Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | /****************************************************************************** |
| 3 | * ring.h |
| 4 | * |
| 5 | * Shared producer-consumer ring macros. |
| 6 | * |
| 7 | * Tim Deegan and Andrew Warfield November 2004. |
| 8 | */ |
| 9 | |
| 10 | #ifndef __XEN_PUBLIC_IO_RING_H__ |
| 11 | #define __XEN_PUBLIC_IO_RING_H__ |
| 12 | |
| 13 | #include <xen/interface/grant_table.h> |
| 14 | |
| 15 | typedef unsigned int RING_IDX; |
| 16 | |
| 17 | /* Round a 32-bit unsigned constant down to the nearest power of two. */ |
| 18 | #define __RD2(_x) (((_x) & 0x00000002) ? 0x2 : ((_x) & 0x1)) |
| 19 | #define __RD4(_x) (((_x) & 0x0000000c) ? __RD2((_x)>>2)<<2 : __RD2(_x)) |
| 20 | #define __RD8(_x) (((_x) & 0x000000f0) ? __RD4((_x)>>4)<<4 : __RD4(_x)) |
| 21 | #define __RD16(_x) (((_x) & 0x0000ff00) ? __RD8((_x)>>8)<<8 : __RD8(_x)) |
| 22 | #define __RD32(_x) (((_x) & 0xffff0000) ? __RD16((_x)>>16)<<16 : __RD16(_x)) |
| 23 | |
| 24 | /* |
| 25 | * Calculate size of a shared ring, given the total available space for the |
| 26 | * ring and indexes (_sz), and the name tag of the request/response structure. |
| 27 | * A ring contains as many entries as will fit, rounded down to the nearest |
| 28 | * power of two (so we can mask with (size-1) to loop around). |
| 29 | */ |
| 30 | #define __CONST_RING_SIZE(_s, _sz) \ |
| 31 | (__RD32(((_sz) - offsetof(struct _s##_sring, ring)) / \ |
| 32 | sizeof(((struct _s##_sring *)0)->ring[0]))) |
| 33 | |
| 34 | /* |
| 35 | * The same for passing in an actual pointer instead of a name tag. |
| 36 | */ |
| 37 | #define __RING_SIZE(_s, _sz) \ |
| 38 | (__RD32(((_sz) - (long)&(_s)->ring + (long)(_s)) / sizeof((_s)->ring[0]))) |
| 39 | |
| 40 | /* |
| 41 | * Macros to make the correct C datatypes for a new kind of ring. |
| 42 | * |
| 43 | * To make a new ring datatype, you need to have two message structures, |
| 44 | * let's say struct request, and struct response already defined. |
| 45 | * |
| 46 | * In a header where you want the ring datatype declared, you then do: |
| 47 | * |
| 48 | * DEFINE_RING_TYPES(mytag, struct request, struct response); |
| 49 | * |
| 50 | * These expand out to give you a set of types, as you can see below. |
| 51 | * The most important of these are: |
| 52 | * |
| 53 | * struct mytag_sring - The shared ring. |
| 54 | * struct mytag_front_ring - The 'front' half of the ring. |
| 55 | * struct mytag_back_ring - The 'back' half of the ring. |
| 56 | * |
| 57 | * To initialize a ring in your code you need to know the location and size |
| 58 | * of the shared memory area (PAGE_SIZE, for instance). To initialise |
| 59 | * the front half: |
| 60 | * |
| 61 | * struct mytag_front_ring front_ring; |
| 62 | * SHARED_RING_INIT((struct mytag_sring *)shared_page); |
| 63 | * FRONT_RING_INIT(&front_ring, (struct mytag_sring *)shared_page, |
| 64 | * PAGE_SIZE); |
| 65 | * |
| 66 | * Initializing the back follows similarly (note that only the front |
| 67 | * initializes the shared ring): |
| 68 | * |
| 69 | * struct mytag_back_ring back_ring; |
| 70 | * BACK_RING_INIT(&back_ring, (struct mytag_sring *)shared_page, |
| 71 | * PAGE_SIZE); |
| 72 | */ |
| 73 | |
| 74 | #define DEFINE_RING_TYPES(__name, __req_t, __rsp_t) \ |
| 75 | \ |
| 76 | /* Shared ring entry */ \ |
| 77 | union __name##_sring_entry { \ |
| 78 | __req_t req; \ |
| 79 | __rsp_t rsp; \ |
| 80 | }; \ |
| 81 | \ |
| 82 | /* Shared ring page */ \ |
| 83 | struct __name##_sring { \ |
| 84 | RING_IDX req_prod, req_event; \ |
| 85 | RING_IDX rsp_prod, rsp_event; \ |
| 86 | uint8_t pad[48]; \ |
| 87 | union __name##_sring_entry ring[1]; /* variable-length */ \ |
| 88 | }; \ |
| 89 | \ |
| 90 | /* "Front" end's private variables */ \ |
| 91 | struct __name##_front_ring { \ |
| 92 | RING_IDX req_prod_pvt; \ |
| 93 | RING_IDX rsp_cons; \ |
| 94 | unsigned int nr_ents; \ |
| 95 | struct __name##_sring *sring; \ |
| 96 | }; \ |
| 97 | \ |
| 98 | /* "Back" end's private variables */ \ |
| 99 | struct __name##_back_ring { \ |
| 100 | RING_IDX rsp_prod_pvt; \ |
| 101 | RING_IDX req_cons; \ |
| 102 | unsigned int nr_ents; \ |
| 103 | struct __name##_sring *sring; \ |
| 104 | }; |
| 105 | |
| 106 | /* |
| 107 | * Macros for manipulating rings. |
| 108 | * |
| 109 | * FRONT_RING_whatever works on the "front end" of a ring: here |
| 110 | * requests are pushed on to the ring and responses taken off it. |
| 111 | * |
| 112 | * BACK_RING_whatever works on the "back end" of a ring: here |
| 113 | * requests are taken off the ring and responses put on. |
| 114 | * |
| 115 | * N.B. these macros do NO INTERLOCKS OR FLOW CONTROL. |
| 116 | * This is OK in 1-for-1 request-response situations where the |
| 117 | * requestor (front end) never has more than RING_SIZE()-1 |
| 118 | * outstanding requests. |
| 119 | */ |
| 120 | |
| 121 | /* Initialising empty rings */ |
| 122 | #define SHARED_RING_INIT(_s) do { \ |
| 123 | (_s)->req_prod = (_s)->rsp_prod = 0; \ |
| 124 | (_s)->req_event = (_s)->rsp_event = 1; \ |
| 125 | memset((_s)->pad, 0, sizeof((_s)->pad)); \ |
| 126 | } while(0) |
| 127 | |
| 128 | #define FRONT_RING_INIT(_r, _s, __size) do { \ |
| 129 | (_r)->req_prod_pvt = 0; \ |
| 130 | (_r)->rsp_cons = 0; \ |
| 131 | (_r)->nr_ents = __RING_SIZE(_s, __size); \ |
| 132 | (_r)->sring = (_s); \ |
| 133 | } while (0) |
| 134 | |
| 135 | #define BACK_RING_INIT(_r, _s, __size) do { \ |
| 136 | (_r)->rsp_prod_pvt = 0; \ |
| 137 | (_r)->req_cons = 0; \ |
| 138 | (_r)->nr_ents = __RING_SIZE(_s, __size); \ |
| 139 | (_r)->sring = (_s); \ |
| 140 | } while (0) |
| 141 | |
| 142 | /* Initialize to existing shared indexes -- for recovery */ |
| 143 | #define FRONT_RING_ATTACH(_r, _s, __size) do { \ |
| 144 | (_r)->sring = (_s); \ |
| 145 | (_r)->req_prod_pvt = (_s)->req_prod; \ |
| 146 | (_r)->rsp_cons = (_s)->rsp_prod; \ |
| 147 | (_r)->nr_ents = __RING_SIZE(_s, __size); \ |
| 148 | } while (0) |
| 149 | |
| 150 | #define BACK_RING_ATTACH(_r, _s, __size) do { \ |
| 151 | (_r)->sring = (_s); \ |
| 152 | (_r)->rsp_prod_pvt = (_s)->rsp_prod; \ |
| 153 | (_r)->req_cons = (_s)->req_prod; \ |
| 154 | (_r)->nr_ents = __RING_SIZE(_s, __size); \ |
| 155 | } while (0) |
| 156 | |
| 157 | /* How big is this ring? */ |
| 158 | #define RING_SIZE(_r) \ |
| 159 | ((_r)->nr_ents) |
| 160 | |
| 161 | /* Number of free requests (for use on front side only). */ |
| 162 | #define RING_FREE_REQUESTS(_r) \ |
| 163 | (RING_SIZE(_r) - ((_r)->req_prod_pvt - (_r)->rsp_cons)) |
| 164 | |
| 165 | /* Test if there is an empty slot available on the front ring. |
| 166 | * (This is only meaningful from the front. ) |
| 167 | */ |
| 168 | #define RING_FULL(_r) \ |
| 169 | (RING_FREE_REQUESTS(_r) == 0) |
| 170 | |
| 171 | /* Test if there are outstanding messages to be processed on a ring. */ |
| 172 | #define RING_HAS_UNCONSUMED_RESPONSES(_r) \ |
| 173 | ((_r)->sring->rsp_prod - (_r)->rsp_cons) |
| 174 | |
| 175 | #define RING_HAS_UNCONSUMED_REQUESTS(_r) \ |
| 176 | ({ \ |
| 177 | unsigned int req = (_r)->sring->req_prod - (_r)->req_cons; \ |
| 178 | unsigned int rsp = RING_SIZE(_r) - \ |
| 179 | ((_r)->req_cons - (_r)->rsp_prod_pvt); \ |
| 180 | req < rsp ? req : rsp; \ |
| 181 | }) |
| 182 | |
| 183 | /* Direct access to individual ring elements, by index. */ |
| 184 | #define RING_GET_REQUEST(_r, _idx) \ |
| 185 | (&((_r)->sring->ring[((_idx) & (RING_SIZE(_r) - 1))].req)) |
| 186 | |
| 187 | /* |
| 188 | * Get a local copy of a request. |
| 189 | * |
| 190 | * Use this in preference to RING_GET_REQUEST() so all processing is |
| 191 | * done on a local copy that cannot be modified by the other end. |
| 192 | * |
| 193 | * Note that https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145 may cause this |
| 194 | * to be ineffective where _req is a struct which consists of only bitfields. |
| 195 | */ |
| 196 | #define RING_COPY_REQUEST(_r, _idx, _req) do { \ |
| 197 | /* Use volatile to force the copy into _req. */ \ |
| 198 | *(_req) = *(volatile typeof(_req))RING_GET_REQUEST(_r, _idx); \ |
| 199 | } while (0) |
| 200 | |
| 201 | #define RING_GET_RESPONSE(_r, _idx) \ |
| 202 | (&((_r)->sring->ring[((_idx) & (RING_SIZE(_r) - 1))].rsp)) |
| 203 | |
| 204 | /* Loop termination condition: Would the specified index overflow the ring? */ |
| 205 | #define RING_REQUEST_CONS_OVERFLOW(_r, _cons) \ |
| 206 | (((_cons) - (_r)->rsp_prod_pvt) >= RING_SIZE(_r)) |
| 207 | |
| 208 | /* Ill-behaved frontend determination: Can there be this many requests? */ |
| 209 | #define RING_REQUEST_PROD_OVERFLOW(_r, _prod) \ |
| 210 | (((_prod) - (_r)->rsp_prod_pvt) > RING_SIZE(_r)) |
| 211 | |
| 212 | |
| 213 | #define RING_PUSH_REQUESTS(_r) do { \ |
| 214 | virt_wmb(); /* back sees requests /before/ updated producer index */ \ |
| 215 | (_r)->sring->req_prod = (_r)->req_prod_pvt; \ |
| 216 | } while (0) |
| 217 | |
| 218 | #define RING_PUSH_RESPONSES(_r) do { \ |
| 219 | virt_wmb(); /* front sees responses /before/ updated producer index */ \ |
| 220 | (_r)->sring->rsp_prod = (_r)->rsp_prod_pvt; \ |
| 221 | } while (0) |
| 222 | |
| 223 | /* |
| 224 | * Notification hold-off (req_event and rsp_event): |
| 225 | * |
| 226 | * When queueing requests or responses on a shared ring, it may not always be |
| 227 | * necessary to notify the remote end. For example, if requests are in flight |
| 228 | * in a backend, the front may be able to queue further requests without |
| 229 | * notifying the back (if the back checks for new requests when it queues |
| 230 | * responses). |
| 231 | * |
| 232 | * When enqueuing requests or responses: |
| 233 | * |
| 234 | * Use RING_PUSH_{REQUESTS,RESPONSES}_AND_CHECK_NOTIFY(). The second argument |
| 235 | * is a boolean return value. True indicates that the receiver requires an |
| 236 | * asynchronous notification. |
| 237 | * |
| 238 | * After dequeuing requests or responses (before sleeping the connection): |
| 239 | * |
| 240 | * Use RING_FINAL_CHECK_FOR_REQUESTS() or RING_FINAL_CHECK_FOR_RESPONSES(). |
| 241 | * The second argument is a boolean return value. True indicates that there |
| 242 | * are pending messages on the ring (i.e., the connection should not be put |
| 243 | * to sleep). |
| 244 | * |
| 245 | * These macros will set the req_event/rsp_event field to trigger a |
| 246 | * notification on the very next message that is enqueued. If you want to |
| 247 | * create batches of work (i.e., only receive a notification after several |
| 248 | * messages have been enqueued) then you will need to create a customised |
| 249 | * version of the FINAL_CHECK macro in your own code, which sets the event |
| 250 | * field appropriately. |
| 251 | */ |
| 252 | |
| 253 | #define RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(_r, _notify) do { \ |
| 254 | RING_IDX __old = (_r)->sring->req_prod; \ |
| 255 | RING_IDX __new = (_r)->req_prod_pvt; \ |
| 256 | virt_wmb(); /* back sees requests /before/ updated producer index */ \ |
| 257 | (_r)->sring->req_prod = __new; \ |
| 258 | virt_mb(); /* back sees new requests /before/ we check req_event */ \ |
| 259 | (_notify) = ((RING_IDX)(__new - (_r)->sring->req_event) < \ |
| 260 | (RING_IDX)(__new - __old)); \ |
| 261 | } while (0) |
| 262 | |
| 263 | #define RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(_r, _notify) do { \ |
| 264 | RING_IDX __old = (_r)->sring->rsp_prod; \ |
| 265 | RING_IDX __new = (_r)->rsp_prod_pvt; \ |
| 266 | virt_wmb(); /* front sees responses /before/ updated producer index */ \ |
| 267 | (_r)->sring->rsp_prod = __new; \ |
| 268 | virt_mb(); /* front sees new responses /before/ we check rsp_event */ \ |
| 269 | (_notify) = ((RING_IDX)(__new - (_r)->sring->rsp_event) < \ |
| 270 | (RING_IDX)(__new - __old)); \ |
| 271 | } while (0) |
| 272 | |
| 273 | #define RING_FINAL_CHECK_FOR_REQUESTS(_r, _work_to_do) do { \ |
| 274 | (_work_to_do) = RING_HAS_UNCONSUMED_REQUESTS(_r); \ |
| 275 | if (_work_to_do) break; \ |
| 276 | (_r)->sring->req_event = (_r)->req_cons + 1; \ |
| 277 | virt_mb(); \ |
| 278 | (_work_to_do) = RING_HAS_UNCONSUMED_REQUESTS(_r); \ |
| 279 | } while (0) |
| 280 | |
| 281 | #define RING_FINAL_CHECK_FOR_RESPONSES(_r, _work_to_do) do { \ |
| 282 | (_work_to_do) = RING_HAS_UNCONSUMED_RESPONSES(_r); \ |
| 283 | if (_work_to_do) break; \ |
| 284 | (_r)->sring->rsp_event = (_r)->rsp_cons + 1; \ |
| 285 | virt_mb(); \ |
| 286 | (_work_to_do) = RING_HAS_UNCONSUMED_RESPONSES(_r); \ |
| 287 | } while (0) |
| 288 | |
| 289 | |
| 290 | /* |
| 291 | * DEFINE_XEN_FLEX_RING_AND_INTF defines two monodirectional rings and |
| 292 | * functions to check if there is data on the ring, and to read and |
| 293 | * write to them. |
| 294 | * |
| 295 | * DEFINE_XEN_FLEX_RING is similar to DEFINE_XEN_FLEX_RING_AND_INTF, but |
| 296 | * does not define the indexes page. As different protocols can have |
| 297 | * extensions to the basic format, this macro allow them to define their |
| 298 | * own struct. |
| 299 | * |
| 300 | * XEN_FLEX_RING_SIZE |
| 301 | * Convenience macro to calculate the size of one of the two rings |
| 302 | * from the overall order. |
| 303 | * |
| 304 | * $NAME_mask |
| 305 | * Function to apply the size mask to an index, to reduce the index |
| 306 | * within the range [0-size]. |
| 307 | * |
| 308 | * $NAME_read_packet |
| 309 | * Function to read data from the ring. The amount of data to read is |
| 310 | * specified by the "size" argument. |
| 311 | * |
| 312 | * $NAME_write_packet |
| 313 | * Function to write data to the ring. The amount of data to write is |
| 314 | * specified by the "size" argument. |
| 315 | * |
| 316 | * $NAME_get_ring_ptr |
| 317 | * Convenience function that returns a pointer to read/write to the |
| 318 | * ring at the right location. |
| 319 | * |
| 320 | * $NAME_data_intf |
| 321 | * Indexes page, shared between frontend and backend. It also |
| 322 | * contains the array of grant refs. |
| 323 | * |
| 324 | * $NAME_queued |
| 325 | * Function to calculate how many bytes are currently on the ring, |
| 326 | * ready to be read. It can also be used to calculate how much free |
| 327 | * space is currently on the ring (XEN_FLEX_RING_SIZE() - |
| 328 | * $NAME_queued()). |
| 329 | */ |
| 330 | |
| 331 | #ifndef XEN_PAGE_SHIFT |
| 332 | /* The PAGE_SIZE for ring protocols and hypercall interfaces is always |
| 333 | * 4K, regardless of the architecture, and page granularity chosen by |
| 334 | * operating systems. |
| 335 | */ |
| 336 | #define XEN_PAGE_SHIFT 12 |
| 337 | #endif |
| 338 | #define XEN_FLEX_RING_SIZE(order) \ |
| 339 | (1UL << ((order) + XEN_PAGE_SHIFT - 1)) |
| 340 | |
| 341 | #define DEFINE_XEN_FLEX_RING(name) \ |
| 342 | static inline RING_IDX name##_mask(RING_IDX idx, RING_IDX ring_size) \ |
| 343 | { \ |
| 344 | return idx & (ring_size - 1); \ |
| 345 | } \ |
| 346 | \ |
| 347 | static inline unsigned char *name##_get_ring_ptr(unsigned char *buf, \ |
| 348 | RING_IDX idx, \ |
| 349 | RING_IDX ring_size) \ |
| 350 | { \ |
| 351 | return buf + name##_mask(idx, ring_size); \ |
| 352 | } \ |
| 353 | \ |
| 354 | static inline void name##_read_packet(void *opaque, \ |
| 355 | const unsigned char *buf, \ |
| 356 | size_t size, \ |
| 357 | RING_IDX masked_prod, \ |
| 358 | RING_IDX *masked_cons, \ |
| 359 | RING_IDX ring_size) \ |
| 360 | { \ |
| 361 | if (*masked_cons < masked_prod || \ |
| 362 | size <= ring_size - *masked_cons) { \ |
| 363 | memcpy(opaque, buf + *masked_cons, size); \ |
| 364 | } else { \ |
| 365 | memcpy(opaque, buf + *masked_cons, ring_size - *masked_cons); \ |
| 366 | memcpy((unsigned char *)opaque + ring_size - *masked_cons, buf, \ |
| 367 | size - (ring_size - *masked_cons)); \ |
| 368 | } \ |
| 369 | *masked_cons = name##_mask(*masked_cons + size, ring_size); \ |
| 370 | } \ |
| 371 | \ |
| 372 | static inline void name##_write_packet(unsigned char *buf, \ |
| 373 | const void *opaque, \ |
| 374 | size_t size, \ |
| 375 | RING_IDX *masked_prod, \ |
| 376 | RING_IDX masked_cons, \ |
| 377 | RING_IDX ring_size) \ |
| 378 | { \ |
| 379 | if (*masked_prod < masked_cons || \ |
| 380 | size <= ring_size - *masked_prod) { \ |
| 381 | memcpy(buf + *masked_prod, opaque, size); \ |
| 382 | } else { \ |
| 383 | memcpy(buf + *masked_prod, opaque, ring_size - *masked_prod); \ |
| 384 | memcpy(buf, (unsigned char *)opaque + (ring_size - *masked_prod), \ |
| 385 | size - (ring_size - *masked_prod)); \ |
| 386 | } \ |
| 387 | *masked_prod = name##_mask(*masked_prod + size, ring_size); \ |
| 388 | } \ |
| 389 | \ |
| 390 | static inline RING_IDX name##_queued(RING_IDX prod, \ |
| 391 | RING_IDX cons, \ |
| 392 | RING_IDX ring_size) \ |
| 393 | { \ |
| 394 | RING_IDX size; \ |
| 395 | \ |
| 396 | if (prod == cons) \ |
| 397 | return 0; \ |
| 398 | \ |
| 399 | prod = name##_mask(prod, ring_size); \ |
| 400 | cons = name##_mask(cons, ring_size); \ |
| 401 | \ |
| 402 | if (prod == cons) \ |
| 403 | return ring_size; \ |
| 404 | \ |
| 405 | if (prod > cons) \ |
| 406 | size = prod - cons; \ |
| 407 | else \ |
| 408 | size = ring_size - (cons - prod); \ |
| 409 | return size; \ |
| 410 | } \ |
| 411 | \ |
| 412 | struct name##_data { \ |
| 413 | unsigned char *in; /* half of the allocation */ \ |
| 414 | unsigned char *out; /* half of the allocation */ \ |
| 415 | } |
| 416 | |
| 417 | #define DEFINE_XEN_FLEX_RING_AND_INTF(name) \ |
| 418 | struct name##_data_intf { \ |
| 419 | RING_IDX in_cons, in_prod; \ |
| 420 | \ |
| 421 | uint8_t pad1[56]; \ |
| 422 | \ |
| 423 | RING_IDX out_cons, out_prod; \ |
| 424 | \ |
| 425 | uint8_t pad2[56]; \ |
| 426 | \ |
| 427 | RING_IDX ring_order; \ |
| 428 | grant_ref_t ref[]; \ |
| 429 | }; \ |
| 430 | DEFINE_XEN_FLEX_RING(name) |
| 431 | |
| 432 | #endif /* __XEN_PUBLIC_IO_RING_H__ */ |