32 len, u32 seed) |
| 941 | { |
| 942 | const struct inet_frag_queue *fq = data; |
| 943 | |
| 944 | return jhash2((const u32 *)&fq->key.v4, |
| 945 | sizeof(struct frag_v4_compare_key) / sizeof(u32), seed); |
| 946 | } |
| 947 | |
| 948 | static int ip4_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr) |
| 949 | { |
| 950 | const struct frag_v4_compare_key *key = arg->key; |
| 951 | const struct inet_frag_queue *fq = ptr; |
| 952 | |
| 953 | return !!memcmp(&fq->key, key, sizeof(*key)); |
| 954 | } |
| 955 | |
| 956 | static const struct rhashtable_params ip4_rhash_params = { |
| 957 | .head_offset = offsetof(struct inet_frag_queue, node), |
| 958 | .key_offset = offsetof(struct inet_frag_queue, key), |
| 959 | .key_len = sizeof(struct frag_v4_compare_key), |
| 960 | .hashfn = ip4_key_hashfn, |
| 961 | .obj_hashfn = ip4_obj_hashfn, |
| 962 | .obj_cmpfn = ip4_obj_cmpfn, |
| 963 | .automatic_shrinking = true, |
| 964 | }; |
| 965 | |
| 966 | void __init ipfrag_init(void) |
| 967 | { |
| 968 | ip4_frags.constructor = ip4_frag_init; |
| 969 | ip4_frags.destructor = ip4_frag_free; |
| 970 | ip4_frags.qsize = sizeof(struct ipq); |
| 971 | ip4_frags.frag_expire = ip_expire; |
| 972 | ip4_frags.frags_cache_name = ip_frag_cache_name; |
| 973 | ip4_frags.rhash_params = ip4_rhash_params; |
| 974 | if (inet_frags_init(&ip4_frags)) |
| 975 | panic("IP: failed to allocate ip4_frags cache\n"); |
| 976 | ip4_frags_ctl_register(); |
| 977 | register_pernet_subsys(&ip4_frags_ops); |
| 978 | } |