blob: edd75e0c7d961f293164afe77a6ce5c932968dc7 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Queued spinlock
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
15 * (C) Copyright 2013-2014,2018 Red Hat, Inc.
16 * (C) Copyright 2015 Intel Corp.
17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
18 *
19 * Authors: Waiman Long <longman@redhat.com>
20 * Peter Zijlstra <peterz@infradead.org>
21 */
22
23#ifndef _GEN_PV_LOCK_SLOWPATH
24
25#include <linux/smp.h>
26#include <linux/bug.h>
27#include <linux/cpumask.h>
28#include <linux/percpu.h>
29#include <linux/hardirq.h>
30#include <linux/mutex.h>
31#include <linux/prefetch.h>
32#include <asm/byteorder.h>
33#include <asm/qspinlock.h>
34
35/*
36 * Include queued spinlock statistics code
37 */
38#include "qspinlock_stat.h"
39
40/*
41 * The basic principle of a queue-based spinlock can best be understood
42 * by studying a classic queue-based spinlock implementation called the
43 * MCS lock. The paper below provides a good description for this kind
44 * of lock.
45 *
46 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
47 *
48 * This queued spinlock implementation is based on the MCS lock, however to make
49 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
50 * API, we must modify it somehow.
51 *
52 * In particular; where the traditional MCS lock consists of a tail pointer
53 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
54 * unlock the next pending (next->locked), we compress both these: {tail,
55 * next->locked} into a single u32 value.
56 *
57 * Since a spinlock disables recursion of its own context and there is a limit
58 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
59 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
60 * we can encode the tail by combining the 2-bit nesting level with the cpu
61 * number. With one byte for the lock value and 3 bytes for the tail, only a
62 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
63 * we extend it to a full byte to achieve better performance for architectures
64 * that support atomic byte write.
65 *
66 * We also change the first spinner to spin on the lock bit instead of its
67 * node; whereby avoiding the need to carry a node from lock to unlock, and
68 * preserving existing lock API. This also makes the unlock code simpler and
69 * faster.
70 *
71 * N.B. The current implementation only supports architectures that allow
72 * atomic operations on smaller 8-bit and 16-bit data types.
73 *
74 */
75
76#include "mcs_spinlock.h"
77
78#ifdef CONFIG_PARAVIRT_SPINLOCKS
79#define MAX_NODES 8
80#else
81#define MAX_NODES 4
82#endif
83
84/*
85 * The pending bit spinning loop count.
86 * This heuristic is used to limit the number of lockword accesses
87 * made by atomic_cond_read_relaxed when waiting for the lock to
88 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
89 * indefinitely because there's no guarantee that we'll make forward
90 * progress.
91 */
92#ifndef _Q_PENDING_LOOPS
93#define _Q_PENDING_LOOPS 1
94#endif
95
96/*
97 * Per-CPU queue node structures; we can never have more than 4 nested
98 * contexts: task, softirq, hardirq, nmi.
99 *
100 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
101 *
102 * PV doubles the storage and uses the second cacheline for PV state.
103 */
104static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
105
106/*
107 * We must be able to distinguish between no-tail and the tail at 0:0,
108 * therefore increment the cpu number by one.
109 */
110
111static inline __pure u32 encode_tail(int cpu, int idx)
112{
113 u32 tail;
114
115#ifdef CONFIG_DEBUG_SPINLOCK
116 BUG_ON(idx > 3);
117#endif
118 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
119 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
120
121 return tail;
122}
123
124static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
125{
126 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
127 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
128
129 return per_cpu_ptr(&mcs_nodes[idx], cpu);
130}
131
132#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
133
134#if _Q_PENDING_BITS == 8
135/**
136 * clear_pending - clear the pending bit.
137 * @lock: Pointer to queued spinlock structure
138 *
139 * *,1,* -> *,0,*
140 */
141static __always_inline void clear_pending(struct qspinlock *lock)
142{
143 WRITE_ONCE(lock->pending, 0);
144}
145
146/**
147 * clear_pending_set_locked - take ownership and clear the pending bit.
148 * @lock: Pointer to queued spinlock structure
149 *
150 * *,1,0 -> *,0,1
151 *
152 * Lock stealing is not allowed if this function is used.
153 */
154static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
155{
156 WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
157}
158
159/*
160 * xchg_tail - Put in the new queue tail code word & retrieve previous one
161 * @lock : Pointer to queued spinlock structure
162 * @tail : The new queue tail code word
163 * Return: The previous queue tail code word
164 *
165 * xchg(lock, tail), which heads an address dependency
166 *
167 * p,*,* -> n,*,* ; prev = xchg(lock, node)
168 */
169static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
170{
171 /*
172 * We can use relaxed semantics since the caller ensures that the
173 * MCS node is properly initialized before updating the tail.
174 */
175 return (u32)xchg_relaxed(&lock->tail,
176 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
177}
178
179#else /* _Q_PENDING_BITS == 8 */
180
181/**
182 * clear_pending - clear the pending bit.
183 * @lock: Pointer to queued spinlock structure
184 *
185 * *,1,* -> *,0,*
186 */
187static __always_inline void clear_pending(struct qspinlock *lock)
188{
189 atomic_andnot(_Q_PENDING_VAL, &lock->val);
190}
191
192/**
193 * clear_pending_set_locked - take ownership and clear the pending bit.
194 * @lock: Pointer to queued spinlock structure
195 *
196 * *,1,0 -> *,0,1
197 */
198static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
199{
200 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
201}
202
203/**
204 * xchg_tail - Put in the new queue tail code word & retrieve previous one
205 * @lock : Pointer to queued spinlock structure
206 * @tail : The new queue tail code word
207 * Return: The previous queue tail code word
208 *
209 * xchg(lock, tail)
210 *
211 * p,*,* -> n,*,* ; prev = xchg(lock, node)
212 */
213static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
214{
215 u32 old, new, val = atomic_read(&lock->val);
216
217 for (;;) {
218 new = (val & _Q_LOCKED_PENDING_MASK) | tail;
219 /*
220 * We can use relaxed semantics since the caller ensures that
221 * the MCS node is properly initialized before updating the
222 * tail.
223 */
224 old = atomic_cmpxchg_relaxed(&lock->val, val, new);
225 if (old == val)
226 break;
227
228 val = old;
229 }
230 return old;
231}
232#endif /* _Q_PENDING_BITS == 8 */
233
234/**
235 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
236 * @lock : Pointer to queued spinlock structure
237 * Return: The previous lock value
238 *
239 * *,*,* -> *,1,*
240 */
241#ifndef queued_fetch_set_pending_acquire
242static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
243{
244 return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
245}
246#endif
247
248/**
249 * set_locked - Set the lock bit and own the lock
250 * @lock: Pointer to queued spinlock structure
251 *
252 * *,*,0 -> *,0,1
253 */
254static __always_inline void set_locked(struct qspinlock *lock)
255{
256 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
257}
258
259
260/*
261 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
262 * all the PV callbacks.
263 */
264
265static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
266static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
267 struct mcs_spinlock *prev) { }
268static __always_inline void __pv_kick_node(struct qspinlock *lock,
269 struct mcs_spinlock *node) { }
270static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
271 struct mcs_spinlock *node)
272 { return 0; }
273
274#define pv_enabled() false
275
276#define pv_init_node __pv_init_node
277#define pv_wait_node __pv_wait_node
278#define pv_kick_node __pv_kick_node
279#define pv_wait_head_or_lock __pv_wait_head_or_lock
280
281#ifdef CONFIG_PARAVIRT_SPINLOCKS
282#define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
283#endif
284
285#endif /* _GEN_PV_LOCK_SLOWPATH */
286
287/**
288 * queued_spin_lock_slowpath - acquire the queued spinlock
289 * @lock: Pointer to queued spinlock structure
290 * @val: Current value of the queued spinlock 32-bit word
291 *
292 * (queue tail, pending bit, lock value)
293 *
294 * fast : slow : unlock
295 * : :
296 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
297 * : | ^--------.------. / :
298 * : v \ \ | :
299 * pending : (0,1,1) +--> (0,1,0) \ | :
300 * : | ^--' | | :
301 * : v | | :
302 * uncontended : (n,x,y) +--> (n,0,0) --' | :
303 * queue : | ^--' | :
304 * : v | :
305 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
306 * queue : ^--' :
307 */
308void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
309{
310 struct mcs_spinlock *prev, *next, *node;
311 u32 old, tail;
312 int idx;
313
314 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
315
316 if (pv_enabled())
317 goto pv_queue;
318
319 if (virt_spin_lock(lock))
320 return;
321
322 /*
323 * Wait for in-progress pending->locked hand-overs with a bounded
324 * number of spins so that we guarantee forward progress.
325 *
326 * 0,1,0 -> 0,0,1
327 */
328 if (val == _Q_PENDING_VAL) {
329 int cnt = _Q_PENDING_LOOPS;
330 val = atomic_cond_read_relaxed(&lock->val,
331 (VAL != _Q_PENDING_VAL) || !cnt--);
332 }
333
334 /*
335 * If we observe any contention; queue.
336 */
337 if (val & ~_Q_LOCKED_MASK)
338 goto queue;
339
340 /*
341 * trylock || pending
342 *
343 * 0,0,0 -> 0,0,1 ; trylock
344 * 0,0,1 -> 0,1,1 ; pending
345 */
346 val = queued_fetch_set_pending_acquire(lock);
347
348 /*
349 * If we observe any contention; undo and queue.
350 */
351 if (unlikely(val & ~_Q_LOCKED_MASK)) {
352 if (!(val & _Q_PENDING_MASK))
353 clear_pending(lock);
354 goto queue;
355 }
356
357 /*
358 * We're pending, wait for the owner to go away.
359 *
360 * 0,1,1 -> 0,1,0
361 *
362 * this wait loop must be a load-acquire such that we match the
363 * store-release that clears the locked bit and create lock
364 * sequentiality; this is because not all
365 * clear_pending_set_locked() implementations imply full
366 * barriers.
367 */
368 if (val & _Q_LOCKED_MASK)
369 atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
370
371 /*
372 * take ownership and clear the pending bit.
373 *
374 * 0,1,0 -> 0,0,1
375 */
376 clear_pending_set_locked(lock);
377 qstat_inc(qstat_lock_pending, true);
378 return;
379
380 /*
381 * End of pending bit optimistic spinning and beginning of MCS
382 * queuing.
383 */
384queue:
385 qstat_inc(qstat_lock_slowpath, true);
386pv_queue:
387 node = this_cpu_ptr(&mcs_nodes[0]);
388 idx = node->count++;
389 tail = encode_tail(smp_processor_id(), idx);
390
391 node += idx;
392
393 /*
394 * Ensure that we increment the head node->count before initialising
395 * the actual node. If the compiler is kind enough to reorder these
396 * stores, then an IRQ could overwrite our assignments.
397 */
398 barrier();
399
400 node->locked = 0;
401 node->next = NULL;
402 pv_init_node(node);
403
404 /*
405 * We touched a (possibly) cold cacheline in the per-cpu queue node;
406 * attempt the trylock once more in the hope someone let go while we
407 * weren't watching.
408 */
409 if (queued_spin_trylock(lock))
410 goto release;
411
412 /*
413 * Ensure that the initialisation of @node is complete before we
414 * publish the updated tail via xchg_tail() and potentially link
415 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
416 */
417 smp_wmb();
418
419 /*
420 * Publish the updated tail.
421 * We have already touched the queueing cacheline; don't bother with
422 * pending stuff.
423 *
424 * p,*,* -> n,*,*
425 */
426 old = xchg_tail(lock, tail);
427 next = NULL;
428
429 /*
430 * if there was a previous node; link it and wait until reaching the
431 * head of the waitqueue.
432 */
433 if (old & _Q_TAIL_MASK) {
434 prev = decode_tail(old);
435
436 /* Link @node into the waitqueue. */
437 WRITE_ONCE(prev->next, node);
438
439 pv_wait_node(node, prev);
440 arch_mcs_spin_lock_contended(&node->locked);
441
442 /*
443 * While waiting for the MCS lock, the next pointer may have
444 * been set by another lock waiter. We optimistically load
445 * the next pointer & prefetch the cacheline for writing
446 * to reduce latency in the upcoming MCS unlock operation.
447 */
448 next = READ_ONCE(node->next);
449 if (next)
450 prefetchw(next);
451 }
452
453 /*
454 * we're at the head of the waitqueue, wait for the owner & pending to
455 * go away.
456 *
457 * *,x,y -> *,0,0
458 *
459 * this wait loop must use a load-acquire such that we match the
460 * store-release that clears the locked bit and create lock
461 * sequentiality; this is because the set_locked() function below
462 * does not imply a full barrier.
463 *
464 * The PV pv_wait_head_or_lock function, if active, will acquire
465 * the lock and return a non-zero value. So we have to skip the
466 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
467 * been designated yet, there is no way for the locked value to become
468 * _Q_SLOW_VAL. So both the set_locked() and the
469 * atomic_cmpxchg_relaxed() calls will be safe.
470 *
471 * If PV isn't active, 0 will be returned instead.
472 *
473 */
474 if ((val = pv_wait_head_or_lock(lock, node)))
475 goto locked;
476
477 val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
478
479locked:
480 /*
481 * claim the lock:
482 *
483 * n,0,0 -> 0,0,1 : lock, uncontended
484 * *,*,0 -> *,*,1 : lock, contended
485 *
486 * If the queue head is the only one in the queue (lock value == tail)
487 * and nobody is pending, clear the tail code and grab the lock.
488 * Otherwise, we only need to grab the lock.
489 */
490
491 /*
492 * In the PV case we might already have _Q_LOCKED_VAL set.
493 *
494 * The atomic_cond_read_acquire() call above has provided the
495 * necessary acquire semantics required for locking.
496 */
497 if (((val & _Q_TAIL_MASK) == tail) &&
498 atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
499 goto release; /* No contention */
500
501 /* Either somebody is queued behind us or _Q_PENDING_VAL is set */
502 set_locked(lock);
503
504 /*
505 * contended path; wait for next if not observed yet, release.
506 */
507 if (!next)
508 next = smp_cond_load_relaxed(&node->next, (VAL));
509
510 arch_mcs_spin_unlock_contended(&next->locked);
511 pv_kick_node(lock, next);
512
513release:
514 /*
515 * release the node
516 */
517 __this_cpu_dec(mcs_nodes[0].count);
518}
519EXPORT_SYMBOL(queued_spin_lock_slowpath);
520
521/*
522 * Generate the paravirt code for queued_spin_unlock_slowpath().
523 */
524#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
525#define _GEN_PV_LOCK_SLOWPATH
526
527#undef pv_enabled
528#define pv_enabled() true
529
530#undef pv_init_node
531#undef pv_wait_node
532#undef pv_kick_node
533#undef pv_wait_head_or_lock
534
535#undef queued_spin_lock_slowpath
536#define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
537
538#include "qspinlock_paravirt.h"
539#include "qspinlock.c"
540
541#endif