Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * NTP state machine interfaces and logic. |
| 4 | * |
| 5 | * This code was mainly moved from kernel/timer.c and kernel/time.c |
| 6 | * Please see those files for relevant copyright info and historical |
| 7 | * changelogs. |
| 8 | */ |
| 9 | #include <linux/capability.h> |
| 10 | #include <linux/clocksource.h> |
| 11 | #include <linux/workqueue.h> |
| 12 | #include <linux/hrtimer.h> |
| 13 | #include <linux/jiffies.h> |
| 14 | #include <linux/math64.h> |
| 15 | #include <linux/timex.h> |
| 16 | #include <linux/time.h> |
| 17 | #include <linux/mm.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/rtc.h> |
| 20 | #include <linux/math64.h> |
| 21 | |
| 22 | #include "ntp_internal.h" |
| 23 | #include "timekeeping_internal.h" |
| 24 | |
| 25 | |
| 26 | /* |
| 27 | * NTP timekeeping variables: |
| 28 | * |
| 29 | * Note: All of the NTP state is protected by the timekeeping locks. |
| 30 | */ |
| 31 | |
| 32 | |
| 33 | /* USER_HZ period (usecs): */ |
| 34 | unsigned long tick_usec = USER_TICK_USEC; |
| 35 | |
| 36 | /* SHIFTED_HZ period (nsecs): */ |
| 37 | unsigned long tick_nsec; |
| 38 | |
| 39 | static u64 tick_length; |
| 40 | static u64 tick_length_base; |
| 41 | |
| 42 | #define SECS_PER_DAY 86400 |
| 43 | #define MAX_TICKADJ 500LL /* usecs */ |
| 44 | #define MAX_TICKADJ_SCALED \ |
| 45 | (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) |
| 46 | |
| 47 | /* |
| 48 | * phase-lock loop variables |
| 49 | */ |
| 50 | |
| 51 | /* |
| 52 | * clock synchronization status |
| 53 | * |
| 54 | * (TIME_ERROR prevents overwriting the CMOS clock) |
| 55 | */ |
| 56 | static int time_state = TIME_OK; |
| 57 | |
| 58 | /* clock status bits: */ |
| 59 | static int time_status = STA_UNSYNC; |
| 60 | |
| 61 | /* time adjustment (nsecs): */ |
| 62 | static s64 time_offset; |
| 63 | |
| 64 | /* pll time constant: */ |
| 65 | static long time_constant = 2; |
| 66 | |
| 67 | /* maximum error (usecs): */ |
| 68 | static long time_maxerror = NTP_PHASE_LIMIT; |
| 69 | |
| 70 | /* estimated error (usecs): */ |
| 71 | static long time_esterror = NTP_PHASE_LIMIT; |
| 72 | |
| 73 | /* frequency offset (scaled nsecs/secs): */ |
| 74 | static s64 time_freq; |
| 75 | |
| 76 | /* time at last adjustment (secs): */ |
| 77 | static time64_t time_reftime; |
| 78 | |
| 79 | static long time_adjust; |
| 80 | |
| 81 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ |
| 82 | static s64 ntp_tick_adj; |
| 83 | |
| 84 | /* second value of the next pending leapsecond, or TIME64_MAX if no leap */ |
| 85 | static time64_t ntp_next_leap_sec = TIME64_MAX; |
| 86 | |
| 87 | #ifdef CONFIG_NTP_PPS |
| 88 | |
| 89 | /* |
| 90 | * The following variables are used when a pulse-per-second (PPS) signal |
| 91 | * is available. They establish the engineering parameters of the clock |
| 92 | * discipline loop when controlled by the PPS signal. |
| 93 | */ |
| 94 | #define PPS_VALID 10 /* PPS signal watchdog max (s) */ |
| 95 | #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */ |
| 96 | #define PPS_INTMIN 2 /* min freq interval (s) (shift) */ |
| 97 | #define PPS_INTMAX 8 /* max freq interval (s) (shift) */ |
| 98 | #define PPS_INTCOUNT 4 /* number of consecutive good intervals to |
| 99 | increase pps_shift or consecutive bad |
| 100 | intervals to decrease it */ |
| 101 | #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */ |
| 102 | |
| 103 | static int pps_valid; /* signal watchdog counter */ |
| 104 | static long pps_tf[3]; /* phase median filter */ |
| 105 | static long pps_jitter; /* current jitter (ns) */ |
| 106 | static struct timespec64 pps_fbase; /* beginning of the last freq interval */ |
| 107 | static int pps_shift; /* current interval duration (s) (shift) */ |
| 108 | static int pps_intcnt; /* interval counter */ |
| 109 | static s64 pps_freq; /* frequency offset (scaled ns/s) */ |
| 110 | static long pps_stabil; /* current stability (scaled ns/s) */ |
| 111 | |
| 112 | /* |
| 113 | * PPS signal quality monitors |
| 114 | */ |
| 115 | static long pps_calcnt; /* calibration intervals */ |
| 116 | static long pps_jitcnt; /* jitter limit exceeded */ |
| 117 | static long pps_stbcnt; /* stability limit exceeded */ |
| 118 | static long pps_errcnt; /* calibration errors */ |
| 119 | |
| 120 | |
| 121 | /* PPS kernel consumer compensates the whole phase error immediately. |
| 122 | * Otherwise, reduce the offset by a fixed factor times the time constant. |
| 123 | */ |
| 124 | static inline s64 ntp_offset_chunk(s64 offset) |
| 125 | { |
| 126 | if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) |
| 127 | return offset; |
| 128 | else |
| 129 | return shift_right(offset, SHIFT_PLL + time_constant); |
| 130 | } |
| 131 | |
| 132 | static inline void pps_reset_freq_interval(void) |
| 133 | { |
| 134 | /* the PPS calibration interval may end |
| 135 | surprisingly early */ |
| 136 | pps_shift = PPS_INTMIN; |
| 137 | pps_intcnt = 0; |
| 138 | } |
| 139 | |
| 140 | /** |
| 141 | * pps_clear - Clears the PPS state variables |
| 142 | */ |
| 143 | static inline void pps_clear(void) |
| 144 | { |
| 145 | pps_reset_freq_interval(); |
| 146 | pps_tf[0] = 0; |
| 147 | pps_tf[1] = 0; |
| 148 | pps_tf[2] = 0; |
| 149 | pps_fbase.tv_sec = pps_fbase.tv_nsec = 0; |
| 150 | pps_freq = 0; |
| 151 | } |
| 152 | |
| 153 | /* Decrease pps_valid to indicate that another second has passed since |
| 154 | * the last PPS signal. When it reaches 0, indicate that PPS signal is |
| 155 | * missing. |
| 156 | */ |
| 157 | static inline void pps_dec_valid(void) |
| 158 | { |
| 159 | if (pps_valid > 0) |
| 160 | pps_valid--; |
| 161 | else { |
| 162 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | |
| 163 | STA_PPSWANDER | STA_PPSERROR); |
| 164 | pps_clear(); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | static inline void pps_set_freq(s64 freq) |
| 169 | { |
| 170 | pps_freq = freq; |
| 171 | } |
| 172 | |
| 173 | static inline int is_error_status(int status) |
| 174 | { |
| 175 | return (status & (STA_UNSYNC|STA_CLOCKERR)) |
| 176 | /* PPS signal lost when either PPS time or |
| 177 | * PPS frequency synchronization requested |
| 178 | */ |
| 179 | || ((status & (STA_PPSFREQ|STA_PPSTIME)) |
| 180 | && !(status & STA_PPSSIGNAL)) |
| 181 | /* PPS jitter exceeded when |
| 182 | * PPS time synchronization requested */ |
| 183 | || ((status & (STA_PPSTIME|STA_PPSJITTER)) |
| 184 | == (STA_PPSTIME|STA_PPSJITTER)) |
| 185 | /* PPS wander exceeded or calibration error when |
| 186 | * PPS frequency synchronization requested |
| 187 | */ |
| 188 | || ((status & STA_PPSFREQ) |
| 189 | && (status & (STA_PPSWANDER|STA_PPSERROR))); |
| 190 | } |
| 191 | |
| 192 | static inline void pps_fill_timex(struct timex *txc) |
| 193 | { |
| 194 | txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) * |
| 195 | PPM_SCALE_INV, NTP_SCALE_SHIFT); |
| 196 | txc->jitter = pps_jitter; |
| 197 | if (!(time_status & STA_NANO)) |
| 198 | txc->jitter /= NSEC_PER_USEC; |
| 199 | txc->shift = pps_shift; |
| 200 | txc->stabil = pps_stabil; |
| 201 | txc->jitcnt = pps_jitcnt; |
| 202 | txc->calcnt = pps_calcnt; |
| 203 | txc->errcnt = pps_errcnt; |
| 204 | txc->stbcnt = pps_stbcnt; |
| 205 | } |
| 206 | |
| 207 | #else /* !CONFIG_NTP_PPS */ |
| 208 | |
| 209 | static inline s64 ntp_offset_chunk(s64 offset) |
| 210 | { |
| 211 | return shift_right(offset, SHIFT_PLL + time_constant); |
| 212 | } |
| 213 | |
| 214 | static inline void pps_reset_freq_interval(void) {} |
| 215 | static inline void pps_clear(void) {} |
| 216 | static inline void pps_dec_valid(void) {} |
| 217 | static inline void pps_set_freq(s64 freq) {} |
| 218 | |
| 219 | static inline int is_error_status(int status) |
| 220 | { |
| 221 | return status & (STA_UNSYNC|STA_CLOCKERR); |
| 222 | } |
| 223 | |
| 224 | static inline void pps_fill_timex(struct timex *txc) |
| 225 | { |
| 226 | /* PPS is not implemented, so these are zero */ |
| 227 | txc->ppsfreq = 0; |
| 228 | txc->jitter = 0; |
| 229 | txc->shift = 0; |
| 230 | txc->stabil = 0; |
| 231 | txc->jitcnt = 0; |
| 232 | txc->calcnt = 0; |
| 233 | txc->errcnt = 0; |
| 234 | txc->stbcnt = 0; |
| 235 | } |
| 236 | |
| 237 | #endif /* CONFIG_NTP_PPS */ |
| 238 | |
| 239 | |
| 240 | /** |
| 241 | * ntp_synced - Returns 1 if the NTP status is not UNSYNC |
| 242 | * |
| 243 | */ |
| 244 | static inline int ntp_synced(void) |
| 245 | { |
| 246 | return !(time_status & STA_UNSYNC); |
| 247 | } |
| 248 | |
| 249 | |
| 250 | /* |
| 251 | * NTP methods: |
| 252 | */ |
| 253 | |
| 254 | /* |
| 255 | * Update (tick_length, tick_length_base, tick_nsec), based |
| 256 | * on (tick_usec, ntp_tick_adj, time_freq): |
| 257 | */ |
| 258 | static void ntp_update_frequency(void) |
| 259 | { |
| 260 | u64 second_length; |
| 261 | u64 new_base; |
| 262 | |
| 263 | second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) |
| 264 | << NTP_SCALE_SHIFT; |
| 265 | |
| 266 | second_length += ntp_tick_adj; |
| 267 | second_length += time_freq; |
| 268 | |
| 269 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; |
| 270 | new_base = div_u64(second_length, NTP_INTERVAL_FREQ); |
| 271 | |
| 272 | /* |
| 273 | * Don't wait for the next second_overflow, apply |
| 274 | * the change to the tick length immediately: |
| 275 | */ |
| 276 | tick_length += new_base - tick_length_base; |
| 277 | tick_length_base = new_base; |
| 278 | } |
| 279 | |
| 280 | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) |
| 281 | { |
| 282 | time_status &= ~STA_MODE; |
| 283 | |
| 284 | if (secs < MINSEC) |
| 285 | return 0; |
| 286 | |
| 287 | if (!(time_status & STA_FLL) && (secs <= MAXSEC)) |
| 288 | return 0; |
| 289 | |
| 290 | time_status |= STA_MODE; |
| 291 | |
| 292 | return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); |
| 293 | } |
| 294 | |
| 295 | static void ntp_update_offset(long offset) |
| 296 | { |
| 297 | s64 freq_adj; |
| 298 | s64 offset64; |
| 299 | long secs; |
| 300 | |
| 301 | if (!(time_status & STA_PLL)) |
| 302 | return; |
| 303 | |
| 304 | if (!(time_status & STA_NANO)) { |
| 305 | /* Make sure the multiplication below won't overflow */ |
| 306 | offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC); |
| 307 | offset *= NSEC_PER_USEC; |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | * Scale the phase adjustment and |
| 312 | * clamp to the operating range. |
| 313 | */ |
| 314 | offset = clamp(offset, -MAXPHASE, MAXPHASE); |
| 315 | |
| 316 | /* |
| 317 | * Select how the frequency is to be controlled |
| 318 | * and in which mode (PLL or FLL). |
| 319 | */ |
| 320 | secs = (long)(__ktime_get_real_seconds() - time_reftime); |
| 321 | if (unlikely(time_status & STA_FREQHOLD)) |
| 322 | secs = 0; |
| 323 | |
| 324 | time_reftime = __ktime_get_real_seconds(); |
| 325 | |
| 326 | offset64 = offset; |
| 327 | freq_adj = ntp_update_offset_fll(offset64, secs); |
| 328 | |
| 329 | /* |
| 330 | * Clamp update interval to reduce PLL gain with low |
| 331 | * sampling rate (e.g. intermittent network connection) |
| 332 | * to avoid instability. |
| 333 | */ |
| 334 | if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant))) |
| 335 | secs = 1 << (SHIFT_PLL + 1 + time_constant); |
| 336 | |
| 337 | freq_adj += (offset64 * secs) << |
| 338 | (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); |
| 339 | |
| 340 | freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); |
| 341 | |
| 342 | time_freq = max(freq_adj, -MAXFREQ_SCALED); |
| 343 | |
| 344 | time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); |
| 345 | } |
| 346 | |
| 347 | /** |
| 348 | * ntp_clear - Clears the NTP state variables |
| 349 | */ |
| 350 | void ntp_clear(void) |
| 351 | { |
| 352 | time_adjust = 0; /* stop active adjtime() */ |
| 353 | time_status |= STA_UNSYNC; |
| 354 | time_maxerror = NTP_PHASE_LIMIT; |
| 355 | time_esterror = NTP_PHASE_LIMIT; |
| 356 | |
| 357 | ntp_update_frequency(); |
| 358 | |
| 359 | tick_length = tick_length_base; |
| 360 | time_offset = 0; |
| 361 | |
| 362 | ntp_next_leap_sec = TIME64_MAX; |
| 363 | /* Clear PPS state variables */ |
| 364 | pps_clear(); |
| 365 | } |
| 366 | |
| 367 | |
| 368 | u64 ntp_tick_length(void) |
| 369 | { |
| 370 | return tick_length; |
| 371 | } |
| 372 | |
| 373 | /** |
| 374 | * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t |
| 375 | * |
| 376 | * Provides the time of the next leapsecond against CLOCK_REALTIME in |
| 377 | * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending. |
| 378 | */ |
| 379 | ktime_t ntp_get_next_leap(void) |
| 380 | { |
| 381 | ktime_t ret; |
| 382 | |
| 383 | if ((time_state == TIME_INS) && (time_status & STA_INS)) |
| 384 | return ktime_set(ntp_next_leap_sec, 0); |
| 385 | ret = KTIME_MAX; |
| 386 | return ret; |
| 387 | } |
| 388 | |
| 389 | /* |
| 390 | * this routine handles the overflow of the microsecond field |
| 391 | * |
| 392 | * The tricky bits of code to handle the accurate clock support |
| 393 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. |
| 394 | * They were originally developed for SUN and DEC kernels. |
| 395 | * All the kudos should go to Dave for this stuff. |
| 396 | * |
| 397 | * Also handles leap second processing, and returns leap offset |
| 398 | */ |
| 399 | int second_overflow(time64_t secs) |
| 400 | { |
| 401 | s64 delta; |
| 402 | int leap = 0; |
| 403 | s32 rem; |
| 404 | |
| 405 | /* |
| 406 | * Leap second processing. If in leap-insert state at the end of the |
| 407 | * day, the system clock is set back one second; if in leap-delete |
| 408 | * state, the system clock is set ahead one second. |
| 409 | */ |
| 410 | switch (time_state) { |
| 411 | case TIME_OK: |
| 412 | if (time_status & STA_INS) { |
| 413 | time_state = TIME_INS; |
| 414 | div_s64_rem(secs, SECS_PER_DAY, &rem); |
| 415 | ntp_next_leap_sec = secs + SECS_PER_DAY - rem; |
| 416 | } else if (time_status & STA_DEL) { |
| 417 | time_state = TIME_DEL; |
| 418 | div_s64_rem(secs + 1, SECS_PER_DAY, &rem); |
| 419 | ntp_next_leap_sec = secs + SECS_PER_DAY - rem; |
| 420 | } |
| 421 | break; |
| 422 | case TIME_INS: |
| 423 | if (!(time_status & STA_INS)) { |
| 424 | ntp_next_leap_sec = TIME64_MAX; |
| 425 | time_state = TIME_OK; |
| 426 | } else if (secs == ntp_next_leap_sec) { |
| 427 | leap = -1; |
| 428 | time_state = TIME_OOP; |
| 429 | printk(KERN_NOTICE |
| 430 | "Clock: inserting leap second 23:59:60 UTC\n"); |
| 431 | } |
| 432 | break; |
| 433 | case TIME_DEL: |
| 434 | if (!(time_status & STA_DEL)) { |
| 435 | ntp_next_leap_sec = TIME64_MAX; |
| 436 | time_state = TIME_OK; |
| 437 | } else if (secs == ntp_next_leap_sec) { |
| 438 | leap = 1; |
| 439 | ntp_next_leap_sec = TIME64_MAX; |
| 440 | time_state = TIME_WAIT; |
| 441 | printk(KERN_NOTICE |
| 442 | "Clock: deleting leap second 23:59:59 UTC\n"); |
| 443 | } |
| 444 | break; |
| 445 | case TIME_OOP: |
| 446 | ntp_next_leap_sec = TIME64_MAX; |
| 447 | time_state = TIME_WAIT; |
| 448 | break; |
| 449 | case TIME_WAIT: |
| 450 | if (!(time_status & (STA_INS | STA_DEL))) |
| 451 | time_state = TIME_OK; |
| 452 | break; |
| 453 | } |
| 454 | |
| 455 | |
| 456 | /* Bump the maxerror field */ |
| 457 | time_maxerror += MAXFREQ / NSEC_PER_USEC; |
| 458 | if (time_maxerror > NTP_PHASE_LIMIT) { |
| 459 | time_maxerror = NTP_PHASE_LIMIT; |
| 460 | time_status |= STA_UNSYNC; |
| 461 | } |
| 462 | |
| 463 | /* Compute the phase adjustment for the next second */ |
| 464 | tick_length = tick_length_base; |
| 465 | |
| 466 | delta = ntp_offset_chunk(time_offset); |
| 467 | time_offset -= delta; |
| 468 | tick_length += delta; |
| 469 | |
| 470 | /* Check PPS signal */ |
| 471 | pps_dec_valid(); |
| 472 | |
| 473 | if (!time_adjust) |
| 474 | goto out; |
| 475 | |
| 476 | if (time_adjust > MAX_TICKADJ) { |
| 477 | time_adjust -= MAX_TICKADJ; |
| 478 | tick_length += MAX_TICKADJ_SCALED; |
| 479 | goto out; |
| 480 | } |
| 481 | |
| 482 | if (time_adjust < -MAX_TICKADJ) { |
| 483 | time_adjust += MAX_TICKADJ; |
| 484 | tick_length -= MAX_TICKADJ_SCALED; |
| 485 | goto out; |
| 486 | } |
| 487 | |
| 488 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) |
| 489 | << NTP_SCALE_SHIFT; |
| 490 | time_adjust = 0; |
| 491 | |
| 492 | out: |
| 493 | return leap; |
| 494 | } |
| 495 | |
| 496 | static void sync_hw_clock(struct work_struct *work); |
| 497 | static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock); |
| 498 | |
| 499 | static void sched_sync_hw_clock(struct timespec64 now, |
| 500 | unsigned long target_nsec, bool fail) |
| 501 | |
| 502 | { |
| 503 | struct timespec64 next; |
| 504 | |
| 505 | ktime_get_real_ts64(&next); |
| 506 | if (!fail) |
| 507 | next.tv_sec = 659; |
| 508 | else { |
| 509 | /* |
| 510 | * Try again as soon as possible. Delaying long periods |
| 511 | * decreases the accuracy of the work queue timer. Due to this |
| 512 | * the algorithm is very likely to require a short-sleep retry |
| 513 | * after the above long sleep to synchronize ts_nsec. |
| 514 | */ |
| 515 | next.tv_sec = 0; |
| 516 | } |
| 517 | |
| 518 | /* Compute the needed delay that will get to tv_nsec == target_nsec */ |
| 519 | next.tv_nsec = target_nsec - next.tv_nsec; |
| 520 | if (next.tv_nsec <= 0) |
| 521 | next.tv_nsec += NSEC_PER_SEC; |
| 522 | if (next.tv_nsec >= NSEC_PER_SEC) { |
| 523 | next.tv_sec++; |
| 524 | next.tv_nsec -= NSEC_PER_SEC; |
| 525 | } |
| 526 | |
| 527 | queue_delayed_work(system_power_efficient_wq, &sync_work, |
| 528 | timespec64_to_jiffies(&next)); |
| 529 | } |
| 530 | |
| 531 | static void sync_rtc_clock(void) |
| 532 | { |
| 533 | unsigned long target_nsec; |
| 534 | struct timespec64 adjust, now; |
| 535 | int rc; |
| 536 | |
| 537 | if (!IS_ENABLED(CONFIG_RTC_SYSTOHC)) |
| 538 | return; |
| 539 | |
| 540 | ktime_get_real_ts64(&now); |
| 541 | |
| 542 | adjust = now; |
| 543 | if (persistent_clock_is_local) |
| 544 | adjust.tv_sec -= (sys_tz.tz_minuteswest * 60); |
| 545 | |
| 546 | /* |
| 547 | * The current RTC in use will provide the target_nsec it wants to be |
| 548 | * called at, and does rtc_tv_nsec_ok internally. |
| 549 | */ |
| 550 | rc = rtc_set_ntp_time(adjust, &target_nsec); |
| 551 | if (rc == -ENODEV) |
| 552 | return; |
| 553 | |
| 554 | sched_sync_hw_clock(now, target_nsec, rc); |
| 555 | } |
| 556 | |
| 557 | #ifdef CONFIG_GENERIC_CMOS_UPDATE |
| 558 | int __weak update_persistent_clock(struct timespec now) |
| 559 | { |
| 560 | return -ENODEV; |
| 561 | } |
| 562 | |
| 563 | int __weak update_persistent_clock64(struct timespec64 now64) |
| 564 | { |
| 565 | struct timespec now; |
| 566 | |
| 567 | now = timespec64_to_timespec(now64); |
| 568 | return update_persistent_clock(now); |
| 569 | } |
| 570 | #endif |
| 571 | |
| 572 | static bool sync_cmos_clock(void) |
| 573 | { |
| 574 | static bool no_cmos; |
| 575 | struct timespec64 now; |
| 576 | struct timespec64 adjust; |
| 577 | int rc = -EPROTO; |
| 578 | long target_nsec = NSEC_PER_SEC / 2; |
| 579 | |
| 580 | if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE)) |
| 581 | return false; |
| 582 | |
| 583 | if (no_cmos) |
| 584 | return false; |
| 585 | |
| 586 | /* |
| 587 | * Historically update_persistent_clock64() has followed x86 |
| 588 | * semantics, which match the MC146818A/etc RTC. This RTC will store |
| 589 | * 'adjust' and then in .5s it will advance once second. |
| 590 | * |
| 591 | * Architectures are strongly encouraged to use rtclib and not |
| 592 | * implement this legacy API. |
| 593 | */ |
| 594 | ktime_get_real_ts64(&now); |
| 595 | if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) { |
| 596 | if (persistent_clock_is_local) |
| 597 | adjust.tv_sec -= (sys_tz.tz_minuteswest * 60); |
| 598 | rc = update_persistent_clock64(adjust); |
| 599 | /* |
| 600 | * The machine does not support update_persistent_clock64 even |
| 601 | * though it defines CONFIG_GENERIC_CMOS_UPDATE. |
| 602 | */ |
| 603 | if (rc == -ENODEV) { |
| 604 | no_cmos = true; |
| 605 | return false; |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | sched_sync_hw_clock(now, target_nsec, rc); |
| 610 | return true; |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * If we have an externally synchronized Linux clock, then update RTC clock |
| 615 | * accordingly every ~11 minutes. Generally RTCs can only store second |
| 616 | * precision, but many RTCs will adjust the phase of their second tick to |
| 617 | * match the moment of update. This infrastructure arranges to call to the RTC |
| 618 | * set at the correct moment to phase synchronize the RTC second tick over |
| 619 | * with the kernel clock. |
| 620 | */ |
| 621 | static void sync_hw_clock(struct work_struct *work) |
| 622 | { |
| 623 | if (!ntp_synced()) |
| 624 | return; |
| 625 | |
| 626 | if (sync_cmos_clock()) |
| 627 | return; |
| 628 | |
| 629 | sync_rtc_clock(); |
| 630 | } |
| 631 | |
| 632 | void ntp_notify_cmos_timer(void) |
| 633 | { |
| 634 | if (!ntp_synced()) |
| 635 | return; |
| 636 | |
| 637 | if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) || |
| 638 | IS_ENABLED(CONFIG_RTC_SYSTOHC)) |
| 639 | queue_delayed_work(system_power_efficient_wq, &sync_work, 0); |
| 640 | } |
| 641 | |
| 642 | /* |
| 643 | * Propagate a new txc->status value into the NTP state: |
| 644 | */ |
| 645 | static inline void process_adj_status(const struct timex *txc) |
| 646 | { |
| 647 | if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { |
| 648 | time_state = TIME_OK; |
| 649 | time_status = STA_UNSYNC; |
| 650 | ntp_next_leap_sec = TIME64_MAX; |
| 651 | /* restart PPS frequency calibration */ |
| 652 | pps_reset_freq_interval(); |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * If we turn on PLL adjustments then reset the |
| 657 | * reference time to current time. |
| 658 | */ |
| 659 | if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) |
| 660 | time_reftime = __ktime_get_real_seconds(); |
| 661 | |
| 662 | /* only set allowed bits */ |
| 663 | time_status &= STA_RONLY; |
| 664 | time_status |= txc->status & ~STA_RONLY; |
| 665 | } |
| 666 | |
| 667 | |
| 668 | static inline void process_adjtimex_modes(const struct timex *txc, s32 *time_tai) |
| 669 | { |
| 670 | if (txc->modes & ADJ_STATUS) |
| 671 | process_adj_status(txc); |
| 672 | |
| 673 | if (txc->modes & ADJ_NANO) |
| 674 | time_status |= STA_NANO; |
| 675 | |
| 676 | if (txc->modes & ADJ_MICRO) |
| 677 | time_status &= ~STA_NANO; |
| 678 | |
| 679 | if (txc->modes & ADJ_FREQUENCY) { |
| 680 | time_freq = txc->freq * PPM_SCALE; |
| 681 | time_freq = min(time_freq, MAXFREQ_SCALED); |
| 682 | time_freq = max(time_freq, -MAXFREQ_SCALED); |
| 683 | /* update pps_freq */ |
| 684 | pps_set_freq(time_freq); |
| 685 | } |
| 686 | |
| 687 | if (txc->modes & ADJ_MAXERROR) |
| 688 | time_maxerror = txc->maxerror; |
| 689 | |
| 690 | if (txc->modes & ADJ_ESTERROR) |
| 691 | time_esterror = txc->esterror; |
| 692 | |
| 693 | if (txc->modes & ADJ_TIMECONST) { |
| 694 | time_constant = txc->constant; |
| 695 | if (!(time_status & STA_NANO)) |
| 696 | time_constant += 4; |
| 697 | time_constant = min(time_constant, (long)MAXTC); |
| 698 | time_constant = max(time_constant, 0l); |
| 699 | } |
| 700 | |
| 701 | if (txc->modes & ADJ_TAI && txc->constant > 0) |
| 702 | *time_tai = txc->constant; |
| 703 | |
| 704 | if (txc->modes & ADJ_OFFSET) |
| 705 | ntp_update_offset(txc->offset); |
| 706 | |
| 707 | if (txc->modes & ADJ_TICK) |
| 708 | tick_usec = txc->tick; |
| 709 | |
| 710 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) |
| 711 | ntp_update_frequency(); |
| 712 | } |
| 713 | |
| 714 | |
| 715 | /* |
| 716 | * adjtimex mainly allows reading (and writing, if superuser) of |
| 717 | * kernel time-keeping variables. used by xntpd. |
| 718 | */ |
| 719 | int __do_adjtimex(struct timex *txc, const struct timespec64 *ts, s32 *time_tai) |
| 720 | { |
| 721 | int result; |
| 722 | |
| 723 | if (txc->modes & ADJ_ADJTIME) { |
| 724 | long save_adjust = time_adjust; |
| 725 | |
| 726 | if (!(txc->modes & ADJ_OFFSET_READONLY)) { |
| 727 | /* adjtime() is independent from ntp_adjtime() */ |
| 728 | time_adjust = txc->offset; |
| 729 | ntp_update_frequency(); |
| 730 | } |
| 731 | txc->offset = save_adjust; |
| 732 | } else { |
| 733 | |
| 734 | /* If there are input parameters, then process them: */ |
| 735 | if (txc->modes) |
| 736 | process_adjtimex_modes(txc, time_tai); |
| 737 | |
| 738 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, |
| 739 | NTP_SCALE_SHIFT); |
| 740 | if (!(time_status & STA_NANO)) |
| 741 | txc->offset /= NSEC_PER_USEC; |
| 742 | } |
| 743 | |
| 744 | result = time_state; /* mostly `TIME_OK' */ |
| 745 | /* check for errors */ |
| 746 | if (is_error_status(time_status)) |
| 747 | result = TIME_ERROR; |
| 748 | |
| 749 | txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * |
| 750 | PPM_SCALE_INV, NTP_SCALE_SHIFT); |
| 751 | txc->maxerror = time_maxerror; |
| 752 | txc->esterror = time_esterror; |
| 753 | txc->status = time_status; |
| 754 | txc->constant = time_constant; |
| 755 | txc->precision = 1; |
| 756 | txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; |
| 757 | txc->tick = tick_usec; |
| 758 | txc->tai = *time_tai; |
| 759 | |
| 760 | /* fill PPS status fields */ |
| 761 | pps_fill_timex(txc); |
| 762 | |
| 763 | txc->time.tv_sec = (time_t)ts->tv_sec; |
| 764 | txc->time.tv_usec = ts->tv_nsec; |
| 765 | if (!(time_status & STA_NANO)) |
| 766 | txc->time.tv_usec /= NSEC_PER_USEC; |
| 767 | |
| 768 | /* Handle leapsec adjustments */ |
| 769 | if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) { |
| 770 | if ((time_state == TIME_INS) && (time_status & STA_INS)) { |
| 771 | result = TIME_OOP; |
| 772 | txc->tai++; |
| 773 | txc->time.tv_sec--; |
| 774 | } |
| 775 | if ((time_state == TIME_DEL) && (time_status & STA_DEL)) { |
| 776 | result = TIME_WAIT; |
| 777 | txc->tai--; |
| 778 | txc->time.tv_sec++; |
| 779 | } |
| 780 | if ((time_state == TIME_OOP) && |
| 781 | (ts->tv_sec == ntp_next_leap_sec)) { |
| 782 | result = TIME_WAIT; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | return result; |
| 787 | } |
| 788 | |
| 789 | #ifdef CONFIG_NTP_PPS |
| 790 | |
| 791 | /* actually struct pps_normtime is good old struct timespec, but it is |
| 792 | * semantically different (and it is the reason why it was invented): |
| 793 | * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] |
| 794 | * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */ |
| 795 | struct pps_normtime { |
| 796 | s64 sec; /* seconds */ |
| 797 | long nsec; /* nanoseconds */ |
| 798 | }; |
| 799 | |
| 800 | /* normalize the timestamp so that nsec is in the |
| 801 | ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */ |
| 802 | static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts) |
| 803 | { |
| 804 | struct pps_normtime norm = { |
| 805 | .sec = ts.tv_sec, |
| 806 | .nsec = ts.tv_nsec |
| 807 | }; |
| 808 | |
| 809 | if (norm.nsec > (NSEC_PER_SEC >> 1)) { |
| 810 | norm.nsec -= NSEC_PER_SEC; |
| 811 | norm.sec++; |
| 812 | } |
| 813 | |
| 814 | return norm; |
| 815 | } |
| 816 | |
| 817 | /* get current phase correction and jitter */ |
| 818 | static inline long pps_phase_filter_get(long *jitter) |
| 819 | { |
| 820 | *jitter = pps_tf[0] - pps_tf[1]; |
| 821 | if (*jitter < 0) |
| 822 | *jitter = -*jitter; |
| 823 | |
| 824 | /* TODO: test various filters */ |
| 825 | return pps_tf[0]; |
| 826 | } |
| 827 | |
| 828 | /* add the sample to the phase filter */ |
| 829 | static inline void pps_phase_filter_add(long err) |
| 830 | { |
| 831 | pps_tf[2] = pps_tf[1]; |
| 832 | pps_tf[1] = pps_tf[0]; |
| 833 | pps_tf[0] = err; |
| 834 | } |
| 835 | |
| 836 | /* decrease frequency calibration interval length. |
| 837 | * It is halved after four consecutive unstable intervals. |
| 838 | */ |
| 839 | static inline void pps_dec_freq_interval(void) |
| 840 | { |
| 841 | if (--pps_intcnt <= -PPS_INTCOUNT) { |
| 842 | pps_intcnt = -PPS_INTCOUNT; |
| 843 | if (pps_shift > PPS_INTMIN) { |
| 844 | pps_shift--; |
| 845 | pps_intcnt = 0; |
| 846 | } |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | /* increase frequency calibration interval length. |
| 851 | * It is doubled after four consecutive stable intervals. |
| 852 | */ |
| 853 | static inline void pps_inc_freq_interval(void) |
| 854 | { |
| 855 | if (++pps_intcnt >= PPS_INTCOUNT) { |
| 856 | pps_intcnt = PPS_INTCOUNT; |
| 857 | if (pps_shift < PPS_INTMAX) { |
| 858 | pps_shift++; |
| 859 | pps_intcnt = 0; |
| 860 | } |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | /* update clock frequency based on MONOTONIC_RAW clock PPS signal |
| 865 | * timestamps |
| 866 | * |
| 867 | * At the end of the calibration interval the difference between the |
| 868 | * first and last MONOTONIC_RAW clock timestamps divided by the length |
| 869 | * of the interval becomes the frequency update. If the interval was |
| 870 | * too long, the data are discarded. |
| 871 | * Returns the difference between old and new frequency values. |
| 872 | */ |
| 873 | static long hardpps_update_freq(struct pps_normtime freq_norm) |
| 874 | { |
| 875 | long delta, delta_mod; |
| 876 | s64 ftemp; |
| 877 | |
| 878 | /* check if the frequency interval was too long */ |
| 879 | if (freq_norm.sec > (2 << pps_shift)) { |
| 880 | time_status |= STA_PPSERROR; |
| 881 | pps_errcnt++; |
| 882 | pps_dec_freq_interval(); |
| 883 | printk_deferred(KERN_ERR |
| 884 | "hardpps: PPSERROR: interval too long - %lld s\n", |
| 885 | freq_norm.sec); |
| 886 | return 0; |
| 887 | } |
| 888 | |
| 889 | /* here the raw frequency offset and wander (stability) is |
| 890 | * calculated. If the wander is less than the wander threshold |
| 891 | * the interval is increased; otherwise it is decreased. |
| 892 | */ |
| 893 | ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT, |
| 894 | freq_norm.sec); |
| 895 | delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT); |
| 896 | pps_freq = ftemp; |
| 897 | if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) { |
| 898 | printk_deferred(KERN_WARNING |
| 899 | "hardpps: PPSWANDER: change=%ld\n", delta); |
| 900 | time_status |= STA_PPSWANDER; |
| 901 | pps_stbcnt++; |
| 902 | pps_dec_freq_interval(); |
| 903 | } else { /* good sample */ |
| 904 | pps_inc_freq_interval(); |
| 905 | } |
| 906 | |
| 907 | /* the stability metric is calculated as the average of recent |
| 908 | * frequency changes, but is used only for performance |
| 909 | * monitoring |
| 910 | */ |
| 911 | delta_mod = delta; |
| 912 | if (delta_mod < 0) |
| 913 | delta_mod = -delta_mod; |
| 914 | pps_stabil += (div_s64(((s64)delta_mod) << |
| 915 | (NTP_SCALE_SHIFT - SHIFT_USEC), |
| 916 | NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN; |
| 917 | |
| 918 | /* if enabled, the system clock frequency is updated */ |
| 919 | if ((time_status & STA_PPSFREQ) != 0 && |
| 920 | (time_status & STA_FREQHOLD) == 0) { |
| 921 | time_freq = pps_freq; |
| 922 | ntp_update_frequency(); |
| 923 | } |
| 924 | |
| 925 | return delta; |
| 926 | } |
| 927 | |
| 928 | /* correct REALTIME clock phase error against PPS signal */ |
| 929 | static void hardpps_update_phase(long error) |
| 930 | { |
| 931 | long correction = -error; |
| 932 | long jitter; |
| 933 | |
| 934 | /* add the sample to the median filter */ |
| 935 | pps_phase_filter_add(correction); |
| 936 | correction = pps_phase_filter_get(&jitter); |
| 937 | |
| 938 | /* Nominal jitter is due to PPS signal noise. If it exceeds the |
| 939 | * threshold, the sample is discarded; otherwise, if so enabled, |
| 940 | * the time offset is updated. |
| 941 | */ |
| 942 | if (jitter > (pps_jitter << PPS_POPCORN)) { |
| 943 | printk_deferred(KERN_WARNING |
| 944 | "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", |
| 945 | jitter, (pps_jitter << PPS_POPCORN)); |
| 946 | time_status |= STA_PPSJITTER; |
| 947 | pps_jitcnt++; |
| 948 | } else if (time_status & STA_PPSTIME) { |
| 949 | /* correct the time using the phase offset */ |
| 950 | time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT, |
| 951 | NTP_INTERVAL_FREQ); |
| 952 | /* cancel running adjtime() */ |
| 953 | time_adjust = 0; |
| 954 | } |
| 955 | /* update jitter */ |
| 956 | pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN; |
| 957 | } |
| 958 | |
| 959 | /* |
| 960 | * __hardpps() - discipline CPU clock oscillator to external PPS signal |
| 961 | * |
| 962 | * This routine is called at each PPS signal arrival in order to |
| 963 | * discipline the CPU clock oscillator to the PPS signal. It takes two |
| 964 | * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former |
| 965 | * is used to correct clock phase error and the latter is used to |
| 966 | * correct the frequency. |
| 967 | * |
| 968 | * This code is based on David Mills's reference nanokernel |
| 969 | * implementation. It was mostly rewritten but keeps the same idea. |
| 970 | */ |
| 971 | void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) |
| 972 | { |
| 973 | struct pps_normtime pts_norm, freq_norm; |
| 974 | |
| 975 | pts_norm = pps_normalize_ts(*phase_ts); |
| 976 | |
| 977 | /* clear the error bits, they will be set again if needed */ |
| 978 | time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); |
| 979 | |
| 980 | /* indicate signal presence */ |
| 981 | time_status |= STA_PPSSIGNAL; |
| 982 | pps_valid = PPS_VALID; |
| 983 | |
| 984 | /* when called for the first time, |
| 985 | * just start the frequency interval */ |
| 986 | if (unlikely(pps_fbase.tv_sec == 0)) { |
| 987 | pps_fbase = *raw_ts; |
| 988 | return; |
| 989 | } |
| 990 | |
| 991 | /* ok, now we have a base for frequency calculation */ |
| 992 | freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase)); |
| 993 | |
| 994 | /* check that the signal is in the range |
| 995 | * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */ |
| 996 | if ((freq_norm.sec == 0) || |
| 997 | (freq_norm.nsec > MAXFREQ * freq_norm.sec) || |
| 998 | (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) { |
| 999 | time_status |= STA_PPSJITTER; |
| 1000 | /* restart the frequency calibration interval */ |
| 1001 | pps_fbase = *raw_ts; |
| 1002 | printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n"); |
| 1003 | return; |
| 1004 | } |
| 1005 | |
| 1006 | /* signal is ok */ |
| 1007 | |
| 1008 | /* check if the current frequency interval is finished */ |
| 1009 | if (freq_norm.sec >= (1 << pps_shift)) { |
| 1010 | pps_calcnt++; |
| 1011 | /* restart the frequency calibration interval */ |
| 1012 | pps_fbase = *raw_ts; |
| 1013 | hardpps_update_freq(freq_norm); |
| 1014 | } |
| 1015 | |
| 1016 | hardpps_update_phase(pts_norm.nsec); |
| 1017 | |
| 1018 | } |
| 1019 | #endif /* CONFIG_NTP_PPS */ |
| 1020 | |
| 1021 | static int __init ntp_tick_adj_setup(char *str) |
| 1022 | { |
| 1023 | int rc = kstrtos64(str, 0, &ntp_tick_adj); |
| 1024 | if (rc) |
| 1025 | return rc; |
| 1026 | |
| 1027 | ntp_tick_adj <<= NTP_SCALE_SHIFT; |
| 1028 | return 1; |
| 1029 | } |
| 1030 | |
| 1031 | __setup("ntp_tick_adj=", ntp_tick_adj_setup); |
| 1032 | |
| 1033 | void __init ntp_init(void) |
| 1034 | { |
| 1035 | ntp_clear(); |
| 1036 | } |