Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Queued spinlock |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. |
| 15 | * (C) Copyright 2013-2014,2018 Red Hat, Inc. |
| 16 | * (C) Copyright 2015 Intel Corp. |
| 17 | * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP |
| 18 | * |
| 19 | * Authors: Waiman Long <longman@redhat.com> |
| 20 | * Peter Zijlstra <peterz@infradead.org> |
| 21 | */ |
| 22 | |
| 23 | #ifndef _GEN_PV_LOCK_SLOWPATH |
| 24 | |
| 25 | #include <linux/smp.h> |
| 26 | #include <linux/bug.h> |
| 27 | #include <linux/cpumask.h> |
| 28 | #include <linux/percpu.h> |
| 29 | #include <linux/hardirq.h> |
| 30 | #include <linux/mutex.h> |
| 31 | #include <linux/prefetch.h> |
| 32 | #include <asm/byteorder.h> |
| 33 | #include <asm/qspinlock.h> |
| 34 | |
| 35 | /* |
| 36 | * Include queued spinlock statistics code |
| 37 | */ |
| 38 | #include "qspinlock_stat.h" |
| 39 | |
| 40 | /* |
| 41 | * The basic principle of a queue-based spinlock can best be understood |
| 42 | * by studying a classic queue-based spinlock implementation called the |
| 43 | * MCS lock. The paper below provides a good description for this kind |
| 44 | * of lock. |
| 45 | * |
| 46 | * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf |
| 47 | * |
| 48 | * This queued spinlock implementation is based on the MCS lock, however to make |
| 49 | * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing |
| 50 | * API, we must modify it somehow. |
| 51 | * |
| 52 | * In particular; where the traditional MCS lock consists of a tail pointer |
| 53 | * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to |
| 54 | * unlock the next pending (next->locked), we compress both these: {tail, |
| 55 | * next->locked} into a single u32 value. |
| 56 | * |
| 57 | * Since a spinlock disables recursion of its own context and there is a limit |
| 58 | * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there |
| 59 | * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now |
| 60 | * we can encode the tail by combining the 2-bit nesting level with the cpu |
| 61 | * number. With one byte for the lock value and 3 bytes for the tail, only a |
| 62 | * 32-bit word is now needed. Even though we only need 1 bit for the lock, |
| 63 | * we extend it to a full byte to achieve better performance for architectures |
| 64 | * that support atomic byte write. |
| 65 | * |
| 66 | * We also change the first spinner to spin on the lock bit instead of its |
| 67 | * node; whereby avoiding the need to carry a node from lock to unlock, and |
| 68 | * preserving existing lock API. This also makes the unlock code simpler and |
| 69 | * faster. |
| 70 | * |
| 71 | * N.B. The current implementation only supports architectures that allow |
| 72 | * atomic operations on smaller 8-bit and 16-bit data types. |
| 73 | * |
| 74 | */ |
| 75 | |
| 76 | #include "mcs_spinlock.h" |
| 77 | |
| 78 | #ifdef CONFIG_PARAVIRT_SPINLOCKS |
| 79 | #define MAX_NODES 8 |
| 80 | #else |
| 81 | #define MAX_NODES 4 |
| 82 | #endif |
| 83 | |
| 84 | /* |
| 85 | * The pending bit spinning loop count. |
| 86 | * This heuristic is used to limit the number of lockword accesses |
| 87 | * made by atomic_cond_read_relaxed when waiting for the lock to |
| 88 | * transition out of the "== _Q_PENDING_VAL" state. We don't spin |
| 89 | * indefinitely because there's no guarantee that we'll make forward |
| 90 | * progress. |
| 91 | */ |
| 92 | #ifndef _Q_PENDING_LOOPS |
| 93 | #define _Q_PENDING_LOOPS 1 |
| 94 | #endif |
| 95 | |
| 96 | /* |
| 97 | * Per-CPU queue node structures; we can never have more than 4 nested |
| 98 | * contexts: task, softirq, hardirq, nmi. |
| 99 | * |
| 100 | * Exactly fits one 64-byte cacheline on a 64-bit architecture. |
| 101 | * |
| 102 | * PV doubles the storage and uses the second cacheline for PV state. |
| 103 | */ |
| 104 | static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]); |
| 105 | |
| 106 | /* |
| 107 | * We must be able to distinguish between no-tail and the tail at 0:0, |
| 108 | * therefore increment the cpu number by one. |
| 109 | */ |
| 110 | |
| 111 | static inline __pure u32 encode_tail(int cpu, int idx) |
| 112 | { |
| 113 | u32 tail; |
| 114 | |
| 115 | #ifdef CONFIG_DEBUG_SPINLOCK |
| 116 | BUG_ON(idx > 3); |
| 117 | #endif |
| 118 | tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET; |
| 119 | tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */ |
| 120 | |
| 121 | return tail; |
| 122 | } |
| 123 | |
| 124 | static inline __pure struct mcs_spinlock *decode_tail(u32 tail) |
| 125 | { |
| 126 | int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1; |
| 127 | int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET; |
| 128 | |
| 129 | return per_cpu_ptr(&mcs_nodes[idx], cpu); |
| 130 | } |
| 131 | |
| 132 | #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK) |
| 133 | |
| 134 | #if _Q_PENDING_BITS == 8 |
| 135 | /** |
| 136 | * clear_pending - clear the pending bit. |
| 137 | * @lock: Pointer to queued spinlock structure |
| 138 | * |
| 139 | * *,1,* -> *,0,* |
| 140 | */ |
| 141 | static __always_inline void clear_pending(struct qspinlock *lock) |
| 142 | { |
| 143 | WRITE_ONCE(lock->pending, 0); |
| 144 | } |
| 145 | |
| 146 | /** |
| 147 | * clear_pending_set_locked - take ownership and clear the pending bit. |
| 148 | * @lock: Pointer to queued spinlock structure |
| 149 | * |
| 150 | * *,1,0 -> *,0,1 |
| 151 | * |
| 152 | * Lock stealing is not allowed if this function is used. |
| 153 | */ |
| 154 | static __always_inline void clear_pending_set_locked(struct qspinlock *lock) |
| 155 | { |
| 156 | WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL); |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * xchg_tail - Put in the new queue tail code word & retrieve previous one |
| 161 | * @lock : Pointer to queued spinlock structure |
| 162 | * @tail : The new queue tail code word |
| 163 | * Return: The previous queue tail code word |
| 164 | * |
| 165 | * xchg(lock, tail), which heads an address dependency |
| 166 | * |
| 167 | * p,*,* -> n,*,* ; prev = xchg(lock, node) |
| 168 | */ |
| 169 | static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) |
| 170 | { |
| 171 | /* |
| 172 | * We can use relaxed semantics since the caller ensures that the |
| 173 | * MCS node is properly initialized before updating the tail. |
| 174 | */ |
| 175 | return (u32)xchg_relaxed(&lock->tail, |
| 176 | tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET; |
| 177 | } |
| 178 | |
| 179 | #else /* _Q_PENDING_BITS == 8 */ |
| 180 | |
| 181 | /** |
| 182 | * clear_pending - clear the pending bit. |
| 183 | * @lock: Pointer to queued spinlock structure |
| 184 | * |
| 185 | * *,1,* -> *,0,* |
| 186 | */ |
| 187 | static __always_inline void clear_pending(struct qspinlock *lock) |
| 188 | { |
| 189 | atomic_andnot(_Q_PENDING_VAL, &lock->val); |
| 190 | } |
| 191 | |
| 192 | /** |
| 193 | * clear_pending_set_locked - take ownership and clear the pending bit. |
| 194 | * @lock: Pointer to queued spinlock structure |
| 195 | * |
| 196 | * *,1,0 -> *,0,1 |
| 197 | */ |
| 198 | static __always_inline void clear_pending_set_locked(struct qspinlock *lock) |
| 199 | { |
| 200 | atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val); |
| 201 | } |
| 202 | |
| 203 | /** |
| 204 | * xchg_tail - Put in the new queue tail code word & retrieve previous one |
| 205 | * @lock : Pointer to queued spinlock structure |
| 206 | * @tail : The new queue tail code word |
| 207 | * Return: The previous queue tail code word |
| 208 | * |
| 209 | * xchg(lock, tail) |
| 210 | * |
| 211 | * p,*,* -> n,*,* ; prev = xchg(lock, node) |
| 212 | */ |
| 213 | static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) |
| 214 | { |
| 215 | u32 old, new, val = atomic_read(&lock->val); |
| 216 | |
| 217 | for (;;) { |
| 218 | new = (val & _Q_LOCKED_PENDING_MASK) | tail; |
| 219 | /* |
| 220 | * We can use relaxed semantics since the caller ensures that |
| 221 | * the MCS node is properly initialized before updating the |
| 222 | * tail. |
| 223 | */ |
| 224 | old = atomic_cmpxchg_relaxed(&lock->val, val, new); |
| 225 | if (old == val) |
| 226 | break; |
| 227 | |
| 228 | val = old; |
| 229 | } |
| 230 | return old; |
| 231 | } |
| 232 | #endif /* _Q_PENDING_BITS == 8 */ |
| 233 | |
| 234 | /** |
| 235 | * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending |
| 236 | * @lock : Pointer to queued spinlock structure |
| 237 | * Return: The previous lock value |
| 238 | * |
| 239 | * *,*,* -> *,1,* |
| 240 | */ |
| 241 | #ifndef queued_fetch_set_pending_acquire |
| 242 | static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock) |
| 243 | { |
| 244 | return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val); |
| 245 | } |
| 246 | #endif |
| 247 | |
| 248 | /** |
| 249 | * set_locked - Set the lock bit and own the lock |
| 250 | * @lock: Pointer to queued spinlock structure |
| 251 | * |
| 252 | * *,*,0 -> *,0,1 |
| 253 | */ |
| 254 | static __always_inline void set_locked(struct qspinlock *lock) |
| 255 | { |
| 256 | WRITE_ONCE(lock->locked, _Q_LOCKED_VAL); |
| 257 | } |
| 258 | |
| 259 | |
| 260 | /* |
| 261 | * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for |
| 262 | * all the PV callbacks. |
| 263 | */ |
| 264 | |
| 265 | static __always_inline void __pv_init_node(struct mcs_spinlock *node) { } |
| 266 | static __always_inline void __pv_wait_node(struct mcs_spinlock *node, |
| 267 | struct mcs_spinlock *prev) { } |
| 268 | static __always_inline void __pv_kick_node(struct qspinlock *lock, |
| 269 | struct mcs_spinlock *node) { } |
| 270 | static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock, |
| 271 | struct mcs_spinlock *node) |
| 272 | { return 0; } |
| 273 | |
| 274 | #define pv_enabled() false |
| 275 | |
| 276 | #define pv_init_node __pv_init_node |
| 277 | #define pv_wait_node __pv_wait_node |
| 278 | #define pv_kick_node __pv_kick_node |
| 279 | #define pv_wait_head_or_lock __pv_wait_head_or_lock |
| 280 | |
| 281 | #ifdef CONFIG_PARAVIRT_SPINLOCKS |
| 282 | #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath |
| 283 | #endif |
| 284 | |
| 285 | #endif /* _GEN_PV_LOCK_SLOWPATH */ |
| 286 | |
| 287 | /** |
| 288 | * queued_spin_lock_slowpath - acquire the queued spinlock |
| 289 | * @lock: Pointer to queued spinlock structure |
| 290 | * @val: Current value of the queued spinlock 32-bit word |
| 291 | * |
| 292 | * (queue tail, pending bit, lock value) |
| 293 | * |
| 294 | * fast : slow : unlock |
| 295 | * : : |
| 296 | * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0) |
| 297 | * : | ^--------.------. / : |
| 298 | * : v \ \ | : |
| 299 | * pending : (0,1,1) +--> (0,1,0) \ | : |
| 300 | * : | ^--' | | : |
| 301 | * : v | | : |
| 302 | * uncontended : (n,x,y) +--> (n,0,0) --' | : |
| 303 | * queue : | ^--' | : |
| 304 | * : v | : |
| 305 | * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' : |
| 306 | * queue : ^--' : |
| 307 | */ |
| 308 | void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) |
| 309 | { |
| 310 | struct mcs_spinlock *prev, *next, *node; |
| 311 | u32 old, tail; |
| 312 | int idx; |
| 313 | |
| 314 | BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); |
| 315 | |
| 316 | if (pv_enabled()) |
| 317 | goto pv_queue; |
| 318 | |
| 319 | if (virt_spin_lock(lock)) |
| 320 | return; |
| 321 | |
| 322 | /* |
| 323 | * Wait for in-progress pending->locked hand-overs with a bounded |
| 324 | * number of spins so that we guarantee forward progress. |
| 325 | * |
| 326 | * 0,1,0 -> 0,0,1 |
| 327 | */ |
| 328 | if (val == _Q_PENDING_VAL) { |
| 329 | int cnt = _Q_PENDING_LOOPS; |
| 330 | val = atomic_cond_read_relaxed(&lock->val, |
| 331 | (VAL != _Q_PENDING_VAL) || !cnt--); |
| 332 | } |
| 333 | |
| 334 | /* |
| 335 | * If we observe any contention; queue. |
| 336 | */ |
| 337 | if (val & ~_Q_LOCKED_MASK) |
| 338 | goto queue; |
| 339 | |
| 340 | /* |
| 341 | * trylock || pending |
| 342 | * |
| 343 | * 0,0,0 -> 0,0,1 ; trylock |
| 344 | * 0,0,1 -> 0,1,1 ; pending |
| 345 | */ |
| 346 | val = queued_fetch_set_pending_acquire(lock); |
| 347 | |
| 348 | /* |
| 349 | * If we observe any contention; undo and queue. |
| 350 | */ |
| 351 | if (unlikely(val & ~_Q_LOCKED_MASK)) { |
| 352 | if (!(val & _Q_PENDING_MASK)) |
| 353 | clear_pending(lock); |
| 354 | goto queue; |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * We're pending, wait for the owner to go away. |
| 359 | * |
| 360 | * 0,1,1 -> 0,1,0 |
| 361 | * |
| 362 | * this wait loop must be a load-acquire such that we match the |
| 363 | * store-release that clears the locked bit and create lock |
| 364 | * sequentiality; this is because not all |
| 365 | * clear_pending_set_locked() implementations imply full |
| 366 | * barriers. |
| 367 | */ |
| 368 | if (val & _Q_LOCKED_MASK) |
| 369 | atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK)); |
| 370 | |
| 371 | /* |
| 372 | * take ownership and clear the pending bit. |
| 373 | * |
| 374 | * 0,1,0 -> 0,0,1 |
| 375 | */ |
| 376 | clear_pending_set_locked(lock); |
| 377 | qstat_inc(qstat_lock_pending, true); |
| 378 | return; |
| 379 | |
| 380 | /* |
| 381 | * End of pending bit optimistic spinning and beginning of MCS |
| 382 | * queuing. |
| 383 | */ |
| 384 | queue: |
| 385 | qstat_inc(qstat_lock_slowpath, true); |
| 386 | pv_queue: |
| 387 | node = this_cpu_ptr(&mcs_nodes[0]); |
| 388 | idx = node->count++; |
| 389 | tail = encode_tail(smp_processor_id(), idx); |
| 390 | |
| 391 | node += idx; |
| 392 | |
| 393 | /* |
| 394 | * Ensure that we increment the head node->count before initialising |
| 395 | * the actual node. If the compiler is kind enough to reorder these |
| 396 | * stores, then an IRQ could overwrite our assignments. |
| 397 | */ |
| 398 | barrier(); |
| 399 | |
| 400 | node->locked = 0; |
| 401 | node->next = NULL; |
| 402 | pv_init_node(node); |
| 403 | |
| 404 | /* |
| 405 | * We touched a (possibly) cold cacheline in the per-cpu queue node; |
| 406 | * attempt the trylock once more in the hope someone let go while we |
| 407 | * weren't watching. |
| 408 | */ |
| 409 | if (queued_spin_trylock(lock)) |
| 410 | goto release; |
| 411 | |
| 412 | /* |
| 413 | * Ensure that the initialisation of @node is complete before we |
| 414 | * publish the updated tail via xchg_tail() and potentially link |
| 415 | * @node into the waitqueue via WRITE_ONCE(prev->next, node) below. |
| 416 | */ |
| 417 | smp_wmb(); |
| 418 | |
| 419 | /* |
| 420 | * Publish the updated tail. |
| 421 | * We have already touched the queueing cacheline; don't bother with |
| 422 | * pending stuff. |
| 423 | * |
| 424 | * p,*,* -> n,*,* |
| 425 | */ |
| 426 | old = xchg_tail(lock, tail); |
| 427 | next = NULL; |
| 428 | |
| 429 | /* |
| 430 | * if there was a previous node; link it and wait until reaching the |
| 431 | * head of the waitqueue. |
| 432 | */ |
| 433 | if (old & _Q_TAIL_MASK) { |
| 434 | prev = decode_tail(old); |
| 435 | |
| 436 | /* Link @node into the waitqueue. */ |
| 437 | WRITE_ONCE(prev->next, node); |
| 438 | |
| 439 | pv_wait_node(node, prev); |
| 440 | arch_mcs_spin_lock_contended(&node->locked); |
| 441 | |
| 442 | /* |
| 443 | * While waiting for the MCS lock, the next pointer may have |
| 444 | * been set by another lock waiter. We optimistically load |
| 445 | * the next pointer & prefetch the cacheline for writing |
| 446 | * to reduce latency in the upcoming MCS unlock operation. |
| 447 | */ |
| 448 | next = READ_ONCE(node->next); |
| 449 | if (next) |
| 450 | prefetchw(next); |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * we're at the head of the waitqueue, wait for the owner & pending to |
| 455 | * go away. |
| 456 | * |
| 457 | * *,x,y -> *,0,0 |
| 458 | * |
| 459 | * this wait loop must use a load-acquire such that we match the |
| 460 | * store-release that clears the locked bit and create lock |
| 461 | * sequentiality; this is because the set_locked() function below |
| 462 | * does not imply a full barrier. |
| 463 | * |
| 464 | * The PV pv_wait_head_or_lock function, if active, will acquire |
| 465 | * the lock and return a non-zero value. So we have to skip the |
| 466 | * atomic_cond_read_acquire() call. As the next PV queue head hasn't |
| 467 | * been designated yet, there is no way for the locked value to become |
| 468 | * _Q_SLOW_VAL. So both the set_locked() and the |
| 469 | * atomic_cmpxchg_relaxed() calls will be safe. |
| 470 | * |
| 471 | * If PV isn't active, 0 will be returned instead. |
| 472 | * |
| 473 | */ |
| 474 | if ((val = pv_wait_head_or_lock(lock, node))) |
| 475 | goto locked; |
| 476 | |
| 477 | val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK)); |
| 478 | |
| 479 | locked: |
| 480 | /* |
| 481 | * claim the lock: |
| 482 | * |
| 483 | * n,0,0 -> 0,0,1 : lock, uncontended |
| 484 | * *,*,0 -> *,*,1 : lock, contended |
| 485 | * |
| 486 | * If the queue head is the only one in the queue (lock value == tail) |
| 487 | * and nobody is pending, clear the tail code and grab the lock. |
| 488 | * Otherwise, we only need to grab the lock. |
| 489 | */ |
| 490 | |
| 491 | /* |
| 492 | * In the PV case we might already have _Q_LOCKED_VAL set. |
| 493 | * |
| 494 | * The atomic_cond_read_acquire() call above has provided the |
| 495 | * necessary acquire semantics required for locking. |
| 496 | */ |
| 497 | if (((val & _Q_TAIL_MASK) == tail) && |
| 498 | atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL)) |
| 499 | goto release; /* No contention */ |
| 500 | |
| 501 | /* Either somebody is queued behind us or _Q_PENDING_VAL is set */ |
| 502 | set_locked(lock); |
| 503 | |
| 504 | /* |
| 505 | * contended path; wait for next if not observed yet, release. |
| 506 | */ |
| 507 | if (!next) |
| 508 | next = smp_cond_load_relaxed(&node->next, (VAL)); |
| 509 | |
| 510 | arch_mcs_spin_unlock_contended(&next->locked); |
| 511 | pv_kick_node(lock, next); |
| 512 | |
| 513 | release: |
| 514 | /* |
| 515 | * release the node |
| 516 | */ |
| 517 | __this_cpu_dec(mcs_nodes[0].count); |
| 518 | } |
| 519 | EXPORT_SYMBOL(queued_spin_lock_slowpath); |
| 520 | |
| 521 | /* |
| 522 | * Generate the paravirt code for queued_spin_unlock_slowpath(). |
| 523 | */ |
| 524 | #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS) |
| 525 | #define _GEN_PV_LOCK_SLOWPATH |
| 526 | |
| 527 | #undef pv_enabled |
| 528 | #define pv_enabled() true |
| 529 | |
| 530 | #undef pv_init_node |
| 531 | #undef pv_wait_node |
| 532 | #undef pv_kick_node |
| 533 | #undef pv_wait_head_or_lock |
| 534 | |
| 535 | #undef queued_spin_lock_slowpath |
| 536 | #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath |
| 537 | |
| 538 | #include "qspinlock_paravirt.h" |
| 539 | #include "qspinlock.c" |
| 540 | |
| 541 | #endif |